
Des. Codes Cryptogr. (2017) 85:533–545
DOI 10.1007/s10623-016-0321-5

New bounds of permutation codes under Hamming
metric and Kendall’s τ -metric

Xin Wang1,2 · Yiwei Zhang1 · Yiting Yang3 ·
Gennian Ge1,4

Received: 30 June 2016 / Revised: 27 November 2016 / Accepted: 16 December 2016 /
Published online: 30 December 2016
© Springer Science+Business Media New York 2016

Abstract Permutation codes are widely studied objects due to their numerous applications
in various areas, such as power line communications, block ciphers, and the rank modulation
scheme for flash memories. Several kinds of metrics are considered for permutation codes
according to their specific applications. This paper concerns some improvements on the
bounds of permutation codes under Hamming metric and Kendall’s τ -metric respectively,
using mainly a graph coloring approach. Specifically, under Hamming metric, we improve
the Gilbert–Varshamov bound asymptotically by a factor n, when the minimum Hamming
distance d is fixed and the code length n goes to infinity. Under Kendall’s τ -metric, we narrow
the gap between the known lower bounds and upper bounds. Besides, we also obtain some
sporadic results under Kendall’s τ -metric for small parameters.

Keywords Permutation codes · Hamming metric · Kendall’s τ -metric · Gilbert–Varshamov
bound · Independent set

Mathematics Subject Classification 94B25 · 94B65

1 Introduction

Let Sn be the symmetric group on n elements. A permutation code is a subset of Sn satisfying
certain constraints. Permutation codes have been studied under various metrics according to
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specific applications. In this paper we focus on two kinds of metrics, the Hamming metric
and the Kendall’s τ -metric. We now briefly introduce the motivations for these two metrics.

During the last decade, permutation codes under Hamming metric have attracted consid-
erable attention, due to their applications in data transmission over power lines [10,18,21].
Permutation codes under Hamming metric are used to correct errors caused by the perma-
nent narrow-band noise and the impulse noise of short duration in power line transmissions.
Besides, permutation codes under Hamming metric have been applied in the design of block
ciphers [7]. The research on permutation codes under Kendall’s τ -metric has a relatively
shorter history, which originates from the development of flashmemories.Rankmodulation is
introduced in [14] as a proper framework for dealingwith errors caused by over-programming
and charge leakage in flash memories. Instead of encoding information with the absolute val-
ues of charge levels, data is represented by the relative rankings of the charge levels on a group
of cells. That is, if we have n cells and c1, c2, . . . , cn ∈ R represent the charge levels, then this
group of cells is said to encode the permutation σ ∈ Sn such that cσ(1) > cσ(2) > · · · > cσ(n).
To detect and/or correct errors in the relative rankings, several metrics on permutations are
used such as Kendall’s τ -metric [1,3,15,17], Ulam metric [9] and l∞-metric [16,20].

The rest of this paper is organized as follows. InSect. 2wegive the definitions andnotations
of permutation codes under Hamming metric and Kendall’s τ -metric and summarize some
important known facts regarding the bounds on them, and thenwe introduce the corresponding
graph models as a preparatory step for the upcoming analysis. A lower bound of permutation
codes under Hamming metric is given in Sect. 3 which improves the Gilbert–Varshamov
bound by a factor of n. A lower bound of permutation codes under Kendall’s τ -metric is
given in Sect. 4. In Sect. 5 some other sporadic results concerning permutation codes under
Kendall’s τ -metric are listed. We conclude in Sect. 6.

2 Preliminaries

In this section we first give some definitions and notations for permutation codes under Ham-
ming metric and Kendall’s τ -metric and summarize some important known facts regarding
the bounds.

Let [n] denote {1, 2, . . . , n}. Let π = [π1, π2, . . . , πn] be a permutation over [n] such
that for each i ∈ [n] we have π(i) = πi . This form is known as the vector notation for
a permutation. For an integer x ∈ [n], π−1(x) indicates the position of x appearing in
π . For two permutations σ and π , their composition, denoted by σπ , is the permutation
with σπ(i) = σ(π(i)) for all i ∈ [n]. All the permutations under this operation form the
noncommutative group Sn known as the symmetric group on [n] of size |Sn | = n!. Denote by
ε � [1, 2, . . . , n] the identity element of the group. For an unordered pair of distinct numbers
x, y ∈ [n], this pair forms an inversion in a permutation π if x < y and simultaneously
π−1(x) > π−1(y). Let I (π) denote the total number of inversions in a permutation π . π is
called an even/odd permutation accordingly due to the parity of I (π).

2.1 Hamming metric

For twopermutationsσ andπ , theHammingdistancebetween them is the number of positions
in which their vector notations differ, i.e.

dH (σ, π) = |{i ∈ [n] : σi �= πi )}|.
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Permutation codes under Hamming metric and Kendall’s τ -metric 535

For 1 ≤ d ≤ n, we say that C ⊂ Sn is an (n, d)-permutation code under Hamming metric,
if dH (σ, π) ≥ d for every two distinct permutations σ, π ∈ C. Denote the largest size of an
(n, d)-permutation code under Hamming metric as AH (n, d) and a code attaining this size
is said to be optimal. The exact value of AH (n, d) and the constructions of optimal codes
are the main research objectives. There are some fundamental results by basic combinatorial
techniques.

Proposition 1 [5, Proposition 1.1]

1. AH (n, 2) = n!;
2. AH (n, 3) = n!/2;
3. AH (n, n) = n;
4. AH (n, d) ≤ nAH (n − 1, d);
5. AH (n, d) ≤ n!/(d − 1)!.
However, deciding AH (n, d) turns out to be difficult for 4 ≤ d ≤ n − 1, except for some

specifical cases.

Proposition 2 1. [6] If there are m mutually orthogonal Latin squares of order n, then
AH (n, n− 1) ≥ mn. In particular, if q is a prime power, then AH (q, q − 1) = q(q − 1).

2. [11] If q is a prime power, then AH (q + 1, q − 1) = (q + 1)q(q − 1).

Wenow summarize some important general results concerning the lower and upper bounds
of AH (n, d).

Let D(n, k) (k = 0, 1, . . . , n) denote the set of all permutations in Sn which are exactly
at distance k under Hamming metric from the identity permutation ε:

D(n, k) = {π ∈ Sn : dH (π, ε) = k}.
A derangement of order k is a permutation π ∈ Sk with no fixed points, i.e., πi �= i for

1 ≤ i ≤ k. Let Dk be the number of derangements of order k. Then the cardinality of D(n, k)
is

|D(n, k)| =
(
n

k

)
Dk .

For any permutation π ∈ Sn , the Hamming ball of radius r centered at π , denoted as
BH (π, r), is defined by BH (π, r) � {σ ∈ Sn : dH (σ, π) ≤ r}. Clearly under Hamming
metric the size of a ball of radius r does not depend on the center of the ball and we denote
its size as BH (r):

BH (r) =
r∑

k=0

|D(n, k)|.

The Gilbert–Varshamov bound and sphere-packing bound for permutation codes under
Hamming metric are well-known.

Proposition 3

n!
BH (d − 1)

≤ AH (n, d) ≤ n!
BH

(� d−1
2 	) .

Improved lower bound for the case when d is fixed and n → ∞ is derived by Gao, Yang
and Ge in [12].

123



536 X. Wang et al.

Proposition 4 [12, Theorem 10] Let d be fixed and n → ∞. Then

AH (n, d) ≥ �
(
log n

n!
BH (d − 1)

)
.

Later, Tait, Vardy and Verstraëte [19] consider the case when the ratio d/n is fixed and
improve the Gilbert–Varshamov bound by a factor of n.

Proposition 5 [19, Theorem 2] Let d/n be a fixed ratio with 0 < d/n < 0.5. Then as
n → ∞, we have

AH (n, d) ≥ �
(
n

n!
BH (d − 1)

)
.

2.2 Kendall’s τ -metric

Given a permutation π = [π1, π2, . . . , πn] ∈ Sn , an adjacent transposition is an exchange
of two adjacent elements πi , πi+1, for some 1 ≤ i ≤ n − 1, resulting in the permutation
[π1, . . . , πi−1, πi+1, πi , πi+2, . . . , πn]. TheKendall’s τ -distance between two permutations
σ and π , denoted by dK (σ, π), is the minimum number of adjacent transpositions required to
transformonepermutation into the other. For example, theKendall’s τ -distance betweenπ1 =
[1, 2, 3, 4, 5] and π2 = [2, 3, 1, 5, 4] is three, since we may do the adjacent transpositions
[1, 2, 3, 4, 5] → [2, 1, 3, 4, 5] → [2, 3, 1, 4, 5] → [2, 3, 1, 5, 4] and one may easily check
that only two adjacent transpositions are not enough. A well-known equivalent expression
for dK (σ, π) [15] is as follows:

dK (σ, π) = |{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)}|.
For 1 ≤ d ≤ (n

2

)
, we say that C ⊂ Sn is an (n, d)-permutation code under Kendall’s

τ -metric, if dK (σ, π) ≥ d for every two distinct permutations σ, π ∈ C. Denote the largest
size of an (n, d)-permutation code under Kendall’s τ -metric as AK (n, d) and a code attaining
this size is said to be optimal. The exact value of AK (n, d) and the constructions of optimal
codes are the main research objectives. There are some fundamental results as follows.

Proposition 6 1. AK (n, 2) = n!/2 and the optimal codes are either the set of all even
permutations or the set of all odd permutations;

4. [3, Theorem 10] For 2
3

(n
2

)
< d ≤ (n

2

)
, AK (n, d) = 2.

However, deciding AK (n, d) turns out to be difficult for 3 ≤ d ≤ 2
3

(n
2

)
.Wenowsummarize

some important results concerning the lower and upper bounds of AK (n, d).
Similarly as above we first introduce the Gilbert–Varshamov type lower bound and the

sphere-packing upper bound. For any permutation π ∈ Sn , the Kendall’s τ -ball of radius r
centered at π , denoted as BK (π, r), is defined by BK (π, r) � {σ ∈ Sn : dK (σ, π) ≤ r}.
Clearly under Kendall’s τ -metric the size of a ball of radius r does not depend on the center of
the ball and we denote its size as BK (r). The Gilbert–Varshamov bound and sphere-packing
bound for permutation codes under Kendall’s τ -metric are as follows:

Proposition 7 [15, Theorems 17 and 18]

n!
BK (d − 1)

≤ Ak(n, d) ≤ n!
BK (� d−1

2 	) .
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For two permutations σ and π with dK (σ, π) = 1, the double ball of radius r centered at
σ and π is defined by DB(σ, π, r) � B(σ, r)∪ B(π, r). Denote by DBn,r the double ball of
radius r in Sn centered at the identity permutation ε and the permutation [2, 1, 3, 4, . . . , n].
Improved upper bound for the cases when d is even is derived in [3], using a code-anticode
approach. An anticode is a subset of codewords with a given maximum distance.

Proposition 8 [3, Corollaries 3 & 5] If a code C ⊂ Sn has minimum Kendall’s τ -distance
d, and an anticode A ⊂ Sn has maximum Kendall’s τ -distance d − 1, then |C| · |A| ≤ n!.
Particularly, since DBn,r is an anticode of diameter 2r + 1, so we have

AK (n, 2(r + 1)) ≤ n!
|DBn,r | .

Regarding the improvements on the lower bound, first we note that we could just con-
centrate on AK (n, d) with odd d , since we have the following simple but useful fact [15]:

Lemma 9 [15, Theorem 26] For all n and t ≥ 1 we have AK (n, 2t) ≥ 1
2 AK (n, 2t − 1).

An important improvement of the lower bound is derived in [1], which is a generalization
of a construction of an (n, 3)-permutation code under Kendall’s τ -metric using codes in the
Lee metric appeared in [15]. The generalization leads to a construction of an (n, 2t + 1)-
permutation code under Kendall’s τ -metric, which is of optimal size up to a constant factor,
for a fixed t .

Proposition 10 [1, Theorem 4.5] Let m = ((n−2)t+1 −3)/(n−3), where n−2 is a prime
power. Then we have

AK (n, 2t + 1) ≥
{
n!/(t (t + 1)m), t odd;
n!/(t (t + 2)m), t even.

2.3 Graph models

Finally in this section we introduce a natural connection between codes and independent
sets of their corresponding graphs. A graph G consists of a set of vertices V (G) and a set
of edges E(G). Two vertices u and v are called adjacent if {u, v} ∈ E(G). An independent
set in a graph is a set of vertices where every pair of vertices are nonadjacent. The size
of the largest independent set in a graph G is called the independence number, denoted as
α(G).

Let GH and GK be graphs with the same vertex set Sn . Two vertices are connected in GH

(respectively, GK ) if and only if their Hamming distance (respectively, Kendall’s τ -distance)
is at most d − 1. Then, an (n, d)-permutation code under Hamming metric (respectively,
Kendall’s τ -metric) is equivalent to an independent set in GH (respectively, GK ). Via this
natural connection, graph-theoretic tools for analyzing independence numbers can be used
for analyzing bounds of codes.

In this paper, we mainly use a coloring approach to analyze the lower bound of the
independence numbers of GH and GK . A coloring of a graph assigns a color to each vertex.
It is called a proper coloring if it never assigns the same color to both endpoints of an edge.
The chromatic number of a graph G, denoted by χ(G), is the smallest integer k such that a
proper coloring of G using k colors exists. Given a proper coloring, by definition every set
of vertices with a same color constitutes an independent set. So we have
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Lemma 11 α(G) ≥ |V (G)|/χ(G).

Thus, lower bounds of α(G) could be derived via analyzing upper bounds of χ(G).
Another fact concerning the independence number of a graph is as follows. An auto-

morphism of a graph G is a bijective function f : V (G) → V (G), such that for any pair
of vertices u, v ∈ V (G), ( f (u), f (v)) ∈ E(G) if and only if (u, v) ∈ E(G). A graph G
is called vertex transitive if for any two vertices u and v, there exists some automorphism
f : V (G) → V (G) such that f (u) = v. Then it is well known that (see, for example [13])

Lemma 12 If the graph G is vertex-transitive and G ′ is any induced subgraph of G. Then
we have

α(G)

|V (G)| ≤ α(G ′)
|V (G ′)| .

3 A lower bound of permutation codes under Hamming metric

In this section we consider the lower bound of AH (n, d) by giving a proper coloring for the
graph GH .

Theorem 13 Let n, d be integers, 4 ≤ d ≤ n − 1. Let p be the smallest prime number
greater than or equal to n. Then, we have

AH (n, d) ≥ n!
pd−2 .

Proof Let Zp = Z/pZ denote the residue class modulo p. View the vector notation of a
permutation as an n × 1 vector. Consider the coloring map

f : Sn → Z
d−1
p ,

whose value at σ ∈ Sn is determined by

f (σ ) = Aσ (mod p),

where A is a (d −1)×n Vandermonde matrix as follows (x1, x2 . . . , xn are distinct numbers
in {0, 1, . . . , p − 1}):

⎛
⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xd−2
1 xd−2

2 · · · xd−2
n

⎞
⎟⎟⎟⎠ .

We claim that this coloring is proper. For any two distinct permutations σ and π with
a same color v ∈ Z

d−1
p , we have Aσ ≡ Aπ ≡ v (mod p). So A(σ − π) ≡ 0 (mod p).

Suppose the distance between σ and π is less than d , then there are at most d − 1 nonzero
coordinates in σ − π . Then we can deduce that there exist d − 1 columns in A which are
linearly dependent in Zp , which is a contradiction to the fact that every d − 1 columns in A
are linearly independent in Zp . Thus every two vertices with the same color are nonadjacent
in GH . So our coloring is proper.

Now we count the number T of colors we used. The colors are in Zd−1
p and note that the

first coordinate is a constant 1 + 2 + · · · + n (mod p). Thus T ≤ pd−2. Now each color
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corresponds to an independent set in GH , or equivalently, an (n, d)-permutation code under
Hamming metric. By Lemma 11 we have

|AH (n, d)| ≥ n!
pd−2 . ��

Consider the asymptotic behavior of our lower bound. The following notations simplify
the upcoming statements and comparisons. In the remaining part of this section, AH (n, d)

denotes the boundwe get in Theorem13, AGV
H (n, d) denotes the classicalGilbert–Varshamov

bound and ÃH (n, d) denotes the lower bound derived in [12].

Corollary 14 When d is a fixed constant and n goes into infinity, AH (n, d) improves the
classical Gilbert–Varshamov bound by a factor of n, that is,

AH (n, d)

AGV
H (n, d)

= �(n).

Proof Since Dk = � k!
e + 1

2	, we have

BH (d − 1) =
d−1∑
k=0

|D(n, k)| =
d−1∑
k=0

(
n

k

)
Dk = 	(nd−1).

It is well known [4] that there exists a prime p, satisfying n ≤ p ≤ 2n,

AH (n, d) ≥ n!
pd−2 ≥ n!

(2n)d−2 .

Then

AH (n, d)

AGV
H (n, d)

≥ BH (d − 1)

(2n)d−2 = �(n).

��
Furthermore, our lower bound also performs quite well when n is small. For d = 5 and

8 ≤ n ≤ 20, we list the results of ÃH (n, d) and AH (n, d) in Table 1. Relatively better values
are in bold form.

To sum up, the analysis above gives:

Theorem 15 When d is a fixed constant and n goes into infinity,

AH (n, d) ≥ �
(
n

n!
BH (d − 1)

)
.

A final remark is a comparison of our result with Proposition 5, the result obtained by
Tait, Vardy and Verstraëte [19]. They are restricted to the case when d/n is a fixed ratio with
0 < d/n < 0.5.Whereas our result considers the casewhen d is fixed and n goes into infinity,
that is, the ratio d/n goes into zero. So in some sense our result works as a complement of
theirs.

4 A lower bound of permutation codes under Kendall’s τ -metric

In the rest of this paper we turn our attention into Kendall’s τ -metric. As has been noted in
Proposition 10, the lower bound of AK (n, d) derived by [1] meets the sphere-packing upper
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Table 1 A comparison of
AH (n, d) and ÃH (n, d) with
d = 5 and 8 ≤ n ≤ 20

n AH (n, d) ÃH (n, d)

8 30 90

9 272 509

10 2726 3386

11 29,990 25,885

12 218,025 223,378

13 2,834,328 2,147,724

14 17,744,410 22,767,826

15 266,166,164 263,832,788

16 4,258,658,637 3,317,928,906

17 72,397,196,844 45,006,297,715

18 933,426,695,688 655,021,291,542

19 17,735,107,218,083 10,181,693,092,799

20 199,959,070,286,565 168,351,610,362,186

bound asymptotically for any fixed d . There’s only a constant gap between the lower and
upper bounds. In this section we attempt to narrow this gap.

For a permutation π ∈ Sn , an inversion vector xπ = (xπ (2), xπ (3), . . . , xπ (n)) ∈ Zn ! �
Z2 × Z3 × · · · × Zn is defined as:

xπ (i) = |{ j : j < i, π−1( j) > π−1(i)}|, 2 ≤ i ≤ n.

That is, xπ (i) ∈ Zi counts the number of inversions formed by ‘i’ and ‘ j’, 1 ≤ j ≤ i − 1.
For example, let π = [4, 5, 2, 1, 3]. Then xπ = (1, 0, 3, 3). The sum of all entries equals the
total number of inversions I (π).

An adjacent transposition results in an error of weight one in the inversion vector xπ .
Specifically, suppose we have two consecutive numbers a and b in the original permutation,
with a < b. Then an adjacent transposition which switches a and b will result in an error
e+

b , which is a vector with +1 on the entry xπ (b) and 0 elsewhere. Continuing the example,
switch ‘4’ and ‘5’ in π , we have π ′ = [5, 4, 2, 1, 3] and xπ ′ = (1, 0, 3, 4). Then xπ ′ − xπ =
(0, 0, 0, 1) = e+

5 .
In contrast, if we have two consecutive numbers b and a in the original permutation, with

b > a, then an adjacent transposition which switches b and a will result in an error e−
b ,

which is a vector with −1 on the entry xπ (b) and 0 elsewhere. Continuing the example,
switch ‘5’ and ‘2’ in π , we have π ′ = [4, 2, 5, 1, 3] and xπ ′ = (1, 0, 3, 2). Then xπ ′ − xπ =
(0, 0, 0,−1) = e−

5 .
Between two permutations, t adjacent transpositions together lead to an error vector e,

which is the summation of each error vector corresponding to each adjacent transposition.
Let ω(e) be the summation of all the entries in e, performed over the integers. Note that since
there may be some offsets of the form e+

b and e−
b , ω(e) will be an integer with absolute value

no more than t .
The key tool is the following famous theorem of Bose and Chowla [2]:

Lemma 16 [2] Let q be a power of a prime and m = qt+1−1
q−1 . There exist q + 1 integers

d1 = 0, d2, . . . , dq+1 in Zm such that the sums
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di1 + di2 + · · · + dit (1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ q + 1)

are all distinct modulo m.

Set q + 1 = n − 1. We now deal with AK (n, 2t + 1). Color each permutation in Sn using
colors (c1, c2) ∈ Z2t+1 × Zm .

Theorem 17 Under the parameters given above, for any permutation π ∈ Sn, let c1(π) ≡
I (π) (mod 2t + 1) and let c2(π) ≡ ∑n−1

i=1 di xπ (i + 1) (mod m). Then for any two permu-
tations π and σ with dK (π, σ ) < 2t + 1, we have (c1(π), c2(π)) �= (c1(σ ), c2(σ )).

Proof Let e = xπ − xσ be the error vector between the inversion vectors of the two permu-
tations. Since dK (π, σ ) < 2t + 1, |ω(e)| ≤ 2t . If |ω(e)| �= 0, then clearly c1(π) �= c1(σ ).
Otherwise, ω(e) = 0, then the value of c2(π) − c2(σ ) modulo m is the difference of two
parts of summations. Each summation is the sum of some s integers among {d1, . . . , dq+1},
with s ≤ t . By the Bose-Chowla theorem, this difference is nonzero so c2(π) �= c2(σ ). ��

So the coloring is a proper coloring in the graphGK . A remark is that the proof of Barg and
Mazumdar [1] could be stated similarly in the framework above. Their coloring scheme aims
at simultaneously dealing with all the possible error vectors. However, this simultaneousness
also restricts the number of colors to be of order t2m (see Proposition 10), which is larger than
(2t + 1)m in our approach. The trick in our framework, which deals with errors respectively
according to whether |ω(e)| is zero or not, turns out to be useful. In summary, our coloring
framework gives:

Theorem 18 Let m = ((n − 2)t+1 − 1)/(n − 3), where n − 2 is a prime power. Then
AK (n, 2t + 1) ≥ n!

(2t+1)m .

As for AK (n, 2t), by the theorem above and Lemma 9, we immediately have:

Theorem 19 Letm = ((n−2)t−1)/(n−3), where n−2 is a prime power. Then AK (n, 2t) ≥
n!

2(2t−1)m .

Wemention that there’s still a slight chance of doing better. In our framework above, when
dealing with errors with |ω(e)| �= 0, we calculate the inversion number of a permutation
modulo 2t + 1. Could we lower this number? We now state another Bose–Chowla theorem
also appeared in [2].Note that in the framework above, both of the twoBose–Chowla theorems
could be applied, and actually they lead to similar results, with Lemma 16 performing slightly
better. However, the following lemma will benefit our analysis later.

Lemma 20 [2] Let q = pn be a prime power. Then we can find q nonzero integers (less
than qt ) d1 = 1, d2, . . . , dq such that the sums

di1 + di2 + · · · + dit (1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ q)

are all distinct modulo qt − 1.

The exact constructions of these integers are as follows. Let α1 = 0, α2, . . . , αq denote all
the elements in Fpn . Let y be a primitive element of the extension field Fpnt . Let ydi = y+αi

for i = 1, 2 . . . , q , where di < pnt . Then {di }1≤i≤q is the desired set of integers for carrying
out our coloring scheme inTheorem17.The choice of the primitive element y, or equivalently,
the choice of the irreducible polynomial of degree t with coefficients from Fpn , uniquely
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determines {di }1≤i≤q . We now expect more properties from the choice of the irreducible
polynomial.

Take AK (n, 5) as an example. Now we need an appropriate irreducible polynomial of
degree 2 with coefficients from Fpn , denoted as y2 = ay+b, a, b ∈ Fpn . We further demand
that the set of integers {di }1≤i≤q satisfies: the sum of any three integers is nonzero modulo
p2n − 1. That is, (y + i)(y + j)(y + k) �= 1 for any i, j, k ∈ Fpn . It can be checked that this
is equivalent to the following problem.

Problem: For any prime power pn , find a, b ∈ Fpn such that
• y2 = ay + b is an irreducible polynomial in Fpn , and
• the following system of equations,{

a2 + b + ai + aj + ak + i j + ik + jk = 0

ab + ib + jb + kb + i jk = 1

with i, j, k being indeterminate, has no solution in F3
pn .

Via computer search, although the desired a and b do not exist for F5 and F7, yet they do
exist for primes 11, 13, 17, 19, 23. We conjecture that it may be true that there are infinitely
many prime powers for which the desired a and b exist.

Once a and b exist for a prime power pn , then we could do a small adjustment for our
coloringmap.Now let c̃1(π) ≡ I (π) (mod 3) instead ofmodulo 5. For any twopermutations
σ and τ with dK (σ, π) < 5, the only possibility for c̃1(σ ) = c̃1(π) and ω(xπ − xσ ) �= 0
is that the error vector between their inversion vectors xσ and xπ is a vector with exactly
three entries being ‘1’ and otherwise ‘0’. Then the difference of c2(σ ) and c2(π) will be a
summation of three integers out of {di }1≤i≤q . But by the further demand of the properties
of a and b we choose, this difference is ensured to be nonzero modulo p2n − 1. Thus it is
guaranteed that c2(σ ) �= c2(π). So in this manner, the constant gap between the lower bound
and the sphere-packing upper bound could be a little bit smaller.

5 Sporadic results on AK (n, d)

In this section we provide some other sporadic results concerning permutation codes under
Kendall’s τ -metric.

5.1 A generalization of the code-anticode method

First we take a look at Lemma 12. The code-anticode method used in [3] corresponds to
finding a subset G ′ of vertices, satisfying α(G ′) = 1, with |G ′| as large as possible. A natural
generalization is to jump out of the restriction α(G ′) = 1. That is, as Lemma 12 suggests, we
want to search for a subset G ′ with α(G ′)/|G ′| as small as possible. An illustrative example
is the following precise determination of the value AK (5, 3). In [3] it has been verified that
20 ≤ AK (5, 3) ≤ 23. We now show that 20 is the exact value.

Theorem 21

AK (5, 3) = 20.

Proof Select G ′ = {[1, 2, 3, 4, 5], [1, 2, 3, 5, 4], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 2, 5, 3, 4],
[1, 2, 5, 4, 3], [2, 1, 3, 4, 5], [2, 1, 3, 5, 4], [2, 1, 4, 3, 5], [2, 1, 4, 5, 3], [2, 1,
5, 3, 4], [2, 1, 5, 4, 3]}. It can be easily verified that α(G ′) = 2. So we have AK (5,3)

5! ≤
α(G ′)
|G ′| = 2

12 , which leads to AK (5, 3) ≤ 20 and thus fixes this value. ��

123



Permutation codes under Hamming metric and Kendall’s τ -metric 543

Although this is only a simple case, yet the idea lying behind it may have potentials for
other parameters, or even perhaps for analyzing upper bounds for other various codes.

5.2 Sporadic results by computer search

Some other sporadic results concerning small parameters n = 5 and n = 6 could be obtained
by computer search, via some algorithms designed for searching maximal independent sets.
We obtain some values better than those listed in the table in [3], by the program developed by
AshayDharwadker [8]. These values are listed as follows and examples of their corresponding
codewords are listed in the appendix of the full version of the paper [22]. Although lacking
strictly mathematical analysis, the power of the program suggests that these may be the exact
values.

Theorem 22 [22, Appendix]

AK (5, 4) ≥ 12, AK (5, 6) ≥ 5,

AK (6, 3) ≥ 101, AK (6, 4) ≥ 64, AK (6, 5) ≥ 25,

AK (6, 6) ≥ 20, AK (6, 7) ≥ 11, AK (6, 8) ≥ 7.

5.3 Counting pairs of inversions: a Plotkin-type bound

In this subsection we prove a Plotkin-type bound by counting pairs of inversions. Recall that
we have the following expression for Kendall’s τ -metric:

dK (σ, π) = |{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)}|.
Theorem 23 If AK (n, 2t) ≥ M, then

2

(
M

2

)
t ≤

(
n

2

)⌈
M

2

⌉ ⌊
M

2

⌋
,

and if AK (n, 2t + 1) ≥ M, then
(⌈M

2

⌉
2

)
(2t + 2) +

(⌊M
2

⌋
2

)
(2t + 2) +

⌈
M

2

⌉ ⌊
M

2

⌋
(2t + 1) ≤

(
n

2

) ⌈
M

2

⌉ ⌊
M

2

⌋
.

Proof Suppose now we have an (n, d)-permutation code C under Kendall’s τ -metric of size
M . We now calculate the summation of all the pair-wise distances

∑ = �c1,c2∈CdK (c1, c2).
Firstly, for any pair of numbers 1 ≤ i < j ≤ n, we could partition C into two parts, according
to whether i precedes j or vice versa. Then from the expression for Kendall’s τ -metric, we
know that the pair (i, j) contributes one to the distance between two permutations from
different parts. Thus, the pair (i, j) contributes at most �M

2 ��M
2 	 to ∑

. So we have,

∑
≤

(
n

2

) ⌈
M

2

⌉ ⌊
M

2

⌋
.

On the other hand,
∑ ≥ (M

2

)
d . And especially, if the distance d is odd, since the Kendall’s

τ -distance between two permutations of the same parity is even, then
∑ ≥ (� M

2 �
2

)
(d + 1) +(� M

2 	
2

)
(d + 1) + �M

2 ��M
2 	d .

The theorem follows from a comparison of the upper bound and lower bound of
∑

. ��
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Now we analyze when will the theorem above be useful. Using the first constraint as an
example, when d ≤ 1

2

(n
2

)
, the constraint naturally holds for any M and thus does not provide

any useful bound on M . However, when 1
2

(n
2

)
< d ≤ 2

3

(n
2

)
, this bound may turn out to be

better than the sphere packing upper bound or Proposition 8. It is generally unrealistic to
compare the Plotkin-type bound to the sphere-packing upper bound or Proposition 8 since
the precise size of a Kendall’s τ -ball or a double-ball is difficult to analyze. Below we list
several cases for small parameters, as supporting evidences to show that Theorem 23 may
work slightly better.

n d Sphere-packing bound Theorem 23

6 9 7 4
7 13 8 4
7 11 14 12
8 17 11 4

n d Proposition 8 Theorem 23

7 12 11 8
8 18 9 4
8 16 14 8

6 Conclusions

Permutation codes under different metrics are interesting topics due to their various appli-
cations. The bounds of permutation codes can be analyzed via studying the independence
numbers of the corresponding graphs. We use a coloring approach to analyze the indepen-
dence numbers, which leads to some improvements on the lower bounds of permutation
codes under Hamming metric and Kendall’s τ -metric, respectively. Although this coloring
approach is well-known, the tricky part is the coloring strategy case-by-case. Besides, we
also derive some other sporadic results concerning the upper bound of permutation codes
under Kendall’s τ -metric.
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