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Abstract We study a large family of semifields in odd characteristic, which contains the
commutative Budaghyan–Helleseth semifields as well as semifields which are not isotopic
to commutative semifields. Using a large group of autotopisms we obtain a complete classi-
fication result in certain parametric subcases.
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1 Introduction

Afamily of presemifields B(p,m, s, l, t)of order p2m where p is an oddprime andm ≥ 3was
studied in [1]. Themain ingredient is a Galois automorphism x �→ xσ ofFp2m where σ = ps .
The remaining parameters are an element l ∈ (Fpm )∗ and a quadruple t = [p1, p2, p3, p4]
where pi ∈ Fpm . The family contains the Budaghyan–Helleseth commutative semifields.
The special case of order 729 = 36 is studied in [2].

In the present paper we introduce a new type of isotopism (linear isotopy, Proposition 3)
relating those presemifields. This leads to a groupGL(2, pm)×(Fpm )∗ (the restricted isotopy
group of Sect. 5) acting on the quadruples t such that quadruples in the same orbit yield
isotopic presemifields B(p,m, s, l, t) (given p,m, s, l). We then specialize to the ternary
case and prove that in each of the cases p = 3, s = 1,m ≥ 3 and p = 3, s = 2,m ≥ 3
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odd there are precisely two isotopy types in the family, the uniquely determined Budaghyan–
Helleseth semifield and another presemifieldwhich is not isotopic to a commutative semifield.
The characteristic 2 case has been studied in [3]. Here the situation is different. In fact it can
be proved that none of those characteristic 2 semifields is isotopic to a commutative semifield.

The paper is organized as follows: In Sects. 2 and 3 we introduce basic terminology and
sketch the relationship between Knuth semifields and the theory of projective polynomials
over finite fields in odd characteristic. Given p,m, s, l the definition of a legitimate quadruple
t in Definition 1 is in terms of projective polynomials. We show that t is legitimate if and
only if B(p,m, s, l, t) is a presemifield. A simple formula for the number of legitimate
polynomials is derived in Theorem 3. Isotopies, in particular linear isotopies, are studied in
Sect. 4. This leads to the definition of the restricted isotopy group and its action on the space�

of legitimate quadruples in Sect. 5. The C-family of presemifields, defined by p2 = p3 = 0,
is studied in Sect. 6. We determine the orbits of the restricted isotopy group on quadruples
in the C-family and prove in Theorem 5 that in case m/ gcd(m, s) even, each presemifield
B(p,m, s, l, t) is isotopic to a presemifield in the C-family. The nuclei and commutativity
are considered in Sect.7. Our semifields have order p2m . In case m = 2 the middle nucleus
has order p2, see Sect. 7. The semifields of order p4 one of whose nuclei has order p2 have
been classified in [5]. It follows that p6 (casem = 3) is the smallest order of a member of our
family which is potentially of independent interest. The final Sect. 8 contains the promised
classification results in cases p = 3, s = 1 and p = 3, s = 2.

2 Projective polynomials and semifields

We use the following terminology. Let q = pm an odd prime power, F = GF(q2) ⊃ L =
GF(q). Let T : F −→ L be the trace. Choose ω ∈ F∗ such that T (ω) = ω + ωq = 0
and write x ∈ F in the form x = (a, b) = a + bω where a, b ∈ L . The conjugate of x is
x = xq = (a,−b). Let 0 ≤ s < 2m and σ = ps . With the symbol σ we also denote the
corresponding automorphism of F . Also, letμ = ω2 (a non-square in L) and N = μ(σ−1)/2.

Our basic definition is the following.

Definition 1 The quadruple t = [p1, p2, p3, p4] ∈ L4 is legitimate if p1 	= 0 and the
polynomial ps,t (X) = p1Xσ+1 + p2Xσ + p3X + p4 has no roots in L . Let � = �(p,m, s)
be the set of legitimate quadruples. Let further l ∈ L be such that either l = 0 or −l ∈
L∗ \ (L∗)σ−1. The presemifield (of order p2m) defined by

x ∗ y = (−p1ac
σ − lp1a

σ c + p2bc
σ − lp2a

σ d − p3ad
σ

+lp3b
σ c + p4bd

σ + lp4b
σ d, ad + bc) (1)

will be denoted by B(p,m, s, l, t).

Theorem 1 B(p,m, s, l, t) in Definition 1 is indeed a presemifield (of order p2m).

Proof As x ∗ y is Fp-linear in both arguments, it suffices to prove that there are no divisors
of zero. Assume therefore x ∗ y = 0, xy 	= 0. Use Eq. (1). If d = 0, then b = 0 and the
real part shows p1ac = 0, contradiction. By homogeneity it can be assumed d = 1, hence
a = −bc. The real part is then (b + lbσ )ps,t (c) = 0. The first factor is nonzero by the basic
assumption on l, the second factor is nonzero by definition of legitimacy. 
�

In order to obtain an expression of x ∗ y using constants from the larger field F we use
the following terminology.
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A family of semifields in odd characteristic 613

Definition 2 Let C1 = (v1, h1),C2 = (v2, h2) ∈ F. The quadruple t = t (C1,C2) =
[p1, p2, p3, p4] ∈ L4 corresponding to the pair (C1,C2) ∈ F2 is defined by

p1 = −v+, p2 = μh+, p3 = −μNh−, p4 = μNv−,

where v− = v1 − v2, v+ = v1 + v2, h− = h1 − h2, h+ = h1 + h2. The pair (C1,C2) is
legitimate if and only if its corresponding quadruple is legitimate.

Proposition 1 Let t = t (C1,C2) = [p1, p2, p3, p4]. Then
x ∗ y = (1/2)T ((C1y

σ + C2y
σ )x) + (l/2)T ((C1y + C2y)x

σ ) + (xy − xy)/2. (2)

Proof This is a direct calculation. 
�

If σ is the identity on L , then (kx) ∗ y = x ∗ (ky) = k(x ∗ y) holds for all k ∈ L and
all x, y ∈ F. This implies that a semifield isotopic to (F, ∗) has center of order at least pm

(see [1, Proposition 3]). It follows from [6], Theorem 2 that the semifield is a field. It can
therefore be assumed in the sequel that s 	= 0,m.

Observe a slight change in terminology in comparison with [1]. The presemifields
B(p,m, s, l, t (C1,C2)) were called B(p,m, s, l,C1,C2) in [1]. It was proved in Sect. 8
of [1] that they are indeed presemifields.

3 The associated product

Case l = 0 of Definition 1 yields a relation between projective polynomials and non-
associative algebras.

Definition 3 Let C1 = (v1, h1),C2 = (v2, h2) ∈ F = GF(q2), q odd prime power, and
σ = ps, 0 ≤ s < 2m, an automorphism of F. Let t = t (C1,C2) = [p1, p2, p3, p4].
Consider the projective polynomials

PC1,C2,s(X) = C2X
σ+1 + C1X

σ + C1X + C2 ∈ F[X ] (3)

as well as the multiplication

x ∗ y = (1/2)T ((C1y
σ + C2y

σ )x) + (xy − xy)/2 (4)

on F. Call ∗ the multiplication associated to (C1,C2, s).

Comparison with (2) shows in fact that x ∗ y in Definition 3 is precisely the multiplication
in B(p,m, s, 0, t). The main results in Sect. 7 of [1] are as follows.

Theorem 2 Let C1,C2, s be as in Definition 3. Then the following are equivalent:

• (F, ∗) is a presemifield (of order q2 where L = GF(q)).
• T (C1xxσ + C2xσ+1) 	= 0 for all 0 	= x ∈ F.

• PC1,C2,s(X) has no root z ∈ F such that zz = 1.
• p1 	= 0 and ps,t (X) (see Definition 1) has no root in L .

Definition 4 Given p,m, s let g = gcd(q − 1, σ + 1), the number of cosets of (L∗)σ+1 in
L∗.
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614 J. Bierbrauer et al.

Observe that g = 2 if m/ gcd(m, s) is odd whereas g = pgcd(m,s) + 1 if m/ gcd(m, s) is
even.
If the conditions of Theorem2 are satisfied, then p1 	= 0 andCq+1

1 	= Cq+1
2 .Comparisonwith

Definition 1 shows that the conditions of Theorem 2 are equivalent to the pair (C1,C2) and
the corresponding quadruple being legitimate. The presemifields B(p,m, s, 0, t) are isotopic
to the Knuth semifields which are quadratic over the left and over the right nucleus (see [1]).
In the sequel we will always assume l 	= 0. It is important to have a simple expression for
the number of legitimate quadruples. Here is a first step in this direction.

Corollary 1 For given p,m, s the number of legitimate pairs (C1,C2) is |�p,m,s | = (q −
1)q{(q − 1)(N0 + 1)− (q − 1)/ gcd(q − 1, σ + 1)}. Here N0 is the number of values B ∈ L
such that the polynomial Y σ+1 − B(Y − 1) has no roots in L .

Proof The shape of ps,t (X) shows that the number in question is the number of a, b, c, d
such that a 	= 0 and aXσ+1+bXσ +cX+d ∈ L[X ] has no roots in L .We can assume a = 1
and obtain a factor of q − 1. The substitution Y = X + b leads to the equivalent polynomial
Y σ+1 + (c− bσ )Y + d − bc. Clearly d 	= bc. Assume c = bσ . Then bc− d must be outside
the (σ + 1)-st powers. This yields a contribution of q(q − 1− (q − 1)/ gcd(q − 1, σ + 1));
since b is arbitrary, c is then uniquely determined, and finally d such that bc−d is as required.

Assume now c 	= bσ .Use the substitutionY �→ rY, followed by division by rσ+1 for some
r ∈ F

∗
q . This produces the equivalent polynomial Y σ+1 + (c − bσ )/rσY + (d − bc)/rσ+1.

Choose r = (bc − d)/(c − bσ ). The polynomial has the form Y σ+1 − B(Y − 1) where
B = (bσ − c)/rσ . We know that there are N0 values of B such that the condition is satisfied.
This yields a contribution of q(q − 1)N0, since b is arbitrary, c 	= bσ , and for each of the
N0 choices of B then rσ = (bσ − c)/B and d = r(bσ − c) + bc. 
�

Here is the final result:

Theorem 3 We have |�| = (q + 1)q(q − 1)2 pd/{2(pd + 1)}. Here d = gcd(m, s).

Proof Observe that |�| is the number of different presemifields in the B-family for given
p,m, s, l. This number is given in Corollary 1 in terms of the numbers N0. The numbers N0

are determined in Bluher [4]. We distinguish two cases (recall that p is odd): if m/d is even,
then g = gcd(q − 1, σ + 1) = pd + 1, N0 = pd(q − 1)/(2(pd + 1)); if m/d is odd, then
gcd(q − 1, σ + 1) = 2, N0 = (pm+d − 1)/(2(pd + 1)). In both cases the same formula for
|�| results. 
�

Aspecial case arises ifC1 orC2 vanishes. IfC2 = 0, then the condition is zσ−1 	= −C1/C1

for zz = 1 and for C1 = 0 the condition reads zσ+1 	= −C2/C2 for zz = 1.

4 Isotopies

Weconsider isotopies between the presemifields B(p,m, s, l, t) in this section, in odd charac-
teristic p. It was proved in [1] that the opposite of the presemifield B(p,m, s, l, t (C1,C2)), l
	= 0 is isotopic to the presemifield B(p,m, s, 1/ l, t (C1,C2)). Here the opposite of a pre-
semifield (F, ∗) is the presemifield (F, ◦) where x ◦ y = y ∗ x . The obvious isotopy of the
presemifields B(p,m, s, l, t (C1,C2)) and B(p,m,m + s, l, t (C2,C1)) allows us to assume
s ≤ m.

Recall that if s = 0 or s = m, the general form of the multiplication shows that L is in the
center of the associated semifield. This semifield is therefore a field. It follows that we may
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A family of semifields in odd characteristic 615

assume 0 < s < m. It was shown in [1] that the presemifield B(p,m, s, l, [p1, p2, p3, p4]),
l 	= 0, s ≤ m, is isotopic to the presemifield B(p,m,m − s, 1/ l, [p1, p3, p2, p4]). This
allows us to assume 0 ≤ s ≤ m/2. The following elementary isotopy relations are from [1]
as well.

Proposition 2 • The presemifield B(p,m, s, l, t) is isotopic to the presemifield B
(p,m, s, λσ−1l, t) for arbitrary λ ∈ L∗.

• scalar isotopy The presemifield B(p,m, s, l, t) is isotopic to the presemifield
B(p,m, s, l, λt) for arbitrary λ ∈ L∗.

• Galois isotopy The presemifield B(p,m, s, l, [p1, p2, p3, p4]) is isotopic to the presemi-
field B(p,m, s, l p, [pp

1 , pp
2 , pp

3 , pp
4 ]).

• Diagonal isotopy The presemifield B(p,m, s, l, [p1, p2, p3, p4]) is isotopic to the pre-
semifield B(p,m, s, l, [kσ+1

1 p1, kσ
1 k2 p2, k1k

σ
2 p3, k

σ+1
2 p4]) for arbitrary k1, k2 ∈ L∗.

Proof For the first statement use the substitution x �→ λx, y �→ y. Scalar isotopy is obvious.
As forGalois isotopy, apply the inverse of the Frobenius to a, b, c, d, then apply the Frobenius
to the real and to the imaginary part. Diagonal isotopy follows from the substitution a �→
k1a, b �→ k2b, c �→ k1c, d �→ k2d. 
�

The following important isotopy relation is new:

Proposition 3 (Linear isotopy) B(p,m, s, l, [p1, p2, p3, p4]) is isotopic to B(p,m, s, l,
[p′

1, p
′
2, p

′
3, p

′
4]) where

p′
1 = −ασ+1 p1 + ασ γ p2 + αγ σ p3 − γ σ+1 p4,

p′
2 = ασ βp1 − ασ δp2 − βγ σ p3 + γ σ δp4,

p′
3 = αβσ p1 − βσ γ p2 − αδσ p3 + γ δσ p4,

p′
4 = −βσ+1 p1 + βσ δp2 + βδσ p3 − δσ+1 p4,

and α, β, γ, δ ∈ L such that αδ 	= βγ.

Proof This corresponds to the substitutiona′ = αa+βb, b′ = γ a+δb, c′ = −αc+βd, d ′ =
γ c − δd where M =

(
α β

γ δ

)
∈ GL(2, L). 
�

Corollary 2 B(p,m, s, l, [p1, p2, p3, p4]) is isotopic to B(p,m, s, l, [1, 0, u, v]) for suit-
able v, where u ∈ {0, 1}.

Proof As p′
1 	= 0 it follows from scalar isotopy that we may assume p1 = 1. Linear isotopy

with α = 1, γ = 0 leads to a quadruple [1, 0, ∗]. Assume this quadruple has p3 	= 0.
Application of linear isotopy to this quadruple, with α = 1, β = γ = 0 yields the claim. 
�

Theorem 4 B(p,m, s, l, t (C1,C2)) is isotopic to B(p,m, s, l, t (αασC1, α
σ+1C2)) for all

0 	= α ∈ F.

Proof Use the substitution x �→ αx, y �→ αy for an arbitrary nonzero α ∈ F. 
�

Theorem 4 is a special case of linear isotopy, written with different terminology.
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616 J. Bierbrauer et al.

5 The restricted isotopy group

Definition 5 Given p,m, s the restricted isotopy group is the direct product G1 =
GL(2, L) × L∗ where GL(2, L) and L∗ act on the legitimate pairs (C1,C2) and on the
legitimate quadruples by linear isotopy and scalar isotopy, respectively.

The formulas show in fact that GL(2, L) and L∗ form a direct product. We have |G1| =
(q − 1)(q2 − 1)(q2 − q) where q = pm . The important point is that the elements of G1

permute the legitimate pairs and quadruples and that pairs or quadruples in the same orbit
describe isotopic presemifields. In case l = 1 we can work with a larger group, the semidirect
product G0 = G1�〈φ〉 of G1 and the group of Galois isotopisms.

6 The C-family

We refer to the semifields isotopic to the presemifields B(p,m, s, l, [1, 0, 0, p4]), l 	= 0, as
the C-family of semifields. Observe that p2 = p3 = 0 is equivalent to {C1,C2} ⊂ L . We
will use the following terminology:

Definition 6 Let C(p,m, s, l, R), l 	= 0 be the semifield associated to the presemifield

(a, b) ∗ (c, d) = ([acσ + Rbdσ ] + l[aσ c + Rbσ d], ad + bc)

where −l /∈ (L∗)σ−1, R /∈ (L∗)σ+1.

In fact, the substitution a �→ −a, b �→ −b shows that the semifield C(p,m, s, l, R) is
isotopic to the presemifield B(p,m, s, l, [1, 0, 0, p4])where R = −p4. Proposition 2 shows
that l may be replaced by an arbitrary element of its coset mod (L∗)σ−1 and R may be
replaced by an arbitrary element of its coset mod (L∗)σ+1 without changing isotopy. The
quadruple [1, 0, 0, u] is legitimate if R = −u /∈ (L∗)σ+1 (see Definition 1).

Lemma 1 Given p,m, s, l 	= 0, we have that [1, 0, 0, u1] and [1, 0, 0, u2] are in the same
orbit under G1 if and only if Ri = −ui satisfy the following: either R2 ∈ R1(L∗)σ+1 or
R2 ∈ (1/R1)(L∗)σ+1.

Proof Let d = gcd(m, s) and g = gcd(q −1, σ +1) (see Definition 4). A trivial case occurs
ifm/d is odd. Then g = 2 and R(L∗)σ+1 is the coset of non-squares. Assume thereforem/d
even. We have g = pd + 1 in this case and K1 = Fpd ⊆ (L∗)σ+1. Let the matrix M map
[1 : 0 : 0 : u1] �→ [1 : 0 : 0 : u2]. We have three conditions:

αβσ = R1γ δσ , ασ β = R1γ
σ δ, R1γ

σ+1 − ασ+1 = (R1/R2)(β
σ+1/R1 − δσ+1).

We have β = 0 if and only if γ = 0 which leads to R2 and R1 in the same coset. Also
α = 0 if and only if δ = 0 and this leads to R2 in the same coset as 1/R1. Assume all entries
of M are nonzero. By homogeneity it can be assumed that β = 1. The first two equations
show α = R1γ δσ , ασ = R1γ

σ δ. Comparison shows c = R1δ
σ+1 ∈ K1. This yields the

contradiction R1 ∈ (L∗)σ+1. 
�
Theorem 5 Let p,m, s, l 	= 0 be given, d = gcd(m, s). If m/d is odd, then there is precisely
one G1-orbit of legitimate quadruples in the C-family. Its length is |�|/pd .
If m/d is even, all the presemifields B(p,m, s, l, t) belong to the C-family. There are (pd +
1)/2 orbits under G1. One of those orbits has length (1/pd)|�|, each of the remaining
(pd − 1)/2 orbits has length (2/pd)|�|.
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A family of semifields in odd characteristic 617

Proof The stabilizer of [1, 0, 0, u] in G1 is described by

αβσ = Rγ δσ , ασ β = Rγ σ δ, ασ+1 + βσ+1/R = Rγ σ+1 + δσ+1.

Let g = gcd(q − 1, σ + 1). We have β = 0 if and only if γ = 0, condition (α/δ)σ+1 = 1.
This yields the first contribution of g(q − 1) to the order of the stabilizer. Also α = 0 if
and only if δ = 0, with condition (β/γ )σ+1 = R2. The second contribution is therefore 0 if
R2 /∈ (L∗)σ+1, it is g(q − 1) otherwise. Assume all those coefficients are nonzero, β = 1.
The first two equations yield

α = Rγ δσ , ασ = Rγ σ δ.

By comparison this yields the condition c ∈ K1 where c = Rδσ+1. Assume this is satisfied.
We have ασ+1 = R2γ σ+1δσ+1 = cRγ σ+1. The last equation is therefore equivalent to
(c−1)(R2γ σ+1−1) = 0.The existence condition shows c 	= 1.This implies γ σ+1 = 1/R2.

To sum up the conditions in this last case:

β = 1, c ∈ K1 = Fpd , δσ+1 = c/R, γ σ+1 = 1/R2, α = Rγ δσ = cγ /δ.

Assume m/d odd. Then g = 2, R is a non-square, the first two cases together yield a
contribution of 4(q − 1), the last case yields 2(pd − 1)(q − 1). The stabilizer order is then
2(pd + 1)(q − 1) and the orbit length is |GL(2, q)|/(2(pd + 1)) = |�|/pd .

Let nowm/d be even. Then g = pd +1 and R is a representative of one of the cosets. This
is not the trivial coset, because of the existence condition. Consider at first the generic case
that R is not in the coset of order 2, equivalently R2 /∈ (L∗)σ+1. Then the second and third
contributions are 0, the stabilizer order is g(q − 1) and the orbit length is |GL(2, q)|/(pd +
1) = (2/pd)|�|.

The final case is m/d even, R2 ∈ (L∗)σ+1. This time the last contribution vanishes, the
stabilizer order is 2g(q − 1) and the orbit length is (1/pd)|�|.

We know from Lemma 1 that there are precisely (pd +1)/2 orbits underG1 which belong
to the C-family. By the section above (pd − 1)/2 of those orbits (corresponding to values R
which are not involutory mod L∗) have length (2/pd)|�| each, the involutory R yields an
orbit of length (1/pd)|�|. We see that those orbits together exhaust all of �. 
�
Corollary 3 Given p,m, s such that m/ gcd(m, s) is even, there is only one orbit containing
commutative presemifields. It corresponds to l = 1/N , R = μN . This is then the uniquely
determined isotopy class of Budaghyan–Helleseth semifields.

Proof We saw this essentially in [1]. 
�

7 The nuclei and commutativity

In [1] it is proved that the center, the left, and the right nucleus of the semifield associated to the
presemifield B(p,m, s, l, t (C1,C2)), s < m, l 	= 0, agree with K1 = Fpgcd(m,s) (Theorem
9). We also saw that the middle nucleus of the semifield associated to the presemifield
B(p,m, s, l, [1, 0, 0, p4]), l 	= 0, is a quadratic extension of the center (Corollary 3). Further
we saw the following; see [1, Corollary 5].

Theorem 6 The presemifield B(p,m, s, l, [1, 0, 0, p4]), l 	= 0 is isotopic to a commutative
semifield if and only if either l ∈ (L∗)σ−1 or lσ+1/pσ−1

4 ∈ Lσ 2−1.
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618 J. Bierbrauer et al.

Corollary 4 Given p,m, s such that m/ gcd(m, s) is odd, there is precisely one isotopy class
of presemifields in the C-family which are isotopic to commutative semifields.

Proof We can choose R to be an arbitrary non-square. For each choice of l there is precisely
one G1-orbit. Notice that the unique choice satisfying the condition of Theorem 6 is l = 1.


�
We will also use the following commutativity criteria in the special cases C1 = 0 or

C2 = 0; see [1, Corollary 4].

Corollary 5 The presemifield B(p,m, s, l, t (0,C2)) for l 	= 0, s < m is isotopic to a
commutative semifield if and only if either l ∈ (1/N )Lσ−1 or there is a0 ∈ F such that

a pm+s−1
0 = C2/(lC2).

Observe that the choice l = 1/N is possible if and only if−N /∈ Lσ−1 which is equivalent
to one of m/d or s/d being even.

Corollary 6 The presemifield B(p,m, s, l, t (C1, 0)) for l 	= 0, s < m, is isotopic to commu-
tative if and only if either l ∈ −(1/N )Lσ−1 or there is a0 ∈ F such that aσ−1

0 = C1/(lC1).

This is analogous to the previous lemma. The choice l = −1/N is possible if N /∈ Lσ−1

which is equivalent to s/d being odd.

8 The ternary case

Let p,m, s be fixed, d = gcd(m, s) and l 	= 0 such that −l /∈ (L∗)σ−1. As l may be
multiplied by an arbitrary element of (L∗)σ−1 and because of Galois isotopy, the number of
cases for l to consider is the number of orbits of the Frobenius on the nontrivial elements of
the factor group L∗/(L∗)σ−1 (of order pd − 1).

Theorem 7 For each m ≥ 3 there are precisely two isotopy classes of presemifields
B(3,m, 1, l, t), l 	= 0. One of them contains commutative semifields, the other does not.

Proof We have q = 3m, σ = 3 is the Frobenius, d = 1. The parameter l is essentially
uniquely determined. In fact, −l is an arbitrary non-square (see Proposition 2). We choose
l = −μ.The number of legitimate quadruples t is |�| = (3/8)(q+1)q(q−1)2 byTheorem3.
Consider the action of the restricted isotopy group G1 of order (q2 − 1)q(q − 1)2 on � (see
Definition 5). We are going to show that G1 has precisely two orbits on �, an orbit O1 of
length |�|/3 containing commutative semifields in the C-family and an orbit O2 of length
2|�|/3 consisting of presemifields which are not isotopic to commutative semifields. This
proves then the theorem. We will also see that O2 contains members of the C-family if and
only if m is even.

Choose at first t = [1, 0, 0,−μ2]. Then −p4 /∈ L4 and t is legitimate. This quadruple
describes an orbit of length |�|/3 in the C-family. The presemifield is isotopic to a commu-
tative semifield. In fact, the second condition of Theorem 6 is satisfied.

In order to complete the proof we need to find a B(3,m, 1, l, t) which is not isotopic to a
commutative semifield and whose stabilizer in G1 has order 4(q − 1).

Consider at first the case whenm is even. In this case we saw what we need in the proof of
Theorem 5. There are pd +1 = 4 cosets mod (L∗)σ+1 in all. The trivial one is not legitimate,
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the involutorial one yields a value of R = −p4 which leads to a commutative semifield, and
the two remaining values lead to the non-commutative semifield that we need here.

Finally consider the case when m is odd. We have μ = N = −1 and choose ω = i
as an element of order 4. Also v2(q + 1) = 4 (see Definition 2) and 〈i〉 is a Sylow-2-
subgroup of Zq+1. Further v2(q2 − 1) = 8 and 〈i − 1〉 is a Sylow-2-subgroup of F∗. We
want to find a semifield which is not isotopic to a commutative semifield, in case C1 = 0.
The existence condition of Theorem 2 says that −C2/C2 is not a fourth power in Zq+1.

Theorem 4 shows that up to isotopy C2 may be multiplied by an arbitrary fourth power.
This amounts to multiplying −C2/C2 by an arbitrary element in Z(q+1)/4, so we can assume
that −C2/C2 ∈ 〈i〉. The value 1 is excluded by the existence condition, so we can assume
−C2/C2 ∈ {−1, i,−i}. We use Corollary 5 to decide commutativity. The first of the two
conditions is never satisfied, the second says that we have commutativity if and only ifC2/C2

is an 8-th power and therefore has odd order. This is the case when −C2/C2 = −1, so we
are reduced to −C2/C2 ∈ {i,−i}. Those do describe presemifields which are not isotopic to
commutative semifields. We can choose C2 = i − 1. This yields the quadruple [1,−1, 1, 1].
Linear isotopy with M =

(
1 1
0 −1

)
yields [−1, 0,−1, 1], after scalar isotopy [1, 0, 1,−1].

Consider the stabilizer in G1. The conditions are

α3β = γ 3(β + δ),

−α4 + αγ 3 + γ 4 = αβ3 − αδ3 − γ δ3 = β4 − βδ3 − δ4 	= 0.

We have β = 0 if and only if γ = 0. This yields q − 1 solutions δ = α, scalar matrices

diag(α, α).Case α = 0 yields q−1 solutions

(
0 β

β −β

)
and δ = 0 yields the q−1 solutions(

α α

α 0

)
. Assume now αβγ δ 	= 0. Because of homogeneity it can be assumed that γ = 1.

We want to show that this yields precisely one solution to the system.
The first equation shows δ = β(α3 − 1) (in particular α 	= 1). Using this in the remaining

equations and y = −α yield the system

−δ4 − δ + 1 = −γ 3δ + γ 3(δ9 + 1)(1 − δ) = γ 4 − γ 3(δ9 + 1)γ δ3,

after simplification

−y4 − y + 1 = β3(−y10 + y9 + y + 1) = β4(−y4 − y + 1)3 	= 0.

We have

x10 − x9 − x − 1 = (x4 + x − 1) (x6 − x5 − x3 − x2 − x + 1)︸ ︷︷ ︸
f (x)

.

Comparing the last two terms showsβ = (−y10+y9+y+1)/(−y4−y+1)3 = f (y)/(−y4−
y+1)2.On the other hand comparison of the first two terms showsβ3 = 1/ f (y).The equation
is f (y)4 = (y4 + y − 1)6, equivalently

f (y)2 = ±(y4 + y − 1)3.

123



620 J. Bierbrauer et al.

Observe that y4 + y − 1 	= 0 is equivalent to M being invertible. One solution is y = 1. So
far we have 4(q − 1) elements in the stabilizer, corresponding to a cyclic subgroup of order

4 of S ⊂ PGL(2, q) generated by

(
0 1
1 −1

)
. We claim that this is all of S. We need to show

that there are no solutions x ∈ L \ F3 to

f (x)2 = ±(x4 + x − 1)3.

We have f (x) = (x2 + x − 1)(x4 + x3 − 1) and the decomposition of those polynomials
into irreducible factors is in fact

f (x)2 + (x4 + x3 − 1)3 = −x(x + 1)(x2 + 1)(x4 − x2 − 1)(x4 + x3 + x2 + x + 1).

f (x)2 − (x4 + x3 − 1)3 = (x − 1)(x2 − x − 1)(x4 + x3 + x2 + 1)(x4 − x3 + x2 + x − 1).


�
To sum up, here is the complete census in case p = 3, s = 1, when m is odd. We have

μ = N = −1 and also l = 1. The commutative orbit has representative C(3,m, 1, 1,−1)
(in fact lσ+1Rσ−1 = 1). The second orbit is non-commutative and has representative
B(3,m, 1, 1, 0, i−1). In order to confirm non-commutativity, we use Corollary 5.We would
have commutativity if one of two conditions is satisfied. The first is 1/N ∈ Lσ−1, here
−1 ∈ L2 which is not true. The second condition is that C2/ lC2 is a (3m+1 − 1)-st power.
In particular i has to be an 8-th power which is not true.

Let p = 3, s = 1 and m even. Choose N = μ as a generator of the Sylow-2-subgroup.
Again l = −μ is uniquely determined. Both orbits belong to the C-family. Case R =
−μ2 yields the commutative orbit (in fact l4R2 = μ8 ∈ L8) and R = μ yields the non-
commutative orbit (in fact l4R2 = μ6 /∈ L8).

Theorem 8 Let m ≥ 3 be odd. There are precisely two isotopy classes of presemifields
B(3,m, 2, l, t), l 	= 0. One of them contains commutative semifields, the other does not.

Proof We have d = 1, μ = −1, N = 1, ω = i, |�| = (3/8)(q + 1)q(q − 1)2. Again l is
uniquely determined: l = 1.Recall that the Sylow-2-subgroup of F∗ is generated by i−1, of
order 8.Consider [1, 0, 0, u].This is legitimate if and only if R = −1/u is a non-square in L ,

equivalently if u is a square. We choose u = 1, the quadruple [1, 0, 0, 1]. The corresponding
semifield is isotopic to a commutative semifield by Theorem 6. The order of the stabilizer is
8(q − 1) and the orbit length is |GL(2, q)|/8 = |�|/3.

Choose C1 = i − 1,C2 = 0. We have t = [1,−1, 1, 1]. Linear isotopy with

M =
(
1 1
0 −1

)
yields the quadruple [−1, 0,−1, 1], after scalar isotopy [1, 0, 1,−1]. The

corresponding polynomial (Definition 1) is X10 + X −1. The decomposition into irreducible
factors over F3 is

X10 − X − 1 = (X2 − X − 1)(X8 + X7 − X6 − X4 − X3 + X2 + 1).

In particular X10 ± X −1 have no roots in L = F3m (m odd). This confirms that [1, 0, 1,−1]
is legitimate. Corollary 6 shows that the corresponding presemifield is not isotopic to a
commutative semifield.

The stabilizer equations for this quadruple are

β9(α + γ ) = γ δ9,−δ10 + β9δ + β10 = γ 9δ − α9(β + δ) = γ 10 − α9γ − α10.

We need to show that the order of the stabilizer is 4(q − 1). We have β = 0 if and only if
γ = 0. This yields the scalar matrices as q − 1 solutions. Assume α = 0. Then β = γ = δ
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yields another set of q − 1 solutions. Assume δ = 0 and β = 1. Then γ = 1, α = −1. This
yields a third set of q − 1 solutions.

Assume now αγ δ 	= 0 and β = 1. Then α = γ (δ9 − 1) and

1 + δ − δ10 = γ 9(−δ82 − δ81 − δ + 1) = γ 10(1 + δ − δ10)9,

which must be nonzero because det (M) = γ (δ10 − δ − 1). By comparison we obtain

γ 9 = (−δ82 − δ81 − δ + 1)9/(1 + δ − δ10)81 = (1 + δ − δ10)/(−δ82 − δ81 − δ + 1),

equivalently (1+ δ − δ10)41 = ±((δ82 + δ81 + δ − 1)5. Values δ ∈ F3 certainly satisfy this.
However the case δ = 0 has been considered earlier and δ = 1 leads to α = 0 which has
been considered before. The value δ = −1 yields γ = 1, α = 1 which gives us a fourth
contribution of q − 1 to the order of the stabilizer. We claim that this is all. In order to see
this it can be verified that the polynomials

(1 + X − X10)41 ± (X82 + X81 + X − 1)5 ∈ F3[X ]
do not have irreducible factors of odd degree > 1. We have found that � is the union of
precisely two G1-orbits, the second orbit of length 2|�|/3 not belonging to the C-family. 
�

Here is the census in this case: there are precisely two isotopy types. C(3,m, 2, 1,−1)
is a representative of the commutative orbit. A representative for the second orbit is
B(3,m, 2, 1, t (i − 1, 0)).

Finally we observe that the situation will probably not always be as simple as in the cases
of Theorems 7 and 8. Consider case p = 3, s = 2, when m is divisible by 4. In this case
there are many more orbits. Observe that q − 1 is divisible by 16. Let μ be a generator of
the Sylow-2-subgroup. Then N = μ4. We have that l is determined only up to cosets mod
(L∗)8, and L∗/(L∗)8 has order 8. Because of the existence condition and Galois isotopy we
can choose l ∈ {μ,μ2, μ4, μ5}. Theorem 5 shows that for each such l there are 5 orbits ofG1

on �, for a grand total of 20 possible isotopy types. Everything belongs to the C-family and
exactly one of those 20 presemifields is isotopic to a commutative semifield. It corresponds
to the choice l = μ4, R = μN = μ5. The total number of isotopy types is between 2 and
20.
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