
Des. Codes Cryptogr. (2017) 85:15–37
DOI 10.1007/s10623-016-0285-5

Perfect contrast XOR-based visual cryptography schemes
via linear algebra

Gang Shen1 · Feng Liu2,3 · Zhengxin Fu1 · Bin Yu1

Received: 30 January 2016 / Revised: 23 June 2016 / Accepted: 24 September 2016 /
Published online: 4 October 2016
© Springer Science+Business Media New York 2016

Abstract XOR-based visual cryptography scheme (XVCS) was proposed to solve the poor
visual quality problem without darkening the background in the reconstructed secret image.
However, investigations on XVCS are not sufficient. In this paper, we focus on the tradi-
tional model of VCS for general access structures and exploit some extended capabilities
for XVCS. Our main contributions are: (1) we put forward constructions of perfect contrast
XVCS using the linear algebraic technique without any assumptions such as participants
may carry multiple shares or prior information about the shares are to be submitted during
the secret reconstruction phase; (2) for some restricted access structures, we achieve perfect
contrast and perfect pixel expansion, namely both 1, which is impossible for any OR-based
visual cryptography scheme (OVCS); (3) for general access structures, we achieve perfect
contrast with smaller pixel expansion compared with many of the results in the literature;
(4) Theoretical analysis on the proposed constructions are provided, as well as extensive
experimental results and comparisons for demonstrating the effectiveness and advantages of
our constructions.
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1 Introduction

Visual cryptography scheme (VCS) proposed by Naor and Shamir [18] is a special type of
secret sharing scheme, where the secret is a black and white image. A (k, n)-VCS for a set of
n participants, where 2 ≤ k ≤ n, is capable of encoding a secret image into n shadow images
called shares, where each participant receives one share. One can reconstruct the secret image
with any k or more than k shares; but, one cannot obtain any information of the secret image
from fewer than k shares. The attractiveness of VCS is the stacking-to-see property by which
the reconstruction requires neither knowledge of cryptography nor complex computation.
Any k or more than k participants may photocopy their shares onto transparencies and stack
them on an overhead projector to visually decode the secret image through the human visual
system.

In some circumstanceswhere the cost of computationsmay be not affordable, the decoding
time should be instantly done in a constant time, or the recognition of the secret shape/pattern
is sensitive or meaningful only to the human perception, VCS becomes very appropriate. For
example, VCS can be applied to protect online transactions against manipulation like online
money transfers by Trojans [19], realize visual voting while ensuring voter’s anonymity
without counting process [10], design secure display screen with controllable visual area
against malicious peep while avoiding the attacks of virus and electromagnetic leakage [15],
and other application scenarios including print and scan [30] and bar codes [33].

Based on Naor and Shamir’s method [18], extensive researches on VCS were conducted
[28]. VCS for general access structures including graph based access structures, which aims
to design sophisticated sharing strategy, was proposed by Ateniese et al. [3], Adhikari [1] and
Shyu andChen [21] respectively.Constructions ofVCS for encryptinggrayscale/color images
were studied in [5,6,12]. Approaches of generating meaningful shares were introduced in
[27,31]. Sharing multiple secrets in VCS was described in [22,34]. Cheating prevention in
VCS was proposed by Hu and Tzeng [13]. Furthermore, Arumugam et al. [2] introduced a
VCS for a special type of threshold access structure. They called it (k, n)*-VCS, to address
the scenario where one participant is “essential” and he needs the help of any k − 1 parties
other than him, to recover the secret image. Guo et al. [11] forwarded this idea to the concept
of t − (k, n)*-VCS where t participants are essential. The mathematical operation that lies
beneath the physical implementation of the above mentioned schemes is the Boolean OR
operation. Thus, these schemes are also referred to as OR-based VCS (OVCS). However,
OVCS suffers from the huge share size (reflected by pixel expansion) and very poor quality
(reflected by contrast) of the recovered secret image. Several papers have tried to minimize
the pixel expansion andmaximize the contrast. Onemay refer to [4,8,20,21,25] for a detailed
survey of these problems.

In the meantime, XOR-based VCS (XVCS) was studied to achieve advanced properties,
such as good contrast and resolution. So far threeways have been found to realize the Boolean
XORoperation physically: liquid crystal display [23],Mach–Zehnder Interferometer [14] and
copy machine with the reversing function [26]. Due to the rapid advancement of technology
these devices are becoming cheaper and easier to get. It is a reasonable expectation that XVCS
will be implemented at the expense of utilizing these light-weight devices. Moreover, light
weight computational devices such as cell phones and smart devices are popularly utilized in
practical applications and the XOR operation can be done by such devices. In addition, some
new technologies, such as google glass and flexible screen, may also provide new scenarios
for the application of XVCS. Therefore, XVCS is possible to be widely used in the future.
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Perfect contrast XVCS via linear algebra 17

In terms of constructingXVCS, Tuyls et al. [24] investigated the thresholdXVCS and gave
different constructions for (2, n) and (k, n) schemes. Yang and Wang [32] further analyzed
the relation between OVCS and XVCS for threshold access structures, and they proved that
the basis matrices of OVCS can be adopted to implement XVCS. The first XVCS for general
access structures was proposed by Liu et al. [16]. They repeatedly used the share generation
algorithm for a (2, 2)-XVCS to generate the shares of the participants for any access structure,
and they reconstructed the secret image perfectly, where α = 1. Then Fu et al. [9] proposed a
necessary condition for the optimality of pixel expansion in the traditional XVCS for general
access structures, and they confirmed the existence of a perfect XVCS, namely, (n, n)-XVCS,
wherem = 1 and α = 1. They also proved that no (k, n)-XVCS with 1 < k < n can achieve
perfect contrast α = 1 and perfect pixel expansion m = 1 simultaneously. All the above
mentioned schemes have considered the common property of non-monotonicity of the access
structure, i.e., superset of the minimal qualified set may not get the secret back if all of them
stack their shares. But, it does not prohibit us to define XVCS. For most of the practical
scenarios, the access structure is generally a public information. That is, the participants
have complete knowledge of the qualified sets and forbidden sets. Therefore if a qualified
set of participants come together then any minimal qualified subset of it may produce the
corresponding shares to reconstruct the secret image. Thus it is sufficient to restrict ourselves
to the collection of all minimal qualified sets corresponding to the access structure. However,
although perfect contrast is achieved by Liu et al.’s scheme [16], due to the presence of
multiple shares (this makes their construction different from the traditional XVCS), at the
time of revealing the secret, the participants have to know for which access structures they
are going to submit which of their shares. Fu et al.’s findings [9] are based on the existence of
basis matrices realizing an access structure. They have not given any construction method to
produce the basis matrices capturing the access structure in the first place.Moreover, both Liu
et al. [16] and Fu et al. [9] did not consider the question of classifying the access structures
for which one can construct perfect XVCS.

At the same time, Wu and Sun [29] put forward a non-expansible (m = 1) XVCS for
general access structures by random grids, where the secret image is correctly reconstructed
with certain probability. But, their scheme suffers from the low visual quality of the recon-
structed secret image. The above scheme is considered for monotone access structures, where
the superset of the minimal qualified set reconstruct the secret if all of them stack their
shares. Here, a question is raised: whether perfect contrast and perfect pixel expansion can
be achieved at the same time if the access structure is non-monotone. More deeply, how to
find and characterize such access structures needs to be solved.

1.1 Our contribution

In this paper, we focus on non-monotone access structures and exploit perfect contrast XVCS
for general access structures. Motivated by analyzing the linear aspects of perfect contrast
XVCS, we construct the schemes via linear algebra. The linear algebraic technique adopted
in this paper, where we can take more than two equations simultaneously, is based on the
new insight into Adhikari’s [1] linear algebraic construction of OVCS. With such technique,
we prove perfect contrast and perfect pixel expansion can be achieved at the same time
and conclude the sufficient and necessary conditions, a complete characterization of some
restricted access structures including (n, n), the access structures with up to two minimal
qualified sets, (k−1)-(k, n)∗, star graph and complete bipartite graph based access structures,
for the existence of a perfect XVCS. Then we use the complete characterization to partition
a general access structure into d parts and provide a region-by-region method to construct
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perfect contrast XVCS with pixel expansion equal to d . All the above XVCSs are proposed
by distributing one share per participant and without the burden that each participant may
carry multiple shares.

1.2 Organization of the paper

The rest of the paper is organized as follows. In Sect. 2, we discuss some terms and concepts
that will be referenced in subsequent sections. In Sect. 3, after describing our motivation,
new insight into linear algebraic technique to construct the basis matrices of OVCS is given.
Then based on the new insight, we prove that the constructed basis matrices of OVCS can be
adopted to implement perfect contrastXVCSand further conclude the sufficient andnecessary
conditions for the existence of a perfect XVCS, where the contrast and pixel expansion are
both 1. Moreover, for some restricted access structures, such as (n, n), the access structures
with up to two minimal qualified sets, (k − 1)-(k, n)∗, star graph and complete bipartite
graph based access structures, perfect XVCSs are given. For general access structures, we
further put forward a region by region construction to achieve perfect contrast with small
pixel expansion. Some experimental results and comparisons are presented in Sect. 4. Lastly
we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Access structure

In general, VCS is built on an access structure, which is a characterization of rights on
participants. Let P = {1, 2, . . . , n} be a set of participants and 2P denote the set of all
subsets of P . Let ΓQual ⊆ 2P and ΓForb ⊆ 2P , where ΓQual ∩ ΓForb = ∅. Members of ΓQual

are referred to as qualified sets and members of ΓForb are referred to as forbidden sets. The
pair (ΓQual, ΓForb) is called an access structure on P . Define Γ0 to consist of all the minimal
qualified sets:

Γ0 = {Q ∈ ΓQual : Q′ /∈ ΓQual f or all Q′ ⊂ Q} (1)

and ZM to consist of all the maximal forbidden sets:

ZM = {F ∈ ΓForb : F ∪ {i} ∈ ΓQual f or all i ∈ P \ F}. (2)

The monotone access structure is defined as follows.

Definition 1 An access structure (ΓQual, ΓForb) on P = {1, 2, . . . , n} is said to be monotone
if the following conditions are satisfied:

1. ΓQual is monotone increasing. Formally, for each Q ∈ ΓQual and Q ⊆ Q′ ⊆ P , we have
Q′ ∈ ΓQual.

2. ΓForb is monotone decreasing. Formally, for each F ∈ ΓForb and F ′ ⊆ F ⊆ P , we have
F ′ ∈ ΓForb.

3. ΓQual ∪ ΓForb = 2P .

The non-monotone access structure considered in this paper is defined as follows.

Definition 2 An access structure (ΓQual, ΓForb) on P = {1, 2, . . . , n} is said to be non-
monotone if ΓQual = Γ0.
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Perfect contrast XVCS via linear algebra 19

For non-monotone access structures, themonotonously increasing property of qualified set
ΓQual is relaxed to ΓQual = Γ0. It is reasonable in practical applications since we can recon-
struct the secret image from the minimal qualified set instead of the corresponding qualified
set. Therefore, unless otherwise specified, in this paper we assume that a monotone access
structure is denoted by (ΓQual, ΓForb) and its corresponding non-monotone access structure
is denoted by (Γ0, ΓForb). In addition, Γ0 is termed a basis determining the corresponding
monotone access structure completely sinceΓQual = {Q′ ⊆ P : Q ⊆ Q′ f or some Q ∈ Γ0}
and ΓForb = 2P \ ΓQual. So when we discuss an access structure, we only need to give dis-
cussions based on Γ0.

As a special access structure, a (k, n) threshold structure is an access structure (Γ0, ΓForb)

with the following constraints: Γ0 = {Q ⊆ P : |Q| = k} and ΓForb = {Q ⊆ P : |Q| ≤
k−1}. The (k, n)* threshold structure is defined byΓ0 = {Q ⊆ P : 1 ∈ Q and |Q| = k} and
ΓForb = {Q ⊆ P : |Q| ≤ k − 1}, where the 1 is referred to as an essential participant. The
t− (k, n)* threshold structure is defined by Γ0 = {Q ⊆ P : {1, 2, . . . , t} ⊆ Q and |Q| = k}
andΓForb = {Q ⊆ P : |Q| ≤ k−1}, where the 1, 2, . . . , t , t ≤ n, are referred to as t essential
participants. Note that the case when t = 0 we have the scenario of a (k,n) threshold structure
where no participant is essential. The case t = 1 is the usual (k, n)* threshold structure while
t = n leads to the (n, n) threshold structure.

As another special access structure, a graph based access structure is depicted by a graph
G = (V (G), E(G)), where the vertex set V (G) = P and the edge set E(G) = Γ0. Because
some part of the paper deals with some special graph based access structures, we first recall
some terminology from graph theory to clarify some notions. An independent set is a set of
vertices in a graph, no two of which are connected. A complete graph is a graph, where each
pair of vertices is connected by a unique edge. A complete bipartite graph is a graph, where
all vertices are partitioned into two different independent sets and there is an edge between
every pair of vertices from different independent sets.

2.2 Simplification of access structure

In this subsection, we discuss a technique, introduced in [16], to simplify and reduce a class
of more complex access structure into a simpler one. For this we first define the notion of
equivalent participants, which is presented as follows.

Definition 3 (adapted from [16]) For an access structure (Γ0, ΓForb), participants i and j
satisfy that, for all F ∈ ZM , i ∈ F if and only if j ∈ F , then participants i and j are called
equivalent participants on Γ0, denoted by i ∼ j .

Then we can simplify the access structure Γ0 based on the equivalent participants as
follows.

Definition 4 (adapted from [16]) For an access structure (Γ0, ΓForb) on a set of participants
P , define ˜P = { p̃ : p ∈ P} on the equivalence relation “∼”. We call ˜Γ0 = {{ p̃ ∈ ˜P : p ∈
Q} : Q ∈ Γ0} the simplified access structure on ˜P . If ˜Γ0 = Γ0 then the access structure is
called the most simplified access structure.

It is easy to see that no two participants are equivalent in a (k, n) threshold access struc-
ture. In other words, the (k, n) threshold access structure is already in the most simplified
form. Furthermore, in order to explain the simplification clearly, we present different access
structures with up to four participants and show the equivalent participants and the most
simplified access structures in Table 1.
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Table 1 Equivalent participants and simplified access structures with up to four participants

Γ0 Equivalent participants ˜Γ0

{{1, 2}} nil {{1, 2}}
{{1, 2}, {2, 3}} 1 ∼ 3 {{1, 2}}
{{1, 2}, {1, 3}, {2, 3}} nil {{1, 2}, {1, 3}, {2, 3}}
{{1, 2}, {2, 3}, {3, 4}} nil {{1, 2}, {2, 3}, {3, 4}}
{{1, 2}, {1, 3}, {1, 4}} 2 ∼ 3 ∼ 4 {{1, 2}}
{{1, 2}, {1, 4}, {2, 3}, {3, 4}} 1 ∼ 3, 2 ∼ 4 {{1, 2}}
{{1, 2}, {2, 3}, {2, 4}, {3, 4}} nil {{1, 2}, {2, 3}, {2, 4}, {3, 4}}
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}} 2 ∼ 4 {{1, 2}, {1, 3}, {2, 3}}
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} nil {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
{{1, 2, 3}, {1, 4}} nil {{1, 2, 3}, {1, 4}}
{{1, 2, 3}, {1, 4}, {3, 4}} nil {{1, 2, 3}, {1, 4}, {3, 4}}
{{1, 2}, {1, 3, 4}, {2, 3}, {2, 4}} nil {{1, 2}, {1, 3, 4}, {2, 3}, {2, 4}}
{{1, 2, 3}, {1, 2, 4}} 3 ∼ 4 {{1, 2, 3}}
{{1, 2, 3}, {1, 2, 4}, {2, 3}} nil {{1, 2, 3}, {1, 2, 4}, {2, 3}}
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}} nil {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} nil {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}
{{1, 2, 3, 4}} nil {{1, 2, 3, 4}}

Given an access structure, we can first identify the equivalent participants according to
Definition 3. In fact, equivalent participants are the parties who enjoy the same rights and
hence they can be given identical shares without hampering the access structure of a VCS.
Then we can reduce the access structure to a much simpler one according to Definition 4.
One can treat the reduced access structure (which is simpler than the original one) as the
given access structure and construct VCS for that.

2.3 The model

We assume that the secret image SI consists of a collection of black andwhite pixels. Awhite
pixel is identified as 0 while a black pixel is identified as 1. Each pixel is shared separately.
To understand the sharing process consider the case where the secret image consists of just
a single black or white pixel. On sharing, this pixel appears in the n shares distributed to
the participants. Generally, a secret pixel is encrypted into m subpixels in each share and
thus the size of each share is m times the size of the secret image. This m is called the pixel
expansion. We further assume that the subpixels are sufficiently small and close enough so
that human visual system averages them to some shade of grey. In order that the recovered
image is clearly discernible, it is important that the grey level of a black pixel be darker than
that of a white pixel.
Notations SupposeΓ0 = {Q1, Q2, . . . , Qt }. Let M be an n×m Booleanmatrix and X ⊆ P .
Then MX denotes the |X | × m submatrix obtained from M by considering its restriction to
rows corresponding to the elements in X . �(MX ) denotes the Boolean � operation to the rows
of MX . Here, the operation � can be either the Boolean OR operation “⊗” or the Boolean
XOR operation “⊕”. ω(�(MX )) denotes the Hamming weight of the row vector �(MX ),
which denotes the number of 1’s in the vector �(MX ). For a 1 × n Boolean row vector
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Perfect contrast XVCS via linear algebra 21

v = {v1, v2, . . . , vn}, let �v = { j |v j = 1, j = 1, 2, . . . , n}. Given two Boolean row vectors
v1 and v2, define �v1 ⊕ �v2 = �v1⊕v2 . Moreover, for Qi ∈ Γ0, 1 ≤ i ≤ t , R�(Qi ) denotes
the Boolean � operation to the shares hold by all participants of Qi . Denote Γ odd

0 as the
“⊕”ed result of any odd number of elements of Γ0 and Γ even

0 as the “⊕”ed result of any even
number of elements of Γ0.

The definition of VCS under the operations OR and XOR is given as follows.

Definition 5 (adapted from [3]) Let (ΓQual (resp. Γ0), ΓForb) be an access structure on P .
Two collections of n × m Boolean matrices C0 and C1 constitute a visual cryptography
scheme (ΓQual (resp. Γ0), ΓForb,m)-VCS if the following conditions are satisfied:

1. Any set X = {i1, i2, . . . , i p} ∈ ΓQual (resp. Γ0) can recover the secret image. Formally,
for any M0 ∈ C0 and any M1 ∈ C1, we have ω(�(M1

X )) > ω(�(M0
X )).

2. Any set X = {i1, i2, . . . , i p} ∈ ΓForb has no information on the shared image. Formally,
the two collections of p × m matrices D0 and D1 obtained by restricting C0 and C1

to rows i1, i2, . . . , i p , respectively, are distinguishable in the sense that they contain the
same matrices with the same frequencies.

To share a secret pixel b ∈ {0, 1}, the dealer randomly chooses a matrix from the Boolean
matrix set Cb and distributes its n rows to the n shares, respectively. Thus, the chosen matrix
defines the m subpixels in each of the n shares. Actually, to construct a VCS, it is sufficient
to construct the basis matrices corresponding to the black and white pixel. In the following,
we formally define what is meant by basis matrices.

Definition 6 (adapted from [3]) Let (ΓQual (resp. Γ0), ΓForb) be an access structure
on P . Two n × m basis matrices S0 and S1 constitute a visual cryptography scheme
(ΓQual (resp. Γ0), ΓForb,m)-VCS if the following conditions are satisfied:

1. Any set X = {i1, i2, . . . , i p} ∈ ΓQual (resp. Γ0) can recover the secret image. Formally,
for X ∈ ΓQual (resp. Γ0), we have ω(�(S1X )) > ω(�(S0X )).

2. Any set X = {i1, i2, . . . , i p} ∈ ΓForb has no information on the shared image. Formally,
for X ∈ ΓForb, S1X and S0X are identical up to a column permutation.

The collections of matrices C0 and C1 are obtained by giving all possible column per-
mutations to the basis matrices S0 and S1 respectively. As a result, the dealer only need to
store the two matrices S0 and S1, making the scheme efficient space-wise. Notice that in
Definition 5 we allow a matrix to appear more than once in C0 (resp. C1). Therefore the size
of the collections C0 and C1 does not need to be the same. But, in Definition 6, the size of
the collections C0 and C1 is the same.

The first property is related to the contrast of the reconstructed secret image. It states
that when a (minimal) qualified set of participants stack their shares they can perceive the
secret information due to the darkness difference. The definition of contrast for VCS is an
interesting point of discussion and has been the subject of several papers [7,8,17,18,25].
Although these given contrast measurements have their own specific advantages, all of them
favor a perfect contrast, namely 1. Therefore, we use the contrast measurement in the original
model by Naor and Shamir [18], since we focus the attention on perfect contrast XVCS in
this paper. The contrast is defined as follows:

α = ω(�(M1
X )) − ω(�(M0

X ))

m
or

ω(�(S1X )) − ω(�(S0X ))

m
, (3)

where α (0 ≤ α ≤ 1). To a certain extent, this measure determines how well human visual
system can recognize the reconstructed secret image. It is lucid that for a valid VCS α = 0
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if X ∈ ΓForb; α > 0 where X ∈ ΓQual (Γ0). From the point of view of the participants, the
pixel expansion m is expected to be as small as possible, and the contrast α is expected to
be as large as possible. The pixel expansion is called perfect when m = 1 and the contrast
is called perfect when α = 1. A VCS is perfect if its pixel expansion and contrast are both
perfect.

The second property is called security, since it implies that, even by inspecting all their
shares, a forbidden set of participants cannot gain any information in deciding whether the
shared pixel was white or black.

3 Perfect contrast XVCS for general access structures via linear algebra

3.1 Our motivation

In a perfect contrast VCS where α = 1, every secret pixel is reconstructed in the correct
color according to Eq. (3). In this case we can perceive the reconstructed secret image easily
and clearly. Therefore, we are interested only in perfect contrast VCS in this paper.

So far most researches on VCS were dedicated to OR operation. The OR operation causes
that the black subpixel in a share cannot be undone by the color of another subpixel laid
over it. Therefore, the OVCS cannot obtain the perfect contrast (a white pixel cannot be
represented by m white subpixels), while it may be achieved by XOR operation.

Due to the complementation property of XOR operation (note: 1⊕ 1 = 0 and 0⊕ 1 = 1),
it is impossible to design perfect contrast XVCS for monotone access structures. However,
it is possible to design perfect contrast XVCS for non-monotone access structures.

For a perfect contrast (Γ0, ΓForb,m)-XVCS with basis matrices S0 and S1, where Γ0 =
{Q1, Q2, . . . , Qt }, if X ∈ Γ0,ω(⊕(S1X )) = mmeans that theXOR-ed result of every column
of S1X is 1 and ω(⊕(S0X )) = 0 means that the XOR-ed result of every column of S0X is 0.
Seemingly, the construction of basis matrices can be associated with the establishment of
linear equations over the binary field. For example, establish the following two systems of
linear equations over the binary field: Ax = 0 (its all possible solutions form S0) and Ax = 1
(its all possible solutions form S1), where A is a t×n Boolean matrix of t rows a1, a2, . . . , at
determined by the t minimal qualified sets Q1, Q2, . . . , Qt in such a way that �ai = Qi ,
i = 1, 2, . . . , t ; x is an n × 1 vector of unknowns; 0 and 1 are t × 1 vectors of 0’s and 1’s
respectively. If both systems are consistent, the question whether the above method can form
the basis matrices of a perfect contrast (Γ0, ΓForb,m)-XVCS needs to be solved.

Recently, Adhikari [1] utilized the similar linear algebraic technique to construct basis
matrices and proved it is feasible. However, the basis matrices constitute OVCS formonotone
access structures. At this point of time, a natural question may be asked: whether the basis
matrices ofOVCScanbe used for capturing the corresponding non-monotone access structure
in the XOR model. In [32], the authors theoretically proved that for threshold (k, n) access
structures the basis matrices for a monotone OVCS can be used as the basis matrices for the
corresponding non-monotone XVCS. The question whether the same is true or not for any
non-monotone access structure remains open. Moreover, Adhikari’s method is confined to
taking a system of two equations and cannot deal with more than two minimal qualified sets
at a time.

Inspired by the above analysis, we are going to construct perfect contrast (Γ0, ΓForb,m)-
XVCS via linear algebra. To understand how to do it, wewill build our theory from the reverse
direction in this paper. First, we will improve the linear algebraic technique to construct the
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basis matrices of monotone OVCS so that we are able to take a system of more than two
equations simultaneously. Then we will prove that the constructed basis matrices can be used
as the basis matrices of the corresponding non-monotone XVCS, and perfect contrast can
be achieved at the same time. At last, we will exploit some extended capabilities for perfect
contrast XVCS.

3.2 New insight into linear algebraic technique to construct OVCS

Similar to Adhikari’s method [1], we also start with the following two systems of linear
equations over the binary field,

Ax = 0 (4)

Ax = 1 (5)

where, A is a t × n known Boolean matrix of rank r , 0 < r ≤ t < n; x is an n × 1 vector of
unknowns; 0 and 1 are t × 1 vectors of 0’s and 1’s respectively; both the systems (4) and (5)
are consistent. The difference from Adhikari’s systems [1] is the coefficient matrix A, which
does not have to be of full row rank.

Let S0 (resp. S1) be an n×2n−r Boolean matrix whose columns are all possible solutions
of the system (4) (resp. (5)). Then, to prove S0 and S1 can form the basis matrices of a
(ΓQual, ΓForb,m = 2n−r )-OVCS, the following lemma is first given immediately since the
proof of Lemma 5 in Adhikari [1] also works for this lemma.

Lemma 1 Let X = {i1, i2, . . . , i p} ⊆ P = {1, 2, . . . , n}. Build a system of equations as
follows:

(

A
BX

)

x =
(

1
0

)

(6)

where BX is a columnpermutationof the p×n Booleanmatrix (Ip|0p×(n−p))with unit vectors
of the identity matrix Ip, which is of order p, occupying columns indexed by i1, i2, . . . , i p
in BX . Then, for an access structure (ΓQual, ΓForb), S0 and S1 form the basis matrices of a
(ΓQual, ΓForb,m = 2n−r )-OVCS if the following conditions are satisfied:

1. For X ∈ ΓQual, the system (6) is inconsistent;
2. For X ∈ ΓForb, the system (6) is consistent.

Next we are going to explore the conditions for consistency or inconsistency of the system
(6). Let rows of A1 (resp. A2) represent all possible sum of odd (resp. even) number of rows
in A. Then we have the following lemma.

Lemma 2 For an access structure (ΓQual, ΓForb), S0 and S1 form the basis matrices of a
(ΓQual, ΓForb,m = 2n−r )-OVCS if the following conditions are satisfied:

1. For X ∈ ΓQual, any row vector of A1 belongs to the row space of BX .
2. For X ∈ ΓForb, A and BX are independent, or, any row vector of A2 belongs to the row

space of BX .

Proof In light of the system (6), there are two possibilities: the coefficient matrix A and BX

are either linearly independent or linearly dependent.
If they are independent, since the system (5) is consistent and BXx = 0 is consistent (BX

is of full row rank), the system (6) is consistent.
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If they are linearly dependent, then there exists a vector u = (u1,u2) �= 0, where u1 and

u2 are 1 × t and 1 × p vectors respectively, such that u
(

A
BX

)

= 0 ⇔ u1A + u2BX = 0.

Note that u1 is nonzero, otherwise this will imply linear dependence of the rows of BX . Now
u1A+u2BX = 0⇔ u1A ∈ the row space of BX . Also note that if u1 has an odd (resp. even)
number of 1’s then u1A will be a row of A1 (resp. A2). Then we have that any row of A1 or

A2 belongs to the row space of BX . On the right of the system (6), u
(

1
0

)

= u11. If u1 has

an odd (resp. even) number of 1’s then the system (6) is inconsistent (resp. consistent).
Based on the above discussions and Lemma 1, this lemma is proved. ��
Lemma 2 shows that given a suitable binary matrix A and a suitable access structure

(ΓQual, ΓForb), we can construct an OVCS by solving the two linear systems (4) and (5).
Then, we are now in a position to give a concrete structure of the coefficient matrix A,
together with which the access structure (ΓQual, ΓForb) satisfies the conditions of Lemma 2.
Towards this end, we prove the following lemma.

Lemma 3 For an access structure (ΓQual, ΓForb) with Γ0 = {Q1, Q2, . . . , Qt }, let A =
(v1, v2, . . . , vt )T of rank r and �vi = Qi , i = 1, 2, . . . , t . S0 and S1 form the basis matrices
of a (ΓQual, ΓForb,m = 2n−r )-OVCS if the following conditions are satisfied:

1. For any row v of A1, �v ∈ ΓQual;
2. For any row v of A2, �v = ∅ or �v � Q ∈ Γ0.

Proof For X ∈ ΓQual, because �v ∈ ΓQual for any row v of A1, v obviously belongs to the
row space of BX .

For X ∈ ΓForb, there are three cases to be considered:
Case 1 For any row v of A1, �v ∈ ΓQual; for any row v of A2, �v = ∅.
In this case, any row vector of A2 belongs to the row space of BX immediately.
Case 2 For any row v of A1, �v ∈ ΓQual; for any row v of A2, �v �⊂ Q ∈ Γ0 and

�v ∈ ΓForb.
In this case, any row vector of A2 also belongs to the row space of BX immediately.
Case 3 For any row v of A1, �v ∈ ΓQual; for any row v of A2, �v /∈ Γ0 and �v ∈ ΓQual.
In this case, no row vector of A1 and A2 belongs to the row space of BX , namely, A and

BX are independent. ��
It should be noted that the sum operation “+” over the binary field is actually the Boolean

XOR operation “⊕”. Therefore, the sum of a number of row vectors, say v1, · · · , vi , of
the coefficient matrix A equals to v1 ⊕ · · · ⊕ vi . Since Qi = �vi , we have �v1⊕···⊕vi =
Q1 ⊕ · · · ⊕ Qi . So, for clarity, we restate Lemma 3 as follows, and hence omit its proof.

Lemma 4 For an access structure (ΓQual, ΓForb)withΓ0 = {Q1, Q2, . . . , Qt }, ifΓ0 satisfies
the following two conditions:

1. The “⊕”ed result of any odd number of elements of Γ0 is an element of ΓQual. Formally,
Γ odd
0 ∈ ΓQual.

2. The “⊕”ed result of any even number of elements of Γ0 is an empty set, or not a subset
of any element of Γ0. Formally, Γ even

0 = ∅ or Γ even
0 � Q ∈ Γ0.

Then the basis matrices S0 and S1 of a (ΓQual, ΓForb,m = 2n−r )-OVCS are composed of
all possible solutions of the systems (4) and (5) respectively, where A = (v1, v2, . . . , vt )T of
rank r and �vi = Qi , i = 1, 2, . . . , t .
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Remark Adhikari’s method [1] deals with the schemes obtained by taking at most two equa-
tions simultaneously. But, Lemma 4 shows that we can take t equations at a time to construct
OVCS for some restricted access structures, which are characterized by the above two con-
ditions. In fact, Adhikari’s method [1] can be viewed as a special case of our Lemma 4. This
generalization will lead us to achieve the sufficient and necessary conditions for the existence
of a perfect XVCS and smaller pixel expansions of perfect contrast XVCS for general access
structures in the following subsections.

Let us try to illustrate the above theory through the following example.

Example 1 Let us consider the following access structure (ΓQual, ΓForb) on a set of 4 par-
ticipants having Γ0 = {{1, 2}, {1, 3}, {1, 4}}. Obviously, this access structure satisfies the
conditions of Lemma 4. Then solve the two systems of three linear equations over the binary
field as follows:

⎧

⎨

⎩

x1 + x2 = 0
x1 + x3 = 0
x1 + x4 = 0

(7)

and
⎧

⎨

⎩

x1 + x2 = 1
x1 + x3 = 1
x1 + x4 = 1

(8)

Let S0 and S1 be the Boolean matrices whose columns are just all possible solutions

of the above two systems of Eqs. (7) and (8) respectively. Thus, S0 =

⎡

⎢

⎢

⎣

0 1
0 1
0 1
0 1

⎤

⎥

⎥

⎦

and S1 =

⎡

⎢

⎢

⎣

0 1
1 0
1 0
1 0

⎤

⎥

⎥

⎦

. According to Definition 6, S0 and S1 constitute a (ΓQual, ΓForb, 2)-OVCS where

Γ0 = {{1, 2}, {1, 3}, {1, 4}}.
3.3 The sufficient and necessary conditions for the existence of a perfect XVCS

Based on the above improved linear algebraic technique, we are able to construct the basis
matrices S0 and S1 of OVCS. In this subsection, we are going to prove that the constructed
basis matrices S0 and S1 can be used for capturing perfect XVCS for the corresponding
non-monotone access structures and the conditions of Lemma 4 are just the sufficient and
necessary conditions for the existence of a perfect XVCS. To begin with, we prove the
following lemma.

Lemma 5 For an access structure (ΓQual, ΓForb)withΓ0 = {Q1, Q2, . . . , Qt }, ifΓ0 satisfies
the conditions of Lemma4, then there exists a perfect contrast (Γ0, ΓForb,m)-XVCSwith basis
matrices.

Proof For an access structure (ΓQual, ΓForb)with Γ0 = {Q1, Q2, . . . , Qt }, if Γ0 satisfies the
conditions of Lemma 4, there exists a (ΓQual, ΓForb,m)-OVCS with basis matrices S0 and
S1 by Lemma 4.

Note that S0 and S1 are made up of all possible solutions of the systems (4) and (5)
respectively. For any row vector ai of the coefficient matrix A, we have ai S0 = 0 (ai S1 = 1)
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by the system (4) (resp. (5)) over the binary field. Also note that Γ0 determines the coefficient
matrix A = (a1, a2, . . . , at )T by �ai = Qi , i = 1, 2, . . . , t . Thus we have ai S0 = ⊕(S0Qi

)

and ai S1 = ⊕(S1Qi
). In other words, for any Qi ∈ Γ0, we have ω(⊕(S1Qi

)) = m and

ω(⊕(S0Qi
)) = 0. So the contrast condition of Definition 6 on (Γ0, ΓForb) is met and the

contrast is perfect according to Eq. (3).
For X ∈ ΓForb, we have S1X and S0X are identical up to a columnpermutation byDefinition 6

on (ΓQual, ΓForb). Thus the security condition of Definition 6 on (Γ0, ΓForb) is met. ��
Lemma 6 For a perfect contrast (Γ0, ΓForb,m)-XVCS with basis matrices, there exists a
perfect contrast (Γ0, ΓForb, 1)-XVCS.

Proof For a perfect contrast (Γ0, ΓForb,m)-XVCS with basis matrices S0 and S1, consider
the collection of n × 1 Boolean matrices C0 (resp. C1) consisting of all the columns of S0

(resp. S1).
For X ∈ Γ0, since ω(⊕(S1X )) = m, ω(⊕(S0X )) = 0, we have ω(⊕(M1

X )) = 1 for any
M1 ∈ C1 and ω(⊕(M0

X )) = 0 for any M0 ∈ C0. Thus the contrast condition of Definition 5
on (Γ0, ΓForb) is met and the contrast is perfect according to Eq. (3).

For X ∈ ΓForb,wehave S1X and S0X are identical up to a columnpermutationbyDefinition6.
Obviously, the security condition of Definition 5 is met.

So, the considered C0 and C1 constitute a perfect contrast (Γ0, ΓForb, 1)-XVCS. ��
Until now, we have already seen that the conditions of Lemma 4 lead to a non-monotone

XVCS with perfect contrast and perfect pixel expansion. A relevant question in this regard
would be: if the conditions of Lemma 4 are not satisfied, is there a perfect contrast
(Γ0, ΓForb, 1)-XVCS? To answer this question, we prove the following theorem.

Theorem 1 For an access structure (ΓQual, ΓForb)withΓ0 = {Q1, Q2, . . . , Qt }, there exists
a perfect contrast (Γ0, ΓForb, 1)-XVCS if and only if Γ0 satisfies the conditions of Lemma 4.

Proof If Γ0 satisfies the conditions of Lemma 4, there exists a perfect contrast (Γ0, ΓForb, 1)-
XVCS by Lemmas 5 and 6.

Conversely, if there exists a perfect XVCS where R⊕(Qi ) = SI, i = 1, 2, ..., t , it is
easy to see that R⊕(Γ odd

0 ) = SI and R⊕(Γ even
0 ) = 0. According to R⊕(Γ odd

0 ) = S, we
conclude Γ odd

0 /∈ ΓForb. Since ΓQual ∪ ΓForb = 2P and Γ odd
0 ⊆ P , we have Γ odd

0 ∈ ΓQual.
Thus the first condition of Lemma 4 is met. As for R⊕(Γ even

0 ) = 0, the following two cases
are considered:

1. Γ even
0 = ∅. In this case the second condition of Lemma 4 is met.

2. Γ even
0 �= ∅ and Γ even

0 /∈ Γ0. Suppose there exists a minimal qualified set Q ∈ Γ0

satisfying Γ even
0 ⊂ Q. Then we have R⊕(Q) = R⊕(Γ even

0 ∪ (Q − Γ even
0 )) =

R⊕(Γ even
0 ) ⊕ R⊕(Q − Γ even

0 ). Because R⊕(Q) = S and R⊕(Γ even
0 ) = 0, we obtain

R⊕(Q − Γ even
0 ) = S. Hence we have Q − Γ even

0 /∈ ΓForb, which contradicts the fact
that Q − Γ even

0 ∈ ΓForb. In summary, we conclude Γ even
0 � Q ∈ Γ0, which meets the

second condition of Lemma 4. ��
By Theorem 1, we have the following two corollaries immediately.

Corollary 1 For an (n, n) threshold access structure, there exists an (n, n)-XVCS having
perfect contrast and perfect pixel expansion.

Corollary 2 For an access structure (Γ0, ΓForb)with |Γ0| ≤ 2, there exists a perfect contrast
(Γ0, ΓForb, 1)-XVCS.
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Before considering other access structures, the following lemma is first presented.

Lemma 7 Given an access structure Γ0, the most simplified access structure ˜Γ0 is obtained
by simplification of Γ0. A construction of XVCS for the ˜Γ0 is also a construction of XVCS for
Γ0 and both XVCSs have the same parameters: contrast and pixel expansion.

Proof Trivial: distribute the equivalent participants the same shares.

Then let us consider a (k − 1)-(k, n)* threshold access structure having k − 1 essential
participants.Without loss of generality,we assume that the first k−1 participants are essential.
Hence, the collection Γ0 of all minimal qualified sets is {{1, ..., k − 1, k}, {1, ..., k − 1, k +
1}, ..., {1, ..., k − 1, n − 1}, {1, ..., k − 1, n}}. In this case, each maximal forbidden set is of
the type X ∪ Y where X is a subset of the set of essential participants {1, ..., k − 1} such that
|X | = k − 2 and Y = {k, ..., n}. According to Definition 3, we have the participants in Y are
equivalent. Then the access structure is now reduced to a (k, k) threshold access structure
by Definition 4. In the light of Corollary 1 and Lemma 7, we have the following corollary
without a proof.

Corollary 3 For a triplet (k − 1, k, n) where k ≥ 2, there exists a non-monotone (k − 1)-
(k, n)*-XVCS having perfect contrast and perfect pixel expansion.

We have already seen from Corollary 3 that for any non-monotone 1-(2, n)*-XVCS both
of the contrast and pixel expansion achieve their perfect values. It is not hard to realize
that the access structure is nothing but a special type of complete bipartite graph namely, a
star-graph. So let us consider the complete bipartite graph based access structure, and the
following corollary is presented.

Corollary 4 There exists a complete bipartite graph based XVCS having perfect contrast
and perfect pixel expansion.

Proof Trivial: for a complete bipartite graph, because the participants in each of the two
independent sets are equivalent, the scheme is reduced to a (2, 2)-XVCS. ��
3.4 Perfect contrast XVCS for general access structures

By Theorem 1, we have proved the sufficient and necessary conditions, a complete charac-
terization of some access structures, for the existence of a perfect XVCS. However, those
conditions are not always satisfied by any given access structure. Note that, any access struc-
ture Γ0 can be always partitioned into several parts where each part is in such a complete
characterization (the worst case: each part is one minimal qualified set), and hence we can
construct a perfect XVCS for each part. But, if we distribute all the shares of these perfect
XVCSs to the corresponding participants, this kind of construction, which has similar idea
with [16], will deviates from the traditional VCS in the sense that,

– the participants may have to carry multiple shares;
– due to the presence of multiple shares, at the time of revealing the secret, the participants

have to know for which access structures they are going to submit which of their shares.

Therefore, in order to avoid the above defects, we design a region-by-region construction of
perfect contrast XVCS based on the partition of access structure in this subsection. However,
to make our construction clearer, we first need to give a description of the structure of the
share.
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Fig. 1 Region-by-region structure of a share for (2, 4) and (3, 6) threshold access structures

3.4.1 Share’s region-by-region structure

Suppose an access structure Γ0 can be partitioned into d parts, where each part satisfies the
conditions of Lemma 4. In the proposed region-by-region construction, a share is partitioned
into d nonoverlapping regions, each of which has the same size as the secret image, and
hence the size of the share is d times that of the secret image. The d regions, located one by
one in the share, are corresponding to the d parts respectively.

Take (2, 4) threshold access structure for example, we can partition Γ0 = {Q ⊆ P :
|Q| = 2} into d = 2 parts:

Γ 1
0 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}},

Γ 2
0 = {{2, 3}, {1, 4}}.

So, we also partition each share into two nonoverlapping regions and the location of two
regions is illustrated in Fig. 1(a). Furthermore, we can also arrange the regions in a rectangle
or square. Take (3, 6) threshold access structure for example, we can partition Γ0 = {Q ⊆
P : |Q| = 3} into the following d = 4 parts:

Γ 1
0 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 6}, {1, 4, 6}, {1, 5, 6}},

Γ 2
0 = {{1, 3, 4}, {2, 3, 4}, {3, 4, 5}, {3, 4, 6}},

Γ 3
0 = {{1, 2, 6}, {2, 4, 6}, {2, 5, 6}, {2, 3, 6}},

Γ 4
0 = {{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {4, 5, 6}, {3, 5, 6}}.

So,we also partition each share into four regions and the location of these regions is illustrated
in Fig. 1(b).

3.4.2 Region-by-region construction of perfect contrast XVCS

The region-by-region construction of perfect contrast XVCS for any Γ0 is given based on the
access structure simplifying technique and the partition of access structure. Diagram of the
region-by-region construction is depicted in Fig. 2 and detailed information on the proposed
construction is described as follows.

Region by Region Construction of Perfect Contrast XVCS.

1. Given an access structure Γ0, simplify Γ0 to ˜Γ0 according to Definitions 3 and 4.

2. Partition the ˜Γ0 into d parts ˜Γ 1
0 , ˜Γ 2

0 , . . . , ˜Γ d
0 with each part satisfying the conditions of

Lemma 4.
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An access structure
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access structure
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Fig. 2 Diagram of the proposed region-by-region construction

3. For each ˜Γ i
0 , i = 1, . . . , d , generate shares by constructing a perfect contrast

(˜Γ i
0 , ΓForb, 1)-XVCS according to Theorem 1, and distribute the shares to the corre-

sponding participants as their initial shares, respectively.

4. In each ˜Γ i
0 , i = 1, . . . , d , for the participants, which are not involved in ˜Γ i

0 , generate
their initial shares with the size of the secret image by assigning 0 or 1 randomly.

5. Generate n blank shares with the region-by-region structure for all participants as their
final shares, respectively.

6. For each participant, assign his d initial shares to the corresponding regions of his final
share, respectively.

Remark In the above construction, if the size of Γ0 is large, it is hard for us to partition the
access structure. To make the partition easier, Step 1 reduces, in some extent, the number of
qualified sets in Γ0 by simplification of access structure. In Steps 2 and 3, since each part
of ˜Γ0 satisfies the conditions of Lemma 4, this construction seems to terminate at Step 3
according to Theorem 1. However, in order to distribute one share per participant, in Steps 4,
5, and 6, the dealer need to further generate one final share for each participant with the initial
shares. Note that, since each final share hold by each participant is d times the size of the
secret image, the pixel expansion of our construction is d . Moreover, different partitions of
the access structure in Step 2 will result in different values of pixel expansion.

Then we give the following lemma before proving the proposed construction generates a
perfect contrast XVCS.
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Lemma 8 For P ′ ⊆ P, if there exists a perfect contrast (Γ0, ΓForb, 1)-XVCS on P ′, then
there exists a perfect contrast (Γ0, ΓForb, 1)-XVCS on P.

Proof Trivial: we generate the shares for the participants of P − P ′ by assigning 0 or 1
randomly. ��
Theorem 2 The proposed construction is a perfect contrast (Γ0, ΓForb, d)-XVCS.

Proof In the proposed region-by-region construction, there exists a perfect contrast XVCS

with no pixel expansion for each part ˜Γ i
0 on Pi ⊆ P , where i = 1, . . . , d , by Theorem 1.

According to Step 4, the i th regions of the final shares hold by the participants of P − Pi

are assigned 0 or 1 randomly, respectively, so there exists a perfect contrast XVCS with no

pixel expansion for each part ˜Γ i
0 on P by Lemma 8. In addition, since the d parts of ˜Γ0 don’t

include each other, the above d perfect contrast XVCSs with no pixel expansion have no
influence on each other during recovering the secret. Therefore, the above d perfect contrast
XVCSs together form a (˜Γ0, ΓForb, d)-XVCS, where the secret image is recovered perfectly
in one of the d regions of the reconstructed result of qualified shares. Finally, by Lemma 7,
we conclude the proposed construction is a perfect contrast (Γ0, ΓForb, d)-XVCS. ��

3.4.3 Partition of access structure

In light of Corollary 2, in the proposed construction we can partition any given Γ0 into � |˜Γ0|
2 �

parts where each part consists of at most two elements of ˜Γ0, and hence we state the following
lemma without a proof.

Lemma 9 There exists a region-by-region construction of perfect contrast XVCS with the

pixel expansion d = � |˜Γ0|
2 �.

Then let us consider the (n − 1, n) threshold access structure having Γ0 = {Q1, Q2, . . . ,

Qt }. Here, t =
(

n
n − 1

)

= n, Qi ⊂ P and |Qi | = n − 1. Then the following lemma is

proved.

Lemma 10 For the (n−1, n) threshold access structure having Γ0, a collection of any three
elements of Γ0 does not satisfy the conditions of Lemma 4.

Proof Without loss of generality, we assume that the collection is {Q1, Q2, Q3}. Note that,
any two elements of Γ0 have a common part of n − 2 participants. Hence, let Q1 ⊕ Q2 =
{i1, i21} and Q2 ⊕ Q3 = {i22, i3}, where i1 ∈ Q1, i21, i22 ∈ Q2 and i3 ∈ Q3. Since
i1, i3 /∈ Q2, we have i1 = i3. Assume i21 = i22, then we obtain Q1 = Q3, which contradicts
the fact that Q1 �= Q3. Thus, we have i21 �= i22. Then Q1 ⊕ Q3 = {i21, i22} ⊆ Q2, which
does not satisfy the conditions of Lemma 4. ��

Based on Lemmas 9 and 10, the following theorem is immediate.

Theorem 3 The optimal pixel expansion of the proposed perfect contrast (n − 1, n)-XVCS
is d = � n

2 �.
Until now, Lemma 9 gives a simple region-by-region construction of perfect contrast

XVCS, even by this construction the optimal pixel expansion is achieved for the (n − 1, n)

threshold access structure, but we can still reduce the pixel expansion for some other access
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structures. Hence, how to efficiently partition any given access structure into fewer parts
(leading to less pixel expansion) deserves our further study. So, based on the conditions of
Lemma 4, we give an efficient algorithm, Algorithm 1, to describe how to partition any given
Γ0 into fewer parts than Lemma 9. Note that, we assume the input Γ0 is already in the most
simplified form.

Algorithm 1 An efficient algorithm to partition the access structure
Input:

�0 of an access structure;
Output:

d parts �1
0 , �2

0 , . . . , �d
0 ;

1: Initially set l = 1;
2: Assign two collections Q = F = ∅;
3: Select an element, say Q1, from �0, delete it from �0 and put it into the set Q;
4: If �0 �= ∅, select an element, say Q2, from �0, delete it from �0 and put it into the set Q; else go to Step

9;
5: If �0 �= ∅, select an element, say Q3, from �0, delete it from �0 and put it into the set Q; else go to Step

9;
6: For the “⊕”ed result Qodd of any odd number of elements of Q, if Qodd ∈ �0, delete it from �0 and put

it into Q;
7: If Q does not satisfy the conditions of Lemma 4, delete Q3 and all Qodd from Q and put them into F .
8: For the “⊕”ed result Qeven of any even number of elements of Q, if Qeven ∈ �0, delete it from �0 and

put it into F . Then go to Step 5;
9: Assign �l

0 = Q;
10: If F �= ∅, assign �0 = F and l = l + 1. Then go to Step 2;
11: If F = ∅, assign d = l;
12: return �1

0 , �2
0 , . . . , �d

0 .

In Algorithm 1, a loop from Steps 3 to 9 generates one part of the partition. In the loop,
based on Corollary 2, we first give Steps 3 and 4, which guarantees that the generated part
consists of at least two elements of Γ0 for |Γ0| ≥ 2. Then if there exists a collection of at
least three elements of Γ0 satisfying the conditions of Lemma 4, we give loops from Steps 5
to 8 to guarantee that the generated part consists of at least three elements of Γ0 for |Γ0| ≥ 3.
Moreover, in the loop from Steps 5 to 8, if the conditions of Lemma 4 are satisfied, we give
Steps 6 and 8 to guarantee that we add elements to the generated part as quickly as possible
in the next such loops. Based on the above discussions and Lemma 9, we give the following
theorem immediately.

Theorem 4 By adopting Algorithm 1, the proposed construction of perfect contrast

(Γ0, ΓForb, d)-XVCS achieves a pixel expansion d ≤ � |˜Γ0|
2 �.

In order to better illustrate this theorem, we present a partition, which are obtained by
applying Algorithm 1 to (k, n) threshold access structures for 1 < k < n < 7, in Table 2.
Note that, elements are arbitrarily selected from Γ0 in the Steps 3, 4 and 5 of Algorithm 1
and different selections may result in different partitions, so Table 2 just lists one case of the
partitions.

4 Experiment and comparison

Extensive experimental results by the proposed XVCS are illustrated in this section. More-
over, some comparisons and further discussions among the proposed XVCS and related
schemes are provided as well.
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Table 2 A partition of (k, n) threshold access structures for 1 < k < n < 7

(2, 3) (2, 4)

Γ 1
0 = {{1, 2}, {1, 3}} Γ 1

0 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}
Γ 2
0 = {{2, 3}} Γ 2

0 = {{2, 3}, {1, 4}}
(2, 5) (2, 6)

Γ 1
0 = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5},

{4, 5}}
Γ 1
0 = {{1, 2}, {1, 3}, {1, 5}, {2, 6}, {3, 6},

{4, 6}, {5, 6}}
Γ 2
0 = {{1, 5}, {2, 3}, {3, 4}} Γ 2

0 = {{1, 6}, {2, 3}, {2, 4}, {3, 5}, {4, 5}}
Γ 3
0 = {{2, 4}} Γ 3

0 = {{2, 5}, {3, 4}}
(3, 4) (3, 5)

Γ 1
0 = {{1, 2, 3}, {1, 2, 4}} Γ 1

0 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}
Γ 2
0 = {{1, 3, 4}, {2, 3, 4}} Γ 2

0 = {{1, 3, 4}, {2, 3, 4}, {1, 3, 5},
{2, 3, 5}}

Γ 3
0 = {{2, 4, 5}, {3, 4, 5}, {1, 4, 5}}

(3, 6) (4, 6)

Γ 1
0 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5},

{1, 3, 6}, {1, 4, 6}, {1, 5, 6}}
Γ 1
0 = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 6},

{1, 2, 5, 6}}
Γ 2
0 = {{1, 3, 4}, {2, 3, 4}, {3, 4, 5},

{3, 4, 6}}
Γ 2
0 = {{1, 3, 4, 5}, {1, 3, 4, 6}, {2, 3, 4, 5},

{2, 3, 4, 6}}
Γ 3
0 = {{1, 2, 6}, {2, 4, 6}, {2, 5, 6},

{2, 3, 6}}
Γ 3
0 = {{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 5, 6},

{2, 4, 5, 6}}
Γ 4
0 = {{1, 3, 5}, {1, 4, 5}, {2, 3, 5},

{2, 4, 5}, {4, 5, 6}, {3, 5, 6}} Γ 4
0 = {{1, 2, 3, 6}, {1, 2, 4, 5}}

Γ 5
0 = {{3, 4, 5, 6}}

(4, 5) (5, 6)

Γ 1
0 = {{1, 2, 3, 4}, {1, 2, 3, 5}} Γ 1

0 = {{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}}
Γ 2
0 = {{1, 2, 4, 5}, {1, 3, 4, 5}} Γ 2

0 = {{1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}}
Γ 3
0 = {{2, 3, 4, 5}} Γ 3

0 = {{1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}

4.1 Experiment

To demonstrate the effectiveness of our XVCS, two experiments are conducted respectively.
An experiment of the proposed XVCS to demonstrate Theorem 1 is presented in

Fig. 3, where Γ0 = {{1, 2}, {1, 3}, {1, 4}} and the set of forbidden sets is ΓForb =
{{1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}. The secret image is shown in Fig. 3(a) and
the generated four shares T1, . . . , T4 are exhibited in Fig. 3(b–e). Obviously, the pixel expan-
sion is 1, and the minimal qualified sets can recover the secret image perfectly while the
forbidden sets cannot.

An experiment of the proposed XVCS to demonstrate Theorem 2 is presented in Fig. 4,
where the basis of (2, 4) threshold access structure is Γ0 = {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}} and the set of forbidden sets is ΓForb = {{1}, {2}, {3}, {4}}. According to
Table 2, The Γ0 is partitioned two parts:Γ 1

0 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}} and Γ 2
0 =

{{2, 3}, {1, 4}}. Then the share is also partitioned into two nonoverlapping regions, which
are located vertically. The secret image is shown in Fig. 4(a) and the generated four shares
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Fig. 3 An experiment by the proposed XVCS for Γ0 = {{1, 2}, {1, 3}, {1, 4}}

T1, . . . , T4 are exhibited in Fig. 4(b–e). The minimal qualified sets can recover the secret
image perfectly in their corresponding regions while the forbidden sets cannot.

4.2 Comparison

Functionality comparisons among the proposed XVCS and related schemes are mainly
demonstrated in Table 3, and major advantages of the proposed XVCS are

– Flexible sharing strategy. General access structure can be implemented by the proposed
XVCS, more complicated sharing strategy in real world can be conducted. It is superior
to the threshold schemes [2,4,8,11,20,24,25,32].

– Perfect visual quality. The “XOR” operation causes that the black subpixel in a share can
be undone by the color of another subpixel laid over it. In the proposed XVCS, the secret
image can be perfectly recovered for all minimal qualified sets. It is more appealing in
practical applications compared with [1–4,8,9,11,20,21,24,25,29,32].

– The sufficient and necessary conditions for the existence of a perfect XVCS. If an access
structure satisfies these conditions, then for the access structure, we can give an explicit
construction of XVCSwith the proposed linear algebraic technique, and achieve contrast
and pixel expansion both equal to 1. Unlike the work of [9] which assumes the existence
of XVCS over an access structure, our proof is constructive.

– Only one share for each participant. Different from [16], each participant does not have
to carry multiple shares and is not required to know at the time of revealing the secret for
which access structures he is going to submit which of his shares.

123



34 G. Shen et al.

Fig. 4 An experiment by the proposed XVCS for (2, 4) threshold access structure

Table 3 Comparison of functionality among the proposed XVCS and related schemes

Schemes Functionalities

Access
structure

Shares per
participant

Perfect
contrast

Pixel
expansion

Boolean
operation

Our General One Yes No or small XOR

Adhikari [1] General One No Large OR

Ateniese et al. [3] General One No Large OR

Fu et al. [9] General One No Large OR

Liu et al. [16] General Multiple Yes No or small XOR

Shyu and Chen [21] General One No Large OR

Wu and Sun [29] General One No No XOR

Blundo et al. [4] (k, n) One No Large OR

Eisen and Stinson [8] (k, n) One No Large OR

Shyu and Chen [20] (k, n) One No Large OR

Tuyls et al. [24] (k, n) One No Large XOR

Verheul and van Tilborg [25] (k, n) One No Large OR

Yang and Wang [32] (k, n) One No Large XOR

Arumugam et al. [2] (k,n)* One No Large OR

Guo et al. [11] t-(k,n)* One No Large OR
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Table 4 Comparison of pixel
expansion for (k, n) threshold
access structures with
2 ≤ k ≤ n ≤ 6

k\n Our Liu et al. [16]

2 3 4 5 6 2 3 4 5 6

2 1(1) 2(2) 2(2) 3(3) 3(3) 1 5
3

9
4 – –

3 1(1) 2(6) 3(8) 4(10) 1 2 – –

4 1(1) 3(15) 5(23) 1 – –

5 1(1) 3(30) 1 –

6 1(1) 1

Table 5 Pixel expansions of the
proposed non-monotone XVCS
for access structures with up to
four participants

Γ0 Our Liu et al. [16]

{{1, 2}, {1, 3}} 1(2) 1

{{1, 2}, {2, 3}, {3, 4}} 2(3) 5
4

{{1, 2}, {1, 3}, {1, 4}} 1(2) 1

{{1, 2}, {1, 4}, {2, 3}, {3, 4}} 1(2) 1

{{1, 2}, {2, 3}, {2, 4}, {3, 4}} 2(3) 3
2

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} 2(3) 3
2

{{1, 2, 3}, {1, 4}} 1(4) 1

{{1, 2, 3}, {1, 4}, {3, 4}} 2(5) 3
2

{{1, 3, 4}, {1, 2}, {2, 3}, {2, 4}} 2(4) 7
4

{{1, 2, 3}, {1, 2, 4}} 1(4) 1

{{1, 2, 4}, {1, 3, 4}, {2, 3}} 2(5) 3
2

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}} 2(6) 3
2

– Less storage and transmission bandwidth. Comparisons of pixel expansion are summa-
rized in Tables 4 and 5, where the values in brackets, summarized from [20,21,24], are
optimal for OVCS and XVCS to the best of our knowledge. According to Tables 4 and
5, our pixel expansion is close to that of Liu et al. [16]. Compared with the schemes [1–
4,8,9,11,20,21,24,25,32], the proposed XVCS achieves no or smaller pixel expansion
which will save the storage and transmission bandwidth.

– Efficient partitions of access structure. Unlike the work of [16] which adopted the hard
and time-consuming computing search without consideration of some efficient partitions
of access structure, we give efficient partitions of access structure based on the sufficient
and necessary conditions, and approximate pixel expansions including the optimal value
for (n − 1, n) threshold access structure are obtained.

5 Conclusion

In this paper, we have considered perfect contrast XVCS for general access structures from
the theory of linear algebra and concluded the sufficient and necessary conditions, some
constraints on the set Γ0 of minimal qualified sets, for the existence of a perfect contrast
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XVCS with no pixel expansion. Then, for any given Γ0, we have proposed a region by region
construction to achieve perfect contrast with small pixel expansion. However, in Algorithm 1,
we have claimed that different selections of elements from Γ0 in the Steps 3, 4, and 5 may
result in different partitions, and hence lead to different values of pixel expansion. Although
we can find the minimum number of parts output by Algorithm 1 based on the exhaustive
search strategy, whether the minimum number of parts is or not the optimal pixel expansion is
unknown. Furthermore, the exhaustive searchmethod is very hard and quite time-consuming.
So, how to achieve the optimal pixel expansion efficiently remains as an open problem.
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