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Abstract In this paper,we considermethodswhereby a subset of players in a (k, n)-threshold
scheme can “repair” another player’s share in the event that their share has been lost or
corrupted. This will take place without the participation of the dealer who set up the scheme.
The repairing protocol should not compromise the (unconditional) security of the threshold
scheme, and it should be efficient, where efficiency is measured in terms of the amount of
information exchanged during the repairing process. We study two approaches to repairing.
The first method is based on the “enrollment protocol” from Nojoumian et al. (IET Inf Secur
4: 202–211, 2010) which was originally developed to add a new player to a threshold scheme
(without the participation of the dealer) after the scheme was set up. The second method
distributes “multiple shares” to each player, as defined by a suitable combinatorial design.
This method results in larger shares, but lower communication complexity, as compared to
the first method.
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1 Introduction

Suppose that k1, k2 and n are positive integers such that k1 < k2 ≤ n. Informally, a (k1, k2, n)-
ramp scheme is a method whereby a dealer chooses a secret and distributes a share to each
of n players such that the following two properties are satisfied:
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reconstruction Any subset of k2 players can compute the secret from the shares that they
collectively hold, and

secrecy No subset of k1 players can determine any information about the secret.

We call k1 and k2 the lower threshold and upper threshold of the scheme, respectively. When
k2 = k1 + 1 = k, a ramp scheme is known as a (k, n)-threshold scheme.

In this paper, we are only interested in schemes that are unconditionally secure. That is,
all security results are valid against adversaries with unlimited computational power.

The original motivation for ramp schemes (as opposed to threshold schemes) is that ramp
schemes permit larger secrets be shared for a given share size. The efficiency of secret sharing
is often measured in terms of the information rate of the scheme, which is defined to be the
ratio ρ = log2 |K|/ log2 |S| (where S is the set of all possible shares and K is the set of all
possible secrets). That is, the information rate is the ratio of the size of the secret to the size
of a share.

For a threshold scheme, a fundamental result states that ρ ≤ 1. However, there are
constructions for ramp schemes where the (optimal) information rate is k2 − k1; for non-
threshold ramp schemes, this quantity exceeds one.

We briefly describe a standard construction for ramp schemes with optimal information
rate (see, e.g., [11]). In the threshold case, this is just the classical Shamir threshold scheme
[12]. The construction takes place over a finite field FQ , where Q ≥ n + 1.

1. In the Initialization Phase, the dealer, denoted by D, chooses n distinct, non-zero ele-
ments of FQ , denoted xi , 1 ≤ i ≤ n. The values xi are public. For 1 ≤ i ≤ n, D gives
the value xi to Pi .

2. Let λ = k2 − k1. In the Share Distribution phase, D chooses a secret

K = (a0, . . . , aλ−1) ∈ (FQ)λ.

Then D secretly chooses (independently and uniformly at random) aλ, . . . , ak2−1 ∈ FQ .
Finally, for 1 ≤ i ≤ n, D computes the share yi = a(xi ), where

a(x) =
k2−1∑

j=0

a j x
j ,

and gives it to Pi .

Reconstruction is easily accomplished using the Lagrange interpolation formula (see, e.g.,
[14, §13.1]).

1.1 Share repairability

The problemof share repairability has been considered by several authors in recent years (see,
for example, [8]). We will mainly consider repairability of threshold schemes. The problem
setting is that a certain player P� (in a (k, n)-threshold scheme, say) loses their share. The
goal is to find a “secure” protocol involving P� and a subset of the other players that allows
the missing share y� to be reconstructed. (Of course the dealer could simply re-send the share
to P�, but we are considering a setting where the dealer is no longer present in the scheme
after the initial setup.) In general, we will assume secure pairwise channels linking pairs of
players.

We consider protocols that operate in two phases:

1. In themessage exchange phase, a certain subset of d players (not including P�) exchange
messages among themselves. The integer d is called the repairing degree. We will only
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consider protocols where each player sends at most one message to any other player, and
every message is sent at the same time.

2. In the repairing phase, these same d players each send a message to P�. The messages
received by P� allow P�’s share to be reconstructed. Some of the protocols we study only
require a repairing phase.

We note that d ≥ k is an obvious necessary condition for the existence of such a scheme.
This is seen as follows. Suppose k−1 players could repair another player’s share. Then these
k − 1 players would have k shares, which would enable them to reconstruct the secret. This
is of course not allowed in a (k, n)-threshold scheme.

We have to consider what it means for a protocol of this type to be “secure”. Our definition
of security is motivated by the required threshold property. In general, we will consider a
coalition of k − 1 players. This coalition may or may not include P�. We assume that all
players execute the protocol correctly, but the coalition is trying to obtain some information
about the secret. (Thus we are assuming that the coalition is “honest-but-curious”.) After
executing the protocol, the coalition combines all the information it holds. This includes
their shares, as well as all messages that they send or receive during the protocol. All of this
information should still yield no information about the secret. If a (k, n)-threshold scheme
has a repairability protocol that satisfies this security requirement, then we say that it is a
(k, n, d)-repairable threshold scheme, which we abbreviate to (k, n, d)-RTS.

We distinguish between two types of repairability in this paper. We will say that an
(n, k, d)-RTS has universal repairability if any subset of d players can repair a share of any
other player. Most previous discussions of repairability in the literature have implicitly or
explicitly considered this model. A weaker condition would be to require only that there
exists a subset of d players who will be able to repair a given share belonging to some other
player. We will call this restricted repairability.

One potential advantage of considering restricted repairability is that it can lead to more
efficient schemes, where efficiency is measured in terms of information rate (of the threshold
scheme) and/or communication complexity (of the repairing process). This is one of the
themes we explore in this paper.

1.2 Our contributions

We present two repairability schemes in this paper. The first scheme is a modification of an
enrollment protocol due to Nojoumian et al. described in [9,10]. In this scheme, any k users
are able to repair a share of another user, and the scheme provides universal repairability.
Thus it is a (k, n, k)-RTS. The underlying threshold scheme is just the Shamir secret sharing
scheme, which is an ideal scheme (i.e., the information rate is equal to 1).

The second scheme provides restricted repairability. It can lead to a solution with higher
information rate and lower communication complexity (so it trades off larger share sizes for
less information communicated during repairing). It uses a distribution design having certain
properties to allocate subsets of shares of a Shamir scheme (or a ramp scheme) to each user.
We look at various types of combinatorial designs that yield good solutions for repairability
when used in this way.

The rest of the paper is organized as follows. In Sect. 2, we present the enrollment protocol,
modified to provide repairability. In Sect. 3, we give a brief overview of the Guang-Lu-Fu
Scheme [8]. Section 4 presents our second scheme, which has a somewhat similar flavour.
Then, in Sect. 5, we examine various types of distribution designs and the repairable threshold
schemes that can be obtained form them. In Sect. 6. we compare the information rates
and communication complexity of our construction to the GLF scheme from [8]. Section 7
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addresses the problem of universal repairability in the combinatorial setting. Finally, Sect. 8
is a brief conclusion.

2 A repairable threshold scheme from the NSG enrollment protocol

The enrollment protocol from [9,10] was introduced to create a share for a new player in a
threshold scheme, without requiring the participation of the dealer who initially set up the
scheme. It was also described in a setting where threshold of the scheme was to be altered.
Here, we discuss a straightforward modification where the protocol is used to repair a share,
without changing the threshold. This protocol has repairing degree k and achieves universal
repairability.

Supposewe have a (k, n)-Shamir threshold scheme defined overFQ , andwewish to repair
the share for a player P�. We assume that this share is being repaired by players P1, . . . , Pk
and � > k. Suppose the share for P� is ϕ� = f (�), where f (x) ∈ FQ[x] is a random
polynomial of degree at most k − 1 whose constant term is the secret. The share ϕ� can be
expressed as

ϕ� =
k∑

i=1

γiϕi , (1)

where the γi ’s are public Lagrange coefficients (see, e.g., [14, §13.1]). In what follows, all
arithmetic is performed in FQ .

The enrollment protocol proceeds as follows:

1. For all 1 ≤ i ≤ k, player Pi computes random values δ j,i for 1 ≤ j ≤ k such that

γiϕi =
k∑

j=1

δ j,i . (2)

2. For all 1 ≤ i ≤ k, 1 ≤ j ≤ k, player Pi transmits δ j,i to player Pj using a secure
channel.

3. For all 1 ≤ j ≤ k, player Pj computes

σ j =
k∑

i=1

δ j,i . (3)

4. For all 1 ≤ j ≤ k, player Pj transmits σ j to player P� using a secure channel.
5. Player P� computes their share ϕ� using the formula

ϕ� =
k∑

j=1

σ j . (4)

It is straightforward to verify that player P� computes their share correctly, i.e., the value
of ϕ� computed using (2), (3) and (4) is the same as (1).

Let us consider the security of this protocol.We assume that all players act honestly during
the protocol and do not reveal any information while the protocol is being executed. Later,
however, it may be the case that a coalition C of k − 1 participants attempts to compute some
information about the secret. We will show that this is impossible. Note that we are basically
describing the security proof from [10, §2.4.2c] with a few additional details added.
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First, we note that computing the secret, given k−1 shares, is equivalent to computing any
additional share. This is easy to see, because any k shares allow the secret to be computed,
and any k − 1 shares along with the secret allow any other share to be computed (this is a
well-known property of the Shamir scheme).

There are two cases to consider:

case (i) The coalition C consists of a subset of k − 1 players in {P1, . . . , Pk}.
case (ii) The coalition C consists of P� along with a subset of k − 2 players in {P1, . . . , Pk}.

It is convenient to consider the following share-exchange matrix defined in [10]:

E =

⎛

⎜⎜⎜⎝

δ1,1 δ2,1 . . . δk,1
δ1,2 δ2,2 . . . δk,2
...

...
. . .

...

δ1,k δ2,k . . . δk,k .

⎞

⎟⎟⎟⎠ .

Observe from (2) that the sum of the entries in the i th row of E is equal to γiϕi . Also, from
(3), the sum of the entries in the j th column of E is equal to σ j , so P� knows all k column
sums. Finally, it is immediate from (2), (3) and (4) that the sum of all the entries in E is equal
to ϕ�.

In case (i), we can assume without loss of generality that C = {P1, . . . , Pk−1}. Here the
coalition C possesses all the entries in E except for δk,k . But this value is completely random,
and knowing this value is equivalent to knowing the value of ϕk , ϕ� or the secret.We conclude
that C has no information about the secret in this case.

Case (ii) is a bit more complicated. Here, we can assume without loss of generality that
C = {P1, . . . , Pk−2, P�}. The coalition C possesses all the entries in E except for the four
entries δk−1,k−1, δk−1,k , δk,k−1 and δk,k . Further, since P� knows the column sums, the
equations

σk−1 = δk−1,k−1 + δk−1,k (5)

and
σk = δk,k−1 + δk,k (6)

are known. So we have two linear equations in four unknowns.
Of course P� also knows the value of the share ϕ�, and ϕ� is a known linear combination

of the k shares ϕ1, . . . , ϕk , as given by (1). But only the first k − 2 of these shares are known
to C.

It is possible to choose arbitrary values for δk−1,k−1 and δk,k−1. Thus

ϕk−1 = δk−1,k−1 + δk,k−1

γk−1

can take on any arbitrary value. Then the values of δk−1,k and δk,k (and hence ϕk) will be
determined by (5) and (6).

Similarly, we could choose an arbitrary value for ϕk and then ϕk−1 would be determined.
In either case, the coalition knows the values of k − 1 shares, but they have no information
about the individual shares ϕk−1 and ϕk . Since this represents all the information available
to C, we conclude that C also has no information about the secret in case (ii).

2.1 Communication complexity of the enrollment protocol

The communication complexity of a share repairing scheme is the sum of the sizes (i.e., the
bit-lengths) of all the messages transmitted during the protocol divided by the bit-length
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of the secret. In the enrollment protocol, every message is an element of FQ , as is the
secret. Therefore, the communication complexity is equal to the total number of messages
transmitted. It is computed as follows:

• k(k − 1) in step 2,
• k in step 4, and
• therefore the total is k2.

2.2 Ramp scheme repairability

The same protocol works in the case of a ramp scheme. Herewe need k2 players to reconstruct
a lost secret, say {P1, . . . , Pk2}. The same Lagrange formula applies in this situation, since
a share is just an evaluation of the polynomial at a particular point. In order for a repairing
process in a (k1, k2, n)-ramp scheme to be secure, no subset of k1 players should be able to
determine any information about the secret after a share is repaired. This is analogous to the
security requirement for repairable threshold schemes. As was the situation in analyzing the
threshold scheme, there are two cases to consider:

case (i) The coalition C consists of a subset of k1 players in {P1, . . . , Pk2}.
case (ii) The coalition C consists of P� alongwith a subset of k1−1 players in {P1, . . . , Pk2}.
We briefly outline the proof in the two cases.

In case (i), we can assumewithout loss of generality that C = {P1, . . . , Pk1}. The coalition
C possesses all the entries in the share-exchange matrix E except for the λ by λ lower right
submatrix of E (where λ = k2 − k1). The entries of this submatrix can be filled in such that
they are consistent with any possible values of the λ shares ϕk1+1, . . . , ϕk2 . Therefore, the
secret is completely undetermined.

In case (ii), we assume that C = {P1, . . . , Pk1−1, P�}. Then C possesses all the entries in E
except for the λ + 1 by λ + 1 lower right submatrix of E . The coalition also knows the value
of ϕ� as well as the column sums σk1 , . . . , σk2 . Any λ rows of this submatrix can be filled
in with arbitrary values, which means that the λ corresponding shares can take on arbitrary
values. The values in the remaining row of the submatrix are then determined by the known
column sums, which means that the share corresponding to this row is determined. So the
information available to the coalition consists of k2 known shares, and it is consistent with
any possible values of any λ additional shares. So the coalition has no information about the
secret.

In conclusion, we have shown that C has no information about the secret in either of the
two cases.

3 Guang-Lu-Fu (GLF) scheme

The GLF scheme, described in [8], has a lower information rate than the enrollment scheme,
but also lower communication complexity. As such, it achieves a tradeoff between these two
measures. The GLF scheme provides universal repairability and it is based on linearized
polynomials and minimum bandwidth regeneration (MBR) codes [6]. This scheme does not
require a message exchange phase (Sect. 1.1). We do not discuss the scheme in detail, but
we will refer to its basic properties where it is relevant to do so.

We recall one example from [8] to illustrate the basic idea. Example 2 from [8] is a (2, 4)-
threshold scheme with information rate 1/3. The secret is an element over FQ and each share
is a triple over FQ . The repairing degree d = 3. Repairing a share works as follows. Each of
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three players sends one message to the fourth player, where a message is an element of FQ .
The three messages received enable the three components of the share to be reconstructed.
For this scheme, we would say that the total communication complexity is 3. This is an
improvement over the communication complexity (which is equal to 4) using the enrollment
scheme for a (2, 4)-threshold scheme.

4 A new technique for combinatorial repairability

In this section, we present a (k, n)-threshold scheme with low information rate and com-
munication complexity that achieves restricted repairability. We base our construction on an
old technique, namely giving each player a subset of shares from an underlying threshold or
ramp scheme called a “base scheme”.1 For simplicity, we first describe our technique using
a threshold scheme as the base scheme, in Sect. 4.1. Then we generalize our approach, using
a ramp scheme as the base scheme, in Sect. 4.2.

4.1 Using threshold schemes as base schemes

Suppose we start with an (�,m)-threshold scheme, say a Shamir scheme, implemented over
a finite field FQ . This is called the base scheme. We then give each player a certain subset
of d of the m shares. A design consisting of n blocks of size d , defined on a set of m points,
will be used to do this. This design is termed the distribution design. The repairing degree
will be equal to d .

We will call the shares of the base (�,m)-threshold scheme subshares. Each share in
the resulting (k, n)-threshold scheme consists of d subshares. We need to ensure that the
threshold property is satisfied for the resulting (k, n)-threshold scheme, which we call the
expanded scheme. We also need to be able to repair the share of any player in the expanded
scheme by judiciously choosing a certain set of other players, who will then send appropriate
subshares to the player whose share is being repaired.

Let the blocks in the distribution design be denoted B1, . . . , Bn and let X denote the set
of m points. The threshold property will be satisfied in the expanded scheme provided that
the following two conditions are satisfied:

1. the union of any k blocks contains at least � points, and
2. the union of any k − 1 blocks contains at most � − 1 points.

Weare considering a repairing schemewhere certain designated players transmit subshares
to the player whose share is being repaired. This technique can be applied provided that every
point in the distribution design occurs in at least two blocks (this is a necessary and sufficient
condition for this kind of repairability to be possible). Therefore, if this property is satisfied,
we say that the distribution design is repairable.

Suppose we want to repair the share corresponding to a block B. For each point x ∈ B,
we can find another block that contains x (because the distribution design is repairable). The
corresponding player can send the subshare corresponding to x to the player whose node is
being repaired. The communication complexity of the expanded scheme will be equal to d ,
since d elements of FQ are transmitted to repair a share of a secret in FQ .

It is not a requirement that the d subshares are obtained from d different blocks. For
example, it could happen that d = 3, one block contributes two subshares, and one block

1 This technique has most commonly been considered in the past in connection with the construction of secret
sharing schemes for non-threshold access structures; see, e.g., [3, Theorem 1].
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Table 1 Parameters and properties of a (k, �1, �2)-distribution design

m Number of points in the design

n Number of blocks in the design (= the number of players)

d Block size (= the repairing degree)

k Threshold

�1 Maximum number of points in the union of k − 1 blocks

�2 Minimum number of points in the union of k blocks

contributes one subshare during the repairing process. However, we will frequently be con-
sidering schemes where we have d blocks, each of which contributes one subshare. This is
analogous to the model from [8], where it is assumed that each player contributes a constant
number β of “elements” to the player whose share is begin repaired (where an “element” is
a subshare or a certain linear combination of subshares).

It is quite simple to analyze the security of combinatorial repairability. The main point to
observe is that the information collectively held by any subset of players (after the repairing
protocol is completed) consists only of their shares in the expanded scheme. They did not
obtain any information collectively that they did not already possess before the execution of
the repairing protocol. So it is immediate that a set k − 1 players cannot compute the secret
after the repairing of a share occurs.

4.2 Using ramp schemes as base schemes

We have one additional useful modification to describe. A (k, �1, �2)-distribution design is
a design that satisfies the following two properties:

1. the union of any k blocks contains at least �2 points, and
2. the union of any k − 1 blocks contains at most �1 points,

where �2 − �1 ≥ 1.
See Table 1 for a summary of the parameters and required properties of a distribution

design.
Given a (k, �1, �2)-distribution design, we let the base scheme be an (�1, �2,m)-ramp

scheme2 defined overFQ (this can be done if Q ≥ m+1). Thenwe use the distribution design
to distribute shares to the n players. This yields a (k, n)-threshold scheme (the expanded
scheme) having information rate (�2 − �1)/d .

Repairing works exactly as before, and d subshares, each of which is an element of FQ ,
are transmitted to repair a share. However, the secret is now an element in (FQ)�2−�1 , so the
communication complexity is now d/(�2 − �1). (Note that this is just the reciprocal of the
information rate of the expanded scheme.)

Theorem 4.1 Suppose there exists a repairable (k, �1, �2)-distribution design on m points,
having n blocks of size d, and suppose that Q ≥ m + 1. Then there is a (k, n, d)-RTS with
restricted repairability, having information rate (�2 − �1)/d and communication complexity
d/(�2 − �1), where every share is in (FQ)d .

Suppose we have a (k, �1, �2)-distribution design on n blocks in which every point occurs
in at least two blocks, as required in Theorem 4.1. If we take an arbitrary subset of the blocks

2 Note that, if �2 − �1 = 1, then the ramp scheme is a threshold scheme, and we have the construction
described in the previous section.
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of such a design, then it may not be the case that every point occurs in at least two blocks of
the “smaller” design. It would be convenient to have a simple method of selecting subsets of
blocks of a design in such a way that this property continues to be satisfied.

Here is the approach we will use to achieve this objective. We say that a subset of s blocks
in a (k, �1, �2)-distribution design on n blocks is a basic repairing set of size s if every point
in the design is contained in at least two blocks in the basic repairing set. It is obvious that
any superset of a basic repairing set is repairable. So we have the following result.

Theorem 4.2 Suppose there exists a (k, �1, �2)-distribution design on m points, having b
blocks of size d, and suppose that Q ≥ m + 1. Suppose that this design contains a basic
repairing set of size s. Then, for any n such that s ≤ n ≤ b, there is a (k, n, d)-RTS with
restricted repairability, having information rate (�2 − �1)/d and communication complexity
d/(�2 − �1), where every share is an element of (FQ)d .

5 Some distribution designs and the resulting RTS

In this section, we provide some examples of distribution designs and describe how they can
be used to construct repairable secret sharing schemes. The designs we use are Steiner triple
systems, resolvable (m, d, 1)-BIBDs and projective planes. We will have one subsection
discussing each of these types of distribution designs.

5.1 Steiner triple systems

We first consider using a Steiner triple system as a distribution design. This only allows
certain thresholds, but the number of players can take on a large range of values. A Steiner
triple system of order m (or, STS(m)) has m points and b = m(m − 1)/6 blocks of size
3, and every pair of points occurs in exactly one block. An STS(m) can also be defined as
an (m, 3, 1)-BIBD (balanced incomplete block design). For a comprehensive reference on
Steiner triple systems, see [5].

Using the blocks of an STS(m) as a distribution designwould yield repairing degree d = 3.
The simplest application would be to take k = 2. The union of any two blocks in the design
contains at least five points, and each block contains three points. Hence we can take �1 = 3,
�2 = 5 and use a (3, 5,m)-ramp scheme as the base scheme. The expanded scheme will be
a (2, n, 3)-RTS having information rate 2/3 and communication complexity is 3/2. This is
certainly an improved communication complexity as compared to the enrollment protocol
with threshold k = 2, which has communication complexity 4.

We still need to determine the permissible values of n in the above construction. It will
be advantageous to make use of resolvable STS(m). An STS(m) is resolvable if the set of
b = m(m − 1)/6 blocks can be partitioned into (m − 1)/2 parallel classes, where each
parallel class consists of m/3 disjoint blocks. It is well-known that a resolvable STS(m)

exists if and only if m ≡ 3 (mod 6).
Suppose we use a resolvable STS(m) as our distribution design. Then two parallel classes

in this design comprise a basic repairing set of size 2m/3. As a result, we can accommodate
any number n of players such that 2m/3 ≤ n ≤ m(m − 1)/6. We have proved the following
theorem.

Theorem 5.1 Suppose m ≡ 3 (mod 6), Q is a prime power such that Q ≥ m + 1 and
2m/3 ≤ n ≤ m(m − 1)/6. Then there exists a (2, n, 3)-RTS with restricted repairability,
with shares from (FQ)3, having information rate 2/3 and communication complexity 3/2.
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Example 5.1 The smallest interesting application of Theorem 5.1 is when m = 9. The
distribution design is a resolvable STS(9), consisting of four parallel classes of three blocks.
We take two parallel classes to form the basic repairing sent, along with an arbitrary subset
of the remaining six blocks. In this way, we can construct a (2, n, 3)-RTS for any n such
that 6 ≤ n ≤ 12. The scheme has information rate 2/3 and communication complexity 3/2.
Subshares are elements ofFQ , where Q ≥ 11 is any prime power, and the secret is an element
of (FQ)2. Shares consist of three elements of FQ .

5.1.1 Quadrilateral-free STS

What if we use an STS to try to construct a scheme with a higher threshold? The union of two
blocks contains at most six points (and equality is achieved if the two blocks are disjoint).
However, it is easy to find sets of three blocks whose union contains six points (e.g., three
blocks of the form xyz, xuv, uyw). Even four blocks might have a union consisting of six
points: xyz, xuv, uyw, vzw. Such a set of four blocks is known as a quadrilateral or Pasch
configuration. However, it is possible to construct Steiner triple systems that do not contain
any Pasch configurations. These designs are termed anti-Pasch Steiner triple systems. An
anti-Pasch Steiner triple system exists for any order m ≡ 1, 3 (mod 6), m �= 7, 13 (see [7]).

In an anti-Pasch Steiner triple system, the union of two blocks contain at most six points,
and the union of four blocks contain at least seven points. Therefore, the expanded scheme is a
(2, 4, n)-ramp scheme. So we have weakened the desired threshold property in the expanded
scheme, but we still might get something interesting if we can identify a small repairing set. In
fact, infinite classes of resolvable anti-Pasch Steiner triple systems are known. For example,
in [4], it is shown that a resolvable anti-Pasch Steiner triple system of order m exists for any
positive integer m ≡ 9 mod 18. We can use any two parallel classes of the design as a basic
repairing set, as we did in Theorem 5.1.

5.2 BIBDs with λ = 1

Using the blocks of an (m, 4, 1)-BIBD as a distribution design would yield a scheme with
repair degree d = 4. We have the following result.

Theorem 5.2 Suppose m ≡ 4 (mod 12), Q is a prime power such that Q ≥ m + 1 and
m/2 ≤ n ≤ m(m − 1)/12. Then there exists a (2, n, 4)-RTS with restricted repairability,
with shares from (FQ)4, having information rate 3/4 and communication complexity 4/3.

Proof If m ≡ 4 (mod 12), then there is a resolvable (m, 4, 1)-BIBD. The union of any
two blocks in a (m, 4, 1)-BIBD contains at least seven points, and each block contains four
points. Hence we can take k = 2, �1 = 4 and �2 = 7, and use a (4, 7,m)-ramp scheme as
the base scheme. The expanded scheme will be a (2, n, 4)-RTS having information rate 3/4
and repair degree 4. The communication complexity is 4/3.

Two parallel classes in the BIBD comprise a basic repairing set of size m/2. As a result,
we can accommodate any value of n such that m/2 ≤ n ≤ m(m − 1)/12. ��

As mentioned before, the enrollment protocol with threshold k = 2 has communication
complexity equal to 4, so the communication complexity is lowered quite considerably in
Theorem 5.2.

Using the same idea, we can use other known classes of resolvable (m, d, 1)-BIBDs to
construct repairable threshold schemes. When d increases, the threshold may also increase.
We illustrate by stating results for the cases d = 5 and d = 8. The proofs are similar to
Theorems 5.1 and 5.2.
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Table 2 (n, k, d)-RTS based on
(m, d, 1)-BIBDs, d = 3, 4, 5

m d k �1 �2 n ρ

9 3 2 3 5 6 ≤ n ≤ 12 2/3

15 3 2 3 5 10 ≤ n ≤ 35 2/3

21 3 2 3 5 14 ≤ n ≤ 70 2/3

16 4 2 4 7 8 ≤ n ≤ 20 3/4

28 4 2 4 7 14 ≤ n ≤ 63 3/4

40 4 2 4 7 20 ≤ n ≤ 130 3/4

25 5 2 5 9 10 ≤ n ≤ 30 4/5

5 3 10 12 2/5

65 5 2 5 9 26 ≤ n ≤ 208 4/5

5 3 10 12 2/5

m number of points in the BIBD,
d repairing degree, k threshold, n
number of players, �1, �2 are
ramp scheme thresholds, ρ
information rate of the scheme

Theorem 5.3 Suppose m ≡ 5 (mod 20) and there exists a resolvable (m, 5, 1)-BIBD. Let
Q be a prime power such that Q ≥ m+1 and 2m/5 ≤ n ≤ m(m−1)/20. Then the following
RTS exist:

1. A (2, n, 5)-RTS with restricted repairability, with shares from (FQ)5, having information
rate 4/5 and communication complexity 5/4.

2. A (3, n, 5)-RTS with restricted repairability, with shares from (FQ)5, having information
rate 2/5 and communication complexity 5/2.

Proof The verifications are straightforward. We note that the union of two blocks in the
BIBD contains either nine or ten points, and the union of three blocks in the design contains
at least 12 points. So we can take �1 = 5 and �2 = 9 when k = 2, and �1 = 10 and �2 = 12
when k = 3. ��

The first few values of m for which Theorem 5.3 can be applied are m = 25, 65 and
85. Actually, resolvable (m, 5, 1)-BIBDs are known to exist for all m ≡ 5 mod 20 except
m = 45, 345, 465, 645 (see [1]).

We state the following similar result without proof.

Theorem 5.4 Suppose m ≡ 8 (mod 56) and there exists a resolvable (m, 8, 1)-BIBD. Let
Q be a prime power such that Q ≥ m+1 and m/4 ≤ n ≤ m(m−1)/56. Then the following
RTS exist:

1. A (2, n, 8)-RTS with restricted repairability, with shares from (FQ)8, having information
rate 7/8 and communication complexity 8/7.

2. A (3, n, 8)-RTS with restricted repairability, with shares from (FQ)8, having information
rate 5/8 and communication complexity 8/5.

3. A (4, n, 8)-RTS with restricted repairability, with shares from (FQ)8, having information
rate 1/4 and communication complexity 4.

The first few values of m for which Theorem 5.4 can be applied are m = 64 and 120.
Another known result is that resolvable (m, 8, 1)-BIBDs exist for all m ≡ 8 mod 56, m >

24480 (see [1]).
We close this section by presenting Table 2, which lists several “small” applications of

Theorems 5.1, 5.2 and 5.3.
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5.3 Projective planes

Finally, we examine the possibility of using finite projective planes as distribution designs.
A projective plane of order q is a design consisting ofm = q2 +q + 1 points and q2 +q + 1
blocks (or lines), where each block contains exactly d = q+1 points and every pair of points
occurs in exactly one block. It follows that every point occurs in exactly q + 1 blocks and
any pair of blocks intersect in exactly one point.

For basic results on projective planes, see [13]. It is well-known that a projective plane
of order q exists whenever q is a prime or prime power. In this case, we can let the one-
dimensional subspaces of (Fq)

3 be points and define the two-dimensional subspaces of (Fq)
3

to be blocks. The result is a projective plane of order q known as PG(2, q).
We will use a certain subset of the blocks of the projective plane as our distribution design.

The permissible values of n will be determined by the repairability requirement.
First, we consider the minimum and maximum number of points spanned by a set of j

blocks. These values will determine the parameters of the base scheme.

Lemma 5.1 The union of any j − 1 blocks in a projective plane of order q contains at most
q( j − 1) + 1 points.

Proof Denote the j − 1 blocks by A0, . . . , A j−2. Each Ai (i ≥ 1) contains a point in A0, so
∣∣∣∣∣∣

j−2⋃

i=0

Ai

∣∣∣∣∣∣
≤ q + 1 + ( j − 2)q = q( j − 1) + 1.

��
Lemma 5.2 For j ≤ q+1, the union of any j blocks in a projective plane of order q contains
at least j (q + 1 − ( j − 1)/2) points.

Proof Denote the j blocks by A0, . . . , A j−1. Each Ai (for 1 ≤ i ≤ q) contains q + 1 − i
points that are not in ∪i−1

h=0Ah . It follows that
∣∣∣∣∣∣

j−1⋃

i=0

Ai

∣∣∣∣∣∣
≥

j−1∑

i=0

(q + 1 − i) = j (q + 1) − j ( j − 1)

2
.

��
For repairability,wedetermine the existenceof somegoodbasic repairing sets. In general, a

basic repairing set of size s is equivalent to the dual of a 2-blocking set on s points. Blocking
sets in projective planes have been studied by several authors and various bounds on the
minimum size of a blocking set are known (see, e.g., Ball and Blokhuis [2]). One simple
(and well-known) construction is to choose any three noncollinear points x , y and z of the
projective plane, and take all the blocks that contain at least one of these points. This yields
a basic repairing set of size 3q .

Here is a well-known construction that sometimes yields basic repairing sets of size
s < 3q . Suppose that q is a square of a prime power. Start with two disjoint Baer subplanes
in PG(2, q) and take all the blocks that contain a line from either of these two subplanes.
There are 2(q+√

q+1) such blocks, and every point in PG(2, q) is contained in at least two
of these blocks. So we have a basic repairing set of size 2(q + √

q + 1) in this case, which is
an improvement asymptotically over the previous construction. (However, q = 9 is the first
value that actually yields a smaller basic repairing set than the “simple” construction.)

123



Combinatorial repairability for threshold schemes 207

Table 3 (n, k, d)-RTS based on
projective planes

q d k �1 �2 n ρ

3 4 2 4 7 9 ≤ n ≤ 13 3/4

3 7 9 1/2

4 5 2 5 9 12 ≤ n ≤ 21 4/5

3 9 12 3/5

4 13 14 1/5

5 6 2 6 11 15 ≤ n ≤ 31 5/6

3 11 15 2/3

4 16 18 1/3

q order of projective plane, d
repairing degree, k threshold, n
number of players, �1, �2 are
ramp scheme thresholds, ρ
information rate of the scheme

Table 3 contains some examples of repairable threshold schemes using projective planes
as distribution designs. We consider various values of q and k. The values of �1 and �2 are
obtained from Lemmas 5.1 and 5.2. For every n such that s ≤ n ≤ m = q2 + q + 1, there is
a (k, n, q + 1)-RTS having information rate ρ and communication complexity 1/ρ.

6 Comparison with the GLF scheme

Using our combinatorial construction, we are able to obtain substantially improved informa-
tion rates as comparedwith theGLF scheme from [8] (but aswementioned earlier, the scheme
in [8] achieves universal repairability, whereas our scheme only has restricted repairability).
In [8], the authors prove an upper bound on the information rate of the schemes they construct
that have optimal repairing rate. Optimal repairing rate means that the information received
by the user whose share is being repaired has the same size as a share. Our combinatorial
schemes also have this feature, so a direct comparison is relevant. The bound obtained in [8]
has the form

ρ ≤ k(2d − k + 1)

2dt
, (7)

where t is given by the formula

t =
k−1∑

i=0

min{α, (d − i)β}. (8)

In (8), α denotes the number of elements of FQ in a share, and each user sends β elements
of FQ to a user whose node is being repaired. Therefore, in our scheme, we have α = d ,
β = 1, and hence, from (8), we have

t =
k−1∑

i=0

(d − i) = kd − k(k − 1)

2
. (9)

Substituting (9) into (7), we obtain

ρ ≤ k(2d − k + 1)

2d
(
kd − k(k−1)

2

) = 2d − k + 1

2d
(
d − (k−1)

2

) = 1

d
. (10)

Our scheme has information rate (�2 − �1)/d , so our scheme has higher information rate, by
a factor of at least two, whenever the base scheme is a ramp scheme with �2 ≥ �1 + 2.

We illustrate with a couple of examples.
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Example 6.1 Suppose k = 2, d = 3. Then (10) results in ρ ≤ 1/3. On the other hand, we
are able to achieve ρ = 2/3 for certain values of n, as described in Theorem 5.1.

Example 6.2 Suppose k = 2, d = 4. Then (10) results in ρ ≤ 1/4. However, we are able to
achieve ρ = 3/4 in certain situations, as described in Theorem 5.2.

We can also compare the communication complexity of our schemes to the GLF scheme
[8]. It is easy to see that the GLF scheme always has communication complexity equal to
d . On the other hand, our schemes, as presented in Theorems 4.1 and 4.2, always have
communication complexity that is at most d . Our scheme has communication complexity
d/(�2 − �1), so our scheme has lower communication complexity, by a factor of at least two,
whenever the base scheme is a ramp scheme with �2 ≥ �1 + 2. (Of course, we also require
a suitable distribution design to exist in order to apply our results.)

7 Universal repairability

In this section, we consider possible ways to achieve universal repairability in the combina-
torial setting we have introduced.

7.1 Dual hypergraph of a complete graph

The first examples of distribution designs for universal repairability that we consider allow
various thresholds, but the number of players is constrained. The distribution designs are just
the dual hypergraphs of complete graphs. For a positive integer n, let Kn denote the complete
graph on n vertices. The points of our distribution design will be the

(n
2

)
edges of Kn . For

each vertex x of Kn , we define a block Bx = {e : x ∈ e}. Thus there are n blocks in the
design, each of size n − 1. Any two blocks intersect in exactly one point, and every point
occurs in exactly two blocks. The following lemma is proved by a simple counting argument.

Lemma 7.1 Suppose 1 ≤ j ≤ n. The union of any j blocks in the above-described design
has cardinality j (n − 1) − ( j

2

)
.

From Lemma 7.1, for 2 ≤ k ≤ n, it follows that the design is a (k, �1, �2)-distribution
design on

(n
2

)
points, where

�1 = (k − 1)(n − 1) −
(
k − 1

2

)

and

�2 = k(n − 1) −
(
k

2

)
.

The design itself constitutes a basic repairing set since every point occurs in exactly two
blocks.

We have the following corollary of Theorem 4.2.

Theorem 7.1 Suppose that n ≥ 3 and 2 ≤ k ≤ n. Denote m = (n
2

)
and suppose that

Q ≥ m+1. Then, there is a (k, n, n−1)-RTSwith universal repairability, having information
rate (n − k)/(n − 1) and communication complexity (n − 1)/(n − k), where every share is
an element of (FQ)n−1.
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Proof The only observation we need to make is that universal repairability and restricted
repairability are equivalent when d = n − 1, since there is only one possible set of d players
to consider when repairing a given share. ��
7.2 Universal repairability and 1-designs

Suppose the distribution design is a (v, b, r, d)-1-design. This means that we have v points,
each ofwhich occurs in r blocks, and b blocks in total, each ofwhich contains d points.We are
going to focus on the repairability property in this section; we do not concern ourselves with
the specific thresholds that can be achieved. That is, we are not evaluating these designs as
distribution designs, and we are not claiming that they immediately yield repairable threshold
schemes with any particular parameters.

Theorem 7.2 A (v, b, r, d)-1-design provides universal repairability if and only if b < r+d.

Proof Suppose we have a (v, b, r, d)-1-design in which b ≥ r +d . Suppose B is a block that
we want to repair. Let x ∈ B. There are r blocks that contain x , one of which is B. Choose
any d blocks that do not contain x (this can be done because b− r ≥ d). Then these d blocks
cannot repair the block B, since none of these blocks contain x .

Conversely, suppose have a (v, b, r, d)-1-design in which b < r + d . Let B be a block
and let B1, . . . Bd be any other d blocks. Then every point x ∈ B is contained in at least one
of these d blocks. Thus,

B ⊆
d⋃

i=1

Bi .

It follows that the d given blocks are sufficient to repair B (we do not require that each block
contributes one subshare, so it is sufficient that B is covered by the union of the d blocks). ��

The dual hypergraph of the complete graph Kn (as considered in the previous section) is
an (

(n
2

)
, n, 2, n − 1)-1-design. Since n < 2 + (n − 1), the universal repairability property

also follows from Theorem 7.2.
Another class of designs that provide universal repairability are the complements of

Hadamard designs. These are (4t + 3, 2t + 2, t + 2)-BIBDs and they exist for all t such
that a Hadamard matrix of order 4t + 4 exists. We just need to observe that such a BIBD is
a (4t + 3, 4t + 3, 2t + 2, 2t + 2)-1-design. Since 4t + 3 < (2t + 2) + (2t + 2), Theorem
7.2 guarantees that the repairability property holds.

8 Summary and conclusion

We have presented two methods for repairing secrets in threshold schemes. The first method
is a simple modification of the enrollment protocol and the second method is based on using
a suitable combinatorial design to distribute “subshares” of a threshold or ramp scheme. Our
schemes provide improved information rates and/or communication complexity as compared
to previously known schemes.
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