
Des. Codes Cryptogr. (2018) 86:463–479
https://doi.org/10.1007/s10623-017-0334-8

Z2-double cyclic codes

Joaquim Borges1 · Cristina Fernández-Córdoba1 ·
Roger Ten-Valls1

Received: 9 November 2015 / Revised: 13 January 2017 / Accepted: 19 January 2017 /
Published online: 10 February 2017
© Springer Science+Business Media New York 2017

Abstract A binary linear code C is a Z2-double cyclic code if the set of coordinates can
be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets
leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module
Z2[x]/(xr − 1) × Z2[x]/(xs − 1). We determine the structure of Z2-double cyclic codes
giving the generator polynomials of these codes. We give the polynomial representation of
Z2-double cyclic codes and its duals, and the relations between the generator polynomials
of these codes. Finally, we study the relations between Z2-double cyclic and other families
of cyclic codes, and show some examples of distance optimal Z2-double cyclic codes.
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1 Introduction

Let Z2 be the ring of integers modulo 2. Let Zn
2 denote the set of all binary vectors of length

n. A non-empty subset of Zn
2 is a binary code and a subgroup of Z

n
2 is called a binary linear

code. In this paper we introduce a subfamily of binary linear codes, called Z2-double cyclic
codes, with the property that the set of coordinates can be partitioned into two subsets, the
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first r coordinates and the last s coordinates, such that any cyclic shift of the coordinates of
both subsets of a codeword is also a codeword.

Note that if one of these sets of coordinates is empty, for example r = 0, then we obtain
a binary cyclic code of length s. Therefore, binary cyclic codes are a special class of Z2-
double cyclic codes. Another special case is when r = s, where a Z2-double cyclic code is
permutation equivalent to a quasi-cyclic code of index 2 and even length. Theory of binary
cyclic codes and quasi-cyclic codes of index 2 can be found in [11].

Recently,Z2Z4-additive codes have been studied (see [4,7]). ForZ2Z4-additive codes, the
set of coordinates is partitioned into two subsets, the first one of binary coordinates and the
second one of quaternary coordinates. The simultaneous cyclic shift of the subsets of coor-
dinates of a codeword has been defined in [1], where the authors study Z2Z4-additive cyclic
codes and identify these codes as Z4[x]-modules of a certain ring. Furthermore Z2Z2[u]-
additive codes and Z2Z2[u]-additive cyclic and constacylic codes have been studied in [2]
and [3] respectively, where these codes are another special classes of mixed type codes.

Since [9], a lot of variants of linear and cyclic codes over different rings are studied.
Obviously, these codes have a theoretical interest, from a mathematical point of view, since
they are related to algebraic structures such as rings, ideals or modules. But the interest for
such codes is not purely mathematical because some of them have binary images with better
parameters than classical binary linear codes. Here, we present a new variant of cyclic codes,
the Z2-double cyclic codes, closely related to generalized quasi-cyclic codes of index 2 [13].
We give examples of Z2-double cyclic codes that are optimal with respect to the minimum
distance. The aim of this paper is to study the algebraic structure of Z2-double cyclic codes
and their dual codes. The paper is organized as follows. In Sect. 2, we give the definition ofZ2-
double cyclic codes, we find the relation between some canonical projections of these codes
and binary cyclic codes. Also we present theZ2[x]-moduleZ2[x]/(xr −1)×Z2[x]/(xs −1),
denoted by Rr,s . In Sect. 3, we determine the algebraic structure of a Z2-double cyclic code
and we state some relations between its generators. In Sect. 4, we study the concept of duality
and, for a Z2-double cyclic code, we determine the generators of the dual code in terms of
the generators of the code. In Sect. 5, we study the relations between Z2-double cyclic codes
and other families of cyclic codes such as Z4-cyclic codes and Z2Z4-additive cyclic codes.
Finally, in Sect. 6 we give tables with the generator polynomials of some specific Z2-double
cyclic codes and their dual codes. In some cases, the codes are optimal with respect to the
minimumdistance.We also give examples ofZ2-double cyclic codes obtained fromZ4-cyclic
and Z2Z4-additive cyclic codes.

2 Z2-double cyclic codes

Let C be a binary code of length n. Let r and s be non-negative integers such that n = r + s.
We consider a partition of the set of the n coordinates into two subsets of r and s coordinates
respectively, so that C is a subset of Zr

2 × Z
s
2.

Definition 1 Let C be a binary linear code of length n = r + s. The code C is called
Z2-double cyclic if

(u0, u1, . . . , ur−2, ur−1 | u′
0, u

′
1, . . . , u

′
s−2, u

′
s−1) ∈ C

implies

(ur−1, u0, u1, . . . , ur−2 | u′
s−1, u

′
0, u

′
1, . . . , u

′
s−2) ∈ C.
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Z2-double cyclic codes 465

Let u = (u0, u1, . . . , ur−1 | u′
0, . . . , u

′
s−1) be a codeword in C and let i be an integer. We

denote by

u(i) = (u0−i , u1−i , . . . , ur−1−i | u′
0−i , . . . , u

′
s−1−i ) (1)

the i th shift of u, where the subscripts are read modulo r and s, respectively. Note that
u(−1) = u(lcm(r,s)−1) and, in fact, u(i) = u(lcm(r,s)+i), for i ∈ Z.

Let C ⊆ Z
r
2 × Z

s
2 be a Z2-double cyclic code. Let Cr be the canonical projection of C

on the first r coordinates and Cs on the last s coordinates. Note that Cr and Cs are binary
cyclic codes of length r and s, respectively. The code C is called separable if it is the direct
product of Cr and Cs .

There is a bijective map between Z
r
2 × Z

s
2 and Z2[x]/(xr − 1) × Z2[x]/(xs − 1) given

by:

(u0, u1, . . . , ur−1 | u′
0, . . . , u

′
s−1) �→ (u0 + u1x + · · · + ur−1x

r−1 | u′
0 + · · · + u′

s−1x
s−1).

We denote the image of the vector u by u(x).

Definition 2 Denote the ring Z2[x]/(xr − 1) × Z2[x]/(xs − 1) by Rr,s . We define the
operation

� : Z2[x] × Rr,s → Rr,s

as

λ(x) � (p(x) | q(x)) = (λ(x)p(x) | λ(x)q(x)),

where λ(x) ∈ Z2[x] and (p(x) | q(x)) ∈ Rr,s .

The ring Rr,s with the external operation � is a Z2[x]-module. Let u(x) = (u(x) | u′(x))
be an element of Rr,s . Note that if we operate u(x) by x we get

x � u(x) = x � (u(x) | u′(x))
= x � (u0 + · · · + ur−2x

r−2 + ur−1x
r−1 | u′

0 + · · · + u′
s−2x

s−2 + u′
s−1x

s−1)

= (u0x + · · · + ur−2x
r−1 + ur−1x

r | u′
0x + · · · + u′

s−2x
s−1 + u′

s−1x
s)

= (ur−1 + u0x + · · · + ur−2x
r−1 | u′

s−1 + u′
0x + · · · + u′

s−2x
s−1).

Hence, x � u(x) is the image of the vector u(1). Thus, the operation of u(x) by x in Rr,s

corresponds to a shift of u. In general, xi � u(x) = u(i)(x) for all i .

3 Algebraic structure and generators

In this section, we shall study submodules of Rr,s . We describe the generators of such sub-
modules and state some properties. From now on, 〈S〉 will denote the submodule generated
by a subset S of Rr,s . Let πr : Rr,s → Z2[x]/(xr −1) and πs : Rr,s → Z2[x]/(xs −1) be the
canonical projections, and let N be a submodule of Rr,s . If πr (N ) = {0} (resp. πs(N ) = {0})
then we may consider that the generator polynomial of πr (N ) (resp. πs(N )) is xr − 1 (resp.
xs − 1). Define N ′ = {(p(x)|q(x)) ∈ N | q(x) = 0}. It is easy to check that N ′ ∼= πr (N ′)
by considering the map (p(x) | 0) �→ p(x).
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466 J. Borges et al.

Theorem 1 The Z2[x]-module Rr,s is a noetherian Z2[x]-module, and every submodule N
of Rr,s can be written as

N = 〈(b(x) | 0), (�(x) | a(x))〉,
where b(x), �(x) ∈ Z2[x]/(xr − 1) with b(x) | (xr − 1), and a(x) ∈ Z2[x]/(xs − 1) with
a(x) | (xs − 1).

Proof By using the fact that Z2[x]/(xr − 1) and Z2[x]/(xs − 1) are principal ideal rings,
we have that Ns = πs(N ) and πr (N ′) are finitely generated. Moreover, since N ′ ∼= πr (N ′),
it follows that N ′ is finitely generated.

The generators of πr (N ′) may not be unique. Consider b(x) the generator of πr (N ′)
satisfying b(x) | (xr −1). Then (b(x) | 0) is a generator of N ′. Similarly, consider a(x) ∈ Ns

such that Ns = 〈a(x)〉 and a(x) | (xs − 1). Then there exists �(x) ∈ Z2[x]/(xr − 1) such
that (�(x) | a(x)) ∈ N .

We claim that

N = 〈(b(x) | 0), (�(x) | a(x))〉.
Let (p(x) | q(x)) ∈ N . We shall prove that (p(x) | q(x)) is generated by (b(x) | 0)

and (�(x) | a(x)). First, since q(x) = πs(p(x) | q(x)) ∈ Ns and Ns = 〈a(x)〉, there exists
λ(x) ∈ Z2[x] such that q(x) = λ(x)a(x). Moreover,

(p(x) | q(x)) − λ(x) � (�(x) | a(x)) = (p(x) − λ(x)�(x) | 0) ∈ N ′,

that is generated by (b(x) | 0). Then, there exists μ(x) ∈ Z2[x] such that (p(x)−λ(x)�(x) |
0) = μ(x) � (b(x) | 0). Thus,

(p(x) | q(x)) = μ(x) � (b(x) | 0) + λ(x) � (�(x) | a(x)).

Therefore, N is finitely generated by (b(x) | 0) and (�(x) | a(x)), and then Rr,s is a noetherian
Z2[x]-module. 
�

From the previous result, it is clear that we can identifyZ2-double cyclic codes inZr
2×Z

s
2

as submodules of Rr,s . Hence, any submodule of Rr,s is a Z2-double cyclic code. From now
on, we will denote by C indistinctly both the code and the corresponding submodule.

Note that if C = 〈(b(x) | 0), (�(x) | a(x))〉 is a Z2-double cyclic code, then the canon-
ical projections Cr and Cs are binary cyclic codes generated by gcd(b(x), �(x)) and a(x),
respectively. Moreover, the generator polynomials ofCr , Cs andC may not be unique. In the
following proposition we give some conditions to the generator polynomials of a Z2-double
cyclic code.

Proposition 1 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Then, we
can assume that

1. Cs = 〈a(x)〉, with a(x)|(xs − 1),
2. πr (C ′) = 〈b(x)〉, with b(x)|(xr − 1),
3. deg(�(x)) < deg(b(x)).

Proof The conditions for a(x) and b(x) follow from the proof of Theorem 1. Now, suppose
that deg(�(x)) ≥ deg(b(x)). Let i = deg(�(x))−deg(b(x)) and letC1 = 〈(b(x) | 0), (�(x)+
xi � b(x) | a(x))〉.

On the one hand, deg(�(x)+xi �b(x)) < deg(�(x)) and since the generators ofC1 belong
to C , we have that C1 ⊆ C . On the other hand,

(�(x) | a(x)) = (�(x) + xi � b(x) | a(x)) + xi � (b(x) | 0).
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Z2-double cyclic codes 467

Then, 〈(�(x) | a(x))〉 ⊆ C1 and hence C ⊆ C1. It follows that C = C1, which implies that
we may consider deg(�(x)) < deg(b(x)). 
�

Example 1 Consider the code C1 generated by 〈(x2 + x + 1 | 0), (x + 1 | x4 + x3 + x2 +
x + 1)〉 ⊆ R3,5. Since (x + 1) � (x + 1 | x4 + x3 + x2 + x + 1) = (x2 + 1 | 0) and
(x2 + x + 1 | 0) belong to C1, it is easy to see that πr (C1) = 〈1〉. Clearly, the generators
of C1 are not as in Proposition 1 since 〈x2 + x + 1〉 
= πr (C1). Thus, we may consider
C1 = 〈(1 | 0), (0 | x4 + x3 + x2 + x + 1)〉, and these polynomials satisfy the conditions of
Proposition 1.

Proposition 2 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then, b(x) | xs−1

a(x) �(x).

Proof By Proposition 1, N ′ = 〈(b(x) | 0)〉. We have that xs−1
a(x) � (�(x) | a(x)) ∈ N ′ and,

therefore, xs−1
a(x) �(x) ∈ 〈b(x)〉 and b(x) | xs−1

a(x) �(x). 
�

Corollary 1 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume
the generator polynomials of C satisfy the conditions in Proposition 1. Then, b(x)
| xs−1

a(x) gcd(b(x), �(x)).

We have seen that Rr,s is a Z2[x]-module, and the product by x ∈ Z2[x] is equivalent
to the double right shift on the vector space Z

r
2 × Z

s
2. Moreover, we have that Zr

2 × Z
s
2 is

a Z2-module, where the operations are addition and multiplication by elements of Z2. Our
goal now is to find a set of generators for C as a Z2-module.

Proposition 3 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Define the sets

S1 = {(b(x) | 0), x � (b(x) | 0), . . . , xr−deg(b(x))−1 � (b(x) | 0)},
S2 = {(�(x) | a(x)), x � (�(x) | a(x)), . . . , xs−deg(a(x))−1 � (�(x) | a(x))}.

Then, S1 ∪ S2 forms a minimal generating set for C as a Z2-module.

Proof It is easy to check that the codewords of S1 ∪ S2 are linearly independent.
Let c(x) = p1(x) � (b(x) | 0) + p2(x) � (�(x) | a(x)) ∈ C . We have to check that

c(x) ∈ 〈S1 ∪ S2〉.
If deg(p1(x)) ≤ r − deg(b(x)) − 1, then p1(x) � (b(x) | 0) ∈ 〈S1〉. Otherwise, using

the division algorithm, we compute p1(x) = q1(x)
xr−1
b(x) + r1(x) with deg(r1(x)) ≤ r −

deg(b(x)) − 1, hence

p1(x) � (b(x) | 0) =
(
q1(x)

xr − 1

b(x)
+ r1(x)

)
� (b(x) | 0) = r1(x) � (b(x) | 0) ∈ 〈S1〉.

It follows that c(x) ∈ 〈S1 ∪ S2〉 if p2(x) � (�(x) | a(x)) ∈ 〈S1 ∪ S2〉.
If deg(p2(x)) ≤ s − deg(a(x)) − 1, then p2(x) � (�(x) | a(x)) ∈ 〈S2〉. If not, using

the division algorithm, consider p2(x) = q2(x)
xs−1
a(x) + r2(x), where deg(r2(x)) ≤ s −

deg(a(x)) − 1. Then,
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468 J. Borges et al.

p2(x) � (�(x) | a(x)) =
(
q2(x)

xs − 1

a(x)
+ r2(x)

)
� (�(x) | a(x))

=
(
q2(x)

xs − 1

a(x)

)
� (�(x) | a(x)) + r2(x) � (�(x) | a(x))

= (q2(x)
xs − 1

a(x)
�(x) | 0) + r2(x) � (�(x) | a(x)).

To prove that p2(x) � (�(x) | a(x)) ∈ 〈S1 ∪ S2〉 first note that r2(x) � (�(x) | a(x)) ∈ 〈S2〉.
Finally, by Proposition 2, b(x) divides xs−1

a(x) �(x) and it follows that (q2(x)
xs−1
a(x) �(x) | 0) ∈

〈S1〉. Thus, c(x) ∈ 〈S1 ∪ S2〉. 
�
Corollary 2 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then, C is a binary linear
code of dimension r + s − deg(b(x)) − deg(a(x)).

4 Duality

Let C be a Z2-double cyclic code and C⊥ be its dual code (see [10]). Taking a vector v of
C⊥, u · v = 0 for all u in C . Since u belongs to C , we know that u(−1) is also a codeword.
So, u(−1) · v = u · v(1) = 0 for all u ∈ C , therefore v(1) is in C⊥ and C⊥ is also a Z2-double
cyclic code. Consequently, we obtain the following proposition.

Proposition 4 Let C be aZ2-double cyclic code. Then the dual code of C is also aZ2-double
cyclic code.

We denote C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉, where b̄(x), �̄(x) ∈ Z2[x]/(xr − 1) with
b̄(x) | (xr − 1) and ā(x) ∈ Z2[x]/(xs − 1) with ā(x) | (xs − 1).

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x)) p(x−1) and is denoted by
p∗(x). As in the theory of binary cyclic codes, reciprocal polynomials have an important role
in duality (see [11]).

We denote the polynomial
∑m−1

i=0 xi by θm(x). Using this notation we have the following
proposition.

Proposition 5 Let n,m ∈ N. Then, xnm − 1 = (xn − 1)θm(xn).

Proof It is well known that ym −1 = (y−1)θm(y). Replacing y by xn , the result follows. 
�
From now on, m denotes the least common multiple of r and s.

Definition 3 Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements in Rr,s . We
define the map

◦ : Rr,s × Rr,s −→ Z2[x]/(xm − 1),

such that

◦(u(x), v(x)) =u(x)θm
r
(xr )xm−1−deg(v(x))v∗(x)+

+ u′(x)θm
s
(xs)xm−1−deg(v′(x))v′∗(x) mod (xm − 1).

The map ◦ is linear in each of its arguments. That is, ◦ is a bilinear map between Z2[x]-
modules.

From now on, we denote ◦(u(x), v(x)) by u(x) ◦ v(x). Note that u(x) ◦ v(x) belongs to
Z2[x]/(xm − 1).
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Z2-double cyclic codes 469

Proposition 6 Let u and v be vectors inZr
2×Z

s
2 with associated polynomials u(x) = (u(x) |

u′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, v is orthogonal to u and all its shifts if
and only if

u(x) ◦ v(x) = 0.

Proof Let u(i) = (u0−i , u1−i , . . . , ur−1−i | u′
0−i , . . . , u

′
s−1−i ) be the i th shift of u. Then,

u(i) · v = 0 if and only if
r−1∑
j=0

u j−iv j +
s−1∑
k=0

u′
k−iv

′
k = 0.

Let Si = ∑r−1
j=0 u j−iv j + ∑s−1

k=0 u
′
k−iv

′
k . Computing u(x) ◦ v(x) we obtain

u(x) ◦ v(x) = θm
r
(xr )

⎡
⎣r−1∑
n=0

r−1∑
j=n

u j−nv j x
m−1−n +

r−1∑
n=1

r−1∑
j=n

u jv j−nx
m−1+n

⎤
⎦

+ θm
s
(xs)

[
s−1∑
t=0

s−1∑
k=t

u′
k−tv

′
j x

m−1−t +
s−1∑
t=1

s−1∑
k=t

u′
kv

′
k−t x

m−1+t

]
.

Then, arranging the terms, we have that

u(x) ◦ v(x) =
m−1∑
i=0

Si x
m−1−i mod (xm − 1).

This implies that u(x) ◦ v(x) = 0 if and only if Si = 0 for 0 ≤ i ≤ m − 1. 
�
Lemma 1 Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements in Rr,s such
that u(x) ◦ v(x) = 0. If u′(x) or v′(x) equals 0, then u(x)v∗(x) ≡ 0 (mod (xr − 1)).
Respectively, if u(x) or v(x) equals 0, then u′(x)v′∗(x) ≡ 0 (mod (xs − 1)).

Proof Let u′(x) or v′(x) equals 0. Then

0 = u(x) ◦ v(x) = u(x)θm
r
(xr )xm−1−deg(v(x))v∗(x) + 0 mod (xm − 1).

Therefore, u(x)θm
r

(xr )xm−1−deg(v(x))v∗(x) = μ′(x)(xm − 1), for some μ′(x) ∈ Z2[x].
Let μ(x) = μ′(x)xdeg(v(x))+1. By Proposition 5, u(x)xmv∗(x) = μ(x)(xr − 1), and hence
u(x)v∗(x) ≡ 0 (mod (xr − 1)). The same argument can be used to prove the other case. 
�

The following proposition shows that the dual of a separable Z2-double cyclic code is
also separable.

Proposition 7 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a separable Z2-double cyclic code.
Assume the generator polynomials ofC satisfy the conditions inProposition 1. Then �(x) = 0.
Moreover, C⊥ is a separableZ2-double cyclic code such that C⊥ = 〈( xr−1

b∗(x) | 0), (0 | xs−1
a∗(x) )〉.

Proof If C is separable, then C = Cr × Cs and clearly �(x) = 0. Hence, it is easy to see
that C⊥ = C⊥

r ×C⊥
s . By [11], we have that C

⊥
r = 〈 xr−1

b∗(x) 〉 and C⊥
s = 〈 xs−1

a∗(x) 〉. Therefore, the
statement follows. 
�

In view of Proposition 7, we shall focus on non-separable Z2-double cyclic codes for the
rest of the section. From now on, we will denote gcd(b(x), l(x)) by gb,l(x).

123



470 J. Borges et al.

Proposition 8 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then,

|Cr | = 2r−deg(b(x))+κ , |Cs | = 2s−deg(a(x)),

|(Cr )
⊥| = 2deg(b(x))−κ , |(Cs)

⊥| = 2deg(a(x)),

|(C⊥)r | = 2deg(b(x)), |(C⊥)s | = 2deg(a(x))+κ ,

where κ = deg(b(x)) − deg(gb,l(x)).

Proof LetC be aZ2-double cyclic codewithC = 〈(b(x) | 0), (�(x) | a(x))〉, and assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then, by Proposition 3,
C is generated by the matrix whose rows are the elements of the set S1 ∪ S2. The subcode
of C generated by the elements of S1 and the subcode generated by the elements of S2 have
generator matrices of the form

G1 = (
Ir−deg(b(x)) A 0

)
,

G2 = (
B D Is−deg(a(x))

)
,

respectively.
Consider the subcode C0 of C with 0 in the first r coodinates. Clearly C0 is generated by

elements in S2 and therefore the dimension of C0 is s − deg(a(x)) − κ , for some κ ≥ 0.
Taking into account κ and the matrices G1 and G2, we have that C is permutation equivalent
to a binary linear code with generator matrix of the form

G =
⎛
⎜⎝

Ir−deg(b(x)) A1 A2 0 0 0

0 Bκ B1 D1 Iκ 0

0 0 0 D2 R Is−deg(a(x))−κ

⎞
⎟⎠ ,

where Bκ is a square matrix of full rank. Note that κ = deg(b(x)) − deg(gb,l(x)). The
cardinalities of Cr , (Cr )

⊥,Cs and (Cs)
⊥ follow easily from G. The values of |(C⊥)r | and

|(C⊥)s | can be obtained from the projections on the first r and on the last s coordinates of
the following parity check matrix of C

H =
⎛
⎜⎝

At
1 Iκ 0 0 Bt

κ Bt
κ R

t

At
2 0 Ideg(b(x))−κ 0 Bt

1 Bt
1R

t

0 0 0 Ideg(a(x)) Dt
1 Dt

2 + Dt
1R

t

⎞
⎟⎠ .


�
Corollary 3 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual code
C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥ satisfy
the conditions in Proposition 1. Then,

deg(b̄(x)) = r − deg(gb,l(x)),

deg(ā(x)) = s − deg(a(x)) − deg(b(x)) + deg(gb,l(x)).

Proof It is easy to prove that (Cr )
⊥ is a cyclic code generated by b̄(x). Therefore, |(Cr )

⊥| =
2r−deg(b̄(x)). Moreover, by Proposition 8, |(Cr )

⊥| = 2deg(b(x))−κ with κ = deg(b(x)) −
deg(gb,l(x)). Thus, deg(b̄(x)) = r − deg(gb,l(x)).

Since C⊥ is a Z2-double cyclic code, (C⊥)s is a cyclic code generated by ā(x), and
hence |(C⊥)s | = 2s−deg(ā(x)). By Proposition 8, we have that |(C⊥)s | = 2deg(a(x))+κ with
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κ = deg(b(x)) − deg(gb,l(x)) and consequently deg(ā(x)) = s − deg(a(x)) − deg(b(x)) +
deg(gb,l(x)). 
�

The previous propositions and corollaries will be helpful to determine the relations
between the generator polynomials of a Z2-double cyclic code and the generator polyno-
mials of its dual code.

Proposition 9 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual
code C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥
satisfy the conditions in Proposition 1. Then,

b̄(x) = xr − 1

g∗
b,l(x)

.

Proof We have that (b̄(x) | 0) belongs to C⊥. Then,

(b(x) | 0) ◦ (b̄(x) | 0) = 0,

(�(x) | a(x)) ◦ (b̄(x) | 0) = 0.

Applying Lemma 1 to the previous equations, we obtain

b(x)b̄∗(x) ≡ 0 (mod (xr − 1)),

�(x)b̄∗(x) ≡ 0 (mod (xr − 1)).

Therefore, gb,l(x)b̄∗(x) ≡ 0 (mod (xr − 1)), and there exists μ(x) ∈ Z2[x] such that
gb,l(x)b̄∗(x) = μ(x)(xr−1).Moreover, gb,l(x) and b̄∗(x) divide (xr−1), and byCorollary 3
we have that deg(b̄(x)) = r − deg(gb,l(x)) and then b̄∗(x) = xr−1

gb,l (x)
. 
�

Proposition 10 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual
code C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥
satisfy the conditions in Proposition 1. Then,

ā(x) = (xs − 1)g∗
b,l(x)

a∗(x)b∗(x)
.

Proof Consider the codeword

b(x)

gb,l(x)
� (�(x) | a(x)) − �(x)

gb,l(x)
� (b(x) | 0) =

(
0 | b(x)

gb,l(x)
a(x)

)
.

Then, since (�̄(x) | ā(x)) ∈ C⊥, we have that (�̄(x) | ā(x)) ◦ (0 | b(x)
gb,l (x)

a(x)) = 0. Thus, by

Lemma 1, ā(x) a
∗(x)b∗(x)
g∗
b,l (x)

≡ 0 (mod (xs − 1)), and hence ā(x) a
∗(x)b∗(x)
g∗
b,l (x)

= (xs − 1)μ(x),

for someμ(x) ∈ Z2[x]. By Corollary 1, it follows that a∗(x)b∗(x)
g∗
b,l (x)

divides (xs −1). Therefore,

if a∗(x)b∗(x)
g∗
b,l (x)

≡ 0 (mod (xs − 1)) we may consider that a∗(x)b∗(x)
g∗
b,l (x)

= (xs − 1). By Corollary

3, deg(ā(x)) = s − deg(a(x)) − deg(b(x)) + deg(gb,l(x)), thus

deg(xs − 1) = s = deg

(
ā(x)

a∗(x)b∗(x)
g∗
b,l(x)

)
= deg((xs − 1)μ(x)).

Hence, we obtain that μ(x) = 1 and ā(x) = (xs−1)g∗
b,l (x)

a∗(x)b∗(x) . 
�
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Proposition 11 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a non-separable Z2-double cyclic
code with dual code C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of
C and C⊥ satisfy the conditions in Proposition 1. Then,

�̄(x) = xr − 1

b∗(x)
λ(x),

where λ(x) = xm−deg(a(x))+deg(�(x))
(

�∗(x)
g∗
b,l (x)

)−1
mod

(
b∗(x)
g∗
b,l (x)

)
.

Proof Let c̄(x) = (b̄(x) | 0) + (�̄(x) | ā(x)) ∈ C⊥. Then

c̄(x) ◦ (b(x) | 0) = (b̄(x) | 0) ◦ (b(x) | 0) + (�̄(x) | ā(x)) ◦ (b(x) | 0)
= 0 + (�̄(x) | ā(x)) ◦ (b(x) | 0) = 0.

By Lemma 1, we have that �̄(x)b∗(x) ≡ 0 (mod (xr − 1)) and therefore

�̄(x) = xr − 1

b∗(x)
λ(x).

Computing (�̄(x) | ā(x)) ◦ (�(x) | a(x)) and arranging properly we obtain

(xm − 1)g∗
b,l(x)

b∗(x)

(
λ(x)xm−deg(�(x))−1 �∗(x)

g∗
b,l(x)

+ xm−deg(a(x))−1

)
,

that is congruent to 0 (mod (xm − 1)). Then, either(
λ(x)xm−deg(�(x))−1 �∗(x)

g∗
b,l(x)

+ xm−deg(a(x))−1

)
≡ 0 (mod (xm − 1)), (2)

or (
λ(x)xm−deg(�(x))−1 �∗(x)

g∗
b,l(x)

+ xm−deg(a(x))−1

)
≡ 0

(
mod

(
b∗(x)
g∗
b,l(x)

))
. (3)

Since b∗(x)
g∗
b,l (x)

divides xm − 1, clearly (2) implies (3). Hence,

λ(x)xm
�∗(x)
g∗
b,l(x)

= xm−deg(a(x))+deg(�(x)) mod

(
b∗(x)
g∗
b,l(x)

)
.

We have that xm ≡ 1 (mod
(

b∗(x)
g∗
b,l (x)

)
). Moreover, the greatest common divisor between

�(x)
gb,l (x)

and b(x)
gb,l (x)

is 1, and then �∗(x)
g∗
b,l (x)

is an invertible element modulo
(

b∗(x)
g∗
b,l (x)

)
. Therefore,

λ(x) = xm−deg(a(x))+deg(�(x))

(
�∗(x)
g∗
b,l(x)

)−1

mod

(
b∗(x)
g∗
b,l(x)

)
.


�
We summarize the previous results in the next theorem.

Theorem 2 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual code
C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥ satisfy
the conditions in Proposition 1. Then,
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1. b̄(x) = xr−1
g∗
b,l (x)

,

2. ā(x) = (xs−1)g∗
b,l (x)

a∗(x)b∗(x) ,

3. �̄(x) = xr−1
b∗(x) λ(x), where

λ(x) =
{
0, if C is separable,

xm−deg(a(x))+deg(�(x))
(

�∗(x)
g∗
b,l (x)

)−1
mod

(
b∗(x)
g∗
b,l (x)

)
, otherwise.

5 Relations between Z2-double cyclic codes and other codes

In this section, we study how Z2-double cyclic codes are related to other families of cyclic
codes, say Z4-cyclic codes and Z2Z4-additive cyclic codes. Since these families of codes
have part or all the coordinates over Z4, their generator polynomials also have coefficients
over the ring Z4. From now on, the binary reduction of a polynomial p(x) ∈ Z4[x] will be
denoted by p̃(x).

Let p(x) be a divisor of xn − 1 in Z2[x] with n odd and let ξ be a primitive nth root of
unity over Z2. The polynomial (p⊗ p)(x) is defined as the divisor of xn − 1 in Z2[x] whose
roots are the products ξ iξ j such that ξ i and ξ j are roots of p(x).

From [12] and [10], it is known that aZ4-cyclic code C of length n is generated by a single
element f (x)h(x)+ 2 f (x) ∈ Z4[x]/(xn − 1), where f (x)h(x)g(x) = xn − 1 in Z4[x], and
|C| = 4deg(g(x))2deg(h(x)).

Let u = (u0, . . . , un−1) be an element of Zn
4 such that ui = ũi + 2u′

i with ũi , u
′
i ∈ {0, 1}.

As in [9], the Gray map φ from Z
n
4 to Z

2n
2 is defined by

φ(u) = (u′
0, . . . , u

′
n−1 | ũ0 + u′

0, . . . , ũn−1 + u′
n−1).

Let u(x) = ũ(x)+2u′(x) be the polynomial representation of u ∈ Z
n
4. Then, the polynomial

version of the Gray map is φ(u(x)) = (u′(x) | ũ(x) + u′(x)). The Nechaev permutation is
the permutation π on Z

2n
2 with n odd defined by

π(v0, v1, . . . , v2n−1) = (vτ(0), vτ(1), . . . , vτ(2n−1)),

where τ is the permutation on {0, 1, . . . , 2n − 1} given by
(1, n + 1)(3, n + 3) . . . (2i + 1, n + 2i + 1) . . . (n − 2, 2n − 2).

Let ψ be the map from Z
n
4 into Z

2n
2 defined by ψ = πφ, with n odd. The map ψ is called

the Nechaev–Gray map, [15]. Therefore we give the following theorem.

Theorem 3 ([15, Theorem 20]) Let C = 〈 f (x)h(x) + 2 f (x)〉 be a Z4-cyclic code of odd
length n and where f (x)h(x)g(x) = xn − 1. Let φ be the Gray map and let ψ be the
Nechaev–Gray map. The following properties are equivalent.

1. gcd( f̃ (x), (g̃ ⊗ g̃)(x)) = 1 in Z2[x];
2. φ(C) is a binary linear code of length 2n;
3. ψ(C) is a binary linear cyclic code of length 2n generated by f̃ (x)2h̃(x).

Using the last theorem, we can relate Z2-double cyclic codes to Z4-cyclic codes.

5.1 Z2-double cyclic codes versus Z4-cyclic codes

Let C be a Z4-cyclic code of length n, and w ∈ φ(C). The codeword w can be written as
(u′

0, . . . , u
′
n−1 | ũ0 + u′

0, . . . , ũn−1 + u′
n−1), for (u0, . . . , un−1) = u = φ−1(w) ∈ C. By
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definition of the Gray map, we have that w(1) is (u′
n−1, u

′
0, . . . , u

′
n−2 | ũn−1 + u′

n−1, ũ0 +
u′
0, . . . , ũn−2 + u′

n−2) = φ(un−1, u0, . . . , un−2). Therefore, since C is Z4-cyclic, we have
that w(i) ∈ φ(C).

In general, the Gray image of a linear code over Z4 is not linear. Hence, we shall consider
Z2-double cyclic codes as images of Z4-cyclic codes, C = 〈 f (x)h(x) + 2 f (x)〉, in the case
that such a code C has linear image under theGraymap; that is, when gcd( f̃ (x), (g̃⊗g̃)(x)) =
1 in Z2[x], by Theorem 3. Consequently, we obtain the following proposition.

Proposition 12 Let C = 〈 f (x)h(x) + 2 f (x)〉 be a Z4-cyclic code of odd length n, where
f (x)h(x)g(x) = xn − 1, and gcd( f̃ (x), (g̃ ⊗ g̃)(x)) = 1. Then, φ(C) is a Z2-double cyclic
code in Z

n
2 × Z

n
2 .

Our goal is to establish a relation between the generator polynomial of the Z4-cyclic code
C and its Z2-double cyclic image, φ(C).

Let i ∈ {2, 4}. If C is a Zi [x]-module and g1, . . . , gt ∈ C. Then 〈g1, . . . , gt 〉i will denote
the Zi [x]-submodule of C generated by g1, . . . , gt .

The following theorem is proved in [14, Theorem 8].

Theorem 4 Let n be odd and let f (x), h(x), g(x) be in Z4[x] such that f (x)h(x)g(x) =
xn −1. Then 〈 f (x)h(x)+2 f (x)〉4 = 〈 f̃ (x)h̃(x)〉2 +2〈 f̃ (x)〉2 if and only if gcd( f̃ (x), (g̃⊗
g̃)(x)) = 1 in Z2[x].
Lemma 2 Let C be a linear code over Z4 of type 2γ 4δ such that φ(C) is a linear code.
Let {ui }γi=1 be codewords of order two and {v j }δj=1 codewords of order four such that C =
〈{ui }γi=1, {v j }δj=1〉4. Then,

φ(C) = 〈{φ(ui )}γi=1, {φ(v j )}δj=1, {φ(2v j )}δj=1〉2.
Proof From [6, Lemma 3], it is known that if C is a linear code over Z4 of type 2γ 4δ such
that C = 〈{ui }γi=1, {v j }δj=1〉4, then

〈φ(C)〉2 = 〈{φ(ui )}γi=1, {φ(v j )}δj=1, {φ(2v j )}δj=1, {φ(2v j ∗ vt )}1≤ j<t≤δ〉2,
where u ∗ v denote the component-wise product for any u, v ∈ Z

n
4. We know that

φ(C) is linear if and only if 2u ∗ v ∈ C for all u, v ∈ C, [9]. Since φ(C) is a
binary linear code, then {2v j ∗ vt }1≤ j<t≤δ ∈ C. Therefore, 〈{φ(2v j ∗ vt )}1≤ j<t≤δ〉2 ⊆
〈{φ(ui )}γi=1, {φ(v j )}δj=1, {φ(2v j )}δj=1〉2. 
�
Theorem 5 Let C = 〈 f (x)h(x) + 2 f (x)〉4 be a Z4-cyclic code of odd length n, where
f (x)h(x)g(x) = xn − 1 and gcd( f̃ (x), (g̃ ⊗ g̃)(x)) = 1. Then,

φ(C) = 〈( f̃ (x)h̃(x) | 0), ( f̃ (x) | f̃ (x))〉2.
Proof By Theorem 4, the generators of C are 〈 f̃ (x)h̃(x)〉2 and 2〈 f̃ (x)〉2. By Proposition 12,
we have that φ(C) is a Z2-double cyclic code. Then, by Lemma 2, it is easy to see that the
generator polynomials of φ(C) are φ( f̃ (x)h̃(x)) and φ(2 f̃ (x)). The corresponding images
of the Gray map are φ( f̃ (x)h̃(x)) = (0 | f̃ (x)h̃(x)) and φ(2 f̃ (x)) = ( f̃ (x) | f̃ (x)), hence
φ(C) = 〈(0 | f̃ (x)h̃(x)), ( f̃ (x) | f̃ (x))〉2. Therefore,

φ(C) = 〈( f̃ (x)h̃(x) | 0), ( f̃ (x) | f̃ (x))〉2.

�
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5.2 Z2-double cyclic codes versus Z2Z4-additive cyclic codes

AZ2Z4-additive code C is a subgroup ofZα
2×Z

β
4 (see [4]). Since C is a subgroup ofZα

2×Z
β
4 , it

is also isomorphic to a commutative structure likeZγ
2 ×Z

δ
4 and it has |C| = 2γ+2δ codewords.

A Z2Z4-additive code C ⊆ Z
α
2 × Z

β
4 is called cyclic if the set of coordinates can be

partitioned into two subsets, the set of Z2 and the set of Z4 coordinates, denoted by X and Y ,
such that any cyclic shift of the coordinates of both subsets leaves invariant the code. As it
was done in (1), for (u, v) ∈ Z

α
2 ×Z

β
4 we also denote by (u, v)(1) such shift. These codes can

be identified as submodules of the Z4[x]-module Z2[x]/(xα − 1) × Z4[x]/(xβ − 1). From
[1] and [5], we know that if C ⊆ Z

α
2 ×Z

β
4 is a Z2Z4-additive cyclic code, where β is an odd

integer, then it is of the form

C = 〈(b(x) | 0), (�(x) | f (x)h(x) + 2 f (x))〉4,
where f (x)h(x)g(x) = xβ − 1 in Z4[x], b(x), �(x) ∈ Z2[x]/(xα − 1) with b(x)|(xα − 1),
deg(�(x)) < deg(b(x)), and b(x) divides xβ−1

f (x) �(x) (mod 2).
The extended Gray map � and the extended Nechaev–Gray map � are the maps from

Z
α
2 × Z

β
4 into Z

α+2β
2 given by

�(u, v) = (u, φ(v)), �(u, v) = (u, ψ(v)),

where u ∈ Z
α
2 , v ∈ Z

β
4 , φ is the Gray map and ψ is the Nechaev–Gray map.

Table 1 Optimal Z2-double cyclic codes

Code Generators [r, s] Parameters

C1 b(x) = x2 + x + 1, �(x) = x, a(x) = x + 1 [3,3] [ 6, 3, 3 ]∗

C2 b(x) = x2 + 1, �(x) = 1, a(x) = x2 + x + 1 [2,6] [ 8, 4, 4 ]∗s
C3 b(x) = x3 + x2 + x + 1, �(x) = x2 + x, a(x) = x + 1 [4,4] [ 8, 4, 4 ]∗s
C4 b(x) = x4+x3+x+1, �(x) = x2+x+1, a(x) = x2+x+1 [6,6] [ 12, 6, 4 ]∗s
C5 b(x) = x7+1, �(x) = x4+x2+x+1, a(x) = x4+x2+x+1 [7,7] [ 14, 3, 8 ]∗

C6 b(x) = x6 + x5 + x4 + x3 + x2 + x + 1, �(x)
= x3 + x2 + 1, a(x) = x4 + x2 + x + 1

[7,7] [ 14, 4, 7 ]∗

C7 b(x) = x4 + x3 + x2 + 1, �(x) = x3 + x + 1, a(x)
= x3 + x2 + 1

[7,7] [ 14, 7, 4 ]∗s

C8 b(x) = x7 + 1, �(x) = x3 + x + 1, a(x)
= x9 + x8 + x6 + x5 + x4 + x3 + 1

[7,14] [ 21, 5, 10 ]∗

C9 b(x) = x6 + x5 + x4 + x3 + x2 + x + 1, �(x)
= x4 + x3 + 1, a(x) = x5 + x2 + x + 1

[7,14] [ 21, 10, 7 ]∗

C10 b(x) = x6 + x5 + x4 + x3 + x2 + x + 1, �(x)
s = x + 1, a(x) = x3 + x2 + 1

[7,14] [ 21, 12, 5 ]∗

C11 b(x) = x3 + x2 + 1, �(x) = 1, a(x) = x2 + 1 [7,14] [ 21, 16, 3 ]∗

C12 b(x) = x2 + 1, �(x) = x + 1, a(x)
= x16 + x13 + x10 + x9 + x7 + x6 + x5 + x + 1

[2,30] [ 32, 14, 8 ]

C13 b(x) = x20 + x19 + x18 + x17 + x15 + x12 + x11 + x10

+ x9+ x8+ x5+ x3+ x2+ x+1, �(x) = x15+ x13+ x12

+ x11 + x9 + x8 + x7 + x5 + 1, a(x) = x6 + x4 + x3 + 1

[31,31] [ 62, 36, 10 ]
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Call CX (respectively CY ) the punctured code of C by deleting the coordinates outside
X (respectively Y ). Notice that if φ(CY ) and ψ(CY ) are binary linear codes, then �(C) and
�(C) are not necessary binary linear codes.

Example 2 Let C = 〈(x − 1 | x + 1)〉4 ⊂ Z
2
2 × Z

3
4 be a Z2Z4-additive cyclic code with

b(x) = 0, �(x) = x − 1, f (x) = 1, h(x) = x − 1 and g(x) = x2 + x + 1. Since f (x) = 1,
by Theorem 3, we have that φ(CY ) is linear. By [5], a generator matrix for C is⎛

⎝ 1 1 2 0 0
0 0 3 1 0
0 0 3 0 1

⎞
⎠ .

We know that �(C) is linear if and only if 2(u, v) ∗ (w, z) ∈ C for all (u, v), (w, z) ∈ C, [7].
Clearly, 2(0, 0, 3, 1, 0) ∗ (0, 0, 3, 0, 1) = (0, 0, 2, 0, 0) /∈ C. Therefore, �(C) is not a binary
linear code.

Theorem 6 Let C = 〈(b(x) | 0), (�(x) | f (x)h(x) + 2 f (x))〉4 ⊆ Z
α
2 × Z

β
4 be a Z2Z4-

additive cyclic code, where β is an odd integer and f (x)h(x)g(x) = xβ − 1. Let � be the
extended Nechaev–Gray map. If �(C) is a binary linear code, then �(C) is a Z2-double
cyclic code of length α + 2β and dimension α − deg(b(x)) + deg(h(x)) + 2 deg(g(x)).

Proof By the definition of�, the length of�(C) isα+2β and, since�(C) is a linear code, we
need to prove that �((u, v))(1) ∈ �(C) for all (u, v) ∈ C. By [15], we can easily deduce that
�((u, v))(1) = �((u,−v)(1)). We have that (u,−v)(1) ∈ C and consequently �((u, v))(1)

belongs to �(C). Hence, �(C) is a Z2-double cyclic code. Finally, since |�(C)| = |C|, we
have that |C| = 2α−deg(b(x))+deg(h(x))4deg(g(x)) by [1]. 
�

Table 2 Dual Z2-double cyclic codes

Code Generators of the dual codes [r, s] Parameters

C1 b̄(x) = x3 + 1, �̄(x) = x + 1, ā(x) = 1 [3,3] [ 6, 3, 3 ]

C2 b̄(x) = x2 + 1, �̄(x) = 1, ā(x) = x2 + x + 1 [2,6] [ 8, 4, 4 ]s

C3 b̄(x) = x3 + x2 + x + 1, �̄(x) = x2 + x, ā(x) = x + 1 [4,4] [ 8, 4, 4 ]s

C4 b̄(x) = x4+x3+x+1, �̄(x) = x2+x+1, ā(x) = x2+x+1 [6,6] [ 12, 6, 4 ]s

C5 b̄(x) = x3 + x2 + 1, �̄(x) = 1, ā(x) = 1 [7,7] [ 14, 11, 2 ]

C6 b̄(x) = x4 + x2 + x + 1, �̄(x) = x3 + x, ā(x) = 1 [7,7] [ 14, 10, 3 ]

C7 b̄(x) = x4 + x3 + x2 + 1, �̄(x) = x3 + x + 1, ā(x)
= x3 + x2 + 1

[7,7] [ 14, 7, 4 ]s

C8 b̄(x) = x4 + x3 + x2 + 1, �̄(x) = x, ā(x) = x + 1 [7,14] [ 21, 16, 3 ]

C9 b̄(x) = x7+1, �̄(x) = x4+ x3+ x2 + x, ā(x) = x3+ x +1 [7,14] [ 21, 11, 6 ]

C10 b̄(x) = x7 + 1, �̄(x) = x6 + x4 + x3 + x2 + x + 1, ā(x)
= x5 + x4 + x3 + 1

[7,14] [ 21, 9, 6 ]

C11 b̄(x) = x7 + 1, �̄(x) = x6 + x5 + x2 + 1, ā(x)
= x9 + x6 + x5 + x4 + x3 + x + 1

[7,14] [ 21, 5, 7 ]

C12 b̄(x) = x + 1, �̄(x) = 1, ā(x)
= x13 + x11 + x9 + x8 + x7 + x2 + x + 1

[2,30] [ 32, 18, 2 ]

C13 b̄(x) = x26 + x23 + x21 + x20 + x17 + x16 + x15 + x14

+ x13 + x9 + x8 + x6 + x5 + x4 + x2 + 1, �̄(x)
= x24+x23+x22+x21+x20+x19+x18+x17+x16+x13

+x11+x10+x8+x5+x3+x, ā(x) = x10+x9+x3+x+1

[31,31] [ 62, 26, 15 ]
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6 Examples

Table 1 gives some examples ofZ2-double cyclic codes which have the best knownminimum
distance. In the table, the parameters are [n, k, d], where n = r + s is the length, k is the
dimension, and d is the minimum distance of the code. It is denoted by [.]∗ when the code is
optimal according to [8]. It is denoted by [.]s when the code is self-dual. Table 2 shows the
generators and the parameters of the dual codes of the codes in Table 1.

In Sect. 5, we have studied how Z2-double cyclic codes are related to other families of
cyclic codes. By Theorem 5, we know how to construct the generators of Z2-double cyclic
codes starting from the generators of Z4-cyclic codes. Also, by Theorem 6 we know that the
image of a Z2Z4-additive cyclic code under the Nechaev–Gray map, whenever it is linear, is
also a Z2-double cyclic code. In Tables 3, 4, we present some examples of Z2-double cyclic
codes obtained from Z4-cyclic codes and Z2Z4-additive cyclic codes.
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