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Abstract We investigate collineations of finite 2-affine planes and show that with the excep-
tion of some 2-affine planes of order at most 4 each collineation is induced by a collineation
of its projective completion. We further deal in more detail with 2-affine planes of type II
and their collineations that fix each long line.
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1 Introduction

As a generalisation of affine planes, h-affine planes were introduced in Oehler [11]. These
are non-trivial linear spaces such that for each line L and each point p /∈ L there are between
1 and h lines through p that do not meet L . Oehler [11] determined all finite 2-affine planes.
They fall into four classes: affine planes, affine planes from which a point has been removed,
affine planes fromwhich a line and all of its points have been removed, or one of four sporadic
planes of order 2, 3 or 4.

In particular, finite 2-affine planes of order n ≥ 5 can be embedded into affine planes and
thus projective planes of the same order n, but uniqueness of the extending plane was not
discussed in Oehler [11]. More generally, Beutelspacher and Metsch considered in [5] and
[6] non-trivial finite linear spaces of order n and showed that such spaces can be embedded
in projective planes of the same order n, provided that the line sizes are big enough, that is,
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n is greater than some quartic polynomial in a, where a is n + 1 minus the maximum degree
of lines in the linear space. In case of 2-affine planes a = 2 and n ≥ 13 by the formula in
Beutelspacher and Metsch [5]. It is also remarked at the end of Beutelspacher and Metsch
[6] that the projective plane of order n in which the non-trivial linear space is embeddable
is unique up to isomorphism. A similar uniqueness result is obtained in Metsch [10] under
different assumptions.

The results in this paper also cover the uniqueness of a projective extension of a 2-affine
plane in small orders. Themain focus however is to deal with the question of whether and how
collineations of a 2-affine plane extend to collineations of the projective extension, which
has not been discussed previously.

In Sect. 2 it is shown that the projective completion of a finite 2-affine plane of the first
three classes above is unique. In the following section we verify that a collineation of such a
finite 2-affine plane uniquely extends to a collineation of its projective completion.

In the remaining two sections we investigate special kinds of collineations, those that
fix each ‘long line’, see the definition of the kernel � at the beginning of Sect. 4. This
further leads to the introduction, in Definition 1, of the elation group of a 2-affine plane of
type II (the third class of 2-affine plane above, see Sect. 2 for a definition). Such 2-affine
planes can be regarded as transversal designs TD1(2, n − 1, n). They occur, for example,
as internal incidence structures of Laguerre near-planes, see [14, Lemma 2.1]. In extending
Laguerre near-planes to Laguerre planes (i.e., extending a transversal design TD1(3, n, n) to
a TD1(3, n + 1, n)) it is crucial to understand these 2-affine planes and their collineations.
Typically, collineations in the kernel of a 2-affine plane lead to central collineations in its
projective completion, except in the case of members of the elation group where one has to
make some additional assumptions. A maximal kernel implies that the 2-affine plane extends
to a Desarguesian projective plane, see Theorem 5. More specifically, Sect. 4 deals with
those finite 2-affine planes of type II and of order at least 5 whereas in the last section we
consider 2-affine planes of order 3 and 4. The latter planes have many special features and
their collineations do not fit in the pattern of those planes of orders at least 5.

2 Finite 2-affine planes and their projective extensions

A non-trivial linear space is a geometry (P,L) consisting of a point set P and a set L of
lines (subsets of P) such that

(J) Two points are on a unique line.
(R) There are three points not on a line.

Two lines are called parallel if they are identical or do have no point in common. Given
a point p and a line L of a non-trivial linear space we let π(p, L) to be the number of lines
through p that do not meet L , that is, the number of parallels to L through p. Following [11]
a 2-affine or bi-affine plane is a non-trivial linear space B = (P,L) such that

(P2) For each line L and each point p not on L one has that 1 ≤ π(p, L) ≤ 2.

If the point set P of a 2-affine plane B is finite, the 2-affine plane is called finite. In this
case the maximum number of points on a line of B is called the order of B. Thus, if B has
order n ≥ 2, then

(L) each line contains at most n points and there is a line with exactly n points on it.

The notion of a proper 2-affine plane of order n captures the restriction of a finite affine
plane of order n to the complement of one point or one line. As usual, an affine plane of
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Collineations of finite 2-affine planes 109

order n ≥ 2 is an incidence structure of points and lines satisfying the axioms (J), (R) and
(L) from above and (P2) being replaced by the usual parallel axiom

(P1) For each line L and each point p not on L one has that π(p, L) = 1.

Oehler showed that in a 2-affine plane of order n ≥ 4 each line has either n or n − 1
points. Furthermore, each point is on n+1 lines; see [11, Satz 10]. Both cardinalities of lines
occur in a 2-affine plane B of order n unless the map π from above is constant, that is, B is
complete. In the latter case B is either an affine plane (π has constant value 1) or the 2-affine
plane K5 below (π has constant value 2; this case can only occur in order 2, see [11, Satz
6]). In proper 2-affine planes of order n, that is, both cardinalities occur, we call a line of B
with n points a long line and one with n− 1 points a short line. A finite proper 2-affine plane
is called of type I if through each point there is precisely one short line through it, and it is
called of type II if each point is on precisely one long line. Note that a type II plane cannot
have order 2, because in this case there are only two points which together form a long line
and each of the points forms a short line. Thus axiom (R) is not satisfied.

Oehler determined all finite 2-affine planes, see [11, Sätze 6, 14, 19 and 20], see also
[15, Theorem 1] for linear spaces with n2 − n points where each point is on n + 1 lines,
[3, Theorem 1] for non-trivial finite linear spaces where each line has n or n − 1 points
and [4] for non-trivial finite linear spaces with two line degrees (not necessarily consecutive
numbers).

Theorem 1 A 2-affine plane of order n is isomorphic to

– an affine plane of order n;
– an affine plane of order n from which one point has been removed;
– an affine plane of order n from which all points on a line have been removed;
– one of four sporadic planes of order at most 4.

Finite 2-affine planes of order n of the first three kinds are embedded into affine planes
and thus projective planes of the same order n. We call these kinds of 2-affine planes of affine
type. We consider their projective completions and show that they are uniquely determined
by the 2-affine plane. Points or lines that are adjoined to the 2-affine plane in order to obtain
its projective completion are referred to as ideal points or ideal lines.

Note that 2-affine planes of the second and third kind are of type I and type II, respectively.
Conversely, by Oehler [11, Satz 14] a finite 2-affine plane of type I is an affine plane minus
one point if the order is at least 4. Likewise, by Oehler [11, Satz 19] a finite 2-affine plane
of type II is an affine plane minus one line and all of its points if the order is at least 6. In
case of a type II plane we say that a partition of the point set of B into mutually disjoint long
lines is a v-bundle, and similarly, a partition into mutually parallel short lines is an h-bundle.
There are n − 1 long lines and they form a v-bundle.

In the third case in Theorem 1 an affine extension is not necessarily unique, even up to
isomorphism. For example, if P is a projective translation plane that is not a Moufang plane,
then the translation line A is unique. Removing A and all of its points from P gives us an
affine translation plane A = P \ A. The same removal process applied to a line L �= A
results in an affine plane A′ = P \ L , which is not a translation plane. Therefore A and A′
are not isomorphic. However, both affine planes are affine extensions of the 2-affine plane
B = P \ (A ∪ L) = A \ L = A′ \ A.

Theorem 2 A 2-affine plane of affine type is embeddable into a unique projective plane of
the same order.
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110 G. F. Steinke

Proof It is well known that an affine plane determines its projective completion up to iso-
morphism; see, for example [12, 1.7] or [8, Theorem 3.10]. A finite 2-affine plane B of type
I is an affine planeA from which a point has been removed. Clearly, by adding an ideal point
to all short lines in B the affine plane A extending B is uniquely determined, and thus so is
the projective completion P .

It remains to verify the Theorem in case of 2-affine planes of type II. Since a projective
plane of order q ≤ 5 is unique (the Desarguesian plane PG(2, q); see, for example, [13]),
there is nothing to prove in these cases. Oehler’s proof gives a recipe how to extend a type II
2-affine plane B of order n ≥ 6 to an affine plane A, see [11, proof of Satz 18]. (Essentially
the same strategy is employed in Totten [15]. The steps involved are also clear from the
eventual end result that B is a projective plane minus two lines.) Start with a short line L . It
is shown in Oehler [11, Sect. 5] that L is contained in precisely two h-bundles. Moreover,
given a short line L ′ disjoint to L , there is precisely one h-bundle that contains both L and
L ′. Choose one of the h-bundles HL that contains L . Every line M in HL is then contained
in exactly one further h-bundle H′

M �= HL . Finally, if L1 = L , L2, . . . , Ln are the lines in
HL , adjoin a new point pi to each line in H′

Li
. Furthermore, W = {p1, . . . , pn} also forms

a line of the extended incidence structureA. ThenA is an affine plane of order n such that B
is obtained fromA by removing the special line W and all of its points on it. It follows from
[11, Lemmata 1 and 2] that the h-bundles H′

L1
, . . . ,H′

Ln
are mutually disjoint and form a

partition of the collection Ls of short lines of B.
If we choose the other h-bundle H′

L �= HL that contains L , we similarly obtain n h-
bundles H′′

Mi
where M1 = L , M2, . . . , Mn are the lines in H′

L and then an affine plane A′
with new points qi adjoined to each line in H′′

Mi
and additional line W ′ = {q1, . . . , qn}.

Again, the h-bundlesH′′
M1

, . . . ,H′′
Mn

form a partition of Ls . Together with theH′
Li

we have
accounted for all h-bundles in B. Furthermore, the lines inH′

Li
belong to different h-bundles

H′′
Mj

, and vice versa. This means that the lines in an h-bundle H′′
Mi

are adjoined different

points p j when obtainingA from B. Hence, eachH′′
Mi

gives rise to a bundle H̃′′
Mi

of parallel
lines in A.

When we form the projective completion P of A we essentially adjoin the points qi to
each line in H̃′′

Mi
, as we did when extending B to A′, plus a new point ω, the ideal point of

long lines. This shows that the ideal points of P that are adjoined to B in order to obtain the
projective completion are in one-to-one correspondence with bundles of mutually parallel
lines of B. Hence P is uniquely determined by B. (If we begin with H′

L we first adjoin the
points qi in order to obtain A′ and then the points p j and ω to get to P .) �	

In general, the 2-affine plane one obtains by removing two lines and all of its points
from a projective plane depends on the two lines. However, because the collineation group
PGL(3, q) ofPG(2, q), the Desarguesian projective plane of order q over the Galois field Fq

of order q , is 2-transitive on the line set of PG(2, q), it does not matter which two lines are
removed from PG(2, q) in order to obtain a 2-affine plane. We denote the resulting 2-affine
plane by BPG(2,q).

According to [11, Sätze 6 and 20] there are four sporadic 2-affine planes, two of order 2
and one each of order 3 and 4. More specifically, the sporadic planes (P,L) are as follows.

– The complete finite 2-affine plane K5 It has 5 points and the lines are precisely the 2-
subsets of P , that is, this geometry is represented by the complete graph on five vertices;
see the left diagram in Fig. 1. By Oehler [11, Satz 6] it is the only finite 2-affine plane
for which there are always two parallels to a line through a given point.
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Collineations of finite 2-affine planes 111

Fig. 1 The sporadic 2-affine planes of orders ≤ 3

Fig. 2 The Shrikhande plane S. The three lines of length 4 are dashed. Four lines of length 3 are shown as
circular arcs

This 2-affine plane can be embedded in PG(2, 4) by taking P to be the points of a conic
C in PG(2, 4). Lines of K5 are the traces on P of secant lines to C of PG(2, 4).

– The 2-affine plane B1 It has 4 points, each 2-subset of P is a line and there is precisely
one line with a single point; see the middle diagram in Fig. 1. (So it is the affine plane of
order 2 with an extra line of length 1.)

– The 2-affine plane B2 It has 5 points and one line L3 of size 3. The other lines are
precisely the 2-subsets of P not entirely contained in L3; see the right diagram in Fig. 1.
It is readily seen that B2 can be embedded in PG(2, 3) as follows. Choose two points
p1, p2 and a line L through one but not the other. Then P consists of all points on L and
the line through p1 and p2 except for the two points p1, p2. Lines then are the traces on
P of lines of PG(2, 3) provided they contain at least two points.

– The Shrikhande plane S It has twelve points, three lines of length 4 and 16 lines of
length 3. This 2-affine plane can be embedded in PG(2, 5) as follows. Choose three
non-concurrent lines L1, L2, L3. Then P consists of all the points of PG(2, 5) that are
on precisely one of these three lines (so points of intersection Li ∩ L j , i �= j , do not
belong to P). Lines of S are the traces of lines of PG(2, 5) on P provided these contain
at least two points.
An algebraic description of this plane is obtained as follows; compare Sect. 5. The three
lines of length 4 are {a0, a1, a2, a3}, {b0, b1, b2, b3} and {c0, c1, c2, c3}. The points ai ,
b j , ck form a short line if and only if i+ j+k ≡ 0 (mod 4). For a pictorial representation
see Fig. 2 where only the indices of points are shown.
This 2-affine plane is called the Shrikhande plane in Totten [15] and labelledB3 in Oehler
[11]. For incidence matrices of S see [11, p. 435] and [15, Fig. 1].
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112 G. F. Steinke

3 Collineations of finite 2-affine planes

As usual in incidence geometry, a collineation of a 2-affine plane B is a permutation of
the point set that maps lines onto lines. All collineations of B form a group with respect
to composition, the collineation group � = Aut(B) of B. More generally, an isomorphism
between two 2-affine planes is a bijection between the point sets that takes lines in one to
lines in the other.

If P is a projective plane and L1 and L2 are two lines of P , then any collineation γ of
P that fixes each of L1 and L2 or interchanges L1 and L2 induces a collineation γ ′ of the
2-affine plane B = P \ (L1 ∪ L2) obtained from P by removing L1 and L2 and all of their
points. If A1 = P \ L1 is the affine plane obtained from P by removing the line L1 and all
of its points, then A1 is an affine extension of B, but γ ′ does not extend to a collineation of
A1 in case γ interchanges L1 and L2. However, for the projective completions we have.

Theorem 3 Each isomorphism between finite 2-affine planes of affine type extends to a
unique isomorphism of their projective completions.

Proof It is well known that an isomorphism between affine planes uniquely extends to an
isomorphism of their projective completions; see, for example [12, 1.8]. In case of 2-affine
planes of type I an isomorphism ϕ uniquely extends to an isomorphism of their affine com-
pletions by defining that the ideal point in one plane that has been added to all short lines is
taken to the corresponding ideal point in the other 2-affine plane. In turn, one has a unique
extension of ϕ to an isomorphism of the projective completions of the 2-affine planes.

It remains to verify that an isomorphism ϕ from a 2-affine plane B1 = (P1,L1) to a
2-affine plane B2 = (P2,L2), both of affine type II, extends to an isomorphism of their
projective completions P1 = (P̃1, L̃1) and P2 = (P̃2, L̃2). Obviously, the ideal point ω1

of long lines in B1 must be taken to the ideal point ω2 of long lines in B2. As outlined in
the proof of Theorem 2 the ideal points �= ωi that are adjoined to Bi in order to obtain the
projective completion Pi are in one-to-one correspondence with h-bundles (partitions of Pi
into mutually parallel lines) of Bi . Furthermore, every short line of Bi belongs to precisely
two h-bundles.

Since an h-bundle of B1 is obviously taken by ϕ to an h-bundle in B2 there is a unique
extension ϕ̃ of ϕ to a bijection from P̃1 to P̃2. We still have to verify that ϕ(x1), ϕ(x2), ϕ(x3)
are collinear in P2 whenever x1, x2, x3 are collinear points in P1. This is clearly the case
when at least two of the three points belong to B1.

So now assume that x1 and x2 are ideal points of P1, both �= ω1. These points belong
to different ideal lines of P1 if and only if they are on the extension L̃ of a short line L in
B1, that is, if and only if there are corresponding h-bundles in B1 that have a short line in
common (the line L). The latter property is preserved under ϕ. Hence, ϕ̃(L̃) where L is a
short line of B1 with extension L̃ is a line of P2. On the other hand, if x1 and x2 are ideal
points �= ω1 on the same ideal line of P1, then so are their images in P2 under ϕ̃. This shows
that ϕ̃ preserves collinearity. Hence ϕ̃ is an isomorphism of projective planes. �	
Corollary 1 Each collineation of a finite 2-affine plane B of affine type extends to a unique
collineation of the projective completion of B.

From the description of the three sporadic 2-affine planes of order at most 3 it is evident
that

– The collineation group of K5 is the symmetric group S5 on five letters; since in the
collineation group PGL(3, 4) of PG(2, 4) the stabilizer of a conic of PG(2, 4) is iso-
morphic to S5, each collineation of K5 extends to a collineation of PG(2, 4).
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Collineations of finite 2-affine planes 113

– The collineation group of B1 is the symmetric group S3 on three letters, because the
unique point that forms the line of length 1 must be fixed by any collineation.

– The collineation group of B2 is isomorphic to S2 × S3; since in the collineation group
PGL(3, 3) of PG(2, 3) the stabilizer of two points and a line through one of them is
isomorphic to S2 × S3, each collineation of B2 extends to a collineation of PG(2, 3).

As for the Shrikhande plane S the stabilizer of a triangle in the collineation group
PGL(3, 5) of PG(2, 5) induces a group of collineations of S. As an abstract group this
stabilizer is a semi-direct product (C4 × C4) � S3 of C4 × C4 by S3 where C4 denotes the
cyclic group of order 4, and thus has order 96. However, in Corollary 3 we shall see that
the collineation group of S has order 192. Thus not every collineation of S extends to a
collineation of PG(2, 5).

For example, in Fig. 2, one obtains a collineation γ of S if all points with labels 0 or 2 are
fixed and points labelled 1 or 3 are interchanged on each long line. The line all of whose points
have label 0 and the line all of whose points have label 2 are parallel in S. The extensions in
PG(2, 5) of the latter two lines intersect in a point p not belonging to S. This point p and the
three points pi j = Li ∩ L j , i �= j (in the notation of the geometric construction of S at the
end of Sect. 2 from three non-concurrent lines L1, L2, L3 in PG(2, 5)) form a quadrangle
Q in PG(2, 5). Furthermore, each point in Q must be fixed by any extension γ̃ of γ to a
collineation of PG(2, 5). Therefore, the fixed configuration of γ̃ is a subplane of PG(2, 5),
which of course must be the entire plane. Thus γ̃ = id—a contradiction. Therefore, γ cannot
be extended to a collineation of PG(2, 5).

4 Collineations of finite 2-affine planes of type II and order at least 5

Throughout this section B = (P,L) denotes a finite 2-affine plane of type II and order n ≥ 5.
Hence there is a unique long line (of length n) through each point p ∈ P , denoted by [p], so
that the long lines form a partition of P (a v-bundle). Let Lv be the collection of long lines
and Ls be the collection of short lines (of lengths n−1) of B. Furthermore, the 2-affine plane
B is of affine type, that is, B has a projective completion P of order n. We denote by ω the
ideal point of lines in P coming from long lines of B, and by L̃ the line in P whose trace on
B is L . Finally, we let L1 and L2 be the lines adjoined to obtain P from B.

The cases of order 3 and 4 are special and will be dealt with in Sect. 5.
The collineation group � of B acts on the set Lv of long lines; the kernel of this action is

denoted by �, that is,

� = {γ ∈ � | γ (x) ∈ [x] for all x ∈ P}.
If γ is a collineation of B, then its extension to P is denoted by γ̃ . Note that γ̃ fixes ω and
permutes the lines L1 and L2, that is, γ̃ either fixes both L1 and L2 or interchanges the two
lines.

Lemma 1 Given a short line L ∈ Ls and a point x /∈ L in B, the stabilizer �L ,x of L and
x in � is trivial: �L ,x = {id}.
Proof δ ∈ �L ,x extends to a collineation δ̃ of the projective plane P by Corollary 1. Note
that δ̃ fixes all points on L and also ω.

Assume first that δ̃ fixes both L1 and L2. Then δ̃ is a central collineation with centre ω

and axis the line induced by L . But δ̃ also fixes the point x , which is neither the centre nor on
the axis. Hence δ̃ = id by Hughes and Piper [8, Theorem 4.9]. Thus δ must be the identity.
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114 G. F. Steinke

We now assume that δ̃ interchanges L1 and L2. Then δ̃2 fixes both L1 and L2. As before
we see that δ̃2 = id . Hence δ̃ is an involution. By Baer [1], see also [8, Theorems 4.3 and
4.4], δ̃ is either a central collineation or a Baer involution. In the former case, the centre is ω

and the axis L̃ , the line that induces L , and we have a contradiction to the assumption that δ̃
interchanges L1 and L2. The latter case cannot occur because δ̃ has n − 1 fixed points on L̃
but n − 1 �= √

n + 1 since n ≥ 5. �	
Corollary 2 The order of �L where L ∈ Ls divides n − 1 and |�| ≤ (n − 1)n2.

Proof Let x ∈ L . According to Lemma 1 each point y ∈ [x] \ {x} has an orbit of size
t = |�L | under �L ; thus t divides |[x] \ {x}| = n − 1. Since the orbit �(L) of L has size at
most |L| = n2, we obtain |�| = t |�L | ≤ (n − 1)n2. �	
Remark 1 In fact, the order of � is a divisor of (n − 1)n2; compare Lemma 4.

Remark 2 Lemma 1 and Corollary 2 are no longer valid in case of the three type II 2-affine
planes of order 3 and 4; see Sect. 5. In each of these planes there are points x not on L ∈ Ls

such that �L ,x has order 2. Moreover, the kernel � of the 2-affine planes BPG(2,3) and
BPG(2,4) has order 36 and 96, respectively, which is twice the bound given in Corollary 2.

An element of � induces a collineation of the projective completion that fixes ω and
almost looks like a central collineation with centre ω. Collineations of this kind are known as
generalised elations or generalised homologies. More precisely, a generalised perspectivity
of a projective plane P is a collineation γ such that all fixed points of γ are on a line
A and all fixed lines of γ pass through a point c; see [2] and [9]. A and c are called the
axis and centre, respectively, of γ . Clearly, every perspectivity (or central collineation) is
a generalised perspectivity. As for perspectivities, a generalised perspectivity γ is called a
generalised elation or a generalised homology if c ∈ A or c /∈ A, respectively.

Lemma 2 Let δ ∈ �L \ {id} where L is a short line of B. Then δ induces a homology δ̃ in
the projective completion P of B with centre ω and axis L̃.

Proof δ̃ fixes all lines that come from long lines of B and the line L̃ . If δ̃ also fixes both
remaining lines L1 and L2 through ω, then δ̃ is a homology of P .

Suppose that L1 and L2 are interchanged by δ̃. Then δ̃ is a generalised homology that has
precisely one orbit of length 2 on its axis. Consider a line K �= L1, L̃ that passes through
p1 = L1 ∩ L̃ . This line K comes from a short line K ′ �= L of B. If x ∈ K ′ ∩ δ(K ′), then,
because δ([x]) = [x], one finds that {δ(x)} = δ(K ′ ∩[x]) = δ(K ′)∩δ([x]) = δ(K ′)∩[x] =
{x} so that δ(x) = x—a contradiction to Lemma 1. InP this means that K and δ̃(K ) intersect
in a point of L1 ∪ L2. However, δ̃(a1) ∈ L2 ∩ L̃ = {a2} so that δ̃(K ) is a line through a2
different from L̃ and L2. But any two distinct lines in a projective plane intersect in a point.
The point of intersection of K and δ̃(K ) is neither a1 nor a2, and it can neither be on L1

(since K �= L1) nor on L2 (otherwise δ̃(K ) = L2). Hence we have a contradiction, and the
case that L1 and L2 are interchanged is not possible. See also [9, Corollary 14]. �	
Remark 3 Lemma 2 is neither valid in the 2-affine plane BPG(2,3) nor in BPG(2,4). For exam-
ple, in Fig. 4, which gives a pictorial representation of BPG(2,4), one obtains a collineation
γ of BPG(2,4) if all points with labels 00 or 11 are fixed and points labelled 01 or 10 are
interchanged on each long line. Since the three points with label 00 form a short line L , γ
belongs to �L . However, the six fixed points of γ plus the point ω form a Baer subplane of
PG(2, 4) and γ̃ is a Baer involution of PG(2, 4). For BPG(2,3) see Sect. 5.

123



Collineations of finite 2-affine planes 115

In order for δ ∈ � to induce an elation in the projective completion, we need that δ fixes
no short line. Indeed, in this case, we have the following.

Lemma 3 Let δ ∈ � be such that δ fixes no short line of B. Then δ induces a generalised
elation δ̃ with centre ω in the projective completion P of B. Furthermore, if the order n of B
is odd, then δ̃ is an elation of P .

Proof δ̃ fixes each line of P that comes from a long line of B. Since by assumption δ fixes
no short line, δ̃ cannot fix a line not passing through ω. Hence, the fixed lines of δ̃ all pass
through ω, and there are at least n − 1 of them. In particular, ω must be the centre of δ̃. If
δ̃ also fixes both remaining lines L1 and L2 through ω, then δ̃ is an elation of P and thus a
generalised elation.

If L1 and L2 are interchanged by δ̃, then δ̃ fixes exactly n − 1 lines and so by Baer [1,
Theorem 1.1] or [8, Theorem 13.3] there must also be precisely n − 1 points fixed by δ̃. One
of them is ω and the others are neither on L1 nor on L2. Furthermore, the remaining n − 2
fixed points must all be on a line through ω otherwise δ fixes a short line. Hence δ̃ moves
exactly two points on its axis. It follows that δ̃2 is an elation of P with centre ω and axis
coming from a long line ofB. In case the order n ofP is odd, the orderm of δ̃2 is also odd. But
then γ = δ̃m is an involution and a generalised elation that is not an elation (because L1 and
L2 are still interchanged by γ ). Thus γ is either a central collineation or a Baer involution,
neither of which is possible (the latter because because n ≥ 5); compare also [16, Corollary
7 or Theorem 11]. �	
Remark 4 In the proof of Lemma 3 the case that δ̃ interchanges L1 and L2 could not be
eliminated if the order n is even. In this situation δ̃ has exactly one orbit of size 2 on its axis,
and all other points are fixed. By Vedder [16, Theorem 10], δ̃ has order 4.

The product of a planar collineation σ (that is, the geometry of fixed points and fixed
lines of σ is a subplane) and an elation η which has both its centre and axis in the subplane
fixed by σ but does not stabilise this subplane is a generalised elation that is not an elation.
Conversely, it is shown in Vedder [16, Proposition 1] that every generalised elation with axis
A and centre c is such a composition if the projective plane is (c, A)-transitive.

For example, in PG(2, 4) with the usual homogeneous coordinates over the Galois field
F4 = {0, 1, a, a + 1} = F2(a) of order 4 where a2 + a + 1 = 0 the following collineation γ

given by γ (x : y : z) = (x2 : y2+az2 : z2) is a generalised elationwith centre (0 : 1 : 0) and
axis [0 : 0 : 1]. (A point (x : y : z) is on the line [u : v : w] if and only if ux + vy +wz = 0.
Thus γ ([u : v : w]) = [u2 : v2 : av2 + w2].) The fixed points of γ are (0 : 1 : 0), (1 : 0 : 0)
and (1 : 1 : 0), and the fixed lines of γ are [0 : 0 : 1)], [1 : 0 : 0] and [1 : 0 : 1]. The points
(1 : a : 0) and (1 : a+1 : 0) on the axis are interchanged by γ and so are the lines [1 : 0 : a]
and [1 : 0 : a + 1] through the centre. Furthermore, γ has order 4. Considering the 2-affine
plane obtained from PG(2, 4) by removing the lines [1 : 0 : a] and [1 : 0 : a + 1] and all
of its points shows that the statement in Lemma 3 about γ extending to an elation of P does
not carry over to the case n = 4.

The assumption made in Lemma 3 that the collineation fixes no short line leads, more
formally, to the following definition of an elation group of a 2-affine plane of type II.

Definition 1 In a finite 2-affine plane of type II we call

E := {δ ∈ � | δ fixes no short line} ∪ {id}
the elation group of the 2-affine plane.
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Lemma 4 The elation group E of B is a normal subgroup of the collineation group � and
acts semi-regularly on Ls . In particular, the order of E divides n2, and E acts regularly on
Ls if and only if E has order n2.

Proof E contains the identity and with δ its inverse δ−1 also belongs to E . Let γ, δ ∈ E
where γ �= δ−1. Suppose that γ δ /∈ E . Then there is a short line L fixed by γ δ �= id . Thus
the stabilizer �L is non-trivial. Let B = �(L) ⊆ Ls be the orbit of L under �. If B = {L},
then every η ∈ � fixes L so that E = {id}—a contradiction to γ δ �= id . Hence B must be
non-trivial.

Since a stabilizer �K is conjugate to �L for each K ∈ B and because �L ,K ≤ �L ,x =
{id} for each point x ∈ K \ L by Lemma 1, we find that � is a Frobenius group operating on
B (see [7, p. 37]). From [7, Theorems 2.7.5 and 2.7.6], see also [7, Theorem 4.5.1], it now
follows that

E (B) = � \
( ⋃
K∈B

(�K \ {id})
)

,

is a (normal) subgroup of �, that E (B) acts regularly on B and that � = E (B) · �L . But
E ⊆ E (B) so that γ, δ ∈ E (B) and thus γ δ ∈ E (B). However, id �= γ δ ∈ �L in contradiction
to the regular action of E (B) on B. This shows that γ δ ∈ E . Hence E is a subgroup of �.

Since � is normal in �, the conjugate γ Eγ −1 of E , where γ ∈ �, is again a subgroup of
�. But a collineation δ fixes a line L ∈ Ls if and only if γ δγ −1 fixes the short line γ (L).
Thus γ Eγ −1 = E .

Since no η ∈ E \ {id} fixes a short line, all orbits of E on Ls have the same size |E |, i.e.
E acts semi-regularly on Ls . Thus |E | divides n2 = |Ls |. The statement about the regularity
of E now directly follows. �	

We call a 2-affine plane B of type II an elation 2-affine plane if the elation group E of B
acts regularly on Ls or equivalently, by Lemma 4, has order n2 where n is the order of B. So
B is an elation 2-affine plane if and only if E has maximal order. With this notion we can
deal with the unresolved case of even order in Lemma 3.

Theorem 4 If B is an elation 2-affine plane, then the projective completion P of B is a dual
translation plane. Thus the order of B is a prime power and the elation group E of B is
elementary abelian. Every collineation in E extends to an elation of P .

Proof We consider the map ϕ : E → Aut(P) given by δ �→ δ̃, that is, ϕ takes δ ∈ E to its
extension onto P . This map is a homomorphism, which is injective by Corollary 1. As seen
in the proof of Lemma 3 each δ̃2 = ϕ(δ2) is a central collineation with centre ω. Moreover,
E has a normal subgroup N of index at most 2 (the kernel of the action on the lines though
ω).

Suppose that N = E , that is, each δ̃ where δ ∈ E is a central collineation with centre ω.
Then the elation group of P with common centre ω has order n2 and thus is transitive on the
lines not passing through ω. Hence, P is a dual translation plane, n is a prime power (see
[12, 12.7]) and E is elementary abelian (cp. [12, 8.1]).

If n is odd, then N = E by Lemma 3, and we are done as seen above.
Finally assume that n > 4 is even and that N �= E . Then N is a normal subgroup of

E of index 2. Every collineation δ ∈ E \ N induces a proper generalised elation δ̃ in P .
Furthermore, δ̃ interchanges the two lines L1 and L2. It therefore has an axis A through ω

and n − 2 fixed points on A.
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Since N has order 1
2n

2 > n and consists of elations of P , this subgroup contains elations
with different axes. Hence N is abelian; compare [8, Theorem 4.14]. Let β ∈ N with axis
B �= A so that B ∩ A = {ω}. The commutator [δ̃, β̃] = δ̃β̃δ̃−1β̃−1 also is an elation with
axis B. Moreover, because n > 4, there is a point x on A such that both x and β̃(x) are fixed
by δ̃. But then [δ̃, β̃] fixes β̃(x) /∈ B as well. Hence, [δ̃, β̃] = id , that is, δ̃ and β̃ commute
and thus δ and β commute on B.

There are at least 1
2n

2−n = 1
4n

2+ 1
4n(n−4) > 1

4n
2 elations in N whose axis is different

from A. Therefore the subgroup generated by all these elations equals N . This means that δ
commutes with each element of N , and because N is abelian, E must also be abelian.

Let a1 and a2 be the two points on A that get moved by δ. Then {a1, a2} is invariant under
E . Otherwise, some δ′ ∈ E takes (at least) one of a1 or a2 to a fixed point of δ and this ai
is fixed itself by δ—a contradiction. Finally, choose a point b /∈ A. The stabiliser Ea1,b has

order at least n2
2n = 1

2n > 2, and thus is non-trivial. But then the stabilizer in E of the line
through a1 and b is also non-trivial in contradiction to the regularity of E on Ls by Lemma
4. This finally shows that the case n > 4 even and N �= E cannot occur. We therefore always
have N = E , and the statement follows. �	
Theorem 5 If the kernel of B has maximal order (n − 1)n2, then B is an elation 2-affine
plane, the projective completion P of B is Desarguesian, and B is isomorphic to BPG(2,n).

Proof Let B be a finite type II 2-affine plane of order n ≥ 5 such that |�| = (n − 1)n2.
Then B is of affine type. Since there are n2 short lines, Corollary 2 shows that � is transitive
on Ls and that |�L | = n − 1 for each short line L . As in the proof of Lemma 4 for the
group E (B), and because now B = Ls so that E = E (Ls ), one finds that � is a Frobenius
group operating on Ls , that the elation group E is the Frobenius kernel acting regularly on
Ls and that � = E · �L . In particular, B is an elation 2-affine plane. Hence, by Theorem 4,
n is a prime power and P is a dual translation plane with translation centre ω, that is, P is
(ω, ω)-transitive.

By Lemma 2 each collineation in �L extends to a homology of P with centre ω and axis
L̃ . Since �L has order n−1, we see that �L acts transitively on [x] \ {x} where x ∈ L . Thus
P is (ω, L̃)-transitive. Hence, P is (ω, K̃ )-transitive for any line K̃ of P . The dualisation of
[12, 3.5.49] shows that P is Desarguesian. �	

5 The 2-affine planes of type II of order at most 4

As mentioned in Sect. 2, a 2-affine plane of order 2 cannot be of type II.
From the pictorial representation of the type II 2-affine plane BPG(2,3) of order 3 in Fig.

3 one sees that the kernel and collineation group of BPG(2,3) are isomorphic to S3 × S3 and
(S3 × S3) � C2, respectively, and thus have order 36 and 72. A collineation δ in the kernel
that fixes each point of one long line A and exactly one point c on the other long line, fixes
a short line L through c and a point x /∈ L . Hence, �L ,x is non-trivial. In fact, this stabilizer
is generated by δ and has order 2.

Note that δ extends to a homology of PG(2, 3) with centre c and axis Ã—a different
behaviour than the one postulated in Lemma 2. On the other hand, Lemma 2 remains valid
if the collineation in �L fixes exactly the two points on L .

There are two type II 2-affine planes of order 4. One is the 2-affine plane BPG(2,4) and
the other is the Shrikhande plane S. Both planes have geometric representations in terms of
embeddings in PG(2, 4) and PG(2, 5), respectively. We give an algebraic description of the
two planes, which then will explain the labels attached to points in Figs. 2 and 4.
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Fig. 3 The 2-affine plane of type
II and order 3. The two long lines
are dashed

Let (G,+) be a group of order 4 with identity element 0 and let P = G × {1, 2, 3}. Then
P has 12 points and we describe a 2-affine plane BG of type II on P . The long lines of BG

are G × {i} where i ∈ {1, 2, 3}. Moreover, {(g1, 1), (g2, 2), (g3, 3)} is a short line of BG

where gi ∈ G, i = 1, 2, 3, if and only if g1 + g2 + g3 = 0. For brevity we write this line as
(g1, g2, g3).

From this definition it is clear that BG is a non-trivial linear space, each long line meets
each short line in exactly one point, and the long lines partition P . Given a short line L =
(g1, g2, g3) and a point p = (hi , i) (where i ∈ {1, 2, 3} and hi ∈ G) not on L (so that
hi �= gi ), a line (h1, h2, h3) is a parallel to L through p if and only if h j �= g j , g j + gi − hi
where i �= j ∈ {1, 2, 3}. Since h1 + h2 + h3 = 0, having chosen h j uniquely determines
hk where {i, j, k} = {1, 2, 3}. Note that this condition is independent of the choice of j �= i
because then also hk �= gk, gk + gi − hi . Since we have two choices for h j in G (as
g j �= g j + gi − hi ), we see that there are precisely two short lines through p that are parallel
to L . Thus we have shown.

Proposition 1 BG is a 2-affine plane of type II and order 4.

Up to isomorphism there are two groups of order 4, the cyclic group C4 and the Klein
4-group C2 × C2. As indicated in Sect. 2, the Shrikhande plane S is isomorphic to BC4 .
Furthermore, BPG(2,4) is isomorphic to BC2×C2 . Pictorial representations of these planes are
given in Figs. 2 and 4 where points are labelled by group elements.

Proposition 2 BG is an elation 2-affine plane. The kernel �BG of BG is the semi-direct
product of G × G by the automorphism group Aut(G) of G and the collineation group �BG

of BG is the semi-direct product of �BG by S3.

Proof Let π ∈ S3 be a permutation of the index set {1, 2, 3}. Then the map γπ defined
by γπ ((g, i)) = (g, π(i)) is a collineation of BG ; a line (g1, g2, g3) is taken to the line
(gπ−1(1), gπ−1(2), gπ−1(3)) by γπ . Clearly, each γπ fixes the line (0, 0, 0) and the collection
{γπ | π ∈ S3} is a subgroup of the stabilizer of (0, 0, 0) in �BG and acts 3-transitively on the
points of (0, 0, 0).

Let h1, h2 ∈ G and define h3 = −h1−h2. Then themap γh1,h2 defined by γh1,h2((g, i)) =
(g+hi , i) is a collineation ofBG ; a line (g1, g2, g3) is taken to the line (g1+h1, g2+h2, g3+
h3) by γh1,h2 . Clearly, γh1,h2 fixes no line unless h1 = h2 = 0, that is, γh1,h2 = id . It readily
follows that the collection EG = {γh1,h2 | h1, h2 ∈ G} is a subgroup of �BG of order 16
that acts regularly on the set of short lines of BG . Thus EG is the elation group of BG . In
particular, BG is an elation 2-affine plane.

Let α ∈ Aut(G) be an automorphism of G. Then the map γα defined by γα((g, i)) =
(α(g), i) is a collineation of BG ; a line (g1, g2, g3) is taken to the line (α(g1), α(g2), α(g3))
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Fig. 4 The 2-affine plane BPG(2,4)
∼= BC2×C2 . The three lines of length 4 are dashed. Four lines of length

3 are shown as circular/cubic arcs

by γα . Clearly, γα belongs to the kernel of BG and fixes the line (0, 0, 0). Moreover, {γα | α ∈
Aut(G)} is a subgroup of the stabilizer of (0, 0, 0) in �BG .

Now, let γ be a collineation of BG . By using a collineation γπ where π ∈ S3 we may
assume that γ fixes each long line, that is, γ belongs to�BG . We can now apply a collineation
γh1,h2 in the elation group in order to ensure that γ fixes the line (0, 0, 0). Under these
assumptions each σi , i = 1, 2, 3, defined by σi (g) = γ ((g, i)) is a permutation of G that
fixes 0. Since γ is a collineation one obtains that σ1(g1) + σ2(g2) + σ3(g3) = 0 for all
g1, g2, g3 ∈ G such that g1 + g2 + g3 = 0. Hence

−σ3(−g1 − g2) = σ1(g1) + σ2(g2),

for all g1, g2 ∈ G. When g1 = g and g2 = 0 one finds that −σ3(−g) = σ1(g) for all g ∈ G.
One similarly obtains −σ3(−g) = σ2(g) for all g ∈ G. Hence σ1 = σ2. Then

σ1(g1 + g2) = −σ3(−g1 − g2) = σ1(g1)σ1(g2)

for all g1, g2 ∈ G. Thus σ1 is an automorphism of G, and so σ3(g) = −σ1(−g) = σ1(g).
This shows that γ = γσ1 .

In summary, we have found that �BG is generated by all the γπ , γh1,h2 and γα . Obviously,
�BG /�BG

∼= S3 and �BG /EBG
∼= Aut(G). �	

Corollary 3 The collineationgroups ofS andBPG(2,4) are of order 192and576, respectively.
The respective orders of the kernels of these planes are 32 and 96.
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