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Abstract Affinemessage authentication code (MAC) and delegatable affineMAC turn out to
be useful tools for constructing identity-based encryption (IBE) and hierarchical IBE (HIBE),
as shown in Blazy, Kiltz and Pan’s (BKP) creative work in CRYPTO (2014). An important
result obtained by BKP is IBE of tight PR-ID-CPA security, i.e., tight IND-ID-CPA security
together with ciphertext pseudorandomness (PR). However, the problem of designing tightly
PR-ID-CCA2 secure IBE remains open. We note that the CHK transformation does not
preserve ciphertext pseudorandomness when converting IND-ID-CPA secure 2-level HIBE
to IND-ID-CCA2 secure IBE. In this paper, we solve this problem with a new approach. We
introduce a new concept calledDe-randomized delegatable affineMAC and define for itweak
APR-CMA security. We construct such a MAC with a tight security reduction to the Matrix
DDHassumption,which includes the k-Linear andDDHassumptions.We present a paradigm
for constructing PR-ID-CCA2 secure IBE, which enjoys both ciphertext pseudorandomness
and IND-ID-CCA2 security, from De-randomized delegatable affine MAC and Chameleon
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hashing. The security reduction is tightness preserving. It provides another approach to IND-
ID-CCA2 security besides the CHK transformation. By instantiating the paradigm with our
specific De-randomized delegatable affine MAC, we obtain the first IBE of tight PR-ID-
CCA2 security from the Matrix DDH assumption over pairing groups of prime order. Our
IBE also serves as the first tightly IND-ID-CCA2 secure IBE with anonymous recipient
(ANON-ID-CCA2) from the Matrix DDH assumption. Our IBE further implies the first
tightly IND-ID-CCA2 secure extractable IBE based on the Matrix DDH assumption. The
latter can be used to get IBE of simulation-based selective opening CCA2 (SIM-SO-CCA2)
security (due to Lai et al. in EUROCRYPT, 2014). The tight security of our IBE leads to a
tighter reduction of the SIM-SO-CCA2 security.

Keywords Tight security reduction · Identity-based encryption · Ciphertext pseudoran-
domness · CCA2 security · Affine message authentication code

Mathematics Subject Classification 68P25 · 94A60

1 Introduction

Identity-based encryption (IBE) is a public-key encryption that enables one to encrypt a
message using a recipient’s identity, rather than its public key. It simplifies public key and
certificate distribution and management. The concept of IBE was first proposed by Shamir in
[30]. The traditional security notion for IBE, denoted by IND-ID-CPA, is the indistinguisha-
bility of ciphertexts under a target identity chosen by the adversary, who can obtain the secret
keys of identities (other than the target identity) of its choice. The first constructions of IBE
satisfying this notion were proposed by Boneh and Franklin [8] and Cocks [13], however the
proofs were based on the random oracle model. The first IBE with IND-ID-CPA security in
the standard model was presented by Boneh and Boyen [7], and later Waters [31] simplified
the scheme of [7], substantially improving its efficiency.

1.1 Tight security reduction

Modern research on IBE pursues tight security reductions to standard cryptographic assump-
tions. It is not only an interesting theoretical problem but also has practical significance. A
loose reduction makes the instantiations augment larger security parameter, hence the IBE
scheme will be less efficient. A typical loose security reduction of IBE, for instance [31,32],
is related to Q, the number of user secret key queries. Then implementing such an IBE has
to set a larger parameter to compensate reduction’s security loss. Recently, Chen and Wee
[12] proposed the first (almost) tightly IND-ID-CPA secure IBE, which only loses a factor λ,
independent of Q. Here λ is the bit-length of the identities. More works about tightly secure
IBEs were done in [3,6,19,24].

1.2 Recipient-anonymity and ciphertext pseudorandomness

Informally, an IBE is recipient-anonymous, denoted by ANON-ID-CPA, if a ciphertext does
not leak any information about the identity of the recipient to probabilistic polynomial-time
(PPT) adversaries. Boneh et al. [9] observed that anonymous IBE can be used to construct
searchable public-key encryption, and later Abdalla et al. [1] gave a formalization. Construc-
tions of anonymous IBEwere found in [10,28], both of which have loose security reductions.
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Tightly CCA-secure IBE with ciphertext pseudorandomness 519

Recently, Blazy et al. [6] proposed the first (almost) tightly ANON-ID-CPA secure IBE, and
more work can be found in [3].

A stronger notion is called ciphertext pseudorandomness, denoted by PR-ID-CPA [2,6],
whichmeans that the ciphertext generated by IBE is indistinguishable from a random element
in the ciphertext space to PPT adversaries. This notion implies that the ciphertext hides the
plaintext (thus IND-ID-CPA), the identity (thus ANON-ID-CPA), and also the public key
used to create it. Therefore, a PR-ID-CPA secure IBE even protects anonymity of authorities
that issue user secret keys [2]. PR-ID-CPA security implies ANON-ID-CPA security, but
not vice verse, i.e., an anonymous IBE does not necessarily have pseudorandom ciphertexts.
Meanwhile, ciphertext pseudorandomness turned out to be very useful and it was implicitly
used in PKE and IBE to achieve simulation-based selective opening CPA (SIM-SO-CPA)
security, see [5,16].

1.3 CCA2 security

Security against adaptive chosen-ciphertext attacks is a de facto security notion. Active adver-
saries might also be able to obtain the decryptions of ciphertexts under any identity of its
choice. Thus it is necessary to consider the stronger security notion for IBE, i.e., IND-
ID-CCA2 security. Similarly, imposing anonymous property/ciphertext pseudorandomness
to IND-ID-CCA2 gives ANON/PR-ID-CCA2 security. We stress again that PR-ID-CCA2
security was implicitly used in achieving simulation-based selective opening CCA2 (SIM-
SO-CCA2) security for IBE in [27].

1.4 Tightly secure IBE with recipient-anonymity/ciphertext pseudorandomness

Gentry [17] proposed tightlyANON-ID-CPA/CCA2 secure IBEs. However, the IBE schemes
rely on non-standard Q-assumptions, which again depend on the number Q of user secret
key queries. Recently, Attrapadung et al. [3] used broadcast encoding to construct a tightly
ANON-ID-CPA secure IBE. Blazy, Kiltz and Pan (BKP) [6] introduced the notion of affine
message authentication code (MAC) and delegatable affine MAC, which were used in con-
structing tightly secure (H)IBEs in a novel way, including: (1) a tightly PR-ID-CPA secure
IBE; (2) a tightly IND-ID-CPA secure but not anonymous HIBE.1

There is no tightly ANON-ID-CCA2 secure IBE from standard assumptions yet, to the
best of our knowledge. Of course, a tightly ANON-ID-CCA2 secure IBE can be obtained
from a tightly ANON-ID-CPA secure 2-level HIBE with the help of the CHK transformation
[11]. Unfortunately, 2-level HIBE of tight ANON-ID-CPA security is still missing.

PR-ID-CCA2 security provides stronger privacy thanANON-ID-CCA2 security, since the
ciphertexts are completely random.Meanwhile, PR-ID-CCA2 secure IBE plays an important
role in building IBE of SIM-SO-CCA2 security. These observations motivate us to pursuit
tight PR-ID-CCA2 security for IBE.

However, tight PR-ID-CCA2 security is much harder to achieve from standard assump-
tions. We stress that the CHK transformation does not work even if a tightly PR-ID-CPA
secure 2-level HIBE is available, since the CHK transformation does not preserve ciphertext
pseudorandomness. We have to resort to an alternative approach to solve the challenging
problem:

How to construct PR-ID-CCA2 secure IBE possessing both security reduction tightness
and ciphertext pseudorandomness from a standard assumption?

1 As far as we know, this is the only HIBE with a tight security reduction.
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Fig. 1 Schematic overview of BKP’s construction [6] (the top row) and our construction (the bottom row) of
IBE. All implications have a tight security reduction. In our construction, we need a pseudorandom function
PRF as well as a chameleon hashing CH, both of which have tightly secure instantiations

1.5 Our contributions

In this paper, we answer the above question affirmatively. We propose a new IBE over
pairing groups of prime order. Our IBE enjoys (almost) tight security reduction, IND-ID-
CCA2 security and ciphertext pseudorandomness simultaneously. The security of our IBE is
based on the Matrix Decisional Diffie-Hellman (MDDH) assumption [15], which includes
the standard k-Linear and DDH assumptions. More precisely,

• We introduce a new concept, namely De-randomized Delegatable Affine MAC, and
define a security notion for the MAC, i.e., the weak APR-CMA security.2 We build
a de-randomized delegatable affine MAC with weak APR-CMA security based on the
Naor-Reingold PRF (NR-PRF) and a traditional pseudorandom function, and the security
is tightly reduced to the MDDH assumption.

• We propose a paradigm for constructing PR-ID-CCA2 secure IBE from de-randomized
delegatable affine MAC and chameleon hashing. The security reduction is tightness
preserving. When instantiating MAC with the NR-PRF-based one,

– we obtain the first tightly PR-ID-CCA2 secure IBE, which is also the first tightly
ANON-ID-CCA2 secure IBE, based on the MDDH assumption;

– we obtain the first tightly IND-ID-CCA2 secure extractable IBE based on theMDDH
assumption, when our tightly PR-ID-CCA2 secure IBE is converted to an extractable
IBE (the conversion is shown in Appendix 3 as a minor contribution);

– we obtain a SIM-SO-CCA2 secure IBE from the MDDH assumption with a much
tighter reduction, when following the black-box construction of SIM-SO-CCA2
secure IBE from extractable IBE [27].

Our results are illustrated on the bottom of Fig. 1. We summarize known tightly secure IBEs,
their securities and parameters in Table 1.

1.6 Our approach

Firstly, we recall BKP’s approach to tightly PR-ID-CPA secure IBE [6]. Then we introduce
our approach to tightly PR-ID-CCA2 secure IBE. We will explain the intuitions behind our
construction, the problems arising along the way and the methods to solve them.

2 The APR-CMA security was originally defined by Blazy et al. [6] for delegatable affine MAC, but no
constructions are available with tight security reduction.
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Table 1 Comparison between the known tightly-secure IBEs with identity space ID = {0, 1}λ in prime
order groups based on standard assumptions

IBE Scheme Loss CCA2? ANON? PR? Assumption |pk| |usk| |C|
CW13 [12] O(λ) − − − k-LIN 2λk2 4k 4k

BKP14’s IBENR [6] O(λ) − √ √ Dk -MDDH 2λk2 2k 2k

BKP14’s HIBENR [6] + CHK O(λ)
√ − − Dk -MDDH 8λk2 2λk 2k

AHY15a [3] O(λ) − √ − 2-LIN 16λ 8 8

GCDCT16 [19] O(λ) − − − k-LIN 6λk2 6k 6k

Ours: IBENR (§4) O(λ)
√ √ √ Dk -MDDH 4λk2 2λk 2k

“CHK” stands for the general transformation proposed by [11], which converts IND-ID-CPA secure 2-level
HIBE to IND-ID-CCA2 secure IBE. “CCA2” asks whether the scheme is IND-ID-CCA2 secure, “ANON”
anonymous, and “PR” pseudorandom ciphertexts which is stronger than recipient-anonymity. “k-LIN” is short
for the k-Linear assumption, and “Dk -MDDH” theDk -Matrix DDH assumption.Dk -MDDH is more general
than k-LIN. |pk|, |usk| and |C| denote the size per public key, user secret key and ciphertext, respectively.
Here we count the number of group elements in G1, G2 and GT , and we only show the leading term due to
the lack of space (a detailed efficiency comparison table is in Appendix 1)
a AHY15 [3] also proposed two non-anonymous schemes, here we only show the anonymous one

We will sketch the approach in terms of an identity-based key encapsulation mechanism
(IBKEM). To get a full-fledged IBE, one can simply combine an IBKEM with a (one-time
secure) authenticated encryption scheme.

1.6.1 BKP’s approach to tightly PR-ID-CPA secure IBE

In [6], BKP proposed the concept of affine MAC which was used to build IBE. They defined
PR-CMA security for affine MAC, which was dedicated to PR-ID-CPA security of IBE. See
the top row of Fig. 1.

Roughly speaking, an affine MAC uses secret key skMAC = (B, x0, . . . , x�, x ′
0) to com-

pute a tag ([t]2, [u]2) for a messagem as follows:

s ←$ Z
n′
q , t := B · s ∈ Z

n
q , u :=

∑l(m)

i=0
fi (m) · x�

i · t + x ′
0 ∈ Zq ,

where fi mapping m to Zq and l mapping m to {0, 1, . . . , �} are some public defining
functions, and [t] j ∈ G

n
j ( j ∈ {1, 2, T }) is an implicit expression of t ∈ Z

n
q over a group G j

of prime order q .
The PR-CMA security of affine MAC requires pseudorandomness of token ([h]1, [h0]1,

[h1]T ) for a target message id∗, given multiple tags ([t]2, [u]2) of messages of adversaries’
choice, where

h ←$ Zq , h0 :=
∑l(id∗)

i=0
fi (id∗) · xi · h ∈ Z

n
q , h1 := x ′

0 · h ∈ Zq .

BKP constructed an IBKEM from an affine MAC. The high-level idea behind their
approach is the Bellare–Goldwasser transformation [4] from MAC, commitment and NIZK
to digital signature.3 Let us briefly recall their IBKEM scheme. The public key pk consists of
[A]1 ∈ G

(k+1)×k
1 , [Zi ]1 = [(Y�

i | xi ) ·A]1 and [z′
0]1 = [(y′�

0 | x ′
0) ·A]1 which can be seen as

perfect hiding commitment of ({xi }, x ′
0). In the key encapsulation algorithmEncap(pk, id∗),

a ciphertext ([c0]1, [c1]1) encapsulates a symmetric key [K ]T with randomness r ←$ Z
k
q :

3 Recall that the user secret key generation algorithm of IBKEM corresponds to the signing algorithm of
digital signature scheme.
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c0 := A · r ∈ Z
k+1
q , c1 :=

∑l(id∗)
i=0

fi (id∗) · Zi · r ∈ Z
n
q , K := z′

0 · r ∈ Zq , (1)

which can also be computed with master secret key ({xi }, x ′
0, {Yi }, y′

0) of IBKEM:

c0 := A · r ∈ Z
k+1
q , c1 :=

∑l(id∗)
i=0

fi (id∗) · (Y�
i | xi ) · c0, K := (y′�

0 | x ′
0) · c0. (2)

In the PR-ID-CPA security proof of IBKEM, some entropy can always be introduced to
the last row of c0, according to the MDDH assumption (cf. Definition 1):

c0 := A · r + (0 | h)�, with h ←$ Zq . (3)

According to (2), we have that

c1 :=
∑l(id∗)

i=0
fi (id∗) · Zi · r +

∑l(id∗)
i=0

fi (id∗) · xi · h
︸ ︷︷ ︸

h0

, K := z′
0 · r + x ′

0 · h︸ ︷︷ ︸
h1

.

Finally, the PR-ID-CPAsecurity of IBKEMcan be tightly reduced to the PR-CMAsecurity
of affine MAC, where ([c0]1, [c1]1, [K ]T ) is pseudorandom due to the pseudorandomness
of token ([h]1, [h0]1, [h1]T ), and the user secret key generation can be implemented by tag
generation of affine MAC.

1.6.2 Our approach to tightly PR-ID-CCA2 secure IBE

BKP’s IBKEM is not PR-ID-CCA2 secure. According to (1), it is clear that the ciphertext is
linearly homomorphic in the sense that, if ([c0]1, [c1]1) encapsulates a key [K ]T , then the
ciphertext ([a · c0]1, [a · c1]1) will encapsulate the key [a · K ]T . This implies a trivial CCA2
attack.

To circumvent this attack and achieve CCA2 security, we make use of chameleon
hashing CH to eliminate this linear homomorphism. In the key encapsulation algorithm
Encap(pk, id∗) of our IBKEM, we bind a (second-level) identity id′∗ with [c0]1 (and a ran-
domness RCH) via id

′∗ = CH.Eval(ekCH, [c0]1; RCH), and compute [c1]1 with respect to
the hierarchical identity id∗|id′∗ (instead of id∗), i.e.,

c0 := A · r, id′∗ = CH.Eval(ekCH, [c0]1; RCH),

c1 :=
∑l(id∗|id′∗)

i=0
fi (id∗|id′∗) · Zi · r, K := z′

0 · r.
The above CCA2 attack no longer works for our IBKEM. In our scheme, a transformed

ciphertext ([a · c0]1, [a · c1]1, R̃CH) is not able to encapsulate the key [a · K ]T any more,
since the second-level identity ĩd

′∗
bound with [a · c0]1 (using randomness R̃CH) is totally

different from the second-level identity id′∗ boundwith [c0]1 (using randomness RCH), unless
a CH-collision occurs.

1.6.3 New problem and our solution

We note that a new problem arises in the proof of the ciphertext pseudorandomness of our
scheme, when embedding the pseudorandom token ([h]1, [h0]1, [h1]T ) w.r.t. id∗|id′∗ to the
challenge ciphertext ([c0]1, [c1]1) and the encapsulated key [K ]T , where

h ←$ Zq , h0 :=
∑l(id∗|id′∗)

i=0
fi (id∗|id′∗) · xi · h ∈ Z

n
q , h1 := x ′

0 · h ∈ Zq .
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On the one hand, since id′∗ = Eval(ekCH, [c0]1; RCH), the simulator needs to compute
[c0]1 before obtaining the token w.r.t. target id∗|id′∗. On the other hand, in order to embed
[h]1 into [c0]1 according to (3), the simulator has to compute [c0]1 after getting the token
([h]1, [h0]1, [h1]T ).

To break this deadlock, we make use of the equivocation property of chameleon hashing
CH (cf. Definition 4). More precisely, the simulator first picks dummy [c̃0]1, R̃CH randomly,
and compute id′∗ := Eval(ekCH, [c̃0]1; R̃CH). Then the simulator submits id∗|id′∗ as the tar-
get message and obtains the token ([h]1, [h0]1, [h1]T ). After embedding the challenge [h]1
into [c0]1, the simulator can reopen RCH ← Equiv

(
tdCH, [c̃0]1, R̃CH, [c0]1

)
using the trap-

door tdCH. By the equivocation property of CH, it holds that id
′∗ = Eval(ekCH, [c0]1; RCH)

and RCH is uniformly distributed and independent of [c0]1.

1.6.4 Another problem

In order to support second-level identity id′∗ in our IBKEM, we need affine MAC supporting
hierarchical message space, i.e., Delegatable affine MAC. The syntax of delegatable affine
MAC and corresponding security notion, i.e., APR-CMA security, were proposed by BKP.
The APR-CMA security requires pseudorandom token for delegatable affine MAC, which is
used to construct PR-ID-CPA secure HIBE in [6].

However, it is much more difficult for MAC to get APR-CMA security than PR-CMA.
In the definition of APR-CMA security of delegatable affine MAC, when the adversary
adaptively queries a message, it gets not only a tag, but also some extra elements served
for delegation and re-randomization in HIBE. Those elements for re-randomization might
information-theoretically reveal the critical part of the secret key to the adversary. This makes
APR-CMA security very hard to achieve.

In [6], only one construction of APR-CMA secure delegatable affine MACwas proposed,
but with a loose security reduction. As far as we know, no MAC is available possessing tight
APR-CMA security yet.

1.6.5 Our solution: new security notion and new syntax

Fortunately, delegatable affine MAC is used to construct IBE (instead of HIBE) in our sce-
nario, hence those elements used for re-randomization are not necessary and can be safely
discarded in the APR-CMA security game.

Based on this observation, we define a weak version of APR-CMA security, i.e., the weak
APR-CMA security, which still stipulates pseudorandom token, but no re-randomization
elements are revealed to the adversary.

In order to get a tightly secureMAC, we further introduce the de-randomization technique
and define a new primitive calledDe-randomized delegatable affineMAC. Roughly speaking,
we require that the tag generation algorithm ofMAC always employs the same “randomness”
for the same message, i.e., the tag generation algorithm is deterministic. This can further
restrict the information on secret key that the adversary may obtain in the security game. The
de-randomization technique plays an essential role in achieving weak APR-CMA security
with a tight security reduction.

The tuned security requirement and syntaxmake it possible for us to obtain a tightlyweakly
APR-CMA secure De-randomized delegatable affine MAC from the MDDH assumption.

Using this MAC in our IBKEM construction, together with an information-theoretically
secure authenticated encryption, we obtain an IBE of tight PR-ID-CCA2 security. To reduce
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the PR-ID-CCA2 security of our IBE to the weak APR-CMA security of MAC, we need to
show that one can simulate the decryption oracle of IBE with the help of the tag generation
oracle of MAC. This part is fairly involved and technical, and we leave the detailed analysis
to Sect. 4.

2 Preliminaries

2.1 Notations

Throughout this paper, λ ∈ N denotes the security parameter. For integers i, j ∈ N with
i < j , [i, j] denotes the set {i, i + 1, . . . , j} and [ j] denotes the set {1, 2, . . . , j}. For a
finite set S, we denote by s ←$ S the operation of picking an element s from S uniformly
at random. For an algorithm A, we denote by y ←$ A(x) the operation of running A with
input x , and assigning y as the result. The symbol ε denotes the empty string. For a matrix
A ∈ Z

(k+1)×n
q , denote the upper k rows ofA byA ∈ Z

k×n
q and the last row byA ∈ Z

1×n
q . For

a string s ∈ {0, 1}∗, |s| always denotes the bit-length of s. Let s||t denote the concatenation
of two strings s and t.

2.2 Games

We use games for our security reductions, as in [6]. A game G consists of an Initial-
ize procedure and a Finalize procedure, as well as some optional (public) procedures
Proc1, . . . ,Procn and private procedures PrivProc1, . . . ,PrivProcm . All procedures
are described using pseudo-code, where initially all variables are empty strings and all
sets are empty. An adversary is executed in game G if it first calls Initialize, obtaining
its output. Then it may make arbitrary queries to (public) procedures Proci according
to their specification, and obtain their output. The adversary is not allowed to query pri-
vate procedures PrivProci directly. Finally it makes one single call to Finalize. By
GA ⇒ b we means that the game G outputs b after interacting with A, and b is in fact
the output of Finalize. We denote by Pri [·] the probability of a particular event occur-

ring in game Gi . By a
G= b we mean that a equals b or is computed as b in game

G.

2.3 Pairing groups and implicit representation of group elements

LetPGGen(1λ) be a PPT algorithm that on input the security parameter 1λ outputs a descrip-
tion PG = (G1,G2,GT , q, e, g1, g2) of asymmetric pairing groups, where (G1, ·), (G2, ·),
(GT , ·) are cyclic groups of a λ-bit prime order q and equipped with a non-degenerated
bilinear pairing e : G1 ×G2 −→ GT , and g1, g2 are generators of G1 and G2, respectively.
Denote gT := e(g1, g2), which is a generator ofGT . The pairing e is required to be efficiently
computable.

We recall the implicit representation of group elements [15]. Let s ∈ {1, 2, T }. For a
matrix A = (ai, j )i, j over Zq , denote by [A]s := gAs = (g

ai, j
s )i, j the matrix over Gs , which

is the implicit representation of A in Gs .
The above implicit representation has the following properties : (1) given [A]s and [B]s

with appropriate dimensions, we can efficiently compute [A± B]s ; (2) given A and [B]s , or
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[A]s and B with appropriate dimensions, we can efficiently compute [A ·B]s ; (3) given [A]1
and [B]2 with appropriate dimensions, we can efficiently compute [A · B]T .
2.4 MDDH assumption, PRF, chameleon hashing and universal hashing

Let k ∈ N. A probabilistic distributionDk is called amatrix distribution, if it outputs matrices
in Z(k+1)×k

q of full rank k in polynomial time. Without loss of generality, we assume that the
first k rows of A ←$ Dk are linearly independent.

We recall the definition of the Matrix Decisional Diffie-Hellman (MDDH) assumption
from [15].

Definition 1 (Dk-MDDH assumption) Let Dk be a matrix distribution and s ∈ {1, 2, T }.
The Dk-Matrix DDH (Dk-MDDH) Assumption holds w.r.t. PGGen for Gs , if for any PPT
adversary A, the following is negligible in λ:

AdvDk−mddh
PGGen,Gs ,A(λ) :=

∣∣∣Pr
[A(PG, [A]s, [A · w]s

) = 1
] − Pr

[A(PG, [A]s, [r]s
) = 1

]∣∣∣,

where PG ←$ PGGen(1λ), A ←$ Dk , w ←$ Z
k
q , r ←$ Z

k+1
q .

TheDk-MDDH assumption covers many well-known assumptions, such as the DDH and
k-Linear assumptions [15].

Definition 2 (Q-fold Dk-MDDH assumption) Let Q ≥ 1. The Q-fold Dk-MDDH Assump-
tion holds w.r.t. PGGen for Gs , if for any PPT adversary A, the following is negligible in
λ:

AdvQ,Dk−mddh
PGGen,Gs ,A(λ) :=

∣∣∣Pr
[A(PG, [A]s, [A · W]s

) = 1
] − Pr

[A(PG, [A]s, [R]s
) = 1

]∣∣∣,

where PG ←$ PGGen(1λ), A ←$ Dk , W ←$ Z
k×Q
q , R ←$ Z

(k+1)×Q
q .

The following lemma gives a tight reduction from the Q-fold Dk-MDDH assumption to
the (1-fold) Dk-MDDH assumption.

Lemma 1 (Random self-reducibility [15]) For any matrix distribution Dk , the Dk-MDDH
assumption is random self-reducible.

More precisely, for any Q, k ≥ 1, suppose that A is a PPT adversary against the Q-
fold Dk-MDDH assumption w.r.t. PGGen for group Gs of order q, then there exists a PPT
adversary B against the (1-fold) Dk-MDDH assumption w.r.t. PGGen for Gs , such that

AdvQ,Dk−mddh
PGGen,Gs ,A(λ) ≤ AdvDk−mddh

PGGen,Gs ,B(λ) + 1/q.

Let PRF : KPRF × X −→ Y be a polynomial-time computable function with key space
KPRF, domain X and range Y . Roughly speaking, PRF is pseudorandom if its outputs are
computationally indistinguishable from those of a truly random function, even the inputs are
adaptively chosen by PPT adversaries.

Definition 3 (Pseudorandom function) PRF is a pseudorandom function, if for any PPT
adversary A, which has oracle access to a function from X to Y , the following is negligible
in λ:

Advpr f
PRF,A(λ) :=

∣∣∣Pr
[APRF(kPRF,·)(1λ) = 1

] − Pr
[ATRF(·)(1λ) = 1

]∣∣∣,

where kPRF ←$ KPRF and TRF is a truly random function chosen uniformly from the set
of all functions from X to Y .
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A chameleon hashing function CH [26] is associated with an evaluation key and a trap-
door. Its collision-resistant property holds when only the evaluation key is known. With
the trapdoor, however, collision can be easily found. We recall the definition of chameleon
hashing from [22].

Definition 4 (Chameleon hashing) A chameleon hashing function CH = (CH.Gen,Eval,
Equiv) consists of three PPT algorithms:

• Thekey generation algorithmCH.Gen(1λ)outputs an evaluation key ekCH and a trapdoor
tdCH.

• The evaluation algorithm Eval(ekCH, X; RCH) takes as input an evaluation key ekCH,
X ∈ {0, 1}∗ and a randomness RCH ∈ RCH, and outputs Y ∈ Y . We require that for any
possible ekCH and X ∈ {0, 1}∗, if RCH is uniformly distributed over RCH, then so is Y
over Y .

• The equivocation algorithm Equiv(tdCH, X, RCH, X ′) takes as input a trapdoor tdCH,
X, X ′ ∈ {0, 1}∗ and RCH ∈ RCH, and outputs R′

CH ∈ RCH satisfying

Eval(ekCH, X; RCH) = Eval(ekCH, X ′; R′
CH) (4)

for the corresponding key ekCH. We require that for any possible tdCH and X, X ′ ∈
{0, 1}∗, if RCH is uniformly distributed over RCH, then so is R′

CH.

CH is called collision-resistant, if for any PPT adversary A, the following advantage is
negligible in λ:

AdvcrCH,A(λ) := Pr

[
(ekCH, tdCH) ←$ CH.Gen(1λ),

(X, RCH; X ′, R′
CH) ←$ A(ekCH)

: (X, RCH) �= (X ′, R′
CH)

∧ Eq. (4) holds

]
.

Definition 5 (Universal hash [33]) A family of functionsH = {H : X −→ Y} is universal,
if all distinct x, x ′ ∈ X , it follows that

Pr
[
H ←$ H : H(x) = H(x ′)

] ≤ 1/|Y|.
We will sometimes abuse notation and say that a function H is universal if H is randomly
chosen from a universal family of functions H.

We state a simplified version of Leftover Hash Lemma [21] with uniform input.

Lemma 2 (Leftover Hash Lemma) Let H = {H : X −→ Y} be a family of universal hash
functions. Let X be the uniform distribution over X . Then for H ←$ H, where H and X are
independent, it holds that

Δ
(
(H,H(X)), (H,UY )

) ≤ 1

2
· √|Y|/|X |,

where UY is the uniform distribution over Y . In particular, if |Y|/|X | ≤ 2−Ω(�), (H,H(X))

is statistically close to the uniform distribution over H × Y .

2.5 Delegatable affine MAC and APR-CMA security

A message authentication code (MAC) MAC = (MAC.Gen,Tag,Vrfy) consists of a tuple
of PPT algorithms: (1)MAC.Gen(params) takes as input a system parameter params, and
outputs an authentication key skMAC. (2) Tag(skMAC,m) is a randomized algorithm. It takes
as input skMAC and a message m, and outputs a tag t. (3) Vrfy(skMAC,m, t) takes as input
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skMAC, a messagem and a tag t, and outputs a verification bit b ∈ {0, 1}. Correctness ofMAC
requires that for all possible params and skMAC ←$ MAC.Gen(params), all messagesm,
we have thatVrfy

(
skMAC,m,Tag(skMAC,m)

) = 1. Delegatable affineMAC is group-based
MAC with specific algebraic structures.

Definition 6 (Delegatable affine MAC [6]) Let q be a prime number, and n, L ∈ N. We say
that MAC = (MAC.Gen,Tag,Vrfy) is a delegatable affine MAC over Zn

q , if the following
holds:

1. The system parameters params contains a group description (G2, q, g2).
2. The secret key skMAC contains (B, x0, . . . , x�, x ′

0), where B ∈ Z
n×n′
q , xi ∈ Z

n
q , x

′
0 ∈ Zq

for some n′, � ∈ N, and B has rank at least one.
3. The message space isM = B≤L (= ∪p∈[L]B p) for some finite base set B. For messages

m = (m1, . . . ,mp) ∈ B p and m′ = (m′
1, . . . ,m

′
p′) ∈ B p′

, m is called a prefix of m′,
denoted by m � m′, if p ≤ p′, and for all i ∈ [1, p], mi = m′

i . For a message m ∈ M,
denote by prefix(m) := {m′ ∈ M | m′ � m} the set of all prefixes ofm.

4. Tag(skMAC,m) computes a tag ([t]2, [u]2) ∈ G
n
2 × G2 as

s ←$ Z
n′
q , t := B · s ∈ Z

n
q , u :=

∑l(m)

i=0
fi (m) · x�

i · t + x ′
0 ∈ Zq , (5)

where fi : M −→ Zq and l : M −→ [0, �] are somepublic defining functions satisfying

(a) For any messagem ∈ M, we have fi (m) = 0 for all i ∈ [l(m) + 1, �].
(b) For any two messages m � m′ ∈ M, we have l(m) ≤ l(m′), and fi (m) = fi (m′)

for all i ∈ [0, l(m)].
5. Vrfy

(
skMAC,m, ([t]2, [u]2)

)
verifies (5) via [u]2 ?=

[∑l(m)
i=0 fi (m) · x�

i · t + x ′
0

]

2
.

In [6], APR-CMA (anonymity-preserving pseudorandomness against chosen-message
attacks) security is defined for delegatable affine MAC, which is dedicated to PR-
ID-CPA secure HIBE. The APR-CMA security is reviewed as follows. Let PG =
(G1,G2,GT , q, e, g1, g2) be an asymmetric pairing group such that (G2, q, g2) is contained
in params. Consider the APR-CMA game in Fig. 2, where μ is the (publicly known) rank
of matrix B output byMAC.Gen(params).

Definition 7 (APR-CMA security) A delegatable affineMAC over Zn
q is APR-CMA secure,

if for any PPT adversaryA, the advantage Advapr -cma
MAC,A (λ) := |Pr[APR-CMAA ⇒ 1]−1/2|

is negligible in λ, where game APR-CMA is specified in Fig. 2.

3 De-randomized delegatable affine MAC with weak APR-CMA security

We will give the formal definitions of De-randomized delegatable affine MAC and its weak
APR-CMA security, and present a tightly secure instantiation of de-randomized delegatable
affine MAC satisfying our new security notion.

3.1 De-randomized delegatable affine MACs and its weak APR-CMA security

Definition 8 (De-randomized delegatable affine MAC) A delegatable affine MAC =
(MAC.Gen,Tag, Vrfy) over Z

n
q is de-randomized, if the following property of de-

randomization holds:
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Fig. 2 Games APR-CMA and weak − APR − CMA for defining securities of MAC. The shadowed parts
appear only in the description of game APR-CMA, while the framed parts appear only in the game weak-
APR-CMA

• The secret key skMAC also contains a key kPRF for some pseudorandom function PRF :
KPRF × M −→ Z

n′
q , where M is the message space and n′ is the column dimension of

B ∈ Z
n×n′
q in skMAC.

• Tag(skMAC,m) is a deterministic algorithm. For a message m ∈ M, it computes a tag
([t]2, [u]2) ∈ G

n
2 × G2 as

s := PRF(kPRF,m) ∈ Z
n′
q , t := B · s ∈ Z

n
q , u :=

∑l(m)

i=0
fi (m) · x�

i · t + x ′
0 ∈ Zq ,

i.e., s is the pseudorandom value of message m under PRF.

Definition 9 (WeakAPR-CMAsecurity)Ade-randomized delegatable affineMAC overZn
q is

weakly APR-CMA secure, if for any PPT adversaryA, the advantageAdvweak-apr -cma
MAC,A (λ) :=

|Pr[weak-APR-CMAA ⇒ 1] − 1/2| is negligible in λ, where game weak-APR-CMA is
specified in Fig. 2.

3.2 A de-randomized delegatable affine MAC from NR-PRF

Let PRF : KPRF × ({0, 1}λ)≤L −→ Z
k
q be a pseudorandom function. Let Dk be a matrix

distribution that outputs matrices A ∈ Z
(k+1)×k
q . Our NR-PRF-based de-randomized del-

egatable affine MAC over Zk
q , MACNR[Dk], is defined in Fig. 3. The message space is

M = ({0, 1}λ)≤L for the base set B = {0, 1}λ. For messages m ∈ M, the bit-length |m| is
a multiple of λ, and denote by p(m) the number of blocks in m, i.e., p(m) = |m|/λ. We
express messages m ∈ M as m = (m1, . . . ,mp(m)) ∈ ({0, 1}λ)p(m), where mi ∈ {0, 1}λ is
the i th block. We also express each block mi = (mi,1, . . . ,mi,λ) as a bit string of length λ

with mi, j ∈ {0, 1}.
It is easy to check that our MACNR[Dk] is a de-randomized delegatable affine MAC.

Renaming x(b)
i, j to x2((i−1)·λ+ j)+b, we have that n = n′ = k, � = 2Lλ+1, f0(m) = f1(m) =
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Fig. 3 Construction ofMACNR[Dk ]

0, f2((i−1)·λ+ j)+b(m) = (mi, j = b) for i ∈ [p(m)], j ∈ [λ], f2((i−1)·λ+ j)+b(m) = 0 for
i ∈ [p(m) + 1, L], j ∈ [λ], and l(m) = 2p(m)λ + 1.

Our construction bears a superficial resemblance to the NR-PRF-based one proposed in
[6, Section 3.2], but with two essential differences.

• Our base set of message space is B = {0, 1}λ while in [6] the base set is B = {0, 1}. In
our MAC, if the bit-length of messagem is not a multiple of λ,m will be regarded as an
invalid message and algorithms Tag and Vrfy will output ⊥ immediately.

• Our Tag algorithm is deterministic, which always uses the same pseudorandom value s
(hence the same t) for the same messagem, while the Tag algorithm of their proposal is
a randomized one, which samples a fresh randomness s each time.

Theorem 1 If PRF is a pseudorandom function and the Dk-MDDH assumption holds w.r.t.
PGGen forG2, then the de-randomized delegatable affineMACNR[Dk] over Zk

q in Fig. 3 is
weakly APR-CMA secure.

More precisely, suppose that A is a PPT adversary against the weak APR-CMA security
of MACNR[Dk], that makes at most Q times of Eval queries, then there exists a PPT
adversary Bpr f against the pseudorandomness of PRF and a PPT adversary Bmddh against
the Dk-MDDH assumption, such that

Advweak-apr-cma
MACNR[Dk ],A(λ) ≤ Advpr f

PRF,Bpr f
(λ) + 8Lλ ·

(
AdvDk−mddh

PGGen,G2,Bmddh
(λ) + 1/q

)
+ Q/2λ.

Note that there are constructions of pseudorandom functionswith an (almost) tight security
reduction to generic primitives such as pseudorandom generators (i.e., the tree-based GGM-
construction) [18] and specific assumptions such as the DDH assumption [14,29]. Thus
according to Theorem 1, the weak APR-CMA security of our de-randomized delegatable
affine MAC enjoys an (almost) tight security reduction.

Proof of Theorem 1 The proof proceeds with a sequence of games illustrated in Fig. 4. Let
us first fix some notations. For a bit string x ∈ {0, 1}≤Lλ, we represent the length |x| uniquely
as |x| = (ix − 1) · λ + jx for integers 1 ≤ ix ≤ L and 1 ≤ jx ≤ λ, and parse x block-wisely
as x1|| · · · ||xix−1||(xix, j ) j∈[ jx], where x1, . . . , xix−1 ∈ {0, 1}λ are the first ix −1 (completed)
blocks of length λ and (xix, j ) j∈[ jx] ∈ {0, 1} jx denote the ixth block. For integers ζ ∈ [1, L]
and η ∈ [0, λ], if |x| > (ζ − 1)λ + η, let x|ζ,η denote the first (ζ − 1) blocks (of length
λ) concatenating the first η bits of the ζ th block, i.e., x|ζ,η := x1|| · · · ||xζ−1||(xζ, j ) j∈[η] ∈
{0, 1}(ζ−1)λ+η; otherwise, let x|ζ,η denote x itself. Note that x|ζ,λ = x|ζ+1,0.
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Fig. 4 Games G0, G1, {Gζ,η}ζ∈[1,L],η∈[0,λ], G2, G3 for the proof of Theorem 1

– Game G0: This is the original weak-APR-CMA game. Let Win denote the event that
β ′ = β. Then by definition, Advweak-apr -cma

MACNR[Dk ],A(λ) = ∣∣Pr0[Win] − 1
2

∣∣.
– Game G1: It is the same as game G0, except that, when answering Eval(m), the chal-

lenger uses a truly random function TRF : M −→ Z
k
q to compute s with s := TRF(m).

Any difference between G0 and G1 results in a PPT adversary Bpr f breaking the pseu-
dorandomness of PRF, i.e.,

∣∣Pr0[Win] − Pr1[Win] ∣∣ ≤ Advpr f
PRF,Bpr f

(λ).

– Game Gζ,η, ζ ∈ [1, L], η ∈ [0, λ]: This game is the same as game G1, except that, the
challenger chooses random (b1,1, . . . , bL ,λ) ←$ {0, 1}Lλ and sets RT(ε) := x ′

0 before-
hand (in InitializeMAC). In addition, the challenger will implement a “random” table
RT : {0, 1}≤Lλ −→ Zq recursively, via the private procedure RT(·) shown in Fig. 4. The
“random” table RT has the special property: for any x = x1|| · · · ||xix−1||(xix, j ) j∈[ jx] ∈
{0, 1}≤Lλ,

RT(x) =
{

RT(x|ix, jx−1), if xix, jx = bix, jx
random element, if xix, jx = 1 − bix, jx

, (6)

where x|ix, jx−1 is the first |x| − 1 bits of x and xix, jx is the last bit of x.
Now the challenger uses RT(m|ζ,η) instead of x ′

0 to compute [u]2 in Eval(m) and
uses RT(m∗|ζ,η) instead of x

′
0 to compute h1 in Chal(m∗), wherem|ζ,η denotes the first

(ζ − 1)λ + η bits of m if |m| > (ζ − 1)λ + η and denotesm itself otherwise:
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[u]2 :=
[∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t + RT(m|ζ,η)

]

2
, h1 := RT(m∗|ζ,η) · h.

In gameG1,0, the challenger will useRT(m|1,0) = RT(m∗|1,0) = RT(ε) = x ′
0 to compute

[u]2 in Eval(m) and compute h1 in Chal(m∗). Thus G1,0 is identical to G1, and we
have Pr1,0[Win] = Pr1[Win].

For any ζ ∈ [L] andη ∈ [λ], the only difference between gamesGζ,η−1 andGζ,η is that
RT(m|ζ,η−1) is used in Gζ,η−1 while RT(m|ζ,η) is used in Gζ,η. Note that RT(m|ζ,η−1)

and RT(m|ζ,η) are the same when |m| < (ζ − 1)λ + η or mζ,η = bζ,η, while they are
independentwhen |m| ≥ (ζ−1)λ+η andmζ,η = 1−bζ,η. By theDk-MDDHassumption,
we will show that it is infeasible for the adversary to notice whetherRT(m|ζ,η−1) is used
or RT(m|ζ,η) is used via the following lemma. The reduction can be done by embedding

the Dk-MDDH instance into x
(1−bζ,η)�
ζ,η in the secret key (this trick is similar to that in

[6]). Its proof is provided in Appendix 2.

Lemma 3 For any ζ ∈ [L] and η ∈ [λ], there exist PPT adversaries B1 and B2 against the
Q-fold Dk-MDDH assumption, such that

∣∣∣Prζ,η−1[Win] − Prζ,η[Win]
∣∣∣ ≤ 4 ·

(
AdvQ,Dk−mddh

PGGen,G2,B1
(λ) + AdvQ,Dk−mddh

PGGen,G2,B2
(λ)

)
.

For any ζ ∈ [L − 1], the same value RT(m|ζ,λ) = RT(m|ζ+1,0) is used in both games
Gζ,λ and Gζ+1,0, since m|ζ,λ = m|ζ+1,0 for any m. Thus Gζ,λ and Gζ+1,0 are essentially
the same, and Prζ,λ[Win] = Prζ+1,0[Win].
– Game G2: This game is identical to game GL ,λ, thus Pr2[Win] = PrL ,λ[Win]. More

precisely, the challenger will useRT(m|L ,λ) = RT(m) to compute [u]2 in Eval(m) and
use RT(m∗|L ,λ) = RT(m∗) to compute h1 in Chal(m∗):

[u]2 :=
[∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t + RT(m)

]

2
, h1 := RT(m∗) · h.

– GameG3: It is identical to gameG2, except that the challenger implements the table RT
as a truly random table without the special property (6). That is, as long as x �= x′,RT(x)
and RT(x′) are independently distributed.

Denote byHit the event thatA ever queries twomessagesm,m′ toEval orChal, such
that |m| < |m′| andm′ = m||bp(m)+1,1|| · · · ||bp(m)+1,λ|| · · · ||bp(m′),1|| · · · ||bp(m′),λ. If
the event Hit does not occur, then the table RT implemented in game G2 also behaves
like a truly random function. Thus G2 and G3 are identical from the point of view of A
until Hit occurs, and it holds that

∣∣Pr2[Win] − Pr3[Win]∣∣ ≤ Pr2[Hit] = Pr3[Hit].
We give upper bounds on Pr3[Hit] and Pr3[Win] via the following claims.

Claim 1 Pr3[Hit] ≤ Q/2λ.

Proof of Claim 1 Note that in G3, RT is implemented as a truly random table, and the chal-
lenger never uses (b1,1, . . . , bL ,λ) to answer the queries. If the event Hit occurs, i.e., A
queries two messages m, m′ such that |m| < |m′| and m′ = m||bp(m)+1,1|| · · · ||bp(m′),λ, it
implies that A guesses the values of (bp(m)+1,1, . . . , bp(m′),λ) correctly, which can happen
with probability 1/2|m′|−|m| ≤ 1/2λ. Thus by the union bound, Pr3[Hit] ≤ Q/2λ. ��

123



532 S. Han et al.

Claim 2 Pr3[Win] = 1/2.

Proof of Claim 2 In game G3, to answer Eval(m), the challenger computes [u]2 and
{[d(0)

i, j ]2, [d(1)
i, j ]2}i∈[p(m)+1,L], j∈[λ] as follows:

u :=
∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t + RT(m), d(0)

i, j = x(0)�
i, j · t, d(1)

i, j = x(1)�
i, j · t,

where t = A s for s = TRF(m). Since the term
∑p(m)

i=1

∑λ
j=1 x

(mi, j )�
i, j · t is completely

determined by m, it is totally hidden by RT(m), which is implemented as a truly random
function. Also {[d(0)

i, j ]2, [d(1)
i, j ]2} does not involve (x(0)

1, j , x
(1)
1, j ) j∈[λ]. Thus theEval oracle leaks

no information about (x(0)
1, j , x

(1)
1, j ) j∈[λ] at all. Then in Chal(m∗), if β = 0:

h0 :=
∑λ

j=1
x
(m∗

1, j )

1, j · h +
∑p(m∗)

i=2

∑λ

j=1
x
(m∗

i, j )

i, j · h, h1 := RT(m∗) · h.

h0 is uniformly distributed due to the randomness of
∑λ

j=1 x
(m∗

1, j )

1, j , and h1 is uniformly
distributed due to the fresh randomness of RT(m∗). Therefore, h0 and h1 are uniformly
random no matter β = 0 or β = 1, thenA can guess β with probability 1/2, i.e., Pr3[Win] =
1/2. ��

Taking all things together and by Lemma 1 (Random Self-Reducibility),

Advweak−apr−cma
MACNR[Dk ],A (λ)

≤ Advpr f
PRF,Bpr f

(λ) + 4Lλ ·
(
AdvQ,Dk−mddh

PGGen,G2,B1
(λ) + AdvQ,Dk−mddh

PGGen,G2,B2
(λ)

)
+ Q/2λ

≤ Advpr f
PRF,Bpr f

(λ) + 8Lλ ·
(
AdvDk−mddh

PGGen,G2,Bmddh
(λ) + 1/q

)
+ Q/2λ,

thus Theorem 1 follows. ��

Remark We stress that the property of de-randomization (cf. Definition 8) plays an essential
role in the proof of Claim 2. If we do not stipulate the property of de-randomization and
employ a fresh randomness t to compute [u]2 each time, we can hardly prove Claim 2. The
reason is as follows.

If a fresh randomness t is used each time, then in the oracle Eval(m),

u =
∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t + RT(m),

the term
∑p(m)

i=1

∑λ
j=1 x

(mi, j )�
i, j ·twill vary according to t. In this case, we cannot expect to use

the same (fixed) randomnessRT(m) to hidemany different terms
( ∑p(m)

i=1

∑λ
j=1 x

(mi, j )�
i, j ·t)t.

To demonstrate the problem clearly, suppose that the adversary A queries the oracle Eval
with the samem twice, we denote the two responses by ([t]2, [u]2, . . .) and ([t′]2, [u′]2, · · · )
respectively, where

u =
∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t + RT(m), u′ =

∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t′ + RT(m).

Then A can compute ([Δt]2, [Δu]2), where Δt = t − t′ and Δu = u − u′, from ([t]2, [u]2)
and ([t′]2, [u′]2). By this trick, A knows that ([Δt]2, [Δu]2) satisfies
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Δu =
∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · Δt, (7)

which gets rid of the mask of RT(m) successfully.
Consequently, as the adversary A collects many different pairs ([Δt]2, [Δu]2) of form

(7), some information about (x(0)
1, j , x

(1)
1, j ) j∈[λ] might be leaked through the oracle Eval. As a

result,
∑λ

j=1 x
(m∗

1, j )

1, j cannot be used to randomize h0 in Chal(m∗) any more, and it is hard
to claim the pseudorandomness of h0.

4 IBE from de-randomized delegatable affine MAC and chameleon
hashing

We present a paradigm for constructing PR-ID-CCA2 secure IBE from De-randomized del-
egatable affine MAC and Chameleon hashing. Our paradigm is tightness preserving.

4.1 Identity-based encryption and its PR-ID-CCA2 security

Definition 10 (Identity-based encryption) An identity-based encryption (IBE) scheme
IBE = (Gen,USKGen,Enc,Dec) consists of a tuple of PPT algorithms:

• The key generation algorithmGen(1λ) outputs a pair of public key pk and master secret
keymsk. We assume that pk publicly defines an identity space ID, a message spaceM
and a ciphertext space C.

• The user secret key generation algorithm USKGen(msk, id) takes as input a master
secret key msk and an identity id ∈ ID, and outputs a user secret key usk[id] for id.

• The encryption algorithm Enc(pk, id,m) takes as input a public key pk, an identity
id ∈ ID and a message m ∈ M, and outputs a ciphertext ct ∈ C.

• The decryption algorithm Dec(usk[id], id, ct) takes as input a user secret key usk[id],
an identity id ∈ ID and a ciphertext ct ∈ C, and outputs a message m ∈ M or the reject
symbol ⊥.

Correctness of IBE requires that, for all λ ∈ N, all (pk,msk) ←$ Gen(1λ), all id ∈ ID,
all m ∈ M, all ct ←$ Enc(pk, id,m) and all usk[id] ←$ USKGen(msk, id), it holds that
Dec(usk[id], id, ct) = m.

The traditional security requirements for IBE are indistinguishability and recipient-
anonymity against adaptively chosen-identity and chosen-ciphertext attacks (IND-ID-CCA2
and ANON-ID-CCA2). Here we define a stronger security notion according to [2,6], namely,
ciphertext pseudorandomness against adaptively chosen-identity and chosen-ciphertext
attacks (PR-ID-CCA2). PR-ID-CCA2 trivially implies IND-ID-CCA2 and ANON-ID-
CCA2.

Definition 11 (PR-ID-CCA2 security for IBE) An identity-based encryption scheme IBE
is PR-ID-CCA2 secure, if for any PPT adversary A, the advantage Advpr -id-cca2

IBE,A (λ) :=
|Pr[PR-ID-CCA2A ⇒ 1] − 1/2| is negligible in λ, where game PR-ID-CCA2 is specified
in Fig. 5.

4.2 IBE from de-randomized delegatable affine MAC and chameleon hashing

Let Dk be a matrix distribution that outputs matrices A ∈ Z
(k+1)×k
q . Let MAC =

(MAC.Gen,Tag,Vrfy) be a de-randomized delegatable affine MAC over Zn
q with mes-
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Fig. 5 PR-ID-CCA2 security game for IBE

sage space ID ∪ ID2 (the base set is B = ID). Let CH = (CH.Gen,Eval,Equiv)
be a chameleon hashing. Let H : GT −→ {0, 1}3λ be a hash function. The proposed
IBE[MAC,CH,Dk] = (Gen,USKGen,Enc,Dec) with identity space ID and message
space M = {0, 1}λ is defined in Fig. 6.

Our construction can be viewed as a combination of a (PR-ID-CCCA24 secure) IBKEM
and a (one-time secure) authenticated encryption scheme.

To show the correctness of our IBE, we denote the output of USKGen(msk, id) by
usk[id] = ([t]2, [u]2, [v]2, {[di ]2, [ei ]2}i∈[l(id)+1,�]), then in Dec(usk[id], id, 〈C, χ〉),

[u′]2 =
[∑l(id)

i=0
fi (id)x�

i t + x ′
0

︸ ︷︷ ︸
u

+
∑l(id|id′)

i=l(id)+1
fi (id|id′) · x�

i t︸︷︷︸
di

]
2

=
[∑l(id|id′)

i=0
fi (id|id′)x�

i t + x ′
0

]

2
,

[v′]2 =
[∑l(id)

i=0
fi (id)Yi t + y′

0
︸ ︷︷ ︸

v

+
∑l(id|id′)

i=l(id)+1
fi (id|id′) · Yi t︸︷︷︸

ei

]
2

=
[∑l(id|id′)

i=0
fi (id|id′)Yi t + y′

0

]

2
, (8)

K =
[
(v′� | u′) · c0

]

T

/ [
t� · c1

]

T

=
[
t� ·

(∑l(id|id′)
i=0

fi (id|id′) · (Y�
i | xi ) · c0 − c1

)

︸ ︷︷ ︸
(∗)

+(y′�
0 | x ′

0) · c0
]

T
. (9)

If
〈
C = ([c0]1, [c1]1, RCH), χ = (χ1, χ2)

〉
is an output of Enc(pk, id,m), then (∗) = 0, and

K = [
(y′�

0 | x ′
0) · c0

]
T = [

z′
0 · r]T . Therefore it will derive the same (k1, k2, k3) := H(K),

and the correctness follows.

4 CCCA2 is short for Constrained CCA2 security, which is a weaken security notion proposed by [23]. PR-
ID-CCCA2 secure IBKEM can be converted to PR-ID-CCA2 secure IBE if combined with a one-time secure
authenticated encryption.
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Fig. 6 Paradigm for constructing IBE[MAC,CH,Dk ]

Theorem 2 If the Dk-MDDH assumption holds w.r.t. PGGen for G1, the underlying de-
randomized delegatable affineMAC over Zn

q is weakly APR-CMA secure, CH is a collision-
resistant chameleon hashing andH is a universal hash function, then the IBE[MAC,CH,Dk]
in Fig. 6 is PR-ID-CCA2 secure.

More precisely, suppose that A is a PPT adversary against the PR-ID-CCA2 security of
IBE[MAC,CH,Dk], that makes at most Qd times of Dec queries, then there exist a PPT
adversary B1 against the Dk-MDDH assumption, a PPT adversary B2 against the collision
resistance property of CH, and PPT adversaries B3 and B4 against the weak APR-CMA
security ofMAC, such that

Advpr-id-cca2
IBE[MAC,CH,Dk ],A(λ) ≤ AdvDk−mddh

PGGen,G1,B1
(λ) + AdvcrCH,B2

(λ) + Advweak-apr-cma
MAC,B3

(λ)

+Advweak-apr-cma
MAC,B4

(λ) + 4Qd/2
λ + 2Qd/q

n .

Note that there are constructions of chameleon hashing with a tight security reduction
to specific assumptions such as the RSA [25], the factoring [26] and the discrete loga-
rithm [26] assumptions. When instantiating the de-randomized delegatable affine MAC with
MACNR[Dk] described in Fig. 3, whose weak APR-CMA security is tightly reduced to the
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Fig. 7 Games G0–G8 for the proof of Theorem 2 (also see Fig. 8)

Dk-MDDHassumption, we immediately obtain the first IBEwith tight PR-ID-CCA2 security
based on the Dk-MDDH assumption, according to Theorem 2.

Proof of Theorem 2 We prove it through a sequence of games illustrated in Figs. 7 and 8. A
rough description of difference between adjacent games is summarized in Table 2. Before
presenting the full detailed proof, we first give a high-level description how the PR-ID-
CCA2 security of our IBE[MAC,CH,Dk] is reduced to the weak APR-CMA security of the
underlyingMAC.
(a) In the PR-ID-CCA2 game (cf. Fig. 5), the adversary can make three kinds of oracle

queries, namelyUSKGen(id),Enc(id∗,m∗) andDec(id, 〈C, χ〉). Our goal is to simulate
these oracles by using the oracles EvalMAC, ChalMAC

5 in the weak-APR-CMA game
ofMAC (cf. Fig. 2), instead of using skMAC = (kPRF,B, x0, . . . , x�, x ′

0) directly.
(b) To achieve this goal, we use a “tuned” Groth-Sahai NIZK proof [20] technique, similar

to the intuition in [6]. Loosely speaking, Zi = (Y�
i | xi ) · A and z′

0 = (y′�
0 | x ′

0) · A can
be viewed as perfect hiding commitments of skMAC. In Initialize, we do not choose Yi

and y′
0 directly, but choose Zi and z′

0 uniformly instead. We will use A, Zi and z′
0 (in

group Zq ) as trapdoor to simulate the oracles without using skMAC. This simulation can
be viewed as a perfect simulation.

(c) Using A, Zi and z′
0 (in group Zq ) as trapdoor, we can simulate USKGen(id) (id �= id∗)

through oracle access to EvalMAC(id), without using skMAC.
(d) We change how Enc(id∗,m∗) works so that we can embed the challenge ([h]1, [h0]1,

[h1]T ), which is the output ofChalMAC(id∗|id′∗) in theweak-APR-CMA game ofMAC
(cf. Fig. 2), into the challenge ciphertext

(
C∗ = ([c∗

0]1, [c∗
1]1, R∗

CH), χ∗ = (χ∗
1 , χ∗

2 )
)

of the PR-ID-CCA2 game. In addition, we can simulate Enc(id∗,m∗) without using
skMAC.We stress that a subtle problem exists. Recall that id′∗ = Eval(ekCH, [c0]∗1; R∗

CH),
so before submitting id∗|id′∗ to ChalMAC, we need to compute [c0]∗1 first. On the other
hand, to embed the challenge [h]1 into [c0]∗1, we have to compute [c0]∗1 after theChalMAC
query. To break this deadlock, we make use of the Equivocation property of chameleon
hashing CH.

(e) In contrast to the PR-ID-CPA security proof of IBE in [6], we need to handle the decryp-
tion queries. Using A, Zi and z′

0 (in group Zq ) as trapdoor, we can simulate Dec(id, 〈C,

5 For clarity, hereafter we use OMAC to indicate oracles in the security game ofMAC.
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Fig. 8 Games G0–G8 for the proof of Theorem 2 (also see Fig. 7)

χ〉) through oracle access to EvalMAC(id)when id �= id∗ or access to EvalMAC(id∗|id′)
when id = id∗ but id′ �= id′∗, without using skMAC, as long as id|id′ �= id∗|id′∗. In the
case of id|id′ = id∗|id′∗, we are not allowed to invoke EvalMAC any more. So we have
to change how Dec(id, 〈C, χ〉) works such that neither skMAC nor EvalMAC is needed.
This is the most difficult part in our proof. We divide the case id|id′ = id∗|id′∗ into three
sub-cases:

– If id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) �= ([c∗
0]1, R∗

CH), we expect Dec to return ⊥,
due to the collision-resistance property of the chameleon hashing CH. Recall that
id′ = Eval(ekCH, [c0]1; RCH), id′∗ = Eval(ekCH, [c0]∗1; R∗

CH).
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Table 2 Brief description of the security proof of Theorem 2

Changes between adjacent games Assumptions

G0 The original PR-ID-CCA2 security game −
G1 Dec(id, 〈C, χ〉): if id = id∗, compute [u′]2 and [v′]2

from Tag(skMAC, id∗|id′) directly, instead of that first
compute [u]2 and [v]2 from Tag(skMAC, id∗) and
then delegate to get [u′]2 and [v′]2

G0 ≈s G1 by entropy of the t related to
id∗ and t related to id∗|id′

G2 Enc(id∗,m∗): use the master secret keymsk to
compute [c∗1]1 and K∗ from [c∗0]1 directly

G1 = G2

G3 Enc(id∗,m∗): sample [c∗0]1 uniformly over Gk
1 instead

of computing as [c∗0]1 = [A · r∗]1
G2 ≈c G3 by Dk -MDDH

G4 Initialize: sample Zi and z′0 uniformly, instead of
sampling Yi and y′

0 directly
G3 = G4 since it essentially is a perfect
simulation

USKGen(id): use A, Zi and z′0 as trapdoor to compute
[v]2 from [u]2 and compute [ei ]2 from [di ]2

Dec(id, 〈C, χ〉): use A, Zi and z′0 as trapdoor to
compute [v′]2 from [u′]2

Enc(id∗,m∗): compute [c∗0]1 with

[c∗0]1 = [
h + A · A−1 · c∗0

]
1

Now [c∗1]1 =
[∑

fi (id
∗|id′∗) · ZiA

−1
c∗0 +

∑
fi (id

∗|id′∗)xi h
︸ ︷︷ ︸

(I)

]
1,

and K∗ = [
z′0 · A−1 · c∗0 +

(II)
︷ ︸︸ ︷
x ′
0 · h ]

T in the case of
β = 0

G5 Enc(id∗,m∗): in the case of β = 1, sample K∗
uniformly and compute χ∗

1 , χ∗
2 from K∗, instead of

sampling χ∗
1 , χ∗

2 directly

G4 = G5 since H is universal

G6 Dec(id, 〈C, χ〉): return ⊥ if G5 ≈c G6 since

id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) �= ([c∗0]1, R∗
CH) CH is coll.-resist

G7 Dec(id, 〈C, χ〉): set K := K∗ if G6 = G7 if β = 0,

id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) =
([c∗0]1, R∗

CH) ∧ [c1]1 = [c∗1]1 ∧ χ �= χ∗
G6 ≈s G7 if β = 1

G8 Dec(id, 〈C, χ〉): return ⊥ if G7 ≈c G8 by weak APR-CMA security
ofMAC

id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) =
([c∗0]1, R∗

CH) ∧ [c1]1 �= [c∗1]1
A weak APR-CMA adversary ofMAC can simulate G8
with A perfectly by embedding [h0]1 to (I) and
embedding [h1]T to (II)

– If id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) = ([c∗
0]1, R∗

CH) ∧ [c1]1 = [c∗
1]1 ∧ χ �= χ∗, we

changeDec to use K∗ directly to decrypt χ = (χ1, χ2). This is trivially correct when
([c∗

0]1, [c∗
1]1, R∗

CH) is indeed an encapsulation of K∗, i.e., when β = 0. However, the
situation ofβ = 1 (where the challenge ciphertext is randomly chosen) ismore subtle.
Nevertheless, we use an information-theoretic argument to show that this change is
still undetectable. Roughly speaking, given χ∗, the remaining entropy of K∗ is large
enough to make the decryption of χ failure. Using the real key encapsulated in
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([c∗
0]1, [c∗

1]1, R∗
CH) has the same effect as K∗, since the real key can be proved to be

randomly distributed conditioned on ([c∗
0]1, [c∗

1]1, R∗
CH). (See Lemma 4 for details.)

– If id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) = ([c∗
0]1, R∗

CH) ∧ [c1]1 �= [c∗
1]1, we expect that

Dec will return ⊥. We prove this by another time of reduction to the weak APR-
CMA security of MAC. (This proof is highly non-trivial. See Lemma 5 for details.)
The essential idea is: if [c1]1 from the adversary’s query hits some specific value,
we develop a new computational argument and reduce the “hit” event to a successful
weak APR-CMA attack to MAC. Otherwise, [c1]1 does not hit the value, then we
give an information-theoretical analysis thatDecwill return⊥ except with negligible
probability.

(f) Consequently, we can simulate the game using the oracles EvalMAC, ChalMAC in the
weak-APR-CMA game ofMAC, instead of using skMAC directly. Then the weak APR-
CMA security of MAC implies the PR-ID-CCA2 security of IBE[MAC,CH,Dk].

– GameG0: This is the originalPR-ID-CCA2 game. LetWin denote the event that β ′ = β.
Then by definition, Advpr -id-cca2

IBE[MAC,CH,Dk ],A(λ) = ∣∣Pr0[Win] − 1
2

∣∣.
– Game G1: This game is the same as game G0, except that, when answering Dec query(

id, 〈C = ([c0]1, [c1]1, RCH), χ = (χ1, χ2)〉
)
with id = id∗, the challenger changes the

way it computes [u′]2 and [v′]2 as follows:
– compute id′ := Eval(ekCH, [c0]1; RCH) ∈ ID,
– invoke ([t]2, [u′]2) ← Tag(skMAC, id∗|id′) directly using the secret key, where

[u′]2 =
[∑l(id∗|id′)

i=0 fi (id∗|id′) · x�
i · t + x ′

0

]

2
,

– compute [v′]2 :=
[∑l(id∗|id′)

i=0 fi (id∗|id′) · Yi · t + y′
0

]

2
.

According to Eq. (8), [u′]2 and [v′]2 are the same functions of t in G0 and G1. Thus
the only difference between G0 and G1 is the distribution of t itself. In game G0, t is
generated via ([t]2, [u]2) ← Tag(skMAC, id∗), while in game G1, it is generated via
([t]2, [u′]2) ← Tag(skMAC, id∗|id′). Similar to Eq. (9), we have

K =
[
(v′� | u′) · c0

]

T

/ [
t� · c1

]

T

(9)= [
t� · ( ∑l(id∗|id′)

i=0
fi (id∗|id′) · (Y�

i | xi ) · c0 − c1
)

︸ ︷︷ ︸
(∗)

+(y′�
0 | x ′

0) · c0
]
T .

If the Dec query satisfies (∗) = 0, then the challenger will answer the decryption query
with K = [

(y′�
0 | x ′

0) · c0
]
T , which is the same both in gamesG0 andG1. In this case, the

t related to id∗ or the t related to id∗|id′ is not used at all. If the Dec query satisfies (∗)
�= 0, note that the challenger never uses the value of the t related to id∗ or the t related
to id∗|id′ in other procedures, thus K = [t� · (∗) + (y′�

0 | x ′
0) · c0]T will be uniformly

distributed over GT from the point of view of A, due to the randomness of t,6 both in
games G0 and G1. Then in the following steps of Dec, by the Leftover Hash Lemma,
(k1, k2, k3) := H(K) ∈ {0, 1}3λ is statistically close to the uniform distribution, thus
χ2 �= k2 · χ1 + k3 holds except with a negligible probability 2−λ. In this case, Dec
outputs ⊥ both in games G0 and G1, and in addition, it does not leak the value of the t

6 Actually, t is only pseudorandomhere, since t = B s and s = PRF(kPRF, id∗) (or s = PRF(kPRF, id∗|id′)).
Nevertheless, it is easy to add a game so that s = TRF(id∗) (or s = TRF(id∗|id′)), where TRF is a truly
random function. For the sake of simplicity, we forgo making this explicit in our proof.
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related to id∗ or the t related to id∗|id′ toA. By the union bound,G0 andG1 are essentially
the same except with probability Qd/2λ, i.e.,

∣∣Pr0[Win] − Pr1[Win] ∣∣ ≤ Qd/2λ.
– Game G2: This game is the same as game G1, except that, when answering

Enc(id∗,m∗), the challenger uses the master secret keymsk = (
skMAC, {Yi }i∈[0,�], y′

0

)

= (kPRF,B, {xi }i∈[0,�], x ′
0, {Yi }i∈[0,�], y′

0) to compute [c∗
1]1 and K∗ as follows:

– compute [c∗
1]1 :=

[∑l(id∗|id′∗)
i=0 fi (id∗|id′∗) · (Y�

i | xi ) · c∗
0

]

1
,

– compute K∗ := [
(y′�

0 | x ′
0) · c∗

0

]
T .

Observe that

[c∗
1]1 G1=

[∑l(id∗|id′∗)
i=0

fi (id∗|id′∗)Zir∗
]

1
=

[∑l(id∗|id′∗)
i=0

fi (id∗|id′∗) · (Y�
i | xi )A · r∗

]

1

G2=
[∑l(id∗|id′∗)

i=0
fi (id∗|id′∗) · (Y�

i | xi ) · c∗
0

]

1
,

K∗ G1= [
z′
0 · r∗]

T =
[
(y′�

0 | x ′
0) · A · r∗]

T

G2=
[
(y′�

0 | x ′
0) · c∗

0

]

T
.

Thus G2 is identical to G1, and Pr1[Win] = Pr2[Win].
– GameG3: This game is the same as gameG2, except that, when answeringEnc(id∗,m∗),

the challenger samples [c∗
0]1 uniformly fromG

k+1
1 , instead of computing [c∗

0]1 = [A·r∗]1
with r∗ ←$ Z

k
q .

The only difference betweenG2 andG3 is the computation of [c∗
0]1 in Enc. In gameG2,

the joint distribution of (PG, [A]1, [c∗
0]1) is identical to the real Dk-MDDH distribution,

while in game G3, it is identical to the random Dk-MDDH distribution. It is straightfor-
ward to construct a PPT adversary B1 against theDk-MDDH assumption with respect to
PGGen forG1. Note that it is enough for B1 to use [A]1 (instead ofA in Zq ) to perfectly

simulate G2 or G3 for A. Thus
∣∣Pr2[Win] − Pr3[Win] ∣∣ ≤ AdvDk−mddh

PGGen,G1,B1
(λ).

– Game G4: This game is the same as game G3, except that, in Initialize, the challenger
does not chooseYi and y′

0 directly, but chooses Zi and z′
0 uniformly instead, and regards

them as part of the master secret key. By Zi = (Y�
i | xi ) · A and z′

0 = (y′�
0 | x ′

0) · A, we
have

Y�
i = (Zi − xi · A) · A−1

and y′�
0 = (z′

0 − x ′
0 · A) · A−1

. (10)

Consequently, proceduresUSKGen,Dec andEnc now can proceed by using (Zi , z′
0) via

(10) instead of using (Yi , y′
0) directly.More precisely, to answerUSKGen(id) and answer

Dec(id, 〈C, χ〉) with id �= id∗, the challenger computes [v�]2 and [ei ]2 as follows:

[v�]2 G3=
[∑

fi (id) · t� · Y�
i + y′�

0

]

2

=
[∑

fi (id) · t� · (Zi − xi · A) · A−1 + (z′
0 − x ′

0 · A) · A−1
]

2

G4=
[(∑

fi (id) · t� · Zi + z′
0 −

(∑
fi (id) · t� · xi + x ′

0

)

︸ ︷︷ ︸
u

·A
)

· A−1
]

2
,

[ei ]2 G3= [Yi · t]2 =
[
(A

−1
)�(Z�

i − A�x�
i )t

]

2

G4=
[
(A

−1
)�(Z�

i t − A�di )
]

2
,
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and similarly, to answer Dec(id, 〈C, χ〉) with id = id∗, it computes [v′�]2 as follows:
[v′�]2 G3=

[∑
fi (id∗|id′)t�Y�

i + y′�
0

]

2

G4=
[(∑

fi (id∗|id′)t�Zi + z′
0 − u′A

)
A

−1
]

2
.

As for Enc(id∗,m∗), the challenger now computes [c∗
0]1 in a different way:

[c∗
0]1 =

( [c∗
0]1[c∗
0]1

)
:=

( [c∗
0]1[

h + A · A−1 · c∗
0

]

1

)

with random [c∗
0]1 ←$ G

k
1 and [h]1 ←$ G1. Then [c∗

0]1 is uniformly random over Gk+1
1

as in G3. Also, the challenger computes [c∗
1]1 and K∗ by applying (10) and by the fact

that c∗
0 = h + A · A−1 · c∗

0:

[c∗
1]1 G3=

[∑
fi (id∗|id′∗) · (Y�

i | xi )c∗
0

]

1
=

[∑
fi (id∗|id′∗) · (Y�

i c
∗
0 + xic∗

0)
]

1

=
[∑

fi (id∗|id′∗) ·
(
(Zi − xi · A) · A−1

c∗
0 + xi (h + A · A−1 · c∗

0)
)]

1

G4=
[∑

fi (id∗|id′∗) · (Zi · A−1 · c∗
0 + xi · h)

]

1
,

and similarly, K∗ G3= [
(y′�

0 | x ′
0) · c∗

0

]
T

G4=
[
z′
0 · A−1 · c∗

0 + x ′
0 · h

]

T
.

Thus these changes are conceptual, andG4 is identical toG3. ThenPr3[Win] = Pr4[Win].
– Game G5: This game is the same as game G4, except that, when answering Enc(id∗,

m∗), in the case of β = 1, the challenger does not choose χ∗
1 , χ∗

2 ←$ {0, 1}λ directly,
but instead, it chooses a random K∗ ←$ GT , computes (k∗

1 , k
∗
2 , k

∗
3) := H(K∗) ∈ {0, 1}3λ

and sets χ∗
1 := k∗

1 + m∗, χ∗
2 := k∗

2 · χ∗
1 + k∗

3 .
By the Leftover Hash Lemma, since K∗ is uniformly distributed over GT , (k∗

1 , k
∗
2 , k

∗
3)

will be statistically close to the uniform distribution over {0, 1}3λ. Therefore χ∗
1 , χ∗

2
are also uniformly random in G5, the same as in G4. Then G5 is identical to G4, and
Pr4[Win] = Pr5[Win].

– Game G6: This game is the same as game G5, except that, when answering Dec query(
id, 〈C = ([c0]1, [c1]1, RCH), χ = (χ1, χ2)〉

)
, the challenger returns ⊥ directly if the

following condition holds

id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) �= ([c∗
0]1, R∗

CH).

Since id′ = Eval(ekCH, [c0]1; RCH) and id′∗ = Eval(ekCH, [c0]∗1; R∗
CH), any differ-

ence between G5 and G6 will imply a CH-collision. Thus
∣∣Pr5[Win] − Pr6[Win] ∣∣ ≤

AdvcrCH,B2
(λ) for a PPT adversary B2.

– Game G7: This game is the same as game G6, except that, when answering Dec query(
id, 〈C = ([c0]1, [c1]1, RCH), χ = (χ1, χ2)〉

)
, the challenger sets K := K∗ directly if

the following condition holds

id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) = ([c∗
0]1, R∗

CH) ∧ [c1]1 = [c∗
1]1 ∧ χ �= χ∗. (11)

We analyze the difference between G6 and G7 via the following lemma.

Lemma 4
∣∣∣Pr6[Win] − Pr7[Win]

∣∣∣ ≤ Qd/qn + 2 · Qd/2λ.

Proof of Lemma 4 If A submits a Dec query satisfies Condition (11), i.e., submits(
id∗, 〈C∗ = ([c∗

0]1, [c∗
1]1, R∗

CH), χ = (χ1, χ2)〉
)
with χ �= χ∗, then in G7 the challenger

will set K := K∗, while in G6 it will compute K as follows:
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– invoke ([t]2, [u′]2) ← Tag(skMAC, id∗|id′∗), where t is related to id∗|id′∗ and u′ =∑
fi (id∗|id′∗) · t� · xi + x ′

0,

– compute [v′�]2 =
[(∑

fi (id∗|id′∗) · t� · Zi + z′
0 − u′ · A) · A−1

]

2
,

– compute K = [
(v′� | u′) · c∗

0

]
T

/ [
t� · c∗

1

]
T .

By the fact that c∗
0 = h + A · A−1 · c∗

0, in G6 we have that

K =
[
(v′� | u′) · c∗

0

]

T

/ [
t� · c∗

1

]

T
=

[
v′� · c∗

0 + u′ · c∗
0 − t� · c∗

1

]

T

=
[ (

t�
∑

fi (id∗|id′∗)Zi + z′
0 − u′A

)
A

−1
c∗
0 + u′ (h + AA

−1
c∗
0

)
− t�c∗

1

]

T

=
[(

t�
∑

fi (id∗|id′∗)Zi + z′
0

)
A

−1
c∗
0 + u′h − t�c∗

1

]

T

=
[ (

t�
∑

fi (id∗|id′∗)Zi + z′
0

)
A

−1
c∗
0 +

(
t�

∑
fi (id∗|id′∗)xi + x ′

0

)
h − t�c∗

1

]

T

=
[
t� ·

(∑
fi (id∗|id′∗) · (

Zi · A−1 · c∗
0 + xi · h) − c∗

1

)

︸ ︷︷ ︸
(∗∗)

+z′
0A

−1
c∗
0 + x ′

0h

]

T
. (12)

If β = 0, then in Enc(id∗,m∗), c∗
1 and K∗ are honestly computed:

c∗
1 =

∑
fi (id∗|id′∗) · (Zi · A−1 · c∗

0 + xi · h), K∗ =
[
z′
0 · A−1 · c∗

0 + x ′
0 · h

]

T
.

Consequently, (∗∗) = 0 and K = K∗ in G6, which is the same as in G7.
Whereas if β = 1, then in Enc(id∗,m∗), c∗

1 and K
∗ are uniformly chosen. In this case, we

analyze the difference between G6 and G7 as follows:

• In game G6, the challenger will compute K according to (12) to carry subsequent com-
putations of Dec. Since c∗

1 is randomly chosen in Enc, it holds that (∗∗) �= 0 except
with probability 1/qn . Note that the challenger never leaks to the adversary any informa-
tion of the t related to id∗|id′∗ in other procedures,7 thus K is uniformly distributed
over GT due to the randomness of t. Consequently, by the Leftover Hash Lemma,
(k1, k2, k3) = H(K) ∈ {0, 1}3λ is statistically close to the uniform distribution, and
χ2 �= k2 · χ1 + k3 holds except with probability 2−λ. In this case, Dec outputs ⊥ in G6,
and in addition, no information of the t related to id∗|id′∗ is leaked to A.

• In game G7, the challenger will set K = K∗ directly, where K∗ is uniformly chosen
in Enc, compute (k∗

1 , k
∗
2 , k

∗
3) = H(K∗) ∈ {0, 1}3λ, and output m := χ1 − k∗

1 , if the
following condition holds

χ2 = k∗
2 · χ1 + k∗

3 . (13)

Note that the only information about (k∗
1 , k

∗
2 , k

∗
3) = H(K∗) leaked to the adversary is

contained inχ∗ = (χ∗
1 , χ∗

2 )viaEnc(id∗,m∗), whereχ∗
1 = k∗

1+m∗ andχ∗
2 = k∗

2 ·χ∗
1 +k∗

3 .
SinceA submitsχ = (χ1, χ2)with (χ1, χ2) �= (χ∗

1 , χ∗
2 ) in our discussion (i.e., Condition

7 In the analysis of game G1, we show that no information of the t related to id∗ or the t related to id∗|id′
(for any id′ ∈ ID) is leaked to A except with negligible probability. As our games move on, Dec, which is
the only possible oracle that may leak that value, is much more restricted, thus cannot leak information about
that t except with negligible probability.
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(11) holds), (13) will not hold except with probability at most 2−λ. In this case, Dec
outputs ⊥ in G7.

In summary, if A submits a Dec query satisfies Condition (11), then in the case of β = 0,
both Dec in G6 and G7 will set K := K∗, while in the case of β = 1, both Dec in G6 and
G7 will output ⊥ except with probability at most 1/qn + 2/2λ. The lemma follows from the
union bound. ��
– Game G8: This game is the same as game G7, except that, when answering Dec query(

id, 〈C = ([c0]1, [c1]1, RCH), χ = (χ1, χ2)〉
)
, the challenger returns ⊥ directly if the

following condition holds

id|id′ = id∗|id′∗ ∧ ([c0]1, RCH) = ([c∗
0]1, R∗

CH) ∧ [c1]1 �= [c∗
1]1. (14)

Note that in G8, for Dec queries satisfying id|id′ = id∗|id′∗, the challenger can answer
them without using the secret key.

We analyze the difference between G7 and G8 via the following lemma.

Lemma 5 There exists a PPT adversary B3 against the weak APR-CMA security of the
de-randomized delegatable affine MAC, such that

∣∣Pr7[Win] − Pr8[Win] ∣∣ ≤ Qd/2
λ + Advweak-apr-cma

MAC,B3
(λ) + Qd/q

n .

Proof of Lemma 5 IfA submits aDec query satisfies Condition (14), i.e., submits
(
id∗, 〈C =

([c∗
0]1, [c1]1, R∗

CH), χ = (χ1, χ2)〉
)
with [c1]1 �= [c∗

1]1, then inG8 the challenger will return
⊥, while in G7 it will proceed as follows:

– invoke ([t]2, [u′]2) ← Tag(skMAC, id∗|id′∗), where t is related to id∗|id′∗ and u′ =∑
fi (id∗|id′∗) · t� · xi + x ′

0,

– compute [v′�]2 =
[(∑

fi (id∗|id′∗) · t� · Zi + z′
0 − u′ · A) · A−1

]

2
,

– compute K = [
(v′� | u′) · c∗

0

]
T

/ [
t� · c1

]
T .

Similar to (12), in G7 we have that

K =
[
(v′� | u′) · c∗

0

]

T

/ [
t� · c1

]

T

(12)=
[
t� ·

(∑
fi (id∗|id′∗) · (

Zi · A−1 · c∗
0 + xi · h) − c1

)

︸ ︷︷ ︸
(∗∗)

+z′
0A

−1
c∗
0 + x ′

0h

]

T
. (15)

If β = 0, then c∗
1 is honestly computed by Enc(id∗,m∗):

c∗
1 =

∑
fi (id∗|id′∗) · (Zi · A−1 · c∗

0 + xi · h).

Consequently, [c1]1 �= [c∗
1]1 implies that (∗∗) = (

c∗
1 − c1

) �= 0.
If β = 1, then in Enc(id∗,m∗), c∗

1 is uniformly chosen from Z
n
q .

Let Hit denote the event that the challenge bit β = 1 and A makes a Dec query
(
id, 〈C =

([c0]1, [c1]1, RCH), χ = (χ1, χ2)〉
)
, such that

c1 =
∑

fi (id∗|id′∗) · (Zi · A−1 · c∗
0 + xi · h).

Then if Hit does not happen, we also have (∗∗) �= 0.
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In summary, if Hit does not happen, then (∗∗) �= 0 in G7. Note that the challenger never
leaks to A any information of the t related to id∗|id′∗ in other procedures (cf. Footnote 7),
thus K computed by (15) is uniformly distributed over GT due to the randomness of t. Con-
sequently, (k1, k2, k3) := H(K) ∈ {0, 1}3λ is statistically close to the uniform distribution,
by the Leftover Hash Lemma. It follows that χ2 �= k2 · χ1 + k3 except with probability 2−λ.
In this case,Dec outputs⊥ inG7, which is the same as inG8. In addition, it does not leak the
value of the t related to id∗|id′∗. Therefore, G7 and G8 are the same except with probability
Qd/2λ, unless Hit occurs. We have that

∣∣Pr7[Win] − Pr8[Win] ∣∣ ≤ Qd/2
λ + Pr8[Hit].

To give an upper bound on Pr8[Hit], we construct a PPT adversary B3 in Fig. 9 against
the weak APR-CMA security of the de-randomized delegatable affine MAC. According to
the weak-APR-CMA security game (see Fig. 2), B3 has access to EvalMAC oracle and
one access to ChalMAC oracle, and aims to tell the output ([h]1, [h0]1, [h1]T ) of ChalMAC
is properly computed or randomly chosen. In Initialize, B3 does not choose skMAC =
(kPRF,B, x0, . . . , x�, x ′

0), and implicitly sets skMAC to be the secret key used by its weak
APR-CMA challenger. It invokes (ekCH, tdCH) ←$ CH.Gen(1λ), picksA,Zi , z′

0 randomly,
and sets td := (

tdCH,A, {Zi }i∈[0,�], z′
0

)
as its trapdoor. B3 simulates the scenario of β = 1

in G8 for A as follows.

• For Enc(id∗,m∗), it picks [c̃∗
0]1 ← $ G

k+1
1 , R̃∗

CH ← $ RCH, and computes id′∗ :=
Eval(ekCH, [c̃∗

0]1; R̃∗
CH). Then B3 submits id∗|id′∗ to its own ChalMAC oracle, and

obtains ([h]1, [h0]1, [h1]T ). Then it picks [c∗
0]1 ←$ G

k
1, computes [c∗

0]1 :=
[
h + A · A−1

·c∗
0

]

1
, and reopens R∗

CH ← Equiv
(
tdCH, [c̃∗

0]1, R̃∗
CH, [c∗

0]1
)
using the trapdoor tdCH.

Finally, it picks [c∗
1]1, K∗ randomly, as in the scenario of β = 1 in G8.

Note that, h is chosen from Zq with fresh randomness, thus [c∗
0]1 is independent of

R̃∗
CH. Since R̃

∗
CH is uniformly distributed and independent of [c̃∗

0]1 and [c∗
0]1, then by the

Equivocation property of CH, R∗
CH is uniformly distributed over RCH and independent

of [c∗
0]1, same as G8.

• For USKGen(id), id �= id∗, B3 submits id to its own EvalMAC oracle, and obtains([t]2, [u]2, {[di ]2}i∈[l(id)+1,�]
)
. It then computes [v]2 from [u]2 and [ei ]2 from [di ]2 with

the trapdoor A,Zi , z′
0, as in G8.

• For Dec(id, 〈C, χ〉), B3 first checks whether the following holds

[c1]1 =
[∑

fi (id∗|id′∗) · Zi · A−1 · c∗
0 + h0

]

1
. (16)

If (16) holds, B3 outputs 1 to its weak APR-CMA challenger. In the case of
id|id′ = id∗|id′∗, B3 responds without using the secret key, as in G8. In the case of
id = id∗ ∧ id′ �= id′∗, B3 submits id∗|id′ to its own EvalMAC oracle, and obtains([t]2, [u′]2, {[d ′

i ]2}i∈[l(id∗|id′)+1,�]
)
. It then computes [v′]2 from [u′]2 with the trapdoor

A,Zi , z′
0, as inG8. In the case of id �= id∗, B3 submits id to its own EvalMAC oracle, and

obtains
([t]2, [u]2, {[di ]2}i∈[l(id)+1,�]

)
. It then computes [v]2 from [u]2 and [ei ]2 from

[di ]2 with the trapdoor A,Zi , z′
0, as in G8.

Therefore B3 perfectly simulates the scenario of β = 1 in G8 for A, and outputs 1 if and
only if (16) holds.
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Fig. 9 Description of B3 (resp. B4) for the proof of Lemma 5 (resp. Lemma 6), which has access to the
oracles EvalMAC and ChalMAC of the weak-APR-CMA game (cf. Fig. 2). The framed parts appear only in
the description of B3, while the shadowed parts appear only in the description of B4

If ([h]1, [h0]1, [h1]T ) is real, then h0 = ∑
fi (id∗|id′∗) · xi · h. Thus (16) is equivalent to

c1 =
∑

fi (id∗|id′∗) · (Zi · A−1 · c∗
0 + xi · h).

So in this case, B3 outputs 1 if and only if the eventHit happens in the above simulated game,
i.e., Hit happens in G8 (since the simulation is perfect).

Whereas if ([h]1, [h0]1, [h1]T ) is random, then h0 is uniformly chosen from Z
n
q and

independent of other parts of the above game, thus (16) can happen with probability 1/qn .
So in this case, B3 outputs 1 with probability at most Qd/qn .

Accordingly, it holds that
∣∣Pr8[Hit] − Qd/qn

∣∣ ≤ Advweak-apr -cma
MAC,B3

(λ).
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Overall we have that
∣∣Pr7[Win] − Pr8[Win] ∣∣ ≤ Qd/2

λ + Pr8[Hit]
≤ Qd/2

λ + Advweak-apr -cma
MAC,B3

(λ) + Qd/q
n,

and the lemma follows. ��
Now in G8, we are in the position to make the reduction to the weak APR-CMA security of
the de-randomized delegatable affineMAC.

Lemma 6 There exists a PPT adversary B4 against the weak APR-CMA security of the
de-randomized delegatable affine MAC, such that

∣∣Pr8[Win] − 1/2
∣∣ ≤ Advweak-apr-cma

MAC,B4
(λ).

Proof of Lemma 6 We construct a PPT adversary B4 in Fig. 9 against the weak APR-CMA
security of MAC. B4 has access to EvalMAC oracle and one access to ChalMAC ora-
cle, and aims to tell the output ([h]1, [h0]1, [h1]T ) of ChalMAC is properly computed or
randomly chosen. In Initialize, B4 does not choose skMAC = (kPRF,B, x0, . . . , x�, x ′

0),
and implicitly sets skMAC to be the secret key used by its weak APR-CMA challenger. It
invokes (ekCH, tdCH) ←$ CH.Gen(1λ), picks A,Zi , z′

0 randomly, and sets td := (
tdCH,

A, {Zi }i∈[0,�], z′
0

)
as its trapdoor. B4 simulates the scenario of β = 0 or β = 1 in G8 for A

as follows.

• For Enc(id∗,m∗), it picks [c̃∗
0]1 ← $ G

k+1
1 , R̃∗

CH ← $ RCH, and computes id′∗ :=
Eval(ekCH, [c̃∗

0]1; R̃∗
CH). Then B4 submits id∗|id′∗ to its own ChalMAC oracle, and

obtains ([h]1, [h0]1, [h1]T ). Then it picks [c∗
0]1 ← $ G

k
1, computes [c∗

0]1 := [
h + A ·

A
−1 · c∗

0

]
1, and reopens R∗

CH ← Equiv
(
tdCH, [c̃∗

0]1, R̃∗
CH, [c∗

0]1
)
using the trapdoor

tdCH. Finally, it computes

[c∗
1]1 :=

[∑l(id∗|id′∗)
i=0

fi (id∗|id′∗)ZiA
−1

c∗
0 + h0

]

1
,K∗ :=

[
z′
0A

−1
c∗
0 + h1

]

T
.

Similar to the proof of the previous lemma, R∗
CH is uniformly distributed over RCH and

independent of [c∗
0]1, same as G8.

If ([h]1, [h0]1, [h1]T ) is real, then

h0 =
∑l(id∗|id′∗)

i=0
fi (id∗|id′∗) · xi · h, h1 = x ′

0 · h.

Thus [c∗
1]1 and K∗ are computed as in the scenario of β = 0 in G8.

If ([h]1, [h0]1, [h1]T ) is random, then h0 and h1 are randomly chosen. Thus [c∗
1]1 and

K∗ are uniformly distributed, as in the scenario of β = 1 in G8.
• For USKGen(id), id �= id∗, B4 submits id to its own EvalMAC oracle, and obtains([t]2, [u]2, {[di ]2}i∈[l(id)+1,�]

)
. It then computes [v]2 from [u]2 and [ei ]2 from [di ]2 with

the trapdoor A,Zi , z′
0, as in G8.

• ForDec(id, 〈C, χ〉), in the case of id|id′ = id∗|id′∗, B4 responds without using the secret
key, as in G8. In the case of id = id∗ ∧ id′ �= id′∗, B4 submits id∗|id′ to EvalMAC,
and obtains

([t]2, [u′]2, {[d ′
i ]2}i∈[l(id∗|id′)+1,�]

)
. It then computes [v′]2 from [u′]2 with the

trapdoor A,Zi , z′
0, as in G8. In the case of id �= id∗, B4 submits id to its own EvalMAC

oracle, and obtains
([t]2, [u]2, {[di ]2}i∈[l(id)+1,�]

)
. It then computes [v]2 from [u]2 and

[ei ]2 from [di ]2 with the trapdoor A,Zi , z′
0, as in G8.
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• For Finalize, B4 outputs whatever A outputs.

Hence, if ([h]1, [h0]1, [h1]T ) is real, B4 perfectly simulates the scenario of β = 0 in G8

withA; if ([h]1, [h0]1, [h1]T ) is random, B4 perfectly simulates the scenario of β = 1 inG8

with A. Any difference between β = 0 and β = 1 in G8 results in B4’s advantage over the
weak APR-CMA security game. Then the lemma follows.

Taking all things together, Theorem 2 follows. ��

5 Application to simulation-based selective opening secure IBE

In a selective opening attack, an adversary sees a vector of ciphertexts, adaptively chooses
to open some of them, and obtains the corresponding plaintexts and random coins used
in the creation of the ciphertexts. When considering selective opening, chosen-ciphertext
attack (SO-CCA2), the adversary also has access to a decryption oracle. The simulation-
based SO-CCA2 (SIM-SO-CCA2) security requires: what a PPT SO-CCA2 adversary can
compute can also be simulated by a PPT simulator with access only to the opened mes-
sages.

Our IBE in Sect. 4, enjoying tight PR-ID-CCA2 security, i.e., IND-ID-CCA2 secu-
rity and ciphertext pseudorandomness, can be used to construct SIM-SO-CCA2 secure
IBE scheme following the work of [27]. Recall that Lai et al. [27] gave a paradigm
for constructing SIM-SO-CCA2 secure IBE from the so-called extractable IBE with
IND-ID-CCA2 security and an information-theoretic primitive called strengthened cross
authentication code. They also proposed two instantiations of the extractable IBE with
IND-ID-CCA2 security based on the subgroup indistinguishability assumption over bilin-
ear groups of composite order and the DLIN assumption over bilinear groups of prime
order, respectively. However, both of the two extractable IBEs have loose reductions.
In Appendix 3, we showed how to construct an extractable IBE from our IBE with
pseudorandom ciphertexts. We proved that the PR-ID-CCA2 security of IBE implies
IND-ID-CCA2 security of the extractable IBE. Therefore, our IBE in Sect. 4 can be
employed to construct the first extractable IBE with tight IND-ID-CCA2 security, which
in turn results in a SIM-SO-CCA2 secure IBE which enjoys a tighter security reduction
than those in [27] and is also the first scheme based on the Matrix DDH assump-
tion.
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Appendix 1: Efficiency comparison table of tightly secure IBEs

See Table 3
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Table 3 Comparison between the known tightly-secure IBEs with identity space ID = {0, 1}λ in prime
order groups based on standard assumptions

Scheme |pk| |usk| |C|
CW13 [12] 2λk2 + 2k2 + k 4k 4k

BKP14’s IBENR [6] 2λk2 + k2 + 2k 2k + 1 2k + 1

BKP14’s HIBENR [6] + CHK 8λ(k2 + k/2) + 2k2 + 2k 2λ(k + 1) + 2k + 1 2k + 1

AHY15a [3] 16λ + 11 8 8

GCDCT16 [19] 6λk2 + 3k2 + k 6k 6k

Ours: IBENR (§4) 4λk2 + k2 + 2k 2λ(k + 1) + 2k + 1 2k + 1

“CHK” stands for the general paradigm proposed by [11]. k is the parameter for the k-Linear andDk -MDDH
assumptions. AHY15’s [3] security is based on the 2-Linear assumption, i.e., k = 2. |pk|, |usk| and |C|
denote the size per public key, user secret key and ciphertext, respectively. Here we count the number of group
elements in G1, G2 and GT
a AHY15 [3] also proposed two non-anonymous schemes, here we only show the anonymous one

Appendix 2: Proof of Lemma 3

InGζ,η−1 (resp.,Gζ,η), the challenger usesRT(m|ζ,η−1) (resp.,RT(m|ζ,η)) as the randomness
to compute [u]2 in Eval(m) and uses RT(m∗|ζ,η−1) (resp., RT(m∗|ζ,η)) as the randomness
to compute h1 in Chal(m∗). By the special property of RT, RT(m|ζ,η−1) and RT(m|ζ,η)

are the same when the message m satisfies |m| < (ζ − 1)λ + η or mζ,η = bζ,η, and
they are independent of each other when the message m satisfies |m| ≥ (ζ − 1)λ + η and
mζ,η = 1 − bζ,η. The difference between Gζ,η−1 and Gζ,η can be reduced to the Q-fold
Dk-MDDH assumption for the group G2.

More precisely, we construct PPT adversaries B1,B2
(PG, [A]2, [H]2

)
, where PG ←

$ PGGen(1λ), A ←$ Dk , and H = A · W + R with W ←$ Z
k×Q
q , to distinguish whether

R = 0 (i.e.,
(PG, [A]2, [H]2

)
is identical to the real Dk-MDDH distribution) or R ←

$ Z
(k+1)×Q
q (i.e.,

(PG, [A]2, [H]2
)
is identical to the randomDk-MDDH distribution) in Fig.

10. B1 and B2 are the same except their strategies in Finalize.

In Initialize, B1,B2 choose r ← $ Z
k+1
q and set x

(1−bζ,η)�
ζ,η := r�AA−1

implicitly.

Observe that x
(1−bζ,η)�
ζ,η = r�AA−1 = (r�A + r�A)A

−1 = r� + r�AA−1
, thus it is

uniformly distributed over Z1×k
q because of the randomness of r, as in Gζ,η−1 and Gζ,η.

In Eval(m), if |m| < (ζ − 1)λ + η, then m|ζ,η−1 = m|ζ,η = m, and B1,B2 use the
randomness RT(m|ζ,η−1), which equals RT(m|ζ,η), to compute [u]2, as inGζ,η−1 andGζ,η.

And note that B1,B2 can compute [d(1−bζ,η)

ζ,η ]2 := [r� · A · s]2, which is the same as Gζ,η−1

and Gζ,η, since

[r� · A · s]2 =
[
(r�AA−1

) · (As)
]

2
= [x(1−bζ,η)�

ζ,η · t]2.

InEval(m), if |m| ≥ (ζ −1)λ+η,B1,B2 implement an injective functionα : {0, 1}∗ −→
[1, Q] on the fly, and compute s′ := TRF(m) ∈ Z

k
q and [t]2 := [

A · s′ + Hc
]
2, where

c := α(m|ζ,η−1) ∈ [1, Q] and Hc is the cth column of the matrix H. Then for message m
with mζ,η = bζ,η, B1,B2 use RT(m|ζ,η−1), which equals RT(m|ζ,η), to compute [u]2 the
same way as in Gζ,η−1 and Gζ,η. As for message m with mζ,η = 1 − bζ,η, B1,B2 compute
[u]2 in a different way with
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Fig. 10 Description of B1,B2
(PG, [A]2, [H]2

)
for the proof of Lemma 3. Here Hc denotes the cth column

of the matrix H, and α : {0, 1}∗ −→ [1, Q] is an injective function implemented by B1,B2 on the fly

[u]2 =
[∑

(i, j)∈[p(m)]×[λ]
(i, j)�=(ζ,η)

x
(mi, j )�
i, j · t + RT(m|ζ,η−1) + r� · (A · s′ + Hc)

]

2
,

where Hc is the cth column of H. We analyze the simulation as follows. Since H = A ·
W + R, then Hc = A · Wc + Rc and Hc = A · Wc + Rc. Thus [t]2 = [

A · s′ + Hc
]
2 =[

A · (s′ + Wc + A
−1 · Rc)

]

2
= [

A · s]2, where s := s′ + Wc + A
−1 · Rc = TRF(m) +

Wα(m|ζ,η−1) + A
−1 · Rα(m|ζ,η−1) is also a truly random function of m. For message m with

mζ,η = 1 − bζ,η, we have that

[u]2 =
[∑

(i, j)�=(ζ,η)
x
(mi, j )�
i, j · t + RT(m|ζ,η−1) + r� · (A · s′ + Hc)

]

2

=
[∑

(i, j)�=(ζ,η)
x
(mi, j )�
i, j · t + RT(m|ζ,η−1) + r� · A · (s′ + Wc) + r� · Rc

]

2

=
[ ∑

(i, j)�=(ζ,η)
x
(mi, j )�
i, j · t + RT(m|ζ,η−1) + r�AA−1

︸ ︷︷ ︸
x
(1−bζ,η)�
ζ,η

·A(s′ + Wc)︸ ︷︷ ︸
t−Rc

+r�Rc

]

2

=
[∑p(m)

i=1

∑λ

j=1
x
(mi, j )�
i, j · t + RT(m|ζ,η−1) + r� · (Rc − A · A−1 · Rc)

]

2

=
[∑p(m)

i=1

∑λ
j=1 x

(mi, j )�
i, j · t + RT(m|ζ,η−1) + r · (Rc − A · A−1 · Rc)

]

2
.
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• Case 1:H = A ·W+R for R = 0. Then r · (Rc −A ·A−1 ·Rc) = 0, and it also uses the
randomness RT(m|ζ,η−1) to compute [u]2 for message m with mζ,η = 1 − bζ,η, as in
Gζ,η−1. Furthermore in this case, bζ,η is completely hidden from the point of view ofA,
thusA can submit a messagem∗ in Chal(m∗) such that |m∗| < (ζ − 1)λ+η ∨ m∗

ζ,η =
bζ,η, i.e., abort occurs, with probability at least 1/2. Therefore,

Pr
[
abort

∣∣ Case 1
] ≥ 1/2. (17)

• Case 2: H = A · W + R for R ← $ Z
(k+1)×Q
q . Then with probability (1 − 1/q), r is

non-zero, thus r ·(Rc−A ·A−1 ·Rc) is uniformly random due to the randomness ofRc. In

this case, an independent randomnessRT(m|ζ,η) := RT(m|ζ,η−1)+r·(Rc−A·A−1 ·Rc)

is employed for m with mζ,η = 1 − bζ,η, as in Gζ,η.

InChal(m∗), if |m∗| < (ζ −1)λ+η ∨m∗
ζ,η = bζ,η, note thatRT(m∗|ζ,η−1) = RT(m∗|ζ,η),

B1,B2 use the randomness RT(m∗|ζ,η−1), which equals RT(m∗|ζ,η), to compute h1 perfectly
as inGζ,η−1 andGζ,η. Meanwhile, if |m∗| ≥ (ζ − 1)λ + η ∧ m∗

ζ,η = 1− bζ,η, B1,B2 abort
the game played with A immediately and set abort = true.

In summary, if abort occurs, then with probability (1 − 1/q), if it is the Case 1: H =
A ·W+R for R = 0 (resp., Case 2: H = A ·W+R for R ←$ Z

(k+1)×Q
q ), B1,B2 perfectly

simulate gameGζ,η−1 (resp., gameGζ,η) withA. In Finalize, B1’s strategy is to return 1 to
its Dk-MDDH challenger if and only if abort occurs, and B2’s strategy is to return 1 to its
Dk-MDDH challenger if and only if abort occurs and β ′ = β holds (i.e.,Win occurs). Thus
we have the following equations

AdvQ,Dk−mddh
PGGen,G2,B1

(λ) =
∣∣∣Pr

[
abort

∣∣ Case 1
] − Pr

[
abort

∣∣ Case 2
]∣∣∣,

AdvQ,Dk−mddh
PGGen,G2,B2

(λ) =
∣∣∣Pr

[
abort ∧ Win

∣∣ Case 1
] − Pr

[
abort ∧ Win

∣∣ Case 2
]∣∣∣

=
∣∣∣Pr

[
abort

∣∣ Case 1
] · Pr [Win

∣∣ Case 1 ∧ abort
]

−Pr
[
abort

∣∣ Case 2
] · Pr [Win

∣∣ Case 2 ∧ abort
]∣∣∣

≥ (1 − 1/q) ·
∣∣∣Pr

[
abort

∣∣ Case 1
] · Prζ,η−1[Win] − Pr

[
abort

∣∣ Case 2
] · Prζ,η[Win]

∣∣∣

≥ (1 − 1/q) · Pr [abort ∣∣ Case 1] ·
∣∣∣Prζ,η−1[Win] − Prζ,η[Win]

∣∣∣

−(1 − 1/q) ·
∣∣∣Pr

[
abort

∣∣ Case 1
] − Pr

[
abort

∣∣ Case 2
]∣∣∣ · Pr1,η[Win]

(17)≥ 1

2
· 1
2

·
∣∣∣Prζ,η−1[Win] − Prζ,η[Win]

∣∣∣−
∣∣∣Pr

[
abort

∣∣ Case 1
] − Pr

[
abort

∣∣ Case 2
]∣∣∣.

By combining the above two equations, we get that

∣∣∣Prζ,η−1[Win] − Prζ,η[Win]
∣∣∣ ≤ 4 ·

(
AdvQ,Dk−mddh

PGGen,G2,B1
(λ) + AdvQ,Dk−mddh

PGGen,G2,B2
(λ)

)
.

��
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Appendix 3: Extractable IBE from our IBE

Extractable IBE and its IND-ID-CCA2 security

We review the definition of extractable IBE from [27].

Definition 12 (Extractable identity-based encryption) An extractable identity-based encryp-
tion (extractable IBE) scheme IBEex = (Genex ,USKGenex ,Encex ,Decex ) consists of the
following four PPT algorithms:

• Genex (1λ) takes as input a security parameter λ. It generates a public key pk and amaster
secret key msk. The public key pk defines an identity space ID, a ciphertext space C
and a session key space K.

• USKGenex (msk, id) takes as input the master secret keymsk and an identity id ∈ ID.
It produces a user secret key usk[id] for id.

• Encex (pk, id, θ) takes as input the public key pk, an identity id ∈ ID and a bit θ ∈ {0, 1}.
It outputs a ciphertext CT ∈ C if θ = 0, and outputs a ciphertext and a session key
(CT, K ) ∈ C × K if θ = 1.

• Decex (usk[id], id,CT) takes as input a user secret key usk[id], an identity id ∈ ID and
a ciphertext CT ∈ C. It outputs a bit θ ′ ∈ {0, 1} and a session key K ′ ∈ K.

Correctness

An extractable IBE scheme has completeness error ε, if for all λ ∈ N, (pk,msk) ←
$ Genex (1λ), id ∈ ID, usk[id] ← $ USKGenex (msk, id), θ ∈ {0, 1}, CT/(CT, K ) ←
$ Encex (pk, id, θ) and (θ ′, K ′) ← Decex (usk[id], id,CT):

– The probability that θ ′ = θ is at least 1− ε, where the probability is taken over the coins
used in Encex .

– If θ = 1 then θ ′ = θ and K ′ = K . If θ ′ = 0, K ′ is uniformly distributed in K.

Security

The IND-ID-CCA2 security of extractable IBE is a combination of IND-ID-CCA2 security
of one-bit IBE and IND-ID-CCA2 security of identity-based key encapsulation mechanism
(IBKEM). The security notion is defined by game in Fig. 11.

Definition 13 (IND-ID-CCA2 security for extractable IBE) An extractable identity-based
encryption scheme IBEex is IND-ID-CCA2 secure, if for any PPT adversaryA, the advantage
Advind-id-cca2IBEex ,A (λ) := |Pr[IND-ID-CCA2A ⇒ 1]−1/2| is negligible in λ, where game IND-
ID-CCA2 is specified in Fig. 11.

Construction of extractable IBE from our IBE

Our IBE IBE[MAC,CH,Dk] = (Gen,USKGen,Enc,Dec) in Fig. 6 which is based
on the Dk-MDDH assumption can be converted into an extractable IBE IBEex =
(Genex ,USKGenex , Encex ,Decex ), as shown in Fig. 12.

The resulting extractable IBE IBEex has completeness error 2−λ. If θ = 1, the
decryption algorithm always undoes the encryptions, due to the perfect correctness of
IBE[MAC,CH,Dk]. If θ = 0,CT = 〈C, χ〉 = 〈[c0]1, [c1]1, RCH, χ1, χ2〉 is random. Hence
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Fig. 11 IND-ID-CCA2 security game for IBEex

Fig. 12 Construction of Extractable IBE IBEex from IBE[MAC,CH,Dk ]

in the Dec algorithm of IBE[MAC,CH,Dk], χ2 = k2 · χ1 + k3 will hold with probability
at most 2−λ. So Decex will output θ ′ = 0, when CT is an encryption of θ = 0, except with
probability at most 2−λ.

Theorem 3 If IBE[MAC,CH,Dk] is PR-ID-CCA2 secure, then the extractable IBE scheme
IBEex in Fig. 12 is IND-ID-CCA2 secure.

More precisely, suppose that A is a PPT adversary against the IND-ID-CCA2 secu-
rity of IBEex , then there exists a PPT adversary B against the PR-ID-CCA2 security of
IBE[MAC,CH,Dk], such that

Advpr-id-cca2
IBE[MAC,CH,Dk ],B(λ) = Advind-id-cca2IBEex ,A (λ).

Proof of Theorem 3 The PR-ID-CCA2 adversary B of IBE[MAC,CH,Dk] will invokeA to
guess bit β. To do so, B simulates the IND-ID-CCA2 game for A as follows.

When the PR-ID-CCA2 challenger gives pk to B, B forwards pk to A. For all A’s user
secret key generation queries, B will query its own user secret key generation oracles for
answers. Since IBEex and IBE[MAC,CH,Dk] share the same user secret key generation
algorithm, the simulation is perfect for A.
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For each decryption query CT = 〈C, χ〉 from A, B will query its own decryption oracle
and get m′ ← Dec(usk[id], id, 〈C, χ〉). If m′ = ⊥, B chooses K ←$ {0, 1}λ and returns
(0, K ) to A. Otherwise B sets K := m′, and returns (1, K ). Clearly, B gives a perfect
simulation of decryption oracle for A.

WhenA submits a challenge identity id∗,Bwill choose a randommessagem∗ ←$ {0, 1}λ
and forward (id∗,m∗) to its own challenger. Then B will obtain a challenge 〈C∗, χ∗〉, which
is either the output of Enc(pk, id,m∗) (when β = 1) or randomly chosen (when β = 0). B
sends (CT∗ := 〈C∗, χ∗〉, K ∗ := m∗) to A.

• If 〈C∗, χ∗〉 = Enc(pk, id,m∗), (CT∗ = 〈C∗, χ∗〉, K ∗ = m∗) corresponds to an encryp-
tion of β = 1 for IBEex .

• If CT∗ = 〈C∗, χ∗〉 is randomly chosen, CT∗ corresponds to an encryption of β = 0 for
IBEex . In this case CT∗ and K ∗ := m∗ are both independently and randomly chosen.

Hence B perfectly simulates the challenge for A. Finally, B returns the guessing bit β ′ of A
to its own challenger. Then B has the same advantage as A. ��
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