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1 Introduction

The basic security requirement for public key encryption (PKE) schemes, known as semantic
security or IND-CPA (indistinguishability under chosen plaintext attack), is that an eaves-
dropping adversary learns nothing about the plaintext underlying a communicated ciphertext
(equivalently, cannot distinguish an encryption of one plaintext from another). Often, how-
ever, this indistinguishability guarantee is not sufficient, and a PKE satisfying stronger
properties is required.

IND-CCA2 from semantic security.Astrong level of PKE security,which is sufficient formost
applications, is indistinguishability under chosen-ciphertext attacks (IND-CCA2), wherein
the adversary may ask adaptive queries to a decryption oracle (as long as it does not query
the “challenge ciphertext” itself).

A natural question is whether one can achieve IND-CCA2 security only from IND-CPA
security; however, this question still remains a big open problem. On one hand, the various
known constructions of IND-CCA2 secure encryption either rely on IND-CPA security and
some additional properties that computational hardness assumptions from number theory
provide [11,18,24,25,29,30,40] or use generic assumptions seemingly stronger than IND-
CPA secure encryption, e.g., non-interactive zero knowledge, identity-based encryption, or
lossy trapdoor functions [6,16,35]. On the other hand, there has been only a partial black-
box separation result [19] between IND-CPA and IND-CCA2. Therefore, researchers have
proposed and studied various intermediate notions of security.

Non-malleable encryption from semantic security. In this work, we consider the notion of
non-malleability under chosen-plaintext attacks (NM-CPA), initially put forward by Dolev,
Dwork andNaor [16]. Roughly, non-malleability requires that it is infeasible for an adversary
to modify a ciphertext into one, or many, other ciphertexts of messages related to the original
plaintext. It was shown by Bellare and Sahai [3] and by Pass, shelat and Vaikuntanathan [34]
that NM-CPA is equivalent to security against adversaries with access to a non-adaptive
decryption oracle, meaning that the adversary can only ask one “parallel” CCA2 decryption
query.We also consider the notion of non-malleability under bounded-CCA2 attacks (NM-q-
CCA2) [12], where we allow the adversary to adaptively query the decryption oracle at most
q times (in contrast, NM-CCA2 allows an unbounded number of queries, and is equivalent
to IND-CCA2 [16]).

Besides being a “stepping stone” between semantically secure and CCA2 secure encryp-
tion, non-malleability (or NM-CPA security) is an important notion in its own right. As one
motivating example, consider the use of PKE in auctions. Buyers place their bids for an item
to a seller, encrypted under the seller’s public key, and the seller sells the item to the buyer
with the highest bid. We certainly want to rule out adversaries who consistently bid exactly
one dollar more than the previous bidders.

Previous work on achieving NM-CPA from IND-CPA. Interestingly, although NM-CPA
appears closer to IND-CCA2 than IND-CPA security, a sequence of results (i.e., a non-
black-box construction by [34] followed by a black-box construction by [9]) showed that
NM-CPA schemes (and even NM-q-CCA2 schemes) can be constructed from any IND-CPA
scheme.

In a recent work, Coretti et al. [10] revisited the work of [9], and investigated (among
other results) the question of how efficient the black-box transformation can be. The mea-
sure of efficiency they consider is the rate of the resulting NM-CPA encryption scheme,

123



Improved, black-box, non-malleable encryption 643

Table 1 The ciphertext lengths of various NM-CPA encryption schemes

Scheme n

o(k) Θ(k) Ω(k2)

[9] Θ(k3) Θ(k2n) Θ(k2n)

[10] Θ(k3) Θ(k2n) Θ(kn)

This work Θ(k2) Θ(kn) Θ(n)

Scheme n

Θ(k) Θ(k2) Ω(k3)

HE + [9] Θ(k2n) Θ(kn) Θ(n)

HE + [10] Θ(k2n) Θ(kn) Θ(n)

HE + this work Θ(kn) Θ(n) Θ(n)

The parameter k is the security parameter, and n is the message length. We assume the underlying IND-CPA
encryption has a constant rate for messages of length Ω(k); encrypting o(k)-long messages with IND-CPA
encryption is assumed to be Θ(k)-long. HE denotes the hybrid encryption according to Herranz et al. [23].
Note that hybrid encryption doesn’t help reduce the ciphertext length for short messages

defined as n
c(n)

, where n is the message length and c(n) is the length of the corresponding

ciphertext.1

The transformation of [9] gives an n-bit NM-CPA scheme such that its encryption algo-
rithm calls the underlying n-bit IND-CPA scheme Θ(k2) times, where k is the security
parameter.2 For example, assuming a constant-rate IND-CPA encryption, the transformation
gives a Θ(k)-bit NM-CPA scheme with the ciphertext length of Θ(k3).

Coretti et al. [10] give an improved transformation by replacing the error-correcting code
used in [9] with one having a better rate, although the transformation still invokes the same
number Θ(k2) of calls to the underlying IND-CPA encryption. In particular, this allows
Θ(k3)-bit ciphertexts to encrypt Θ(k2)-bit messages. See Table 1 for more detailed compar-
ison.

1.1 Our results

In this work, we give a black-box transformation from IND-CPA encryption to NM-CPA
encryption with better efficiency.

Conceptual contribution. Our main conceptual contribution is that we no longer follow the
framework of [16] (and all subsequent constructions) of creating k encryptions of the same
message or codeword.

In particular, as we elaborate on in the next section, previous constructions rely on a
“matrix encoding” of the plaintext as a k × � matrix of elements, where each row in the

1 We note that the result of Coretti et al. [10] showed that (a generalization) of the construction of [9]
achieves not onlyNM-CPA security, but also a stronger notion of security—indistinguishability under (chosen-
ciphertext) self-destruct attacks (IND-SDA)—where the adversary gets access to an adaptive decryption oracle
that stops decrypting after the first invalid ciphertext is submitted.
2 In fact, according to [9], the numberΘ(k2) of calls to IND-CPA encryption can be optimized toΘ(k log2 k);
to achieve a negligible soundness error, the scheme checks k random positions, but observe it’s enough to

check log2 k positions since we have 1/2log
2 k = negl(k). However, we choose to compare the results by

using the non-optimized O(k2) calls, following the presentation of Coretti et al. [10].
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matrix is an encoding of the plaintext message via an appropriate code (the message itself
in [16], or more sophisticated encodings in subsequent works). The rows of the matrix are
indexed by a one-time signature, so we need at least k (security parameter) rows. It follows
that using this methodology incurs a ciphertext expansion of at least a factor of k, regardless
of the underlying code used. In this sense, [10] have achieved the best possible rate within
this construction framework.

We depart from this “matrix encoding” methodology and work directly with a single
codeword. This allows us to achieve the first black-box transformation that invokes Θ(k)
calls to the underlying IND-CPA encryption algorithm; previous black-box constructions
need Θ(k2) calls.

Main theorem (informal) There exists a (fully) black-box construction of a non-
malleable encryption scheme from any IND-CPA encryption scheme, in which the
encryption algorithm calls the underlying IND-CPA encryption algorithm Θ(k) times.

We also extend the theorem to provide a black-box construction of NM-q-CCA2 secure
encryption [12] from any semantically secure encryption, calling the IND-CPA encryption
algorithm Θ(k + q) times.

NM-CPA encryption with a better rate. Applying the aforementioned transformation, we
achieve an NM-CPA encryption scheme with a better rate. For this, we use a Shamir secret-
share packing technique to improve the rate of the underlying error-correcting code to encode
the plaintext in the transformation. In particular, we achieve a constant-rate NM-CPA encryp-
tion for messages of lengthΩ(k2). We compare our results with the previous work in Table 1.

We note that one can achieve a better rate for long messages by using hybrid encryption.
In particular, Herranz et al. [23] showed that NM-CPA KEM plus IND-CCA2 DEM implies
NM-CPA PKE. (For shorter messages, the ciphertext length is dominated by the KEM part of
encrypting the Θ(k)-long encapsulated key, since for the DEM part, we have a constant-rate
IND-CCA2 secure symmetric encryption scheme [2].) Even considering the hybrid encryp-
tion framework, our scheme achieves better efficiency: Our scheme achieves a constant rate
for messages of length Ω(k2), rather than for messages of length Ω(k3) in the previous
schemes.

Potential applications to other related work. The original techniques of [9] (in particular, the
properties of the matrix encoding scheme and its use for verifying consistency) have been
used implicitly or explicitly in several works for different purposes. For example, there have
been black-box constructions of non-malleable commitments [33], set intersection protocols
from homomorphic encryptions [14], and a CCA2-secure encryption scheme for strings
starting from one for bits [32]. The works of [26,27,31,39] used these techniques in the
context of black-box, round-efficient secure computation. The works of [21,22] extended
the ideas to provide consistency relations beyond equality using VSS and the paradigm of
MPC-in-the-head.

We hope that our improved efficiency, constant rate transformation can be used to improve
efficiency in some of these or other application domains. In fact, a very recent work [1] has
already used our results to construct their non-malleble codes resilient against local tamper-
ing functions and bounded-depth circuits. Indeed, their results instantiated with the previous
matrix encoding techniques would yield non-malleable codes resilient against functions with
locality up to nc for some specific c < 1 (roughly c = 1/3). However, using our results as an
ingredient, they were able to achieve resilience against locality n1−ε for any constant ε < 1
(and even n

log n with inefficient codes), and much better rate even in lower locality ranges.
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2 Techniques

2.1 Overview of previous techniques

We begin with an overview of previous techniques of [9,10,16,34], which we will refer to
below as DDN, PSV, CDMW and CDTV, respectively. We focus on the details that will be
helpful towards understanding our techniques.

Non-black-box transformations by DDN and PSV. Let k be the security parameter. The key
generation algorithm generates 2k independent keys for the underlying semantically-secure
public key encryption scheme pkbi for i = 1, . . . , k, and b ∈ {0, 1} (and the corresponding
secret keys). Encryption of message m proceeds as follows:

(a) Generate a (vksig, sksig) pair for a one-time signature (where |vksig| = k).

(b) Generate k encryptions of themessagem. In particular, use keys pkvksigii for i = 1, . . . , k
for encryptions.

(c) Give a non-interactive zero-knowledge proof (or the relaxed “designated verifier” ver-
sion) proving that all resulting ciphertexts are encryptions of the same message.

(d) Sign the entire bundle with a one-time signature.

It is in step (c) that a general NP-reduction is used, which in return makes the construction
non-black-box (and inefficient). In the proof of security, we exploit the fact that for a well-
formed ciphertext, we can recover the message if we know the secret key for any of the k
encryptions.

Black-box transformations by CDMW. Let k be the security parameter, and let � = O(k)
(or any superlogarithmic function in k). The key generation algorithm generates 2k� inde-
pendent keys for the underlying semantically-secure PKE scheme pkbi, j for i = 1, . . . , k,
j = 1, . . . , �, and b ∈ {0, 1} (and the corresponding secret keys). The encryption algorithm
utilizes a Reed–Solomon (RS) error correcting code (ECC) with encoding algorithm E (see
Appendix 1.1). Now, the encryption algorithm has the following form:

(a) Generate a (vksig, sksig) pair for a one-time signature (where |vksig| = k).
(b) Obtain an encodingw of amessagem by computingw ← E(m). Generate k encryptions

of the same codeword w, using � public keys per each of the k encryptions in a way that
we explain below.

(d) Sign the entire bundle with a one-time signature.

Obviously, the scheme should provide some mechanism for checking the consistency
of k encryptions, corresponding to step (c) in DDN and PSV (i.e., the non-interactive zero-
knowledge proof). That way, even if the simulated decryption in the proof of security decrypts
any of the k ciphertexts, the decryption should be correct with overwhelming probability.
CDMW achieved this by using a codeword w consisting of � elements, and encrypting each
element with a different public key, for a total of k� encryptions. The decryption algorithm
checks consistency of the k encryptions of w by checking consistency of a random subset
of columns (where the randomness is determined by its secret key). Then, the decryption
algorithm decrypts and error-corrects the first row, and checks that in that same subset of
locations, this codeword is not corrupted. If both these column-check and codeword-check
pass, output the decoded message.

We next describe the details of how the above outline is implemented, and the intuition
behind its security and parameter choices. Recall that a RS codeword consisting of � output
symbols is simply a polynomial p of degree d = O(�) over a finite field, evaluated at � points
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(say 1, . . . , �). The way CDMW encode a message m is via Shamir secret-sharing, which
can be viewed as an instantiation of a RS code. Specifically, set p(0) = m, choose the values
of p(1), . . . , p(d) at random, and interpolate to obtain the unique degree d polynomial p.
Let the final encoding w ← E(m) consist of w1 = p(1), . . . , w� = p(�). The encryptions
now proceed as follows:

Construct a k × � matrix M , where Mi, j = w j and k is the number of bits in vksig =
vksig1, . . . ,vksigk . Each entry of Mi, j is then encrypted under a one of two public

keys (pk0i, j , pk
1
i, j ), depending on whether vksigi is 0 or 1.

In the actual decryption algorithm, the first rowof the encryptedmatrix is always decrypted
and decoded, whereas in the security proof, the decrypted row will be chosen based on which
secret keys are available to the reduction, and it is ensured that in each submitted ciphertext
there is some row for which the reduction knows all the secret keys. The key challenge is to
ensure that decrypting and decoding any one of the k rows of the encrypted matrix will yield
the samemessage m̃ (possibly ⊥) as the decrypting and decoding the first row. This is where
the “column check” and “codeword check” come in. In the column check, we decrypt a ran-
dom subset of t = O(�) columns, and check that all the entries in each of these columns are
the same; the random subset is chosen in key generation and embedded into the private key.
Intuitively, this ensures that the encoding in each row is “close” to the encoding in the first
row. In the codeword check, we decrypt and decode the first row and then check the resulting
codeword against the received word in the first row. Specifically, we check that t = O(�)

random positions of the first row (the same ones that were opened during the column check)
agree with the corresponding t positions in the decoded codeword. Intuitively, this is a type
of a cut-and-choose check which ensures that the encoding in the first row is “close” to a
valid codeword. If either of the checks fails, we output⊥. Put together, the two checks ensure
that with overwhelming probability, all rows must decode to the same message (or to⊥), and
thus provide the desired consistency.

The reason CDMW needs � to be superlogarithmic, is that for the codeword check, we
need the number of random positions t = O(�) to satisfy 2−t = negl(k) so that a codeword
that is far from valid will pass the check with negligible probability. Thus, the RS code used
for each row is not constant rate.

More efficient black-box transformation by CDTV. The general insight of CDTV (and also
the full version of CDMW [8]) is that the above construction can be generalized to work for
a larger class of encoding schemes E, beyond just RS codes. Specifically, Coretti et al. [10]
note that using a LECSS (linear error-correcting secret sharing scheme) [7,13] is sufficient,
whereas [8] introduced a notion of reconstructable probabilistic encoding scheme (building
on [15]). Using these insights, the above works were able to replace the RS code described
above with a constant-rate encoding scheme (for long enough messages). Specifically, each
row with � elements can in fact encode a message of length O(�) elements, resulting in a
constant rate code for each row (while still maintaining k rows).

2.2 Our techniques

Our encryption scheme also utilizes reconstructable probabilistic encoding (RPE) schemes.
RPE schemes are, informally, error-correcting codes (ECCs) with additional secrecy and
reconstruction properties. The secrecy property guarantees that the symbols at any not-too-
large subset of positions in the codeword are distributed uniformly and independently of
the encoded message. The reconstruction property says that furthermore, any assignment of
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symbols to such a subset of positions, can be completed to a (correctly distributed) codeword
for any given message. The parameter regime we will be interested in is the standard one,
where the error-correction is with respect to a constant fraction of errors, and the secrecy and
reconstruction are also with respect to a (smaller) constant fraction of positions.

From k encryptions to a single encryption. Our first technical contribution is identifying a
property of RPE schemes and showing how it can be leveraged to eliminate the need for the
“repetition” encoding in previous works. The property we use is that error-correction and
decoding can be performed given any large enough (constant-fraction) sized subset λ · � of
positions of the corrupted codeword (here 0 < λ < 1 is a constant). We call this property
the “decoding from partial views” property. Crucially, we would like this property to hold in
a strong way, so that for any such subset, we always decode to the same codeword/message
(possibly ⊥), even for arbitrarily corrupt codewords, with overwhelming probability (taken
over the random choice of the secret key).

We have already discussed a similar property as underlying, at least implicitly, the previous
works relying on matrix encoding. However, in those works the property applied to decoding
from any one of the k rows (which constitute a repetition code), and was unrelated to the
use of RPE for the encoding within each row. Our novel observation is that in fact a similar
property can apply directly to RPE (with appropriate parameters). A single RPE codeword
could then allow decoding from any partial view subset, and by correctly adapting a codeword
check and another layer of (standard) encoding on the signature, we can achieve the strong
version guaranteeing consistency with overwhelming probability.

Thus, encryption of a message m proceeds as follows:

(a) Generate a (vksig, sksig) pair for a one-time signature.
(b) Let E be the encoding algorithm of a RPE with the output length �. Let C be a linear

code with relative distance λ < 1, encoding the length-k vksig to a length-� string (note
that C does not have to be efficiently error correctable). Set s ← E(m), where s is a
vector of length �. Let v1 · · · v� be the output of C(vksig). For j = 1, . . . , �, encrypt
each entry s j under public key pk

v j
j , yielding a vector of ciphertexts.

(c) Sign the entire bundle with a one-time signature.

In the actual decryption algorithm, the first λ · � positions of the ciphertext vector are
always decrypted and decoded, whereas in the security proof, a specific subset of size λ · �

will be chosen based on which secret keys are available to the reduction. In the proof, we
use the fact that, due to unforgeability of the signature scheme, the vksig for each submitted
ciphertext must be different than the vksig of the challenge ciphertext, and the fact that C
has distance λ · � to ensure that there is always some sufficiently large subset for which the
reduction knows all the secret keys.

To ensure that decoding any of subset of size λ · � positions yields the same message m̃ as
the first subset (or both will give⊥), we require an analogue of the codeword check only (but
no column check). As before, in the codeword check we compare the codeword obtained by
decrypting and decoding the first λ·� positions with the receivedword. Specifically, we check
that t random positions throughout the entire received word agree with the corresponding t
positions in the decoded codeword.

Constant-rate RPE. Our second contribution is to show that the above framework is imple-
mentable with a constant rate RPE: we show that using RS codes with packed Shamir secret
sharing yields a constant rate RPE with appropriate parameters. Compared with the RS
based encodings used by [9] for k rows, here our encoding has a single row (of length a
constant times larger), and a longer message is encoded in each codeword via the packing
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technique [17]. That is, the polynomial is taken to be of a larger degree, and the message is
encoded in several evaluation points of the polynomial.

3 Preliminaries and definitions

We use [n] to denote {1, 2, . . . , n}. If A is a probabilistic polynomial time (hereafter, ppt)
algorithm that runs on input x , A(x) denotes the random variable according to the distribution
of the output of A on input x . We denote by A(x; r) the output of A on input x and random
coins r . A functionμ from the natural numbers to the non-negative real numbers is negligible
if for every positive polynomial p(·) there is an N such that for all integers k > N , μ(k) <
1

p(k) . We use negl(k) to denote some arbitrary negligible function.

Definition 1 (Statistical Indistinguishability) Two probability ensembles A = {Ak}k∈N and
B = {Bk}k∈N are statistically indistinguishable if it holds that

∑

α

∣

∣

∣Pr[Xk = α] − Pr[Yk = α]
∣

∣

∣ ≤ negl(k).

Statistical indistinguishability between two ensembles A and B is denoted by A
s≈ B.

Definition 2 (Computational Indistinguishability) Two probability ensembles A = {Ak}k∈N
and B = {Bk}k∈N are computationally indistinguishable if for every ppt distinguisher D, it
holds that

∣

∣

∣

∣

Pr
a←Ak

[D(1k, a) = 1] − Pr
b←Bk

[D(1k, b) = 1]
∣

∣

∣

∣

≤ negl(k).

Computational indistinguishability between two ensembles A and B is denoted by A
c≈ B.

Distance of two strings. Given two strings v,w of length � over an alphabet Σ , we say
that v and w are δ-far if they disagree in more than δ · � positions, where 0 ≤ δ ≤ 1; we say
that v and w are δ-close if they agree in more than δ · � positions.

3.1 Semantically secure encryption

In the following we define the syntax of a PKE scheme and the standard security notion,
semantic security. We then present the two stronger security notions of non-malleability and
bounded-CCA2 non-malleability.

Definition 3 (Encryption scheme) A triple (Gen,Enc,Dec) is an encryption scheme,
if Gen and Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm
which satisfies the following property:

Correctness. With probability 1 − negl(k) over (pk, sk) ← Gen(1k): for all m,
Pr[Decsk(Encpk(m)) = m] = 1.

Definition 4 (Semantic security) Let Π = (Gen,Enc,Dec) be an encryption scheme and
let the random variable INDb(Π, A, k), where b ∈ {0, 1}, A = (A1, A2) are ppt algorithms
and k ∈ N, denote the result of the following probabilistic experiment:

INDb(Π, A, k) :
(pk, sk) ← Gen(1k)
(m0,m1, stateA) ← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)

D ← A2(y, stateA)

Output D
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(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or
semantically secure, if for any ppt algorithms A = (A1, A2) the following two ensembles
are computationally indistinguishable:

{

IND0(Π, A, k)
}

k∈N
c≈

{

IND1(Π, A, k)
}

k∈N.

It follows from a straight-forward hybrid argument that semantic security implies indistin-
guishability of multiple encryptions under independently chosen keys:

Proposition 1 Let Π = (Gen,Enc,Dec) be a semantically secure encryption scheme and
let the random variable mINDb(Π, A, k, �), where b ∈ {0, 1}, A = (A1, A2) are ppt algo-
rithms and k ∈ N, denote the result of the following probabilistic experiment:

mINDb(Π, A, k, �) :
For i = 1, . . . , �: (pki , ski ) ← Gen(1k)
(〈m1

0, . . . ,m
�
0〉, 〈m1

1, . . . ,m
�
1〉, stateA) ← A1(〈pk1, . . . , pk�〉)

s.t. |m1
0| = |m1

1|, . . . , |m�
0| = |m�

1|
For i = 1, . . . , �: yi ← Encpki (m

i
b)

D ← A2(y1, . . . , y�, stateA)

Output D

then for any ppt algorithms A = (A1, A2) and for any polynomial p(k) the following two
ensembles are computationally indistinguishable:

{

mIND0(Π, A, k, p(k))
}

k∈N
c≈

{

mIND1(Π, A, k, p(k))
}

k∈N .

3.2 Non-malleable encryption

We next define the notion of non-malleability for PKE. Recall that, intuitively, non-
malleability says that upon receiving the challenge ciphertext, which encrypts the message
mb, b ∈ {0, 1}, the decryptions of the set of ciphertexts produced by the adversary for b = 0
and b = 1 are computationally indistinguishable.

Definition 5 (Non-malleable encryption [34]) Let Π = (Gen,Enc,Dec) be an encryption
scheme and let the random variable NMEb(Π, A, k, �) where b ∈ {0, 1}, A = (A1, A2) are
ppt algorithms and k, � ∈ N denote the result of the following probabilistic experiment:

NMEb(Π, A, k, �) :
(pk, sk) ← Gen(1k)
(m0,m1, stateA) ← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)

(ψ1, . . . , ψ�) ← A2(y, stateA)

Output (d1, . . . , d�) where di =
{

⊥ if ψi = y

Decsk(ψi ) otherwise

(Gen,Enc,Dec) is non-malleable under a chosen plaintext (CPA) attack if for any ppt
algorithms A = (A1, A2) and for any polynomial p(k), the following two ensembles are
computationally indistinguishable:

{

NME0(Π, A, k, p(k))
}

k∈N
c≈

{

NME1(Π, A, k, p(k))
}

k∈N.
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It was shown in [34] that an encryption that is non-malleable (under Definition 5) remains
non-malleable even if the adversary A2 receives several encryptions under many different
public keys (the formal experiment is the analogue ofmIND for non-malleability).

3.3 Bounded-CCA2 non-malleability

The definition of bounded-CCA2 non-malleability is almost identical to the definition of
Non-Malleability except here, we allow the adversary to query Dec at most q times in the
non-malleability experiment (but it must not query Dec on the challenge ciphertext).

Definition 6 (Bounded-CCA2 non-malleable encryption [12]) Let Π = (Gen,Enc,Dec)
be an encryption scheme and let the random variable NME-q-CCAb(Π, A, k, �) where b ∈
{0, 1}, A = (A1, A2) are ppt algorithms and k, � ∈ N denote the result of the following
probabilistic experiment:

NME-q-CCAb(Π, A, k, �) :
(pk, sk) ← Gen(1k)
(m0,m1, stateA) ← AO1

1 (pk) s.t. |m0| = |m1|
y ← Encpk(mb)

(ψ1, . . . , ψ�) ← AO2
2 (y, stateA)

Output (d1, . . . , d�) where di =
{

⊥ if ψi = y

Decsk(ψi ) otherwise

(Gen,Enc,Dec) is non-malleable under a bounded-CCA2 attack for a function q(k) :
N → N if ∀ ppt algorithms A = (A1, A2)whichmake q(k) total queries to the oracles and for
any polynomial p(k), the following two ensembles are computationally indistinguishable:

{

NME-q-CCA0(Π, A, k, p(k))
}

k∈N
c≈

{

NME-q-CCA1(Π, A, k, p(k))
}

k∈N.

The oracle O1 = Decsk(·) is the decryption oracle. O2 = Decysk(·) is the decryption oracle
except that O2 returns ⊥ when queried on y.

3.4 (Strong) One-time signature schemes

Informally, a (strong) one-time signature scheme (GenSig,Sign,VerSig) is an existentially
unforgeable signature scheme, with the restriction that the signer signs at most one message
with any key. This means that an efficient adversary, upon seeing a signature on a message
m of his choice, cannot generate a valid signature on a different message, or a different valid
signature on the same message m. Such schemes can be constructed in a black-box way
from one-way functions [28,36], and thus from any semantically secure encryption scheme
(Gen,Enc,Dec) using black-box access only toGen.We next present the formal definition.

Definition 7 ((Digital) signature scheme) A triple (GenSig,Sign,VerSig) is a (digital)
signature scheme, if GenSig and Sign are ppt algorithms and VerSig is a deterministic
polynomial-time algorithm which satisfies the following property:

Correctness. With probability 1 − negl(k) over (vksig, sksig) ← GenSig(1k): for
all m, Pr[VerSigvksig(m,Signsksig(m)) = 1] = 1.

Definition 8 (Strong, existential unforgeability for a single message) Let
Π = (GenSig,Sign,VerSig) be a signature scheme. For a pair of ppt algorithms A =
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(A1, A2) and k ∈ N, let the random variable Forge(Π, A, k) denote the result of the follow-
ing probabilistic experiment:

Forge(Π, A, k) :
(vksig, sksig) ← GenSig(1k)
(m, stateA) ← A1(vksig)

σ ← Signsksig(m)

(m′, σ ′) ← A2(σ, stateA)

Output 1 iff σ ′ �= σ and VerSigvksig(m
′, σ ′) = 1

Π = (GenSig,Sign,VerSig) is strongly existentially unforgeable for a single message
if any ppt algorithms A = (A1, A2):

Pr[Forge(Π, A, k) = 1] ≤ negl(k).

In this paper, signature/verification key pairs are sometimes represented as strings over a
non-binary alphabet; this technique has also been used in [37]. This augmented version can
simply be cast into the version over the binary alphabet by trivially encoding such keys into
a binary string.

4 Reconstructable probabilistic encoding scheme (RPE)

4.1 RPE definition

We assume that the readers are familiar with basic notions of error correcting codes and
RS codes (Appendix 1.1 gives a brief overview of the notions). We define a reconstructable
probabilistic encoding (RPE) below. The secrecy property of an RPE implies that short partial
codewords are not bound to any message. The reconstruction property implies that one can
later bind such a short partial codeword to any target message and reconstruct the whole
consistent codeword. Jumping ahead, this reconstruction procedure will be used to create
two different messages sharing the same partial codeword in the reduction step of the proof.

There are several parameters in RPE schemes. Amessage is represented as a binary string,
and the parameter n specifies the length of a message (in bits). A codeword is represented
as a string over alphabet Σ , and the parameter � specifies the length of a codeword in the
codeword space. The parameter δ is used to specify the relative distance between codewords.
The parameter t is used to specify a threshold to determine whether a partial codeword is
short; every codeword of length at most t is considered short.

Definition 9 (Reconstructable probabilistic encoding) We say a triple (E,D,R) is a recon-
structable probabilistic encoding schemewith parameters (n, �, δ, t,Σ), where n, �, t ∈
N, 0 < δ < 1, t < �, and Σ is an alphabet.

– The encoding algorithmE is an efficient probabilistic procedure, which takes amessage
m ∈ {0, 1}n as input and outputs a codewordw overΣ�.We let the codeW be the support
of E.

– The decoding algorithm D is an efficient procedure that takes a string w′ ∈ Σ� as input
and outputs a codeword w and a message m (or (⊥,⊥) if it fails).

– The reconstruction algorithm R is an efficient procedure that takes input a set S ⊂ [�]
of size t , a partial codeword (α1, . . . , αt ) ∈ Σ t , and a message m ∈ {0, 1}n , and outputs
a complete codeword w ∈ W consistent with the given partial codeword (α1, . . . , αt )

and message m.
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The three algorithms should satisfy the following requirements:

(1) Error correction: Any two strings in W are δ-far. For any string w′ that is (1 − δ/2)-
close to some codeword w inW , it holds that D(w′) outputs w along with a message m
consistent with w.

(2) Secrecy of partial views: For allm ∈ {0, 1}n and all sets S ⊂ [�] of size t , the projection
of E(m) onto the coordinates in S, as denoted by E(m)|S , is identically distributed to
the uniform distribution over Σ t .

(3) Reconstruction from partial views: For any set S ⊂ [�] of size t , any (α1, . . . , αt ) ∈
Σ t , and any m ∈ {0, 1}n , it holds that R(S, (α1, . . . , αt ),m) is identically distributed to
E(m) with the constraint E(m)|S = (α1, . . . , αt ).

We note that similar properties have been exploited already in the early work on secure
multi-party computation of Ben-Or et al. [4], with encoding via low-degree polynomials (or
RS codes or Shamir secret sharing with Berlekamp–Welch correction). The above notion of
RPE was explicitly defined in [8], extending a definition given by Decatur et al. [15], who
only required error-correction and secrecy, but not reconstruction.

4.2 Decoding from partial views

The following property will be useful for our construction of non-malleable encryption.
Informally, the following lemma states that for any RPE as above, given a sufficiently large
“partial view” (i.e. subset of positions), decoding with error correction can be successfully
performed on this partial view.

Lemma 1 Let (E,D,R) be a reconstructable probabilistic encoding scheme with
parameters (n, �, δ, t,Σ), and let λ := (1 − δ/4) and δ′ := δ/2. Then, there is an effi-
cient procedure D′ satisfying the following:

For any set S ∈ [�] with size s := λ · �, for any w ∈ W , and for any w′ ∈ Σ s that is
(1 − δ′/2)-close to w|S, it holds that D′(S, w′) outputs w along with a consistent m.

Proof Let S = {i1, . . . , is}, where s = λ · �. The decoding from partial views procedure
D′(S, w′) does the following. Define the string w̃ = w̃1, . . . , w̃� ∈ Σ� in the following way:
For j ∈ [s], w̃i j := w′

j and for v ∈ [�] \ S, w̃v = σ , where σ is an arbitrary symbol in Σ .
Note that if w′ is (1− δ′/2)-close to w|S for some w inW , then w̃ is (1− δ/2)-close to w for
some string w in W . Therefore, running the regular decode procedure, D(w̃) is guaranteed
to output (w,m), where w ∈ W is the corrected codeword, and m is the original message. ��
4.3 RPE from Reed–Solomon codes

In this section, we construct such a constant-rate RPE scheme with a RS code and packed
secret-sharing [17]. We note this is a simple construction; similar constructions were given
in different contexts.

Construction 1 (RS-based RPE) For any n, t, γ ∈ N, and for any δ with 0 < δ < 1, we
construct an RPE scheme with parameters (n, �, δ, t,Σ), where � is an integer such that
� ≥ t+u−1

1−δ
with u = �n/γ � and Σ = GF(2γ ).

We implicitly associate a string m ∈ {0, 1}n with a vector (m1,m2, . . . ,mu) where each
mi ∈ GF(2γ ); an integer i with 0 ≤ i < 2γ will also be implicitly encoded into a field
element in GF(2γ ). We construct an RPE scheme (E,D,R) as follows:
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– E(m): Let d = t + u − 1. Choose a random degree-d polynomial q over Σ such that
q(� + 1) = m1, …, q(� + u) = mu and output w = (q(1), q(2), . . . , q(�)).

– D(w′): Decodew′ using the Berlekamp–Welch algorithm (see Appendix 1.1) and output
(w,m), where w is the corrected codeword, and m is the original message.

– R(S, (α1, . . . , αt ),m): Let S = {i1, . . . , it }. Compute the degree-d polynomial q such
that q(i1) = α1, . . . , q(it ) = αt and q(� + 1) = m1, . . . , q(� + u) = mu by using
Lagrange interpolation polynomial (see Appendix 1.2). Output (q(1), . . . , q(�)).

The error correction property holds sincewe simply use the RS codewith set of codewords
W in encoding and decoding, where

W = {(q(1), . . . , q(�)) | q is a degree-d polynomial}.
Note thatW is a code over the alphabetΣ with minimum relative distance �−d+1

�
> δ, which

means we may efficiently correct up to a δ/2 fraction of errors. Secrecy and reconstruction
properties hold since the codeword (q(1), . . . , q(�)) is a (t +u)-out-of-� secret-sharing ofm
using Shamir’s secret-sharing scheme, and (α1, . . . , αt ,m1, . . . ,mu) allows the reconstruc-
tion of the (one and only) degree-d polynomial.

Decoding from partial views with better parameters. By using the property of RS codes, we
can obtain better parameters in terms of decoding from partial views. In particular, Lemma 2
will allow us to decode from partial views of size s < �/2, whereas Lemma 1 only allows
decoding from partial views of size s > 3�/4. We illustrate concretely the improvements
gained by using the specialized Lemma 2 below for RS codes, as opposed to using the generic
Lemma 1 for any RPE, in Example instantiations 1 and 2.

Lemma 2 Let (E,D,R) be an RPE scheme with parameters (n, �, δ, t,Σ) according to
Construction 1; recall γ = log |Σ |, u = �n/γ �, and � ≥ t+u−1

1−δ
. Let λ be an arbitrary

number such that t+u
�

< λ ≤ 1 and δ′ = s−(t+u−1)
s . Then, there is an efficient procedure D′

satisfying the following:

For any set V ⊆ [�] with size s = λ�, for any w ∈ W , and for any w′ ∈ Σ s that is
(1−δ′/2)-close tow|V where, it holds thatD′(V, w′) outputsw along with a consistent
m.

Proof Let V = {i1, . . . , is}. Then,
W ′ = {(q(i1), . . . , q(is)) | q is a degree-d polynomial}

forms another RS code, where d = t + u − 1. Note that W ′ is a code over the alphabet
GF(2γ ) with minimum relative distance s−d+1

s > δ′, which means we can decode w′ using
the Berlekamp–Welch algorithm, correcting up to a δ′/2 fraction of errors. ��
Example instantiation 1. By applying Construction 1 with δ = 0.9 and γ = n, we obtain
an RPE with parameters (n, 10t, 0.9, t,GF(2n)). According to Lemma 2 with λ = 0.3, the
scheme can decode a partial codeword of length 3t , correcting up to δ′/2 = 1/3 fraction of
errors. On the other hand, applying the generic Lemma 1, we would only be able to decode
a partial codeword of length 8t , correcting up to δ′/2 ≈ 0.2-fraction of errors.

Example instantiation 2 (constant-rate RPE). By applying Construction 1 with δ = 0.9
and γ = n/t , we obtain an RPE with parameters (n, 20t, 0.9, t,GF(2γ )) with rate 0.05.
According to Lemma 2 with λ = 0.3, the scheme can decode a partial codeword of length
6t , correcting up to δ′/2 = 1/3 fraction of errors. On the other hand, applying the generic
Lemma 1, we would only be able to decode a partial codeword of length 16t , correcting up
to δ′/2 ≈ 0.2-fraction of errors.
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5 Non-malleable encryption from semantic security

5.1 Generic construction using any RPE

Given a semantically secure encryption scheme E = (Gen,Enc,Dec) and an RPE,
we construct a non-malleable encryption scheme Π = (NMGenGen,NMEncGen,Enc,

NMDecGen,Dec), summarized in Fig. 1 and described as follows. We remark that NMEnc
and NMDec has black-box access to Gen (as a one-way function) in order to use one-time
signatures; recall that one-time signature schemes can be constructed in a black-box way
from one-way functions [28,36].

Key generation. Let k be the security parameter. Let (E,D,R) be an RPE scheme with
parameters (n, �, δ, t,Σ) and let λ and δ′ be the parameter associated with decoding the
partial views. In addition, set t = k.

The public key contains an error correcting code C : Γ t → Γ � with distance λ�, where
Γ is an appropriately chosen finite alphabet in order to satisfy the distance condition. Let
g = |Γ | and we will implicitly associate Γ = [g]. According to the Gilbert–Varshamov
bound [20,38], for any λ < 1 − 1/g and for any R = t/� with R < 1 − Hg(λ), there is an
error correcting code with rate R and relative distance λ, where Hg(λ) = λ logg(g − 1) −
λ logg λ− (1−λ) logg(1−λ). We note this technique was used in [37]. In addition, there are

g·�public keys fromGen indexedby a pair ( j, b) ∈ [�]×[g], that is, {pkbj | ( j, b) ∈ [�]×[g]}.
The secret key contains the decryption keys skbj and a random subset S of [�] with size t

to be used in decryption for consistency checks (described below).

Encryption. Encryption of a message m ∈ {0, 1}n proceeds as follows:
1. Generate (sksig,vksig) for a one-time signature where vksig ∈ Γ t , and compute

(v1, . . . , v�) ← C(vksig).
2. Compute (s1, . . . , s�) ← E(m) and compute an �-long vector c = (c1, . . . , c�) of cipher-

texts where c j = Enc
pk

v j
j

(s j ):

c =
(

Encpkv1
1

(s1),Encpkv2
2

(s2), . . . ,Encpkv�
�

(s�)
)

3. Create a signature σ on c using sksig. The ciphertext is [vksig, c, σ ].
Decryption. To decrypt, we verify the signature and perform consistency checks. A valid
ciphertext in Π is an encryption of a codeword in W . We want to design consistency checks
that reject ciphertexts that are “far” from being valid ciphertexts under Π. For simplicity, we
will describe the consistency checks as applied to the underlying vector of plaintexts. The
checks depend on a random subset S of t columns chosen during key generation.

decoding-check: Let I = {1, . . . , λ�}. We find a codeword w such that w|I is (1− δ′
2 )-

close to the first λ� elements of the vector (s1, . . . , s�); the check fails
if no such w exists. Recall that according to Lemma 1, it can correct
up to a δ′/2 fraction of errors in (s1, . . . , sλ�).

codeword-check: We check that the vector (s1, . . . , s�) agrees with w at the positions
indexed by S.

Finally, if all the checks accept, decode the codeword w and output the result; otherwise
output ⊥.

We note that we only need a partial set of the decryption keys, in particular for I and S,
in order to complete the decryption procedure.
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Improved, black-box, non-malleable encryption 655

Fig. 1 The non-malleable encryption scheme Π. We annotate the construction with specific parameters when
the message length is ω(k) and our RS-based RPE is used
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5.2 Using construction 1 for RPE

By plugging our RS-based RPE in Construction 1, using parameters (n, 20k, 0.9, k,
GF(2n/k)), into the above generic NM-CPA construction, we obtain an NM-CPA encryption
scheme for messages of length ω(k). In Fig. 1, we briefly annotate the generic construction
with the parameters for this RPE, in order to provide a better sense of how the actual NM-CPA
scheme would look. The underlying IND-CPA scheme encrypts an element of GF(2n/k), and
there are 20k of them in the overall NM-CPA ciphertext; if the underlying IND-CPA encryp-
tion is constant rate, the overall NM-CPA also achieves a constant rate. Note we can use the
binary alphabet for the error correcting code C , since it has a relative distance of λ = 0.3
and a rate of 0.05; the Gilbert–Varshamov bound [20,38] guarantees the existence of a linear
code satisfying such distance and rate conditions.

When themessage is of length O(k), we can instantiate anNM-CPA encryption scheme by
using an RPEwith parameters (n, 10k, 0.9, k,GF(2n)). Note the overall NM-CPA ciphertext
length becomes Θ(k2). The underlying IND-CPA scheme encrypts an element of GF(2n),
and there are 10k of them in the overall NM-CPA ciphertext.

6 Analysis

Theorem 1 If E = (Gen,Enc,Dec) is a semantically secure PKE, then the PKE scheme
Π = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec) described in Fig. 1 is non-malleable
under a chosen plaintext attack.

6.1 Proof of main theorem

In the hybrid argument, we consider the following variants of NMEb as applied to Π, where
vksig∗ = (v∗

1 , . . . , v
∗
� ) denotes the verification key in the ciphertext y = NMEncpk(mb):

ExperimentNME(1)
b :NME(1)

b proceeds exactly likeNMEb, exceptwe replacesig-check
in NMDec with sig-check∗:

(sig-check∗) Verify the signature with VerSigvksig[c, σ ]. Output⊥ if the signature
fails to verify or if vksig = vksig∗.

Experiment NME(2)
b : NME(2)

b proceeds exactly like NME(1)
b except we replace NMDec

with NMDec∗:

NMDec∗
sk([c,vksig, σ ]):

1. (sig-check∗) Verify the signature with VerSigvksig[c, σ ]. Output ⊥ if the sig-
nature fails to verify or if vksig = vksig∗.

2. (decoding-check∗) Let c = (c j ) and C(vksig) = (v1, . . . , v�). Let X =
(x1, . . . , xλ�) be the smallest distinct values such that vxi �= v∗

xi . Note there
must be these values since C is an encoding with minimum distance λ. Com-
pute sxi = Dec

sk
vxi
xi

(cxi ), i = 1, . . . , λ�. Compute w = (w1, . . . , w�) ∈ W
such that (wx1 , . . . , wxλ�

) is least (1 − δ′
2 )-close to (sx1 , . . . , sxλ�

) by running
D′(X, (sx1 , . . . , sxλ�

)) based on the property of decoding from the partial view.
If no such codeword exists, output ⊥.

3. (codeword-check∗) For all j ∈ S, check that Dec
sk

v j
j

(c j ) = w j .
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If all the checks accept, output the message m corresponding to the codeword w; else,
output ⊥.

Claim 6.1 For b ∈ {0, 1},
{

NMEb(Π, A, k, p(k))
} c≈

{

NME(1)
b (Π, A, k, p(k))

}

.

Proof Assume towards contradiction that there is a ppt machine A that distinguishes
NMEb(Π, A, k, p(k)) and NME(1)

b (Π, A, k, p(k)) with non-negligible probability. We con-
struct a ppt machine B that breaks the security of the strong, one-time signature scheme,
Π′ := (GenSig,Sign,VerSig).

First, note that since A may not query the decryption oracle on the challenge cipher-
text itself, experiments NMEb and NME(1)

b can only differ (due to the difference between
sig-check and sig-check∗) if the following event takes place:

A outputs a ciphertext [c,vksig, σ ] such that the signature correctly verifies and
vksig = vksig∗.

Thus, the above event must occur with non-negligible probability. We are now ready
to describe the adversary B. B participates externally in a Forge(Π′, B, k) experiment
with verification key vksig∗, while internally playing the role of challenger in the
NMEb(Π, A, k, p(k)) experiment. B runs (pk, sk) ← NMGen(1k), instantiates A1(pk) and
waits for A1 to submit (m0,m1, stateA). B then chooses b ← {0, 1}, sets the verification
key to vksig∗, computes the first part of the challenge ciphertext, c∗ honestly, and queries its
signing oracle on c∗ to obtain σ ∗. B then instantiates A2(y := [c∗,vksig∗

, σ ∗], stateA) and
waits for A2 to output (ψ1, . . . , ψp(k)). Upon receiving (ψ1, . . . , ψp(k)), B checks whether
for anyψi := [ci ,vksigi , σi ], i ∈ [p(k)], it is the case that the signature correctly verifies and
vksigi = vksig∗. If yes, B forwards (ci , σi ) to its external challenger. Recall that this event
occurs with non-negligible probability, and so B succeeds in forging with non-negligible
probability, resulting in a contradiction to the security of Π′. ��

Claim 6.2 For b ∈ {0, 1},
{

NME(1)
b (Π, A, k, p(k))

} s≈
{

NME(2)
b (Π, A, k, p(k))

}

.

Proof We will show that both distributions are statistically close for all possible coin tosses
in both experiments (specifically, those of NMGen, A and NMEnc) except for the choice
of S in NMGen. Once we fix all the coin tosses apart from the choice of S, the output
(ψ1, . . . , ψp(k)) of A2 are completely determined and identical in both experiments NME(1)

b

and NME(2)
b .

Recall the guarantees we would like from NMDec and NMDec∗:

– On input a ciphertext that is an encryption of a message m under Π, both NMDec and
NMDec∗ will output m with probability 1.

– On input a ciphertext that is “close” to an encryption of a message m under Π, both
NMDec and NMDec∗ will output m with the same probability (the exact probability is
immaterial) and ⊥ otherwise.

– On input a ciphertext that is “far” from any encryption, then both NMDec and NMDec∗
output ⊥ with high probability.

To quantify and establish these guarantees, we consider the following promise problem
(ΠY ,ΠN ) that again refers to the underlying vector of plaintexts. An instance is a vector of
� entries each of which lies in {0, 1}n ∪ ⊥.

ΠY (yes instances)—for some w ∈ W , the instance equals w.
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ΠN (no instances)—either the first λ� elements of the instance is δ′/2-far from the first
λ� elements of every codeword in W or the entire instance is λδ′

2 -far from every
codeword in W .

Valid encryptions correspond to theyes instances, whileno instanceswill correspond to “far”
ciphertexts. To analyze the success probability of an adversary, we examine each ciphertextψ
it outputs with some underlying vectorM of plaintexts (which may be a yes or a no instance
or neither) and show that both NMDec and NMDec∗ agree on ψ with high probability. To
facilitate the analysis, we consider two cases:

– If M ∈ ΠN , then it fails the codeword checks in both decryption algorithms with high
probability, in which case both decryption algorithms output ⊥.
Specifically, if the first λ� elements of M is δ′/2-far from the first λ� elements of every
codeword inW then the decoding check in NMDec rejectsM with probability 1. More-
over, being δ′/2-far from the first λ� elements for every codeword implies thatM have at
least (δ′/2) · λ� different positions, where c is some constant. Therefore, the codeword

check inNMDec∗ rejectsM with probability at least 1−
(

1 − δ′λ
2

)t
, since the condition

implies that M is δ′λ
2 -far from every codeword. From Lemma 1, both δ′ and λ are con-

stant, and therefore with overwhelming probability in t , NMDec∗ will rejectM as well.
On the other hand, if M is λδ′/2-far from every codeword, both codeword checks in
NMDec and NMDec∗ rejects M with probability 1 − (1 − δ′λ

2 )t .
Therefore, bothNMDec andNMDec∗ rejectMwith with probability at least 1−2 · (1−
δ′λ
2 )k , since we have t = k.

– If M /∈ ΠN , then both decryption algorithms always output the same answer for all
choices of the set S, provided there is no forgery. Fix M /∈ ΠN and a set S. Note that
the decoding check in both NMDec and NMDec∗ will be successful. This is because
M is (1 − λδ′/2)-close to w, and there are at most (λδ′/2) · � erroneous positions
compared with some codeword in W . This implies that any λ� elements of M has at
most (λδ′/2)·�

λ�
= δ′

2 fraction of errors. Moreover, the codeword check is the same in both
NMDec and NMDec∗. As such, both decryption algorithms output ⊥ with exactly the
same probability, and whenever they do not output ⊥, they output the same message m.

From the above analysis, the two hybrids are statistically close. ��
Claim 6.3 Let (n, �, δ, t,Σ) be the parameters of an RPE scheme that Π uses in Fig. 1.
Then, for every ppt machine A and for any polynomial p, there exists a ppt machine B such
that for b ∈ {0, 1}, it holds

{

NME(2)
b (Π, A, k, p(k))

}

≡
{

mINDb(E, B, k, � − t)
}

.

Recall that the value p(k) in the various NME experiments corresponds to the number
of (mauled) ciphertexts that the adversary would come up with, after given the challenge
ciphertext.

Proof The machine B is constructed as follows: B participates in the experiment mINDb

(the “outside”) while internally simulating A = (A1, A2) in the experiment NME(2)
b .

– (pre-processing) Pick a random subset S = {u1, . . . , ut } of [�]. Choose an ECC C , and
run GenSig(1k) to generate (sksig∗

,vksig∗
) and set (v∗

1 , . . . , v
∗
� ) = C(vksig∗

). Let
φ : { j | j ∈ [�] \ S} → [� − t] be a bijection.
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– (key generation) B receives 〈pk1, . . . , pk�−t 〉 from mINDb and simulates NMGen as
follows: for all j ∈ [�], β ∈ [g],

(pkβ
j , sk

β
j ) =

{

(pkφ( j),⊥) if β = v∗
j and j /∈ S

Gen(1k) otherwise

– (message selection) Let (m0,m1) be the pair of messages A1 returns. B chooses
(α1, . . . , αt ) ← Σ t uniformly at random and then computes

(w0
1, . . . , w

0
� ) ← R(S, (α1, . . . , αt ),m

0), (w1
1, . . . , w

1
�) ← R(S, (α1, . . . , αt ),m

1).

Recall that R is the reconstruction algorithm of the underlying RPE scheme. For j ∈ S,
let γ j = w0

j = w1
j . B forwards (〈m0

1, . . . ,m
0
�−t 〉, 〈m1

1, . . . ,m
1
�−t 〉) to mINDb, where

mb
φ( j) = wb

j , for j ∈ [�] \ S.
– (ciphertext generation) B receives 〈y1, . . . , y�−t 〉 from mINDb (according to the distri-

bution Encpk1(m
b
1), . . . ,Encpk�−t

(mb
�−t )) and generates a ciphertext [c,vksig∗

, σ ] as
follows:

ci, j =
⎧

⎨

⎩

yφ( j) if j /∈ S

Enc
pk

v∗
j
j

(γ j ) otherwise

B then computes the signature σ ← Signsksig∗(c) and forwards [c,vksig∗
, σ ] to A2.

It is straight-forward to verify that [c,vksig∗
, σ ] is indeed a random encryption of mb

under Π.

– (decryption) Upon receiving a sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2, B

decrypts these ciphertexts using NMDec∗ as in NME(2)
b .

Note that the view of A in the original experiment is identically distributed to the one that
B simulates. We conclude the proof by pointing out that B perfectly simulates NMDec∗,
since it has the secret keys {skβ

j | β �= v∗
j or j ∈ S}, which B generated by itself. ��

Combining the three claims, we conclude that for every ppt adversary A, there is a ppt
adversary B such that for b ∈ {0, 1},

{

NMEb(Π, A, k, p(k))
} c≈

{

NME(1)
b (Π, A, k, p(k))

}

s≈
{

NME(2)
b (Π, A, k, p(k))

}

≡
{

mINDb(E, B, k, � − t)
}

We have mIND0(E, B, k, � − t)
c≈ mIND1(E, B, k, � − t), due to semantic security of the

underlying encryption scheme, which concludes the proof.

7 Achieving bounded-CCA2 non-malleability

We describe how our scheme may be modified to achieve non-malleability under a bounded-
CCA2 attack. Recall that, informally, an encryption scheme is non-malleable against a q-
bounded CCA2 attack if the adversary is allowed to query Dec adaptively at most q(k)
times in the non-malleability experiment. Our modification is the straight-forward analogue
of the [12] modification of the [34] scheme: We change the parameter (n, �, δ, t,Σ) of
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the underlying RPE scheme such that t = a · (k + q(k)), where a is a constant such that
(

1 − λδ′
2

)a ≤ 1
2 . See Fig. 1 for more details.

We analyze the security of the encryption scheme using a similar hybrid argument. We
define the following hybrid experiments as before.

– Experiment NME-q-CCA(1)
b : This experiment proceeds exactly like NME-q-CCAb,

except we replace sig-check in NMDec with sig-check∗ as described in Sect. 6.
– Experiment NME-q-CCA(2)

b : This experiment proceeds exactly like NME-q-CCA(1)
b

except we replace NMDec with NMDec∗ as described in Sect. 6.

We note that
{

NME-q-CCAb(Π, A, k, p(k))
}

and
{

NME-q-CCA(1)
b (Π, A, k, p(k))

}

are

computationally indistinguishable for each b ∈ {0, 1}, which can be argued based on security
of the signature scheme as in Claim 6.1. Moreover, it holds that
{

NME-q-CCA(2)
b (Π, A, k, p(k))

}

and
{

mINDb(E, B, k, � − t)
}

are identically distributed

for each b ∈ {0, 1}, which can be shown using the reduction in the proof of Claim 6.3.
(Recall that the value p(k) in the variousNME-q-CCA experiments corresponds to the num-
ber of (mauled) ciphertexts that the adversary would come up with, after given the challenge
ciphertext.) Therefore, we are only left to show the following claim to conclude the analysis.

Claim 7.1 For b ∈ {0, 1}, we have
{

NME-q-CCA(1)
b (Π, A, k, p(k))

} s≈
{

NME-q-CCA(2)
b (Π, A, k, p(k))

}

Proof Let q = q(k) and for a ciphertext c, let Mc denote the underlying plaintext vector of
c.

As before, we will show that both distributions are statistically close for all possible coin
tosses in both experiments (specifically, those of NMGen, A and NMEnc) except for the
choice of S in NMGen. Fix all the coin tosses apart from the choice of S. Here, however,
unlike the case of chosen plaintext attacks, we cannot immediately deduce that the outputs
of A2 in both experiments are completely determined and identical, since they depend on
the adaptively chosen queries to NMDec, and the answers depend on S. Still, the choice of
S only affects whether the consistency checks accept or not; therefore, for each query, the
number of possible responses ofNMDec/NMDec∗ is at most two (since we fixed all the coin
tosses except S). Moreover, if a query c is such that Mc ∈ ΠN , NMDec and NMDec∗ will
both give only one response of ⊥ with overwhelming probability, according to the analysis
in Claim 6.2.

This leads us to consider a binary tree of depth q that corresponds informally to
“unrolling” the q adaptive queries that A makes to NMDec/NMDec∗ in the experiments
NME-q-CCA(1)

b /NME-q-CCA(2)
b . The root node of the tree corresponds to the first query

A makes to NMDec/NMDec∗, and each edge from a node to its child is labeled with the
answer of NMDec/NMDec∗ to the node’s query. In particular, the tree is inductively built
as follows:

– When A makes a query c with Mc ∈ ΠN , we only consider the computation path
corresponding to NMDec/NMDec∗ responding with ⊥.

– When A makes a query c with Mc /∈ ΠN , we consider two computation paths, that is,
one case of NMDec/NMDec∗ responding with a valid decryption (in which case the
value returned is independent of S) and the other case of responding with ⊥.

– The query at an internal node (except the root) corresponds to the query that A makes
when following the computation path from the root to the nodewhileNMDec/NMDec∗’s
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answers correspond to the labels of the edges in the path. Each leaf node contains p(k)
ciphertexts output by A at the end of the experiment.

Observe that the construction of the computation tree is completely deterministic and inde-
pendent of the choice of S. Moreover, since NMDec and NMDec∗ behave identically for
queries c with Mc /∈ ΠN as shown in Claim 6.2, the computation tree is NME-q-CCA(1)

b is

identical to that in NME-q-CCA(2)
b . Note also that A makes at most q adaptive queries to

NMDec, and therefore the total number of ciphertexts in the tree is at most 2q+1 p(k). The
claim follows from combining the following two observations:

– Let good(S) be an event in which given the choice S, for every ciphertext c in the tree
such thatMc ∈ ΠN , both NMDec and NMDec∗ output ⊥. We have

Pr
S
[good(S)] ≥ 1 − 2 · (

2q+1 p(k)
) ·

(

1 − λδ′

2

)t ≥ 1 − 2 · (2q+1 p(k)
) · 1

2k+q
= 1 − negl(k).

This follows from a union bound over these ciphertexts in the tree and the analysis in
Claim 6.2.

– For every S such that good(S) is true, the outputs in both experiments are the same.
This follows readily by induction on the queries made by A, and using the fact both
NMDec and NMDec∗ always output the same answer for any M /∈ ΠN as explained in
the analysis in Claim 6.2. ��
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Appendix 1: Background

Appendix 1.1: Error-correcting codes

For integers �, n, 0 < δ < 1 and a collection of symbols Σ , an [�, n, δ]-code over Σ is a
collection W ⊂ Σ� of �-letter words over the alphabet Σ with |W| = 2n and the property
that any two strings inW differ in at least δ · � locations. Note that given any string s ∈ Σ�,
there is at most one string w ∈ W which is within distance δ�−1

2 from s.

Reed–Solomon codes. For a finite field F of size 2n , a set S = {i0, i1, . . . , i�} ⊆ F ,
and parameter d , where � ≥ d + 1, the Reed Solomon Code is an [�, n, (� − d)/�]-code
over alphabet Σ := F , whose codewords are the strings {(p(i1), p(i2), . . . , p(i�)}, where p
ranges over all polynomials of degree at most d over F .

For purposes of this work, to encode a message m:

– Choose a random degree-d polynomial p subject to p(i0) := m.
– Output {(p(i1), p(i2), . . . , p(in)}.
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The Berlekamp–Welch algorithm. The decoding algorithm for RS codes can be efficiently
implemented using the Berlekamp–Welch algorithm [5]. Specifically, this algorithm can
be used to efficiently recover the nearest codeword—i.e. the nearest degree-d polynomial
p—given a corrupted codeword {( f (i1), f (i2), . . . , f (i�)}, as long as there exists some set
S′ ⊆ S of size at least (n − d)/2, such that f (i j ) = p(i j ), for all i j ∈ S′. Once such a
polynomial p is found, the message can be recovered by outputting p(i0).

Appendix 1.2: Lagrange interpolation polynomial

For a given set of distinct points {(a1, b1), . . . , (ad+1, bd+1)}, the Lagrange interpolation
polynomial is a degree-d polynomial q such that q(a1) = b1, . . . q(ad+1) = bd+1, which
can be computed as follows:

q(x) =
d+1
∑

i=1

bi Li (x),

where Lagrangian Li is a degree-d polynomial such that Li (x) = 1 if x = ai and Li (x) = 0
if x ∈ {a1, . . . , ad+1} but x �= ai . In particular, we have

Li (x) =
∏

j∈[d+1]\{i}

x − a j

ai − a j
.
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