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Abstract It has become common knowledge that constructing q-ary quantum MDS codes
with minimum distance bigger than q/2+ 1 is significantly more difficult than constructing
those with minimum distance less than or equal to q/2+ 1. Despite of various constructions
of q-ary quantumMDS codes, all known q-ary quantumMDS codes have minimum distance
bounded by q/2+ 1 except for some lengths. The purpose of the current paper is to provide
some new q-ary quantum MDS codes with minimum distance bigger than q/2 + 1. In this
paper, we provide several classes of quantum MDS codes with minimum distance bigger
than q/2+ 1. For instance, some examples in these classes include q-ary [n, n − 2k, k + 1]-
quantumMDS codes for cases: (i) q ≡ −1 mod 5, n = (q2 +4)/5 and 1 ≤ k ≤ (3q −2)/5;
(ii) q ≡ −1 mod 7, n = (q2 + 6)/7 and 1 ≤ k ≤ (4q − 3)/7; (iii) 2|q, q ≡ −1 mod 3, n =
2(q2 − 1)/3 and 1 ≤ k ≤ (2q − 1)/3; and (iv) 2|q, q ≡ −1 mod 5, n = 2(q2 − 1)/5 and
1 ≤ k ≤ (3q − 2)/5.

Keywords Hermitian self-orthogonality · Generalized Reed-Solomon codes ·
Quantum MDS codes

Mathematics Subject Classification 94B05 · 81Q99

1 Introduction

In the past two decades, the field of quantum error correction has experienced a great progress
since the establishment of the connections between quantum codes and classical codes (see
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[3]). One of these connections shows that the construction of quantum codes can be reduced
to that of classical linear error-correcting codes with certain self-orthogonality properties
(see [2,3,13,17,19]). The quantum codes obtained in this way are called stabilizer codes.
In the literature, many quantum codes have been obtained from classical linear codes with
symplectic, Euclidean or Hermitian self-orthogonality (see [1,14,20], etc).

For a primepowerq , aq-ary ((n, K , d))quantumcode is a K -dimensional vector subspace
of the Hilbert space (Cq)⊗n which can detect up to d − 1 quantum errors, or equivalently,
correct up to �(d−1)/2� quantum errors. If we put k = logq K , we denote a q-ary ((n, K , d))

quantum code by [[n, k, d]]q . It is well known that the parameters of an [[n, k, d]]q quantum
code have to satisfy the quantum Singleton bound: k ≤ n − 2d + 2. A quantum code
achieving this quantum Singleton bound is called a quantum maximum-distance-separable
(MDS) code.

In the past few years, a lot of research work has been done for construction of quantum
MDS codes and several new families of quantum MDS codes have been constructed (see
[4,5,7,8,10–12,14,15,21–23]). If the classical MDS conjecture holds, then the length of a
q-ary quantum stabilizer MDS code is upper bounded by q2 + 1 [13]. It is interesting to
construct all possible quantum MDS codes. The problem of constructing q-ary quantum
MDS codes with n ≤ q + 1 has been completely solved through classical Euclidean self-
orthogonal codes [7,18]. On the other hand, a few families of q-ary quantum MDS codes
with n > q + 1 have been given as well, most of which have minimum distance less than or
equal to q/2+1 (see [4,5,7,8,12,18]). Thus, construction of q-ary quantumMDS codes with
minimum distance bigger than q/2+ 1 turns out to be a more challenging task. Researchers
have made a great effort to construct such quantum MDS codes through generalized Reed-
Solomon codes, constacyclic codes and negacyclic codes (see [9–12,14,15,21–23].However,
these constructions provide q-ary quantumMDS codes only for some lengths n between q+1
and q2+1. Therefore, the construction of quantumMDScodeswith relatively largeminimum
distance still remains to be solved.

In this paper, we construct some new quantumMDS codes with minimum distance bigger
than q/2+ 1 through classical Hermitian self-orthogonal generalized Reed-Solomon codes.
More precisely, we select a suitable set of distinct elements {α1, α2, . . . , αn} ⊆ Fq2 and a set
of nonzero elements {v1, v2, . . . , vn} ⊆ F

∗
q2
to obtain aHermitian self-orthogonal generalized

Reed-Solomon code {(v1 f (α1), v2 f (α2), . . . , vn f (αn)) : deg( f ) ≤ k−1}. The key step in
the construction of such a code is to find sets {α1, α2, . . . , αn} and {v1, v2, . . . , vn}. Finding
the sets {α1, α2, . . . , αn} and {v1, v2, . . . , vn} is further reduced to finding a solution in (F∗

q)
n

of the equation
∑n

�=1 α
qi+ j
� x� = 0 for all i, j ∈ {0, 1, . . . , k − 1}.

1.1 Main result and comparison with previous constructions

Previously, the known q-ary quantumMDScodeswithminimumdistance bigger than q/2+1
have only sporadic and special lengths n. More precisely, there exist q-ary [[n, n−2d+2, d]]
quantum MDS codes for the following n and d (we list some of the main results below):

(i) n = q2 + 1 and d = q + 1 (see [14]); and n = q2 + 1 and d ≤ q + 1 for even q and
odd d (see [8]); and n = q2 + 1 and d ≤ q + 1 for q ≡ 1 mod 4 and even d (see
[12]).

(ii) n = q2 and d ≤ q (see [7,10,14]).
(iii) n = (q2 + 1)/2 and q/2 + 1 < d ≤ q for odd q (see [12]).
(iv) n = r(q + 1), r |q − 1 and q−1

r is even, 2 ≤ d ≤ q+r+1
2 (see [4]).

(v) n = r(q − 1) and 2 ≤ d ≤ (q + 1)/2 + r − 1, q + 1 = r t with r even (see [21]).
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(vi) n = r(q − 1) + 1 and d ≤ (q + r + 1)/2 for q ≡ r − 1 mod 2r (see [9]).
(vii) n = r(q + 1) and 2 ≤ d ≤ (q + 1)/2 + r for r |q − 1, r odd, q odd (see [11]).
(viii) n = 2r(q + 1) and 2 ≤ d ≤ (q + 1)/2 + 2r for r |q − 1, r odd, q ≡ 1 mod 4 odd

(see [11]).

Based on the above quantum codes, by using a propagation rule [6], one can obtain more
quantum MDS codes with smaller length and minimum distance that are still bigger than
q/2 + 1.

Our paper demonstrates new q-ary [[n, n − 2k, k + 1]] quantum MDS codes with the
following parameters:

(i) Let t ≥ 1 be an integer, 1 ≤ r ≤ 2t + 1 and gcd(r, q) = 1.q ≡ −1 mod 2t + 1, n =
1 + r(q2−1)

2t+1 and k ≤ t+1
2t+1 × q − t

2t+1 .
(ii) Let t ≥ 1 be an integer, 1 ≤ r ≤ 2t + 1 and gcd(r, q) > 1. q ≡ −1 mod 2t + 1, n =

r(q2−1)
2t+1 and k ≤ t+1

2t+1 × q − t
2t+1 .

(iii) 1 ≤ k ≤ q − 1, and some n ∈ [2k, k2 + 1] .

For instance, some examples in these classes include q-ary [n, n − 2k, k + 1]-quantum
MDS codes for the cases: (i) q ≡ −1 mod 5, n = (q2 + 4)/5 and 1 ≤ k ≤ (3q − 2)/5; (ii)
q ≡ −1 mod 7, n = (q2 + 6)/7 and 1 ≤ k ≤ (4q − 3)/7; (iii) 2|q, q ≡ −1 mod 3, n =
2(q2 − 1)/3 and 1 ≤ k ≤ (2q − 1)/3; and (iv) 2|q, q ≡ −1 mod 5, n = 2(q2 − 1)/5 and
1 ≤ k ≤ (3q − 2)/5.

1.2 Organization

The paper is organized as follows. In Sect. 2, we present a systematic method to construct
Hermitian self-orthogonal generalized Reed-Solomon codes. We apply the results in Sect. 2
to obtain quantum MDS codes in Sect. 3.

2 Construction of Hermitian self-orthogonal codes

2.1 Hermitian self-orthogonality

For a vector v = (v1, v2, . . . , vn) ∈ F
n
q2
, we denote by vq the vector (v

q
1 , v

q
2 , . . . , v

q
n ). For a

subset V in F
n
q2
, denote by V q the set {vq : v ∈ V }.

Two vectors u, v ∈ F
n
q2

are called Hermitian orthogonal if u · vq = 0, where · denotes
the usual Euclidean product or dot product. For an Fq2 -linear code C in F

n
q2
, the Hermitian

dual, denoted by C⊥H , of C is defined to be the set {x ∈ F
n
q2

: x · cq = 0 for all c ∈ C}. It
is easy to see that C⊥H is an Fq2 -linear code and C⊥H = (

C⊥E
)q
, where C⊥E is the usual

Euclidean dual of C . In particular, C is called Hermitian self-orthogonal if C ⊆ C⊥H . The
Fq2 -dimension of C⊥H is n − dimFq2

(C).

2.2 Fq-solution of equation systems

Let α1, α2, . . . , αn be n distinct elements in Fq2 . Let S be a subset of {0, 1, . . . , q2 − 2} and
consider the set
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TS(α1, α2, . . . , αn) := {(αi+q j
1 , α

i+q j
2 , . . . , α

i+q j
n ) : i, j ∈ S}. (1)

Here, 00 is set to be 1. We simply denote TS(α1, α2, . . . , αn) by TS if there is no confusion.

Lemma 2.1 The Fq2 -linear span Span(TS) has a basis in F
n
q .

Proof Let V be the set {v ∈ Span(TS) : vq = v}. Then it is clear that V = Span(TS) ∩ F
n
q .

Thus, it is sufficient to show that every vector in Span(TS) is an Fq2 -linear combination of
vectors in V .

Note that T q
S = TS since (α

i+q j
� )q = α

iq+ j
� for all 1 ≤ � ≤ n and i, j ∈ S. This implies

that Span(TS)q = Span(TS).
Let 1, α be an Fq -basis of Fq2 . For any v ∈ Span(TS), consider the vectors v1 = v + vq

and v2 = αv+αqvq . It is easy to see that both v1 and v2 belong to V . Since the 2× 2 matrix(
1 1
α αq

)

is invertible, we have

(
v
vq

)

=
(
1 1
α αq

)−1 (
v1
v2

)

. (2)

This completes the proof. 
�

Lemma 2.2 If the Fq2 -linear span Span(TS) has dimension less than n, then the system of
equations ASx = 0 has a nonzero solution in F

n
q , where the rows of AS consist of all |S|2

vectors in TS.

Proof Let v1, v2, . . . , vk ∈ F
n
q be an Fq2 -basis of Span(TS), where k is the dimension of the

Fq2 -linear span Span(TS). Let A be the k × n matrix whose rows consist of v1, v2, . . . , vk .
Then the system of equations Ax = 0 and ASx = 0 has the same solution space. Since k < n
and A is a matrix with entries in Fq , the system Ax = 0 has at least one nonzero solution in
F
n
q . Thus, it is also a solution of ASx = 0. The proof is completed. 
�

Lemma 2.3 Let t ≥ 1 be an integer and assume that q ≡ −1 mod 2t + 1 (and hence
(2t + 1)|(q2 − 1)). For an integer r with 1 ≤ r ≤ 2t + 1 and gcd(r, q) = 1, put n =
1 + r(q2−1)

2t+1 . Let γ ∈ Fq2 be a q2−1
2t+1 -th primitive root of unity and let β1, . . . , βr ∈ F

∗
q2

such that {βi 〈γ 〉}ri=1 represent distinct cosets of F∗
q2

/〈γ 〉. Label the elements of the set

{0} ∪ (∪r
i=1βi 〈γ 〉) by α1, α2, . . . , αn. Then the equation system ASx = 0 has a nonzero

solution in (F∗
q)

n if S ⊆ {0, 1, 2, . . . , t+1
2t+1 × q − t

2t+1 − 1}.

Proof First we claim that, for any i, j ∈ S, qi + j is not divisible by (q2−1)/(2t+1) unless
i = j = 0. Suppose that this were not true. Then qi + j is equal to �(q2 − 1)/(2t + 1) for
some 1 ≤ � ≤ 2t and i, j ∈ S. By the identity

qi + j = � × q2 − 1

2t + 1
= q ×

(
�q + �

2t + 1
− 1

)

+ q − �(q + 1)

2t + 1
,

we have

i = �q + �

2t + 1
− 1, j = q − �(q + 1)

2t + 1
. (3)
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Case 1. � ≥ t + 1. Then

i ≥ (t + 1)(q + 1)

2t + 1
− 1 >

t + 1

2t + 1
× q − t

2t + 1
− 1.

Thus, i /∈ S and hence this contradicts the fact that i ∈ S.
Case 2. � ≤ t . Then

j ≥ q − t (q + 1)

2t + 1
>

t + 1

2t + 1
× q − t

2t + 1
− 1.

Thus, j /∈ S and hence this contradicts the fact that j ∈ S.

For i, j ∈ S with (i, j) �= (0, 0), by the above fact one can write qi + j = c × q2−1
2t+1 + a

for some c ≥ 0 and 1 ≤ a ≤ q2−1
2t+1 − 1.

Now it is clear that the first row of AS is the all-one vector 1 and every other row has the
form

⎛

⎝0, βqi+ j
1 , β

qi+ j
1 γ a, β

qi+ j
1 γ 2a . . . , β

qi+ j
1 γ

(
q2−1
2t+1 −1

)

a
, . . . ,

β
qi+ j
r , β

qi+ j
r γ a, β

qi+ j
r γ 2a, . . . , β

qi+ j
r γ

(
q2−1
2t+1 −1

)

a

⎞

⎠

for some i, j ∈ S with (i, j) �= (0, 0) and 1 ≤ a ≤ q2−1
2t+1 − 1. Therefore, the vector

(
− r(q2−1)

2t+1 , 1, 1, . . . , 1
)
is a solution of the equation ASx = 0. The proof is completed. 
�

Lemma 2.4 Let t ≥ 1 be an integer and assume that q ≡ −1 mod 2t + 1. For an integer

r with 1 ≤ r ≤ 2t + 1 and gcd(r, q) > 1, put n = r(q2−1)
2t+1 . Let γ ∈ Fq2 be a q2−1

2t+1 -th
primitive root of unity and let β1, . . . , βr ∈ F

∗
q2

such that {βi 〈γ 〉}ri=1 represent distinct cosets

of F∗
q2

/〈γ 〉. Label the elements of the set ∪r
i=1βi 〈γ 〉 by α1, α2, . . . , αn. Then the equation

system ASx = 0 has a nonzero solution in (F∗
q)

n if S ⊆ {0, 1, 2, . . . , t+1
2t+1 × q − t

2t+1 − 1}.

Proof First of all, the condition gcd(r, q) > 1 implies that the length n is divisible by the
characteristic of Fq .

From the proof of Lemma 2.3, we know that, for i, j ∈ S with (i, j) �= (0, 0), one can

write qi + j = c × q2−1
2t+1 + a for some c ≥ 0 and 1 ≤ a ≤ q2−1

2t+1 − 1.
Now it is clear that the first row of AS is the all-one vector 1 and every other row has the

form
⎛

⎝β
qi+ j
1 , β

qi+ j
1 γ a, β

qi+ j
1 γ 2a . . . , β

qi+ j
1 γ

(
q2−1
2t+1 −1

)

a
, . . . ,

β
qi+ j
r , β

qi+ j
r γ a, β

qi+ j
r γ 2a, . . . , β

qi+ j
r γ

(
q2−1
2t+1 −1

)

a

⎞

⎠

for some i, j ∈ S with (i, j) �= (0, 0) and 1 ≤ a ≤ q2−1
2t+1 − 1. Therefore, the vector

(1, 1, . . . , 1) is a solution of the equation ASx = 0. The proof is completed. 
�
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2.3 Hermitian self-orthogonal codes

For a subset S of {0, 1, 2, . . . , q2 − 1}, denote by PS the Fq2 -linear space of polynomials

PS := Span{xi : i ∈ S}. (4)

In particular, for S = {0, 1, 2, . . . , k − 1}, we denote PS by Pk . It is clear that the dimension
of PS is |S|. Furthermore, for a vector v = (v1, v2, . . . , vn) ∈ (F∗

q2
)n and n distinct elements

α1, α2, . . . , αn in Fq2 , we define the Fq2 -linear code

CS(a, v) = {(v1 f (α1), v2 f (α2), . . . , vn f (αn)) : f ∈ PS}, (5)

where a = (α1, α2, . . . , αn).
Assume that the largest number imax of S is less thann, thenCS(v) is an [n, |S|,≥ n−imax]-

linear code over Fq2 .

Lemma 2.5 Let S be a subset of {0, 1, 2, . . . , q2 − 1}. Assume that ASx = 0 has a solution
(b1, b2, . . . , bn) ∈ (F∗

q)
n. Let vi ∈ F

∗
q2

such that vq+1
i = bi for all 1 ≤ i ≤ n. Then the code

CS(a, v) is Hermitian self-orthogonal.

The proof of Lemma 2.5 is straightforward. Note that vi always exists since bi ∈ Fq .
Now we apply Lemmas 2.3 and 2.4 to obtain two classes of Hermitian self-orthogonal

codes.

Theorem 2.6 Let t ≥ 1 be an integer and assume that q ≡ −1 mod 2t + 1.

(i) For an integer r with 1 ≤ r ≤ 2t + 1 and gcd(r, q) = 1, put n = 1 + r(q2−1)
2t+1 . Then for

any k ≤ t+1
2t+1 × q − t

2t+1 , there exists a Hermitian self-orthogonal [n, k]-MDS code
over Fq2 .

(ii) For an integer r with 1 ≤ r ≤ 2t + 1 and gcd(r, q) > 1, put n = r(q2−1)
2t+1 . Then for any

k ≤ t+1
2t+1 × q − t

2t+1 , there exists a Hermitian self-orthogonal [n, k]-MDS code over
Fq2 .

Proof (i) Consider the set S = {0, 1, 2, . . . , k − 1}. Let γ ∈ Fq2 be a q2−1
2t+1 -th primitive

root of unity and let β1, . . . , βr ∈ F
∗
q2

such that {βi 〈γ 〉}ri=1 represent distinct cosets of

F
∗
q2

/〈γ 〉. Label the elements of the set {0} ∪ (∪r
i=1βi 〈γ 〉) by α1, α2, . . . , αn . Let vi = 1

for all 2 ≤ i ≤ n and vi ∈ F
∗
q2

such that v
q+1
1 = − r(q2−1)

2t+1 . Then by Lemmas 2.3 and
2.5, the code CS(a, v) is Hermitian self-orthogonal.

(ii) Similarly, this part follows from Lemmas 2.4 and 2.5.

�

For certain given length n, Theorem 2.6 provides Hermitian self-orthogonal codes with
dimension bigger than q/2. In the following theorem, for given dimension k, we provide
Hermitian self-orthogonal codes for certain length.

Theorem 2.7 For any k with 1 ≤ k ≤ q − 1, there exists a Hermitian self-orthogonal
[n, k]-MDS code for some n with 2k ≤ n ≤ k2 + 1.

Proof Choose a subset A = {β1, β2, . . . , βk2+1} of Fq2 and consider the generalized Reed-
Solomon code C = {( f (β1), f (β2), . . . , f (βk2+1)) : f ∈ Pk}. Then the Euclidean dual
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Quantum MDS codes with relatively large minimum distance 469

C⊥E of C has minimum distance k + 1. Let S = {0, 1, 2, . . . , k − 1} and consider the (k2 +
1)×k2 matrix AS whose rows consists of (β

qi+ j
1 , β

qi+ j
2 , . . . , β

qi+ j
k2+1

) for all 0 ≤ i, j ≤ k−1.
By Lemma 2.2, the equation ASx = 0 has a nonzero solution b = (b1, b2, . . . , bk2+1) ∈ F

n
q .

It is clear thatb is a codeword ofC⊥E and hence theHammingweightwtH (b) ≥ k+1. Let the
support of b be {i1, i2, . . . , in} and denote βi j by α j . Let v j ∈ Fq2 such that v

q+1
j = bi j . Then

it is easy to see that CS(a, v) is Hermitian self-orthogonal, where S = {0, 1, . . . , k − 1}.
Furthermore, it is clear that CS(a, v) is an [n, k]-MDS code. Since C is Hermitian self-
orthogonal, we must have n ≥ 2k. The proof is completed. 
�

3 Construction of Quantum codes

The construction of quantum codes in this section is based on a connection between classical
Hermitian self-orthogonal codes and quantum codes given in [2].

Lemma 3.1 ([2]) There exists a q-ary [[n, n − 2k, k + 1]] quantum code whenever there is
a q2-ary classical Hermitian self-orthogonal [n, k] MDS code.

3.1 Quantum MDS codes

Combining Theorem 2.6 with Lemma 3.1 gives the following quantum MDS codes.

Theorem 3.2 There exists a q-ary [[n, n−2k, k+1]]-quantumMDS code for the following
q, n and k.

(i) Let t ≥ 1 be an integer and let r satisfy 1 ≤ r ≤ 2t + 1 and gcd(r, q) = 1. The

parameters q, n and k satisfy q ≡ −1 mod 2t + 1, n = 1 + r(q2−1)
2t+1 and k ≤ t+1

2t+1 ×
q − t

2t+1 .
(ii) Let t ≥ 1 be an integer and let r satisfy 1 ≤ r ≤ 2t + 1 and gcd(r, q) > 1. The

parameters q, n and k satisfy q ≡ −1 mod 2t + 1, n = r(q2−1)
2t+1 and k ≤ t+1

2t+1 × q −
t

2t+1 .

Remark 1 The family of quantum MDS codes constructed in Theorem 3.2 are new except
for the case of t = r = 1 in Theorem 3.2(i) which was presented in [9].

In the following example, we show some quantum MDS codes from Theorem 3.2(i).

Example 3.3 By taking r = 1 and t = 1, 2, 3, 4 in Theorem 3.2(i), respectively, we obtain
the following q-ary quantum codes.

(i) If q ≡ −1 mod 3, then there exists a q-ary [(q2+2)/3, (q2+2)/3−2k, k+1] quantum
MDS code for any k ≤ (2q − 1)/3. This class was presented in [9].

(ii) If q ≡ −1 mod 5, then there exists a q-ary [(q2+4)/5, (q2+4)/5−2k, k+1] quantum
MDS code for any k ≤ (3q − 2)/5.

(iii) If q ≡ −1 mod 7, then there exists a q-ary [(q2+6)/7, (q2+6)/7−2k, k+1] quantum
MDS code for any k ≤ (4q − 3)/7.

Example 3.4 Let q be even. By taking r = 2 and t = 1, 2, 3, 4 in Theorem 3.2(ii), respec-
tively, we obtain the following q-ary quantum codes.

(i) If q ≡ −1 mod 3, then there exists a q-ary [2(q2 − 1)/3, 2(q2 − 1)/3 − 2k, k + 1]
quantum MDS code for any k ≤ (2q − 1)/3.
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(ii) If q ≡ −1 mod 5, then there exists a q-ary [2(q2 − 1)/5, 2(q2 − 1)/5 − 2k, k + 1]
quantum MDS code for any k ≤ (3q − 2)/5.

(iii) If q ≡ −1 mod 7, then there exists a q-ary [2(q2 − 1)/7, 2(q2 − 1)/7 − 2k, k + 1]
quantum MDS code for any k ≤ (4q − 3)/7.

Remark 2 To the best of our knowledge, except for the quantumMDS codes given in Exam-
ple 3.3(i), all other quantum MDS codes in Examples 3.3 and 3.4 are new.

Theorem 3.5 For any 1 ≤ k ≤ q − 1, one can find some n ∈ [2k, k2 + 1] such that there
exists a q-ary [[n, n − 2k, k + 1]]-quantum MDS code.

Remark 3 Theorem 3.5 in fact produces some new quantum codes. For instance, for even q ,
we obtain an [n, n−q−2, q/2+2]-quantumMDS codes for some n ∈ [q+2, (q/2+1)2+1].
This code could not be produced by propagation rules from known codes.
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