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Abstract For a large class of functions f : Fq → E(Fq) to the group of points of an elliptic
curve E/Fq (typically obtained from certain algebraic correspondences between E and P

1),
Farashahi et al. (Math Comput 82(281):491–512, 2013) established that the map (u, v) �→
f (u) + f (v) is regular, in the sense that for a uniformly random choice of (u, v) ∈ F

2
q , the

elliptic curve point f (u) + f (v) is close to uniformly distributed in E(Fq). This result has
several applications in cryptography, mainly to the construction of elliptic curve-valued hash
functions and to the “Elligator Squared” technique by Tibouchi (in: Christin and Safavi-Naini
(eds) Financial cryptography. LNCS, vol 8437, pp 139–156. Springer, Heidelberg, 2014) for
representating uniform points on elliptic curves as close to uniform bitstrings. In this paper,
we improve upon Farashahi et al.’s character sum estimates in two ways: we show that
regularity can also be obtained for a function of the form (u, v) �→ f (u)+ g(v) where g has
a much smaller domain than Fq , and we prove that the functions f considered by Farashahi et
al. also satisfy requisite bounds when restricted to large intervals inside Fq . These improved
estimates can be used to obtain more efficient hash function constructions, as well as much
shorter “Elligator Squared” bitstring representations.
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162 M. Tibouchi, T. Kim

1 Introduction

1.1 Mapping to elliptic curves

Many elliptic curve cryptosystems involve representing a base field element u ∈ Fq as a
rational point f (u) ∈ E(Fq) of the elliptic curve E/Fq where the computations are carried
out. Moreover, it is often desirable for the corresponding “encoding function” f : Fq →
E(Fq) to be efficiently computable in constant time (i.e. independently of the value of u)
rather than in an iterative, probabilistic manner.

A number of methods [2,4,8,10,13,15,18,20,27,29,32] have been proposed to construct
such functions f , starting with the technique used in Boneh and Franklin’s identity-base
encryption scheme [3], which only applies to a specific family of supersingular curves, and
especially with Shallue and van de Woestijne’s paper [28], whose construction applies to
essentially all isomorphism classes of elliptic curves, but as observed by Tibouchi [31], they
all admit a geometric description along the following lines.

For some of them (notably Icart’s function [18] and its variants as studied by Kammerer et
al. and Couveignes and Kammerer [8,20]), there exists a diagram:

C

P
1 E

π
h

f =h◦π−1

(1)

where h : C → E is a covering of E over Fq , and π : C → P
1 induces a bijection on

points (it is an exceptional cover of P1 in the terminology of Fried [16]). The map f : Fq ⊂
P
1(Fq) → E(Fq) can then be defined on points as h ◦ π−1. Recently, Couveignes and

Lercier [9] proposed a more systematic study of a subset of such constructions, which they
call “parametrizations”, where the morphism π is required to be multiradical.

The other constructions (including Skałba’s [29], Shallue and van deWoestijne’s [28] and
their variants) arise from several coverings:

C1 · · · C�

P
1 E

π1
h1π� h�

f

(2)

where the πi ’s are no longer bijections on points, but simply satisfy that π1
(
C1(Fq)

) ∪
· · · ∪ π�

(
C�(Fq)

) = P
1(Fq). The map f : Fq ⊂ P

1(Fq) → E(Fq) can then be defined on
points as f (u) = hi

(
π−1
i (u)

)
for the first index i such that u ∈ πi

(
Ci (Fq)

)
. For all existing

constructions of this type, the function fields of the coveringsπi are linearly disjoint quadratic
extensions of Fq(u), so that membership in the imagesπi

(
Ci (Fq)

)
(and their various Boolean

combinations) can be determined efficiently by evaluating quadratic characters.
Constructions of the same form have also been considered for obtaining maps f : Fq →

X (Fq) to points on curves X/Fq of higher genus (especially hyperelliptic curves of genus 2,
since they are the most cryptographically significant).
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Improved elliptic curve hashing and point representation 163

1.2 Hashing to elliptic curves

The first application of the above constructions to cryptography was hashing to curve points.
It is common, especially in pairing-based cryptography, that a certain value (a message, an
identity, etc.) has to be hashed to an element of the group of points of an elliptic curve (or
to the Jacobian of a curve of higher genus), in such a way that the hash function can be
reasonably modeled as a random oracle.

One approach that has been considered is to take a function f : Fq → E(Fq) as above,
a hash function h : {0, 1}∗ → Fq , and combine the two together by hashing a message m as
H(m) = f

(
h(m)

)
. This is actually sufficient for certain cryptographic schemes, in the sense

that they can be proved secure in the random oracle model for h, but this is not the case in
general. Indeed, H is typically easy to distinguish from a random oracle to E(Fq), because
the image of f consists of only a fraction of all points on the curve and image membership
can be tested for efficiently: as a result, one can distinguish between H and an actual random
oracle to E(Fq) by asking for the hashes of a few messages, and checking whether none of
them falls outside f (Fq).

Formal conditions underwhich a hash function construction can securely replace a random
oracle in essentially any cryptographic protocol are given byMaurer et al.’s indifferentiability
framework [23], andBrier et al. [4] have applied them to the elliptic curve setting, establishing
that a hash function construction H(m) = F

(
h(m)

)
is indifferentiable from a random oracle

in E(Fq) when F : Fq → E(Fq) is an admissible encoding in the following sense.
A function F : Fq → E(Fq) is called α-admissible if F is: (1) efficiently computable; (2)

efficiently samplable (one can compute a close to uniform preimage of any point efficiently);
and (3) α-regular (for s uniformly distributed in Fq , the statistical distance of the distribution
of F(s) and the uniformdistribution on E(Fq) is less thanα: seeDefinition 3). They call such a
function F simply admissible when α is a negligible function of q (namely, α = o

(
(log q)−k

)

for any positive k), and prove the admissibility of:

F1 : Fq × Z/NZ → E(Fq)

(u, v) �→ f (u) + vG (3)

for any curve such that E(Fq) is a cyclic group of order N generated byG and f is a function
f : Fq → E(Fq) verifying mild conditions (all maps from the previous paragraph qualify, in
particular). Due to the scalar multiplication, that construction is rather slow, however. They
also prove the admissibility of the following much more efficient construction:

F2 : Fq × Fq → E(Fq)

(u, v) �→ f (u) + f (v) (4)

but onlywhen f is Icart’s function, and the proof involves rather painful geometric arguments.
A much simpler approach was later proposed by Farashahi et al. [12], who prove that

the function F2 of (4) is regular whenever f satisfies certain bounds expressed in terms of
character sums on E(Fq), and they show how such bounds can be obtained for any map
f of the form (1) or (2) as a consequence of a theorem of Weil (essentially, the Riemann
hypothesis for function fields). This yields a relatively efficient hash function construction
to elliptic curves from any function f of one of those forms, and also generalizes to hash
function constructions to Jacobians of curves of higher genus.
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164 M. Tibouchi, T. Kim

1.3 Representing elliptic curve points as uniform bitstrings

For certain applications related to anonymity and privacy, elliptic curve cryptography presents
a weakness: points on a given elliptic curve, when represented in a usual way (even in
compressed form) are easy to distinguish from random bit strings. For example, the usual
compressed bit string representation of an elliptic curve point is essentially the x-coordinate
of the point, and only about half of all possible x-coordinates correspond to valid points (the
other half being x-coordinates of points of the quadratic twist). This makes it relatively easy
for an attacker to distinguish ECC traffic (the transcripts of multiple ECDH key exchanges,
say) from random traffic, and then proceed to intercept, block or otherwise tamper with such
traffic.

An efficient approach to solve this problem was proposed by Bernstein et al. [2]. Their
idea is to leverage an efficiently computable, efficiently invertible algebraic function ι that
maps the integer interval S = {0, . . . , (p − 1)/2} injectively to E(Fp). Since ι is injective,
a uniformly random point P in ι(S) ⊂ E(Fp) has a uniformly random preimage ι−1(P) in
S, so that P can be represented as the binary expansion of the integer ι−1(P) if it exists. If
p is close to a power of 2, a uniform point in ι(S) will have a close to uniform bit string
representation. This approach is simple and efficient, but limited to special elliptic curves
such as Edwards and Montgomery curves [2,17] for which ι exists.

A variant of that approach, “Elligator Squared”, was recently suggested by Tibouchi [30],
eliminating most of the limitations of Bernstein et al.’s method. The idea is to represent
P ∈ E(Fq) by a randomly sampled preimage under an admissible encoding F2 of the
form (4). By Farashahi et al.’s results, such encodings can be obtained for all known point
encodings, and in particular for all elliptic curves.Moreover, the representation of a uniformly
random point is close to uniformly distributed in (Fq)

2 by the regularity of F2. Since F2 is
essentially surjective, no rejection sampling is necessary contrary toBernstein et al.’smethod,
yielding record performance [1]. Its main drawback, however, is that points are represented
as elements of (Fq)

2 (or rather, as bitstring representations thereof), which take up at least
twice as much space as Bernstein et al.’s representations.

1.4 Our contributions

In this paper, we revisit Farashahi et al.’s character sum estimates with the goal of improving
the efficiency of hash function constructions and Tibouchi’s “Elligator Squared” method for
representing points on elliptic curves as uniform bitstrings.

Our improvements are twofold. Firstly, in Sect. 2, we establish that for any function f
subject to the same conditions as introduced by Farashahi et al. (and verified by constructions
of the form (1), (2)), the following map is regular:

F3 : Fq × V → E(Fq)

(u, v) �→ f (u) + g(v) (5)

for any map g : V → E(Fq) from a set of cardinality #V = �(qε) and with small collision
probability (for example, an injective map, or one with preimages of cardinality bounded by
some small integer). This implies that the following variants of (3), (4) are also regular:

F ′
1 : Fq × [0, qε) → E(Fq) F ′

2 : Fq × Vε → E(Fq)

(u, v) �→ f (u) + vG (u, v) �→ f (u) + f (v)
(6)
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Improved elliptic curve hashing and point representation 165

where G ∈ E(Fq) is any point of order ≥ qε and Vε ⊂ Fq is any subset of cardinality
�(qε). This result is technically very simple, but has valuable consequences. It is especially
interesting for point representation, as it provides a way to obtain Elligator Squared-like
representations of length (1+ ε) log2 q instead of 2 log2 q (by sampling preimages under F ′

2
instead of F2), which makes the Elligator Squared construction almost as space efficient as
Bernstein et al.’s. For hash function constructions, it says that indifferentiable hashing can
be obtained from shorter random oracles, and also settles the long-standing open question of
whether admissibility can be obtained for all elliptic curves at a cost of less than two base
field exponentiations: indeed, for ε small enough, the scalar multiplication in F ′

1 becomes
cheaper than a base field exponentiation!

Secondly, in Sect. 3, we show that the techniques introduced by Farashahi et al. to prove
that functions f of the form (1) or (2) satisfy character sum bounds of the form

∣
∣
∣
∣
∑

u∈Fq
χ

(
f (u)

)
∣
∣
∣
∣ = O(

√
q)

for all nontrivial characters χ of E(Fq) can be extended to obtain similar bounds (only a
logarithmic factor worse) on arbitrary intervals1 within Fq . More precisely, for all nontrivial
characters of E(Fq) and all intervals I ⊂ Fq , we obtain a bound of the form

∣∣∣∣
∑

u∈I
χ

(
f (u)

)
∣∣∣∣ = O(

√
q log p)

where p is the characteristic of Fq . As a consequence, we get admissibility for variants of
the maps F ′

1, F
′
2 of (6) in which the variable u is taken from any large interval (of length

q/O(1)) within Fq . This is of practical relevance for hashing or point representation on
elliptic curves defined over prime fields Fp when p is not pseudo-Mersenne (such as most
pairing-friendly elliptic curves, and many other standardized curves). Indeed, when hashing
to a 256-bit curve of that type, for example, one traditionally needs to obtain a hash value in
Fp , which typically involves reducing a digest of at least 384 bits modulo p, since usual hash
functions return bitstrings. A similar problem arises when representing an Elligator Squared
value (u, v) ∈ (Fp)

2 (or Fp × Vε when using F ′
2) as a bitstring: to get uniform bitstrings,

elements of Fp have to be greatly enlarged. Our result solves this problem completely by
allowing u to be chosen from an interval of length a power of 2 (say [0, 2255) in the 256-bit
case), making it possible to use the output of a standard hash function directly, and to directly
obtain representation as bitstrings instead of base field elements.

Both of these improvements admit direct generalizations to the higher genus setting, in
which one uses a function f : Fq → X (Fq) to hash to the group J (Fq) where J is the
Jacobian of X , or to represent uniform divisor classes in J (Fq) as close to uniform bitstrings.

2 Stronger regularity bounds for encodings

In this section, we show how we can improve upon the regularity bounds from [12] for
encodings to elliptic curves. We first formulate and prove a simple generalization of [12, Th.
3] in Sect. 2.2, and then discuss applications to elliptic curves in Sect. 2.3. The results extend
naturally to higher genus algebraic curves, as shown in Appendix 2.4. We refer to Sect. 2.1

1 An interval in a not necessarily prime finite field Fq is any subset of the form H + x[m, . . . ,m + k] where
H is an additive subgroup of Fq , x an element of Fq , andm, k non negative integers (see [21, §4]) with k < p.
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166 M. Tibouchi, T. Kim

for standard definitions regarding probability distributions on finite sets and regularity, and
to [19,22] for background materials on characters of abelian groups and finite fields.

2.1 Statistical distance and regularity: some definitions

For DS (or just D if the context is clear) a probability distribution on a finite set S, we write
Pr[s ← DS] for the probability assigned to the singleton {s} ⊂ S by DS . The uniform
distribution on S is denoted by US (or just U if the context is clear).

In this paper, we will usually consider families of distributions DSq defined on sets Sq
associated with finite fields Fq , and evaluate statistical quantities αq related to these distrib-
utions. Such a quantity αq will be called negligible when αq = o

(
(log q)−k

)
for all positive

k.

Definition 1 (Statistical distance) Let D and D ′ be two probability distributions on a finite
set S. The statistical distance between them is defined as the L1-norm:2

	1(D,D ′) =
∑

s∈S

∣
∣Pr[s ← D] − Pr[s ← D ′]∣∣.

We simply denote by 	1(D) the statistical distance between D and U :

	1(D) =
∑

s∈S

∣∣∣ Pr[s ← D] − 1

#S

∣∣∣,

and say thatD is ε-statistically close to uniformwhen	1(D) ≤ ε.When	1(D) is negligible,
we simply say than D is statistically close to uniform.3 The squared Euclidean imbalance
	2

2(D) of D is the square of the L2-norm between D and U :

	2
2(D) =

∑

s∈S

∣∣∣Pr[s ← D] − 1

#S

∣∣∣
2
.

Definition 2 (Pushforward) Let S, T be two finite sets and F any mapping from S to T . For
any probability distribution DS on S, we can define the pushforward F∗DS of DS by F as
the probability distribution on T such that sampling from F∗DS is equivalent to sampling a
value s ← DS and returning F(s). In other words:

Pr
[
t ← F∗DS

] = Pr
[
s ← DS; t = F(s)

] = sums∈F−1(t) Pr[s ← DS].

Definition 3 (Regularity) Let S, T be two finite sets and F any mapping from S to T . We
say that F is α-regular when F∗US is α-close to the uniform distribution. We may omit α if
it is negligible.

Definition 4 (Collision probability) The collision probability ρ of a map F : S → T is:

ρ = Pr
[
(s, s′) ← US2 ; F(s) = F(s′)

] = 1

#S2
· #{(s, s′) ∈ S2 | F(s) = F(s′)}.

2 An alternate definition frequently found in the literature differs from this one by a constant factor 1/2. That
constant factor is irrelevant for our purposes.
3 For this to be well-defined, we of course need a family of random variables on increasingly large sets Sq .
Usual abuses of language apply.
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Improved elliptic curve hashing and point representation 167

2.2 A general regularity bound

Let A be any finite abelian group (denoted additively), and fi : Ui → A, g : V → A arbitrary
functions from finite sets Ui , V to A for some s and 1 ≤ i ≤ s. We consider the following
mapping:

F : U1 × · · · ×Us × V → A

(u1, . . . , us, v) �→ f1(u1) + · · · + fs(us) + g(v).

We can obtain bounds on the regularity of F from bounds on the character sums S fi (χ)

defined by S fi (χ) = ∑
u∈Ui

χ
(
fi (u)

)
for nontrivial characters χ of A on the one hand, and

on the collision probability of g on the other hand. Indeed, the following theorem is a simple
generalization of [12, Th. 3].

Lemma 1 Assume that for all nontrivial characters χ of A, the inequality |S fi (χ)| ≤ Si
holds, and denote by ρ the collision probability of g. Then, the mapping F defined above is
α-regular with α = (

∏s
i=1 Si )/#U

s√ρ#A.

Proof For any a ∈ A, denote by N (a) the number of elements (u1, . . . , us, v) of T =
U1 × · · · × Us × V such that F(u1, . . . , us, v) = a. It follows from usual orthogonality
relations of characters that:

N (a) =
∑

(u1,...,us ,v)∈∏s
i=1 Ui×V

1

#A

∑

χ

χ
(
F(u1, . . . , us, v) − a

)

= 1

#A

∑

χ

S f1(χ) · · · S fs (χ)Sg(χ)χ(−a)

where sums on χ extend over all characters of the abelian group A. The contribution of the
trivial character χ0 is clearly #T/#A. Therefore, we have:

N (a)

#T
− 1

#A
= 1

#A#T

∑

χ �=χ0

S f1(χ) · · · S fs (χ)Sg(χ)χ(−a).

In particular, the squared euclidean imbalance of the distribution induced by F on A, which
is given by:

	2
2

(
F∗UT

) =
∑

a∈A

∣∣∣∣
N (a)

#T
− 1

#A

∣∣∣∣

2

,

can be expressed as follows:

	2
2

(
F∗UT

) =
∑

a∈A

1

#A2#T 2

∑

χ,χ ′ �=χ0

(
s∏

i=1

S fi (χ)

)

Sg(χ)χ(−a) ·
(

s∏

i=1

S fi (χ)

)

Sg(χ ′)χ ′(−a)

= 1

#A2#T 2

∑

χ,χ ′ �=χ0

(
s∏

i=1

|S fi (χ)|2
)

|Sg(χ)|2
∑

a∈A

(χχ ′)(−a),

and by orthogonality again, the sum over a ∈ A in the last list vanishes unless χ = χ ′, in
which case it evaluates to #A. Hence:

	2
2

(
F∗UT

) = 1

#A#T 2

∑

χ �=χ0

(
s∏

i=1

|S fi (χ)|2
)

|Sg(χ)|2 ≤ (S1 · · · Ss)2
#A#U 2s#V 2

∑

χ

|Sg(χ)|2.
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168 M. Tibouchi, T. Kim

Moreover, we have:
∑

χ

|Sg(χ)|2 =
∑

(v,v′)∈V 2

∑

χ

χ
(
g(v) − g(v′)

) = #V 2 · ρ · #A

since the character sum vanishes unless there is a collision between g(v) and g(v′), in which
case it evaluates to #A. As a result:

	2
2

(
F∗UT

) ≤ (S1 · · · Ss)2
#U 2s · ρ

and theCauchy–Schwarz relation between the squared euclidean imbalance and the statistical
distance to uniform gives:

	1
(
F∗UT

) ≤
√

	2
2

(
(F∗UT

)√
#A ≤ S1 · · · Ss

#Us

√
ρ#A

as required. ��
Corollary 1 Assume that for all nontrivial characters χ of A, the inequality |S f (χ)| ≤ S
holds for all i , and that g has preimage size bounded by some constant d (i.e. #g−1({a}) ≤ d
for all a ∈ A). Suppose also that all the sets Ui are equal: U1 = · · · = Us = U. Then, the
mapping F defined above is α-regular with

α = (S/#U )s
√
d#A/#V .

Proof Indeed, the collision probability of g is then bounded as:

ρ = 1

#V 2 · #{(v, v′) ∈ V 2 | g(v) = g(v′)} = 1

#V 2

∑

v∈V
#g−1({g(v)}) ≤ d

#V
.

Hence, the result follows from Lemma 1. ��
2.3 Application to elliptic curve encodings

Consider now an encoding f : Fq → E(Fq) to the group of points of an elliptic curve over
Fq , and recall the following definition proposed by Farashahi et al. [12].

Definition 5 The encoding f is said to be B-well-distributed for some positive constant B
if for all nontrivial characters χ of E(Fq), the character sum S f (χ) = ∑

u∈Fq χ
(
f (u)

)
is

bounded as
∣∣S f (χ)

∣∣ ≤ B
√
q.

Farashahi et al. have shown how to prove that known encoding functions to elliptic curves
(of the form (1) or (2), say) are indeed B-well-distributed for some small B depending on
the encoding construction but not on q .

Then, fix g : V → E(Fq) any function from a set V of cardinality #V ≥ qε and with
preimage size bounded by d . Assuming that f is B-well-distributed, Corollary 1 applied
to f and g with s = 1 shows that the map F3 : Fq × V → E(Fq) from 5, given by
F3(u, v) = f (u) + g(v), is α-regular for:

α = B
√
q

q

√
d · (q + 2

√
q + 1)

#V
≤ B

√
d

qε/2 · (1 + q−1/2),

which is negligible (it is smaller than the inverse of any polynomial function of log q for large
enough q) for constant B and d . As a result, the maps F ′

1, F
′
2 defined in (6) are indeed regular.
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Improved elliptic curve hashing and point representation 169

Algorithm 1 Preimage sampling algorithm for F3 assuming f has preimage size bounded
by d .
1: function SamplePreimage(P)
2: repeat

3: v
$← V

4: Q ← P − g(v)

5: t ← # f −1(Q)

6: j
$← {1, . . . , d}

7: until j ≤ t
8: {u1, . . . , ut } ← f −1(Q)

9: return (u j , v)

10: end function

If we assume furthermore that f is efficiently invertible and has preimage size bounded by
d (which usually follows trivially for a suitable d from the fact that it is algebraic), then F3
(and hence F ′

1, F
′
2) are also efficiently and uniformly samplable using Algorithm 1, and thus

admissible in the terminology of [4]. This implies in particular that:

– if h1 : {0, 1}∗ → Fq , h2 : {0, 1}∗ → [0, qε) are hash functions modeled as independent
random oracles, thenm �→ f

(
h1(m)

)+h2(m)G is indifferentiable from a random oracle
to E(Fq) for any element G ∈ E(Fq) of order greater than or equal to qε. This provides
indifferentiable hashing to E(Fq) from as few as (1 + ε) log2 q random oracle bits (and
for ε small enough, it gives indifferentiable hashing for a smaller computational cost than
2 base fields exponentiations);

– similarly, if h1 : {0, 1}∗ → Fq , h2 : {0, 1}∗ → Vε are hash functions modeled as inde-
pendent random oracles with Vε ⊂ Fq a subset of cardinality greater than or equal to qε,
then m �→ f

(
h1(m)

) + f
(
h2(m)

)
is indifferentiable from a random oracle to E(Fq);

– in the spirit of [30], if P ∈ E(Fq) is a uniformly random point, then a uniformly random
preimage of P under F ′

1 (resp. F
′
2) is statistically close to uniform in Fq × [0, qε) (resp.

Fq × Vε), and can be efficiently sampled using Algorithm 1, which provides a close-to-
uniform point representation technique from a set of cardinality as small as q1+ε.

As mentioned in the introduction, we can also extend those results to the restriction of f
to a large enough interval of Fq . Indeed, let us introduce the following definition (where, as
mentioned earlier, an interval of Fq is any subset of the form H + x[m, . . . ,m + k] where
H is a subgroup of Fq , x ∈ Fq and m, k are non negative integers).

Definition 6 The encoding f is said to be B-strongly well-distributed for some positive
constant B if for all nontrivial characters χ of E(Fq) and all intervals I ⊂ Fq , the restricted
character sum S f (χ; I ) = ∑

u∈I χ
(
f (u)

)
is bounded as

∣∣S f (χ; I )∣∣ ≤ B
√
q · log p, where

p is the characteristic of Fq .

We will show in Sect. 3 that the same techniques as used by Farashahi et al. to show that
encodings are well-distributed can be adapted to prove that they are also strongly well-
distributed.

Now, consider a B-strongly well-distributed f to E(Fq) and a mapping g : V → E(Fq)

with preimage size bounded by d from a set of cardinality #V ≥ qε, and fix an interval
I ⊂ Fq of cardinality #I ≥ q/c for some constant c. Corollary 1 applied to f |I and g with
s = 1 shows that the map F3,I : I × V → E(Fq) given by F3,I (u, v) = f (u) + g(v) is
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α-regular for:

α = B
√
q · log p

q/c

√
d · (q + 2

√
q + 1)

#V
≤ cB

√
d · log p

qε/2 · (1 + q−1/2),

which is again negligible for constant B, c, d . This is especially interesting in the case when
q = p is prime. Then, for some ε > 0, let k1 = �log2 p� and k2 = �(1 + ε) log2 p� − k1,
and identify bitstrings in {0, 1}k with integers in [0, 2k). We can then introduce:

F ′
1,I : {0, 1}k1 × {0, 1}k2 → E(Fp) F ′

2,I : {0, 1}k1 × {0, 1}k2 → E(Fp)

(u, v) �→ f (u) + vG (u, v) �→ f (u) + f (v).

The previous bound says that F ′
1,I is

(
2 + o(1)

)
Bp−ε/2 log p-regular, and F ′

2,I is
(
2 +

o(1)
)
B

√
d ·p−ε/2 log p-regular. If f has boundedpreimage size, they are thus both admissible

encodings (using the variant of Algorithm 1 where only preimages in f −1(Q)∩ I are consid-
ered in Steps 5, 8 for preimage sampling) from bitstrings of length k1 + k2 ∼ (1+ ε) log2 p
to E(Fp). As a result, we get:

– efficient indifferentiable hash functions to E(Fp) from random oracles to the set
{0, 1}k1+k2 of bitstrings of length k1 + k2 ∼ (1 + ε) log2 p;

– efficient representation of uniform points in E(Fp) as close to uniform bitstrings of length
k1 + k2 ∼ (1 + ε) log2 p.

This is a major improvement over the approach described in [4,30] for hashing and point
representation, which requires strings of length∼ (5/2) log2 pwhen p is not close to a power
of 2 (not a pseudo-Mersenne prime, say).

2.4 Extension of Sect. 2.3 to higher genus curves

In this section, we briefly discuss how the results of Sect. 2.3 extend to the case of encodings
to algebraic curves of arbitrary genus.

Consider a mapping f : Fq → X (Fq) to the rational points of a curve X/Fq of genus gX ,
and let J denote the Jacobian of X . Assume that X has an Fq -rational point O , so that we
can fix an embedding X ↪→ J (sending a point P to the degree 0 divisor (P) − (O)). In that
situation, Farashahi et al. [12] define what it means for f to be a well-distributed encoding.

Definition 7 The encoding f is said to be B-well-distributed for some positive constant B if
for all nontrivial characters χ of J (Fq), the character sum S f (χ) = ∑

u∈Fq χ
(
f (u)

)
(where

f (u) is identified with its image in J (Fq) under the embedding X ↪→ J ) is bounded as∣∣S f (χ)
∣∣ ≤ B

√
q .

Similarly, we introduce the definition of strong well-distributed encodings f to X (Fq).

Definition 8 The encoding f is said to be B-strongly well-distributed for some positive
constant B if for all nontrivial characters χ of J (Fq) and all intervals I ⊂ Fq , the restricted
character sum S f (χ; I ) = ∑

u∈I χ
(
f (u)

)
is bounded as

∣∣S f (χ; I )∣∣ ≤ B
√
q · log p, where

p is the characteristic of Fq .

Then the results of Sect. 2.3 generalize in a straightforward way. Indeed, suppose that f is
B-well-distributed and fix g : V → X (Fq) any function from a set V of cardinality #V ≤ qε

and with preimage size bounded by d . Assuming that f is B-well-distributed, Corollary 1
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applied to f and g with s = gX shows that the map:

F : FgX
q × V → J (Fq)

(u1, . . . , ugX , v) �→ f (u1) + · · · + f (ugX ) + g(v)

is α-regular for:

α =
(
B

√
q

q

)gX
√
d · (q + 2gX

√
q + 1)gX

#V
≤ BgX

√
d

qε/2 · (1 + gXq
−1/2)gX ,

which is negligible (it is smaller than any polynomial function of log q for large enough q)
for constant B, d and gX . As a result, the following generalizations of the maps from (6):

F ′′
1 : FgX

q × [0, qε) → J (Fq)

(u1, . . . , ugX , v) �→ f (u1) + · · · + f (ugX ) + vG

F ′′
2 : FgX

q × Vε → J (Fq)

(u1, . . . , ugX , v) �→ f (u1) + · · · + f (ugX ) + f (v)

are again regular. If we assume that f is efficiently invertible and has preimage size bounded
by d , we obtain admissibility, and get:

– efficient indifferentiable hash functions to the group J (Fq) from a random oracle to the
set FgX

q × [0, qε) (or FgX
q × Vε) of cardinality as low as qgX+ε , which is essentially

optimal, since #J (Fq) = qgX+o(1);
– efficient representation of uniform group elements in J (Fq) as close to uniform elements

of those same sets.

Similarly, if f is B-strongly well-distributed and g : V → E(Fq) is as above, then for
any interval I ⊂ Fq of cardinality #I ≥ q/c for some constant c. Corollary 1 applied to f |I
and g with s = gX shows the map:

FI : I gX × V → J (Fq)

(u1, . . . , ugX , v) �→ f (u1) + · · · + f (ugX ) + g(v)

is α-regular for:

α =
(
B

√
q · log p

q/c

)gX
√
d · (q + 2gX

√
q + 1)gX

#V
≤

(
cB log p

)gX √
d

qε/2 · (1 + gXq
−1/2)gX ,

which is again negligible for constant B, c, d, gX . In the case when q = p is prime, define
as in Sect. 2.3 two integers k1, k2 as k1 = �log2 p� and k2 = �(gX + ε) log2 p� − gX · k1,
and identify bitstrings in {0, 1}k with integers in [0, 2k). We can then introduce:

F ′′
1,I : {0, 1}gX ·k1 × {0, 1}k2 → J (Fp)

(u1, . . . , ugX , v) �→ f (u1) + · · · + f (ugX ) + vG

F ′′
2,I : {0, 1}gX ·k1 × {0, 1}k2 → J (Fp)

(u1, . . . , ugX , v) �→ f (u1) + · · · + f (ugX ) + f (v).

The previous bound ensures that F ′′
1,I , F

′′
2,I are both Õ(p−ε/2)-regular. If f has bounded

preimage size, they are thus both admissible encodings from bitstrings of length gX ·k1+k2 ∼
(gX + ε) log2 p to J (Fp). As a result, we get:
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– efficient indifferentiable hash functions to J (Fp) from random oracles to the set
{0, 1}gX ·k1+k2 of bitstrings of length gX · k1 + k2 ∼ (gX + ε) log2 p;

– efficient representation of uniform group elements in J (Fp) as close to uniform bitstrings
of length gX · k1 + k2 ∼ (gX + ε) log2 p.

3 Character sums on intervals of curves

Throughout this paper, a “curve” means a smooth, projective, geometrically integral curve
over a finite field (the field Fq unless otherwise specified).

Let h : X → Y be a branched covering (i.e. a finite separable morphism) of curves over
Fq , and ξ, π : X → P

1 be rational functions. We also assume that Y has an Fq rational point,
and fix the embedding Y ↪→ J of Y into its Jacobian variety J defined by that rational point.
The goal of this section is to obtain bounds on character sums:

Sh,ξ,π (χ, ω; I ) =
∑

P∈X (Fq )

π(P)∈I,ξ(P)�=∞

χ
(
h(P)

)
ω

(
ξ(P)

)
, (7)

where χ is a nontrivial character of J (Fq), ω is a multiplicative character of Fq , and I ⊂ Fq

is any interval. Under mild conditions on h, ξ, π , we will obtain a bound of the form:
∣∣Sh,ξ,π (χ, ω; I )∣∣ = O(q1/2 log p) (8)

where p is the characteristic of Fq . This extends the results of Farashahi et al. [12, §4] giving
similar bounds (without the log p factor) in the case when I = Fq , and makes it possible
to prove that encoding functions Fq → Y (Fq) constructed as in (1) or (2) are strongly
well-distributed in the sense of Definition 6 (or Definition 8 in the higher genus case).

The idea is to express Sh,ξ,π (χ, ω; I ) in terms of the sums:

S̃h,ξ,π (χ, ω,ψ) =
∑

P∈X (Fq )

π(P),ξ(P)�=∞

χ
(
h(P)

)
ω

(
ξ(P)

)
ψ

(
π(P)

)
(9)

for all additive characters ψ of Fq . The sums S̃h,ξ,π (χ, ω,ψ) are Artin character sums along
X and can therefore be bounded using a theorem by Weil (the Riemann–Hypothesis for
curves). Standard exponential sum estimates then yield an explicit bound of the form (8).

We first recall some background onArtin character sums in Sect. 3.1, then state our precise
version of (8) and prove it in Sect. 3.2, and finally give a quick rundown in Sect. 3.3 of how
it can be applied just like [12, Th.7] to prove that encodings to algebraic curves are strongly
well-distributed.

3.1 Background on Artin characters

Consider an abelian covering Ỹ → Y of curves over Fq with Galois group G (i.e. a finite
morphism such that Fq(Ỹ )/Fq(Y ) is abelian with Galois group G). Any character of G
determines, via the Artin map, a corresponding character on the group of Fq -divisors on
Y prime to the ramification locus S of Ỹ → Y , which extends to a multiplicative map
χ : DivFq (Y ) → C vanishing on divisors not prime to S. Let us call such a map χ an Artin
character of Y . One associates to χ a distinguished effective divisor f(χ) of support S called
the conductor (in particular, if Ỹ → Y is unramified, f(χ) = 0; the character itself is then
said to be unramified).
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Wemainly consider the following three types of Artin characters (we only give their values
on Fq -rational points, since this suffices for our purposes):

1. Artin characters arising from Artin–Schreier coverings: the function field of Ỹ is then
Fq(Ỹ ) = Fq(Y )[t]/(t p − t −π) for some rational function π of Y not of the form u p −u
in F̄q(Y ). The Galois group is Z/pZ, and the Artin symbol σy at an unramified point
y ∈ Y (Fq) is trivial if and only if π(y) is of the form x p − x for some x ∈ Fq , i.e.
TrFq/Fp

(
π(y)

) = 0. As a result, Artin characters arising from this covering are of the

form y �→ exp
( 2icπ

p TrFq/Fp

(
π(y)

)
on rational points for some c ∈ Z/pZ.

More generally, by considering constant multiples of π , we obtain that ψ(π) determines
an Artin character of Y for any additive character ψ of Fq and any rational function π as
above.

2. Artin characters arising from Kummer coverings: the function field of Ỹ is then Fq(Ỹ ) =
Fq(Y )[t]/(tn − ξ) for some n > 1 dividing q − 1 and some rational function ξ which
is not an n-th power in F̄q(Y ). The Galois group is (Z/nZ)×, and the Artin symbol σy

at an unramified point y ∈ Y (Fq) is trivial if and only if ξ(y) is an n-th power. As a
result, Artin characters arising from this covering are of the form y �→ ω

(
ξ(y)

)
for some

multiplicative character ω of Fq of order dividing n.
And conversely,ω(ξ) gives rise to anArtin character of Y for anymultiplicative character
ω of Fq and any rational function ξ which is not a perfect power in F̄q(Y ).

3. Artin characters attached to characters of the Jacobian. Assume that Y has an Fq -rational
point, providing an embedding Y ↪→ J of Y into its Jacobian J . Denote by F the
Frobenius endomorphism of J . Then 1 − F is an unramified abelian covering of J of
group J (Fq), and pulling it back along Y ↪→ J yields an unramified abelian covering
Ỹ → Y of group J (Fq). As a result, any character χ of J (Fq) gives rise to an unramified
Artin character of Y , with the obvious action on rational points and divisors: the image
of y ∈ Y (Fq) is simply χ(y) under the identification of Y (Fq) as a subset of J (Fq) using
Y ↪→ J .

The product χ1χ2 of two Artin characters χ1, χ2 is an Artin character, and if χ1, χ2 have
disjoint ramification loci (which is in particular the case when one of them is unramified),
the conductor of the product is given as f(χ1χ2) = f(χ1) + f(χ2). Furthermore, one can pull
back Artin characters along morphisms: if χ is an Artin character on Y and h : X → Y any
non constant morphism of curves, one can define an Artin character h∗χ on X by pulling
back the Galois covering. It is given on divisors by h∗χ(D) = χ(h∗D), and is unramified if
χ is unramified.

The main tool for estimating sums of Artin character is the following theorem by Weil,
obtained as a consequence of the Riemann hypothesis for curves (see, for example, [21, §2]
or [26, Chap. 9]), which gives a bound on sums of the form SY (χ) = ∑

P∈Y (Fq ) χ(P) where
χ is a nontrivial Artin character on Y .

Lemma 2 If χ is a nontrivial Artin character on the curve Y is of genus gY , the following
bound holds: |SY (χ)| ≤ (2gY − 2 + deg f(χ))

√
q.

3.2 A bound for Sh,ξ,π (χ, ω; I)

Let Fq be a finite field of characteristic p. Now consider the situation described at the
beginning of this section: we have a branched covering h : X → Y , rational functions
ξ, π : X → P

1 (which are not constant, say), a nontrivial character χ of J (Fq) where J
is the Jacobian of Y , an additive character ψ of Fq and a multiplicative character ω of Fq .
We want to estimate the sum S̃h,ξ,π (χ, ω,ψ) defined by (9).
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Suppose for simplicity that ξ is not a perfect power in F̄q(X) and π is not of the form
u p − u in F̄q(X). Then, we have Artin characters ω(ξ) and ψ(π) on X . We denote their
product by λ. This character has been studied in detail by Perel’muter [25] and more recently
by Castro and Moreno [5]. In particular, they show [5, Th. 13]:

Lemma 3 Suppose that ω and ψ are not both trivial characters. Then λ = ω(ξ)ψ(π) is a
ramified Artin character, and its conductor satisfies deg f(λ) ≤ deg(π)∞ + l + s − r − a
(with equality when ω and ψ are both nontrivial), where (π)∞ is the divisor of poles of π

(counted positively), and l the number of poles of π , s the number of points in the support of
(ξ), r the number of points common to the supports of (π)∞ and (ξ), and a the number of
points in the union of the supports of (π)∞ and (ξ) where λ is unramified.

Furthermore, χ also defines an unramified Artin character on Y which can be pulled back
to an unramified Artin character h∗χ of X . Let χ̃ = λ ·h∗χ . Then by definition, for any point
P ∈ X (Fq) such that π(P), ξ(P) �= ∞, we have: χ̃(P) = χ

(
h(P)

)
ω

(
ξ(P)

)
ψ

(
π(P)

)
. As a

result, the sum S̃h,ξ,π (χ, ω,ψ) is almost the same as SX (χ̃): they differ atmost by the number
of points P ∈ X (Fq) which are poles of π or ξ but where λ is nonzero (hence unramified),
and there are at most a such points, using the notations of Lemma 3. The following extension
of [12, Th.7] follows.

Theorem 1 Let h : X → Y be a branched covering of curves, ξ, π : X → P
1 non constant

rational functions, χ a nontrivial character of J (Fq) where J is the Jacobian of Y , ψ an
arbitrary additive character of Fq and ω an arbitrary multiplicative character ω of Fq .
Assume that h does not factor through a nontrivial unramified covering of Y , and that ξ is
not a perfect power in F̄q(X) and π not of the form u p − u in F̄q(X). Then, we have:

∣∣S̃h,ξ,π (χ, ω,ψ)
∣∣ ≤ (

2gX − 2 + 2 deg ξ + 2 degπ
)
q1/2.

Proof The case whenω andψ are both trivial follows directly from [12, Th. 7] (for reference:
h∗χ must be nontrivial, since h would factor through the unramified covering defined by the
kernel of χ ; thus

∣∣SX (h∗χ)
∣∣ ≤ (2gX − 2)q1/2 by Lemma 2, and clearly

∣∣S̃h,ξ,π (χ, ω,ψ)
∣∣ ≤∣∣SX (h∗χ)

∣∣ + deg ξ + degπ ).
Thus, we can assume that at least one of ω or ψ is nontrivial, and thus λ = ω(ξ)ψ(π) is

ramified, with deg f(λ) ≤ deg(π)∞ + l+s−r −a with the notations of Lemma 3. Moreover,
χ̃ = λ·h∗χ has the sameconductor and is in particular nontrivial.By the previous observation,
we have:

∣∣S̃h,ξ,π (χ, ω,ψ)
∣∣ ≤ ∣∣SX (χ̃)

∣∣ + a

≤ (
2gX − 2 + deg(π)∞ + l + s − r − a

)
q1/2 + a (by Lemma 2)

≤ (
2gX − 2 + deg(π)∞ + l + s

)
q1/2.

Moreover, deg(π)∞ = degπ∗(∞) = degπ · 1, and similarly l ≤ degπ , s ≤ deg ξ∗((0) +
(∞)

) = 2 deg ξ . Hence |S̃h,ξ,π (χ, ω,ψ)| ≤ (2gX − 2+ 2 deg ξ + 2 degπ)q1/2 as required.
��

Remark 1 It is easy to verify that the result still holds even when the condition on ξ and π

isn’t verified, as those cases essentially reduce to the case of trivial characters. Similarly, the
theorem remains true when ξ or π is constant, with the convention that the degree is then
zero.

Let I ⊂ Fq an arbitrary interval of Fq . We can obtain an estimate of Sh,ξ,π (χ, ω; I ) using
the following bound, which is easily established following the proof of Kohel and Shparlin-
ski’s [21, Lemma 3] together with the more precise version of Vinogradov’s inequality due
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to Cochrane [6]. The lower order constant 3/2 can be improved slightly for large p [7,24],
but will suffice for our purposes.

Lemma 4 Denote by � the group of additive characters of Fq . We have:

∑

ψ∈�

∣
∣
∣
∣
∑

β∈I
ψ(β)

∣
∣
∣
∣ ≤ q

(
4

π2 log p + 3

2

)

where p is the characteristic of Fq , and π = 3.14 . . . is the circle constant (in boldface to
avoid confusion).

Theorem 2 Let h : X → Y be a branched covering of curves, ξ, π : X → P
1 non constant

rational functions, χ a nontrivial character of J (Fq) where J is the Jacobian of Y , ω an
arbitrary multiplicative character of Fq . Assume that h does not factor through a nontrivial
unramified covering of Y . Then, we have:

∣
∣Sh,ξ,π (χ, ω; I )∣∣ ≤ (

2gX − 2 + 2 deg ξ + 2 degπ
)
q1/2

( 4

π2 log p + 3

2

)
.

Proof To see this, write, using the orthogonality property of additive characters:

Sh,ξ,π (χ, ω; I ) =
∑

β∈I

∑

P∈X (Fq )

π(P)=β,ξ(P)�=∞

χ
(
h(P)

)
ω

(
ξ(P)

)

=
∑

β∈I

∑

P∈X (Fq )

π(P)�=∞,ξ(P)�=∞

χ
(
h(P)

)
ω

(
ξ(P)

) · 1
q

∑

ψ∈�

ψ
(
π(P) − β

)

=
∑

ψ∈�

S̃h,ξ,π (χ, ω,ψ) · 1
q

∑

β∈I
ψ(−β).

The result then readily follows from Lemma 4 and Theorem 1. ��
3.3 Application to encodings

Let us now succinctly discuss how Theorem 2 enables us to prove that encodings are strongly
well-distributed in exactly the same way as Farashahi et al. [12] use their result to establish
that they are well-distributed.

Take Icart’s function [18] as an example: it is defined for any elliptic curve E : y2 =
x3 +ax +b (a �= 0) over a field Fq such that q ≡ 2 (mod 3), and admits a simple geometric
description of the form (1). Indeed, as discussed in [11,12,14], if we define h : C → E to be
the branched covering of curves such thatFq(C) = Fq(E)[u]/(u4−6xu2+6yu−3a) (where
x, y are the rational functions on E defined in the Weierstrass equation), then the rational
function u on C is a morphism π : C → P

1 that induces a bijection C(Fq)
∼−→ P

1(Fq)

on rational points. Icart’s function f : Fq → E(Fq) can then be defined as h ◦ π−1 on
Fq ⊂ P

1(Fq). Therefore, we have, for any interval I ⊂ Fq and any nontrivial character χ of
E(Fq):

S f (χ; I ) =
∑

u∈I
χ

(
f (u)

) =
∑

P∈C(Fq )

π(P)∈I

χ
(
h(P)

) = Sh,1,π (χ, ω0; I )

for ω0 the trivial multiplicative character of Fq .
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Moreover, those papers have computed that C is of genus gC = 7, and it is easy to see (by
eliminating y between y2−x3−ax−b andu4−6xu2+6yu−3a, say) the rational functionπ is
of degree degπ = 3.As a result, we obtain |S f (χ; I )| ≤ (2·7−2+2·3)q1/2( 4

π2 log p+ 3
2 ) =

(
72/π2 + o(1)

)
q1/2 log p. In other words:

Theorem 3 Icart’s function f is
(
72/π2 + o(1)

)
-strongly well-distributed.

In particular, the results of Sect. 2.3 apply to Icart’s function. Similarly, the same
approach as in [12] shows that all other known types of encodings, such as the Kammerer–
Lercier–Renault encoding to genus 2 hyperelliptic curves [20], the Shallue–van deWoestijne
encoding [28], and the Ulas encoding [32] of the form (2) are also strongly well-distributed.
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