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Abstract Weobtain some new nonexistence results of generalized bent functions fromZ
n
q to

Zq (called type [n, q]) in the case that there exist cyclotomic integers in Z[ζq ] with absolute
value q

n
2 . This result generalizes two previous nonexistence results [n, q] = [1, 2×7] of Pei

(Lect Notes Pure Appl Math 141:165–172, 1993) and [3, 2 × 23e] of Jiang and Deng (Des
Codes Cryptogr 75:375–385, 2015). We also remark that by using a same method one can
get similar nonexistence results of GBFs from Z

n
2 to Zm .

Keywords Generalized bent functions · Cyclotomic fields · Prime ideal factorizations ·
Class groups

Mathematics Subject Classification 11R04 · 94A15

1 Introduction

Bent functions were first introduced by Rothaus [16] in 1976, which are functions from Z
n
2

to Z2 with some property, where Zm = Z/mZ for a positive integer m. Dillon [1] showed
that bent functions are the characteristic functions of elementary Hadamard difference sets.
Bent functions have many applications to coding theory, cryptography and sequence designs
[13]. In coding theory, bent functions have the maximum distance to the first order binary
Reed–Muller code. In a cryptosystem, functions with large nonlinearity values are usually
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employed to resist linear crypto-analysis and correlation-attack, and bent functions are just
the ones with maximum nonlinearity.

Bent functions have many generalizations. Kumar et al. [9] considered bent functions
from Z

n
q to Zq in 1985, where q ≥ 2 and n ≥ 1 are integers. Later, bent functions were

generalized to arbitrary finite abelian groups [11,17], even to arbitrary finite groups [15,20].
A natural question is when bent functions do exist. Rothaus [16] proved that bent functions

from Z
n
2 to Z2 exist if and only if n is even. However, this problem is far from being solved

for other types of generalized bent functions. For generalized bent functions (GBF for short)
from Z

n
q to Zq defined in [9], Kumar et al. constructed them except the case that n is odd and

q ≡ 2 (mod 4). There are many nonexistence results for GBF defined in [9], for example,
see [2–4,7,8,14] and the references in [8]. Especially, Feng and co-authors built connections
between the nonexistence of GBF and class numbers of imaginary quadratic fields in [2–
4]. In fact, they proved stronger results that there are no algebraic integers with prescribed
absolute values in some cyclotomic field. However, GBFs’ existence request that there are
algebraic integers with prescribed absolute values in some cyclotomic field and some specific
conditions (so-called bent conditions) are also satisfied. In [8], Jiang and Deng showed that
there are no GBFs from Z

n
q to Zq with n = 3 and q = 2 · 23e for e ≥ 1. Notice that there are

algebraic integers with prescribed absolute values (2 · 23e) 3
2 in the cyclotomic field Q(ζ23e ),

but Jiang and Deng showed that the bent conditions are not satisfied.
Motivated by the results in [7,8], we obtain further nonexistence results for GBFs from

Z
n
q to Zq .
This paper is organized as follows. In Sect. 2, we list some previous work and state our

main result. In Sect. 3, we list some facts of algebraic number theory which we need. We
prove the main result in Sect. 4. In Sect. 5, we apply our method to GBFs from Z

n
2 to Zm and

obtain similar results. Finally, a short conclusion is given.

2 Previous work and our main result

Let q ≥ 2 be an integer, Zq = Z/qZ and ζq = exp
(
2π i
q

)
. A function f from Z

n
q to Zq is

called a generalized bent function (GBF) of type [n, q] if F(λ)F(λ) = qn for every λ ∈ Z
n
q

where
F(λ) =

∑
x∈Zn

q

ζ
f (x)
q · ζ−x ·λ

q

is the Fourier transform of the function ζ
f (x)
q , x · λ is the standard dot product, and F(λ) is

the complex conjugate of F(λ).
Note that if there is no element in Z[ζq ] with absolute value q

n
2 , then there is no GBF of

type [n, q]. Feng [2] and Feng and Liu [3,4] get nonexistence results by showing that there
are no cyclotomic integers with prescribed absolute values. For a survey of their results, see
[8]. In this paper, we will focus on the nonexistence of GBFs of type [n, q = 2× pe] where
p ≡ 7 (mod 8) is a prime. Feng [2] proved the following result:

(1) Let p ≡ 7 (mod 8) be a prime, f the order of 2 modulo pe, and m the smallest odd
positive integer such that x2 + py2 = 2m+2 has Z-solutions. Then there is no GBF of

type [n < m
s , 2pe], where n is odd and s = pe−pe−1

2 f .
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Nonexistence of two classes of generalized bent functions 473

However, in this paper we focus on the nonexistence of GBFs in the case that there exist
cyclotomic integers with prescribed absolute value. Restricting to the case q = 2pe

(p ≡ 7 mod 8), there are three known results:
(2) Pei [14] proved that there is no GBF of type [n = 1, q = 2×7]. Notice that the absolute

value of
(
1+√−7

2

) √−7 ∈ Z[ζ7] is 14 1
2 .

(3) Ikeda [7] proved that there is no GBF of type [n = 1, q = 2 × pe], where p ≡ 7
(mod 8) is a prime. This result includes Pei’s result.

(4) Jiang and Deng [8] proved that there is no GBF of type [n = 3, q = 2 × 23e] for each
e ≥ 1. Notice that the absolute value of

(
3+√−23

2

) (√−23
)e ∈ Z[ζ23e ] is (2 × 23e)

3
2 .

In this article we extend (2) and (4) to a general situation by extending the methods
developed in [7,8].

We need a definition to state our result. Let p ≡ 7 (mod 8) be a prime number. Then
2 splits in Q(

√−p). Let p be a prime ideal of Q(
√−p) above 2. We define tp to be the

minimal positive integer such that ptp is principal. By Gauss’s genus theory, tp is odd. For
more about tp , see Remark 2. In this article, our main result is the following:

Theorem 1 If p ≡ 7 (mod 8) is a prime and the order of 2 modulo p is p−1
2 , then there

do not exist GBFs of type [n = tp, q = 2p]. If p further satisfies 2p−1 �≡ 1 (mod p2), then
there do not exist GBFs of type [n = tp, q = 2pe] for any e ≥ 1.

Remark 1 The condition 2p−1 �≡ 1 (mod p2) is to ensure the order of 2 modulo pe to be
φ(pe)
2 , where φ is Euler function, see Lemma 1. For p < 6.7 × 1015, p = 3511 is the only

prime such that p ≡ 7 (mod 8) and 2p−1 ≡ 1 (mod p2), see [5].

Remark 2 Some basic facts about the number tp
Of course, tp is the order of p in the class group of Q(

√−p). The definition of tp does not
depend on the choice of p. Another prime ideal above 2 is the inverse of p in the class group,
so they have the same order. By Gauss’s genus theory or class field theory [19, Theorem
10.4(b)], the class number of Q(

√−p) is odd. Hence tp is also odd. In [2, Remark 2] , Feng

gave an estimate that tp >
log p
log 2 − 2. In particular, tp ≥ 3, if p ≥ 23. Feng also showed

that tp is the smallest odd positive integer such that x2 + py2 = 2tp+2 have solutions with
(x, y) ∈ Z

2.

We give a small table of the primes less than 200which satisfy all conditions in Theorem 1.
From the table below, it can be seen that our result includes the results of Pei and Jiang–Deng.

p 7 23 47 71 79 103 167 191 199

tp 1 3 5 7 5 5 11 13 9

By the estimate in Remark 2 we know that tp = 1 if and only if p = 7. So our result is
different from Ikeda’s.

Now we explain the condition n = tp briefly. Fix a prime p satisfying all conditions in
Theorem 1. Let q = 2pe and n be a positive odd integer.

If n < tp , Feng [2] actually shows that there does not exist an element in Z[ζq ] with
absolute value qn/2, so there is no GBF of type [n, q = 2pe].
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474 J. Li, Y. Deng

If n ≥ tp , there exist cyclotomic integers in Z[ζq ]with absolute value qn/2, see Lemma 3.
Our result shows that there is no GBF in the case n = tp . Therefore, Feng’s result and our
result have shown that there is no GBF of type [n ≤ tp, q = 2pe] for odd n. However, there
are no nonexistence results of GBFs in the case n > tp .

3 Basic facts from algebraic number theory

The methods of proving nonexistence results of GBFs almost all involve algebraic number
theory, mainly the basic arithmetic (ideals, units, class groups) of cyclotomic fields and their
subfields. The reader can consult [12, Chapter 2, 3] or [19, Chapter 2]. In this section, we list
some facts and prove some results which we will need in the proof of our main theorem.

Let m �≡ 2 (mod 4) be an integer and F = Q(ζm) the cyclotomic field, where ζm =
exp

( 2π i
m

)
. Let OF be the ring of integers in F . Then for any prime number p, we know that

pOF = (P1P2 · · ·Pg)
e

where P1,P2, · · · ,Pg are distinct prime ideals of OF . If e > 1, we say that p ramifies in
F . For each i , OF/Pi is called the residue field of Pi , it is a finite field containing Fp . The
degree of this extension [OF/Pi : Fp] is called the residue class degree of Pi/p. Let φ be
the Euler function. Then we have the following cyclotomic decomposition laws. For proofs,
see [19, Chapter 2].

Fact 1 Suppose p � m and let f be the smallest positive integer such that p f ≡ 1 (mod m).
Then p splits into g = φ(m)/ f distinct primes in F, each of which has residue class degree
f .

Fact 2 We have that p ramifies in F if and only if p|m. If m = pe is a prime power, then
pOF = (1 − ζm)φ(m).

We also need the following two facts about Q(
√−p). For proofs, see [12, Chapter 3].

Fact 3 Let p ≡ 3 (mod 4) be a prime. Then Q(
√−p) ⊂ Q(ζp).

Fact 4 Let p ≡ 7 (mod 8) be a prime. Then 2 splits in Q(
√−p), say (2) = pp where

p =
(
2, 1+√−p

2

)
and p =

(
2, 1−√−p

2

)
are prime ideals of Q(

√−p).

Lemma 1 Let p be an odd prime. If the order of 2modulo p is p−1
2 and 2p−1 �≡ 1 (mod p2).

Then the order of 2 modulo pe is φ(pe)
2 for each e ≥ 1.

Proof Let fe be the order of 2 modulo pe. Hence 2 fe ≡ 1 (mod p) and p−1
2 | fe. So it

remains to prove that 2
p−1
2 has order pe−1. Write 2

p−1
2 = 1 + kp for some k ∈ Z. We claim

that p � k. Otherwise we have 2p−1 = 1+2kp+ k2 p2 ≡ 1 (mod p2). Since p � k, the order
of 1 + kp modulo pe is pe−1 by direct computation. Therefore, fe = p−1

2 pe−1 = φ(pe)
2 . 	


In the remaining of this section, we give the basic setting which will be used in Sect. 4.
Let e ≥ 1 be an integer. Let p ≡ 7 (mod 8) be a prime such that the order of 2modulo p is

p−1
2 and 2p−1 �≡ 1 (mod p2). Let ζ = ζpe = exp( 2π ipe ) ∈ C, L = Q(

√−p) and K = Q(ζ ).
Then L ⊂ K by Fact 3. Let OL ,OK be the rings of integers of L and K respectively. By
Fact 1 and Fact 2, we have the following prime ideal factorization.

pOK = (1 − ζ )φ(pe)OK ,

pOL = (
√−pOL )2

123



Nonexistence of two classes of generalized bent functions 475

and
√−pOK = ((1 − ζ )OK )

φ(pe)
2 .

2OL = pOLpOL

where p =
(
2, 1+√−p

2

)
and p =

(
2, 1−√−p

2

)
are prime ideals of L .

By Fact 1 and the above lemma, we know that the residue degree of 2 in K/Q is φ(pe)
2 ,

so there are only two prime ideals above 2 in K . Hence 2OK = pOK pOK where pOK and
pOK are prime ideals of K .

We illustrate the above decompositions by the following diagram.

K = Q(ζ) pOKpOK (1 − ζ)φ(p
e)OK (1 − ζ)

φ(pe)
2 OK

L = Q(
√−p) pOLpOL (

√−pOL)2
√−pOL

Q (2) (p)
Now we list a fact about the action of the Galois group on ideals. Let σ2 ∈ Gal(K/Q)

be the automorphism such that σ2(ζ ) = ζ 2. Since Gal(K/Q) ∼= (Z/peZ)×, the order
of 2 modulo pe is φ(pe)

2 which implies that the order of σ2 in Gal(K/Q) is φ(pe)
2 . Since

Gal(K/Q) ∼= (Z/peZ)× is cyclic and the degree of K/L is φ(pe)
2 , Gal(K/L) is generated

by σ2. In particular, σ2 fixes pOK =
(
2, 1+√−p

2

)
OK and pOK =

(
2, 1−√−p

2

)
OK .

The following lemma will reduce the equation αᾱ = 2n , α ∈ OK to αᾱ = 2n , α ∈ OL ,
where n is a positive integer. It is a slight refined version of [2, Lemma 2.2].

Lemma 2 If αα = 2n for some α ∈ OK , then there exists a unique i ∈ {0, 1, . . . , pe − 1}
such that αζ−i ∈ OL .

Proof By the above argument, we know that σ2 fix pOK and pOK . Since the prime ideal
factors of α are pOK and pOK , we have an equality of ideals of OK :

(σ2(α)) = (α).

Then there is a unit u of OK such that σ2(α) = uα. Since Gal(K/Q) is abelian, we have

2n = σ2(2
n) = σ2(αα) = σ2(α)σ2(α) = σ2(α)σ2(α) = uαuα = 2nuu.

Then uū = 1. By the fact that Gal(K/Q) is abelian again, we have σ(u)σ (u) = 1 for
every σ ∈ Gal(K/Q). By a well-known fact [19, Lemma 1.6], u is a root of unity. Hence
there is a unique i ∈ {0, 1, . . . , pe − 1} such that u = ±ζ i . Let β = αζ−i . Then

σ2(β) = α(±ζ−i ),

so σ2(β
2) = β2. Since L is the fixed field of σ2, this implies β2 ∈ OL . But [K : L] = p−1

2
is odd, so β = αζ−i ∈ OL . 	
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476 J. Li, Y. Deng

Remark 3 The equation 2t = xx for x ∈ OL has explicit solutions, where t = tp is the order
of p in the class group of L . Let γ ∈ OL such that pt = (γ ). Note that ±γ and ±γ̄ have
absolute value 2

t
2 . On the other hand, if x ∈ OL has absolute value 2

t
2 , then we have

(x)(x) = (2t ) = ptpt

as ideals of OL . Then (x) = papt−a for some a ∈ {0, 1, . . . , t}. Note that if 0 < a < t ,
papt−a is not principal by definition of t . Since (x) is principal, we have that (x) must be pt

or pt . Because the units of OL are ±1, we have x = ±γ or ±γ̄ . Therefore, the elements in
OL with absolute value 2

t
2 are ±γ and ±γ̄ .

4 Proof of Theorem 1

In this section, we give the proof of Theorem 1.
Now assume that f is a GBF from Z

t
q to Zq , where t = tp, q = 2pe. Then F(λ) ∈ OK

has absolute value q
t
2 . We will finally get a contradiction.

Lemma 3 F(λ) must be one of the following elements

(
√−p)et · γ · (±ζ i )

or
(
√−p)et · γ · (±ζ i ),

where i ∈ {0, 1, . . . , pe − 1}. In particular, F(λ) /∈ (2)OK .

Proof It is easily seen that every element above has absolute value q
t
2 .

By the prime ideal factorizations we have

(F(λ)F(λ)) = (qt ) = (2t pet )OK = (pOK )t (pOK )
t
(1 − ζ )φ(pe)et .

Note that (1 − ζ ) = (1− ζ ), we know that the exact power of (1− ζ ) in (F(λ)) must be
φ(pe)et

2 , so (1− ζ )
φ(pe)et

2 = (
√−p)et |(F(λ)) as ideals ofOK . Hence α := F(λ)√−pet

∈ OK and

αα = 2t . Then by Lemma 2, we know that there is a unique i ∈ {0, 1, . . . , pe − 1} such that
β := αζ−i ∈ OL . So ββ = 2t .

By Remark 3, we have that β = ±γ or ±γ . Hence

F(λ) = (
√−p)et · α = (

√−p)et · βζ i = (
√−p)et · γ · (±ζ i )

or
(
√−p)et · γ · (±ζ i )

for some i ∈ {0, 1, . . . , pe − 1}. 	

Lemma 4 If v ∈ Z

t
q is an element of order 2, then for every λ ∈ Z

t
q ,

F(λ) = ±F(λ + v).

Proof As v is of order 2, for x ∈ Z
t
q , we have ζ x ·v

q = ±1. So

F(λ) + F(λ + v) =
∑
x∈Zt

q

ζ
f (x)−x ·λ
q (1 + ζ−x ·v

q ) ∈ (2) = pOK ∩ pOK ,
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Nonexistence of two classes of generalized bent functions 477

or said differently,
(2)|(F(λ) + F(λ + v))

as ideals of OK .
Then F(λ) ∈ pOK ⇐⇒ F(λ + v) ∈ pOK . By the above Lemma, we have F(λ + v) =

F(λ) · (±ζ i ) for some i ∈ {0, 1, . . . , pe − 1}. Then
F(λ) + F(λ + v) = F(λ)(1 ± ζ i ).

Note that if i �= 0, (2) and (1 ± ζ i ) are coprime ideals. So (2)|(F(λ)). This contradicts to
Lemma 3. Therefore, i = 0. 	


The above proof is essentially the same as in [7, Lemma 3] and [8, Lemma 8].
Let G be the Sylow-2 subgroup of Z

t
q . Then G ∼= F

t
2. For every v ∈ G \ {0}, define

Nv := {λ ∈ Z
t
q |F(λ) = F(λ + v)}

and
Mv := {λ ∈ Z

t
q |F(λ) = −F(λ + v)}.

By Lemma 4, Zt
q = Nv 
 Mv (the symbol 
 means disjoint union) and |Nv|+ |Mv| = qt .

Lemma 5 We have |Nv| = |Mv| = qt

2 for each v ∈ G \ {0}.
Proof We need the following well-know orthogonality relations,

∑
x∈Zt

q

ζq
x ·α =

{
0 if α �= 0,
qt if α = 0.

Then for each v ∈ G \ {0}, we have
∑
λ

F(λ)F(λ + v) =
∑
λ

(∑
x

ζq
f (x) · ζq

−x ·λ
) (∑

y

ζq
− f (y) · ζq

y·(λ+v)

)

=
∑
x

∑
y

ζq
f (x)− f (y) · ζq

y·v ∑
λ

ζq
−λ(x−y)

= qt
∑
x

∑
y=x

ζq
f (x)− f (y) · ζq

y·v = qt
∑
x

ζq
x ·v = 0.

By the definition of GBF, we have that F(λ)F(λ) = qt for each λ. So for each v ∈ G \{0},
0 =

∑
λ∈Nv

F(λ)F(λ + v) +
∑

λ∈Mv

F(λ)F(λ + v) = qt (|Nv| − |Mv|).

Hence, |Nv| = |Mv|. Also we know that |Nv| + |Mv| = qt . Therefore, |Nv| = |Mv| = qt

2 . 	

If t = 1, then there is only one 2−order element v in Zq . Note that if λ ∈ Nv , then

λ + v ∈ Nv . Hence 2 divides |Nv|. But |Nv| = q
2 = pe is odd. This is a contradiction. So

there do not exist GBFs from Zq to Zq .
As we have pointed out in Sect. 2, this result and the above proof are due to Ikeda [7].
In the remaining part of the proof, we assume t ≥ 3 so that |G| = 2t ≥ 8. Consider the

following 22
t−1 subsets of Z

t
q : ⋂

v∈G\{0}
Xv

where Xv = Nv or Mv . By Lemma 4, we have the following proposition.
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Proposition 1 Z
t
q is a disjoint union of these 22

t−1 subsets.

The following lemmas will tell us that among the 22
t−1 sets there are 2t nonempty sets at

most.

Lemma 6 If u, v, w ∈ G \ {0}satisfy u + v + w = 0, then we have

Nu ∩ Nv ∩ Mw = Nu ∩ Mv ∩ Nw = Mu ∩ Nv ∩ Nw = Mu ∩ Mv ∩ Mw = ∅.

Proof We only need the fact F(λ) /∈ 2OK , so the proof below is essentially the same as the
case p = 23 in [8, Lemma 11].

The condition implies that u, v, w are pairwise different. Note that

λ ∈ Nu ∩ Nv ∩ Mw

⇐⇒ λ + u ∈ Nu ∩ Mv ∩ Nw

⇐⇒ λ + v ∈ Mu ∩ Nv ∩ Nw

⇐⇒ λ + w ∈ Mu ∩ Mv ∩ Mw.

So it is enough to prove Mu ∩ Mv ∩ Mw = ∅. By considering the surjective group
homomorphism

( ·u) : Z
t
q −→

{
0,

q

2

}
⊂ Zq

y �→ y · u,

we know that there are half elements of Z
t
q satisfy y · u = 0 and half elements of Z

t
q satisfy

y · u �= 0. Note that ζ y·u
q = 1 if y · u = 0 and ζ

y·u
q = −1 if y · u �= 0.

Now take an element λ ∈ Mu ∩ Mv ∩ Mw . For simplicity, let
∑

y = ∑
y ζ

f (y)−λ·y
q . Then

F(λ) =
∑
y∈Zt

q

=
∑
y·u=0

+
∑
y·u �=0

= −F(λ + u) = −
∑
y·u=0

+
∑
y·u �=0

.

So we get
0 =

∑
y·u=0

=
∑

y·u=0,y·v=0

+
∑

y·u=0,y·v �=0

.

Similarly, we have
0 =

∑
y·v=0

=
∑

y·u=0,y·v=0

+
∑

y·u �=0,y·v=0

.

From F(λ) = −F(λ + w), we have

0 =
∑
y·w=0

,

and

F(λ) =
∑
y·w �=0

=
∑

y·(u+v)�=0

=
∑

y·u=0,y·v �=0

+
∑

y·u �=0,y·v=0

= −2
∑

y·u=0,y·v=0

∈ 2OK .

This contradicts to Lemma 3. So Mu ∩ Mv ∩ Mw = ∅. 	
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Nonexistence of two classes of generalized bent functions 479

Lemma 7 Let
⋂

a∈G\{0} Xa be a subset of Z
t
q where Xa = Na or Ma. If {a ∈ G|Xa =

Na} ∪ {0} is not a subgroup of G with index 1 or 2, then
⋂

a∈G\{0} Xa = ∅.
Proof If A := {a ∈ G|Xa = Na} ∪ {0} is not a subgroup, then there are two different
elements u, v ∈ A \ {0} such that u+v /∈ A. Hence Xu = Nu , Xv = Nv and Xu+v = Mu+v .
Then by the above Lemma, we have

⋂
a∈G\{0}

Xa ⊂ Nu ∩ Nv ∩ Mu+v = ∅.

Recall G ∼= F
t
2. If the index of A in G is larger than 2, then dimF2 A ≤ t −2 as a subspace

of G. Then there is a subspace B such that A∩ B = {0} and dimF2 B ≥ 2. Take two different
elements u, v ∈ B \ {0}. Then u + v ∈ B \ {0}. So u, v and u + v are not in A. Hence
Xu = Mu, Xv = Mv and Xu+v = Mu+v . Then by the above Lemma, we have

⋂
a∈G\{0}

Xa ⊂ Mu ∩ Mv ∩ Mu+v = ∅.

	

Let 
 be the set of subgroups of G with index 2. Since G ∼= F

t
2, so |
| = 2t − 1 by basic

linear algebra.
In virtue of Lemma 7, we define

NG :=
⋂

v∈G\{0}
Nv

and

NH :=
⎛
⎝ ⋂

v∈H\{0}
Nv

⎞
⎠⋂ ( ⋂

u /∈H
Mu

)
,

for each H ∈ 
.

Proposition 2 We have the decomposition

Z
t
q =

( ⊔
H∈


NH

) ⊔
NG .

For each v ∈ G \ {0},
Nv =

⊔

�H�v

NH

⊔
NG .

Proof By Proposition 1, we have that Z
t
q is a disjoint union of 22

t−1 subsets, where each
subset is of the form

⋂
v∈G\{0} Xv with Xv = Nv or Mv . By Lemma 7, the only possible

nonempty sets are NG and NH where H ∈ 
. So Z
t
q = ( ⊔

H∈
 NH
) ⊔

NG .

Since Nv = Nv ∩ Z
t
q , the second statement follows by the first statement. 	


We are now in a position to give a proof of Theorem 1.

Proof of Theorem 1 By Proposition 2, we have the following equation

qt =
∑
H∈


|NH | + |NG |. (1)
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For each v ∈ G \ {0}, by Lemma 5 we have

|Nv| = qt

2
=

∑

�H�v

|NH | + |NG |.

Sum the latter 2t − 1 equations, we have

(2t − 1)
qt

2
=

∑
v∈G\{0}

∑

�H�v

|NH | + (2t − 1)|NG |

=
∑
H∈


⎛
⎝ ∑

v∈H\{0}
1

⎞
⎠ |NH | + (2t − 1)|NG | = (2t−1 − 1)

∑
H∈


|NH | + (2t − 1)|NG |.

Hence

(2t − 1)
qt

2
= (2t−1 − 1)

∑
H∈


|NH | + (2t − 1)|NG |. (2)

Combining (1) and (2), we get

(2t − 1)
qt

2
= (2t−1 − 1)(qt − |NG |) + (2t − 1)|NG |.

Then
|NG | = pte.

In particular, NG is not empty. However, if λ ∈ NG , then we have λ + v ∈ NG for all
v ∈ G, so 2t divides |NG | = pte. This contradiction shows that there do not exist GBFs of
type [t = tp, q = 2pe] for any e ≥ 1, and this completes the proof of Theorem 1.

	


5 Nonexistence of GBFs from Z
n
2 to Zm

A function f from Z
n
2 to Zm is called a GBF if the equality

|F(λ)| :=
∣∣∣∣∣∣
∑
x∈Zn

2

ζ
f (x)
m (−1)x ·λ

∣∣∣∣∣∣
= 2

n
2

holds for every λ ∈ Z
n
2, where x · λ is the standard dot product.

There are many constructions of this type GBF, see [18]. For nonexistence results, a good
reference is [10], where Liu–Feng–Feng proved many nonexistence results for GBFs of this
type by showing that there are no cyclotomic integers with prescribed absolute values.

We get a nonexistence result in the case that there are cyclotomic integers with prescribed
absolute values.

If p ≡ 7 (mod 8) is a prime. Let p be a prime ideal of Q(
√−p) above 2. We define tp to

be the minimal positive integer such that ptp is principal.

Theorem 2 If p ≡ 7 (mod 8) is a prime and the order of 2 modulo p is p−1
2 , then there do

not exist GBFs from Z
tp
2 to Z2p. If p further satisfies 2p−1 �≡ 1 (mod p2), then there do not

exist GBFs from Z
tp
2 to Z2pe for any e ≥ 1.
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The proof of Theorem 2 is as same as the one of Theorem 1. So we only give a sketch:

Proof Assume that f is a GBF from Z
tp
2 to Z2pe . Then F(λ)F(λ) = 2tp .

Firstly, by tracing the arguments in Sect. 3 and Lemma 3, one can prove that F(λ) must
be one of the following elements

γ · (±ζ ipe )

or
γ · (±ζ ipe ),

where γ ∈ Q(
√−p) is a generator of ptp and i ∈ {0, 1, · · · , pe − 1}.

Secondly, for any v ∈ Z
t
2 \ {0}, define Nv := {λ ∈ Z

tp
2 |F(λ) = F(λ + v)}, Mv := {λ ∈

Z
tp
2 |F(λ) = −F(λ + v)} and Nall := ⋂

v∈Ztp
2 \{0} Nv . One can use the above form of F(λ)

and same arguments in Sect. s4 to formulate and prove analogues of Lemmas 4, 5, 6, 7, and
Propositions 1, 2.

Finally, by a similar computation as in the proof of Theorem 1, on one hand one can prove
that |Nall | = 1, on the other hand 2tp divides |Nall |. This contradiction shows that there do
not exist GBFs from Z

tp
2 to Z2pe . 	


6 Conclusion and future work

In this article we give some new nonexistence results of GBFs under the condition that there
exist cyclotomic integers with prescribed absolute values. The nonexistence problem is far
from solved. Our future work goes toward the case when the order of 2 modulo p is less than
p−1
2 .
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