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Abstract We introduce and explore near-complete external difference families, a partition-
ing of the nonidentity elements of a group so that each nonidentity element is expressible
as a difference of elements from distinct subsets a fixed number of times. We show that the
existence of such an object implies the existence of a near-resolvable design. We provide
examples and general constructions of these objects, some of which lead to new parameter
families of near-resolvable designs on a non-prime-power number of points. Our construc-
tions employ cyclotomy, partial difference sets, and Galois rings.
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1 Introduction

Difference families (DFs) of various types have long been studied in combinatorial literature,
and they have been used to construct combinatorial objects such as designs and strongly
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regular graphs (see [1,7,17]). In a DF of sets, each nonidentity element of a group will arise
some fixed number of times as a difference between same-set elements. External DFs (EDFs)
were introduced in [14] as a method of constructing optimal robust secret sharing schemes.
In an EDF, as the name suggests, each nonidentity element arises a fixed number of times
as a difference between elements in distinct sets. Chang and Ding [2] recognized that EDFs
have a connection with difference systems of sets (DSSs), first introduced by Levenshtein
[9], a combinatorial configuration that arises in connection with code synchronization (see
[5,12]); specifically, EDFs generalize perfect, regular DSSs. In this paper, we will focus on
those EDFs whose sets partition the nonidentity elements of a group, which we call near-
complete EDFs. Ng and Paterson [13] have recently written a survey on disjoint DFs (DDFs),
and the near-complete EDFs introduced in this paper will also be near-complete DDFs. For
all these reasons, we claim that near-complete EDFs are natural objects to study with a
particularly nice structure, and we support this claim by highlighting their connections with
other combinatorial objects.

2 Motivation: multiplicative cosets in finite fields

Our initialmotivation arose from the followingobservation about the cosets of amultiplicative
subgroup in a finite field (see [10] or [11] for background onfinite fields). Ifq is a prime power,
then the multiplicative group of the finite field GF(q) is cyclic: we denote the multiplicative
group by GF(q)∗. If H is a multiplicative subgroup then there will be q−1

|H | cosets of H in
GF(q)∗ where, as usual, |H | denotes the number of elements in H.

Theorem 2.1 Let H be a multiplicative subgroup of a field GF(q) and let {D1, D2, . . . ,

D(q−1)/|H |} be the cosets of H in GF(q)∗. If x ∈ GF(q)∗, then x = g − g′ for q − 1− |H |
elements (g, g′) ∈ ∪i �= j Di × Dj .

Proof We include the proof for reference later in the paper: a version of this result was
originally proved in [18]. Let x, y ∈ GF(q)∗, x �= y and suppose x = g − g′ for g ∈
Di , g′ ∈ Dj , 1 ≤ i �= j ≤ (q − 1)/|H |. There is a z ∈ GF(q)∗ so that y = zx and hence
we get the equation y = zg− zg′. We see that zg and zg′ are in distinct multiplicative cosets
of H, so we have produced a solution to the difference equation for y. We can reverse this
process to show that every difference for y will also produce a difference for x and therefore
every element of GF(q)∗ will have the same number of differences. There are

q − 1

|H |
(
q − 1

|H | − 1

)
|H |2,

elements of ∪i �= j Di × Dj , and each of these will produce a difference in GF(q)∗, so each
x ∈ GF(q)∗ will have

q−1
|H |

(
q−1
|H | − 1

)
|H |2

q − 1
= q − 1 − |H |,

differences x = g − g′ for (g, g′) ∈ ∪i �= j Di × Dj . �	
Motivated by this example, we are ready to define the main objects of study in this paper.

We will state our definitions and many of our results for general groups G, but we will use
the binary operation of addition unless otherwise stated. We are following the notation of
[2].
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Near-complete external difference families 417

Definition 2.2 Let G be a finite group of order v and let D1, D2, . . . , Du be subsets of G
of order k that are mutually disjoint. We say that {D1, D2, . . . , Du} is a (v, k, λ; u) EDF
in G if every nonidentity element x ∈ G has λ differences x = g − g′ where g ∈ Di , g′ ∈
Dj , i �= j. If {D1, D2, . . . , Du} partitions the nonidentity elements of G, then we say that
{D1, D2, . . . , Du} is a (v, k, λ; u) near-complete EDF in G.

Theorem 2.1 implies that {D1, D2, . . . , Dq−1/|H |}, the set of multiplicative cosets of H

in GF(q), forms a
(
q, |H |, q − 1 − |H |; q−1

|H |
)
near-complete EDF in the additive group

of GF(q). If we have a (v, k, λ; u) near-complete EDF, then v = ku + 1 and (v − 1)λ =
u(u − 1)k2, i.e., λ = k(u − 1). Thus, we can write the parameters of the near-complete EDF
as (ku + 1, k, k(u − 1); u).

For the construction of Theorem 2.1, observe that the full set of differences g− g′, where
g, g′ ∈ GF(q)∗, contains each element of GF(q)∗ precisely q − 2 times. Hence, each
element of GF(q)∗ occurs a fixed number of times as a difference within cosets, namely
|H | − 1 times. This implies a connection with traditional DFs. We recap the definition here,
focussing on a particular type which will be important for us.

Definition 2.3 Let G be a finite group of order v and let D1, D2, . . . , Du be k-subsets of G.

We say that {D1, D2, . . . , Du} is a (v, k, λ; u) DF in G if every nonidentity element x ∈ G
has λ differences x = g− g′, where g, g′ ∈ Di for some i . If u = 1, we call this a difference
set (DS). If the Di are a DF and are mutually disjoint then we say that {D1, D2, . . . , Du} is
a (v, k, λ; u) DDF in G. If the Di partition the nonidentity elements of G, then we say that
{D1, D2, . . . , Du} is a (v, k, λ; u) near-complete DDF.

It transpires that the above observation about Theorem 2.1 is an example of a general
result; namely that a near-complete EDF in a group G is precisely a near-complete DDF.
This follows from analogous reasoning to the above: each nonidentity element of G occurs
|G∗|−1 times as a difference from pairs in G∗ ×G∗, and so if each element occurs the same
fixed number of times as an internal difference, it also occurs a fixed number of times as an
external difference, and vice versa. A formal proof of this result can be found in Proposition
2 in [2].

Theorem 2.4 The collection of subsets {D1, D2, . . . , Du} of a group G forms a (ku +
1, k, k(u − 1); u) near-complete EDF if and only if {D1, D2, . . . , Du} forms a (ku +
1, k, k − 1; u) near-complete DDF in G.

Near-complete EDFs can be used to construct a combinatorial object called a near-
resolvable design. First some background on designs: a (v, b, k, r, λ) balanced incomplete
block design (BIBD) is a collection of v points and b blocks; each point is in r blocks and
each block contains k points; and every pair of points is contained in exactly λ blocks. A
near parallel class in a design is a set of blocks that partition all the points except one. A
(v, b, k, r, λ) near-resolvable design is a BIBD with the property that the blocks can be
partitioned into near parallel classes. The development of a collection of subsets of a group is
the set of all translates of those subsets. The following result shows that the development of
a near-complete EDF with constant block size will be a near-resolvable design. This obser-
vation is implicit in the comments in Construction II.7.4.5 of [3], and we leave the proof to
the reader.

Theorem 2.5 If {D1, D2, . . . , Du} is a (ku + 1, k, k(u − 1); u) near-complete EDF in
an abelian group G, then the development of the near-complete EDF is a (ku + 1, (ku +
1)u, k, ku, k − 1) near-resolvable design.
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418 J. A. Davis et al.

The next sections contain new constructions and examples of near-complete EDFs. The
final section introduces two other variations, near-complete external partial DFs (EPDFs) and
near-complete external divisible DFs (EDDFs), together with examples for each of those.

3 Constructions via partial difference sets

All of the examples fromTheorem 2.1 are near-complete EDFs in elementary abelian groups.
The following are two new examples of near-complete EDFs in non elementary abelian
groups.

Example 3.1 Let G = Z4 × Z4 and choose the three subsets

D1 = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2)};
D2 = {(0, 1), (0, 3), (1, 3), (2, 0), (3, 1)};
D3 = {(0, 2), (1, 0), (1, 1), (3, 0), (3, 3)}.

An easy check demonstrates that these form a (16, 5, 10; 3) near-complete EDF. We observe
that, for each i, {Di ∪ (0, 0)} is a (16, 6, 2) DS in Z4 × Z4.

Example 3.2 Let G = Z8 × Z8 and choose the three subsets

D1 = {(0, 1), (0, 3), (0, 5), (0, 7), (2, 1), (6, 3), (2, 5), (6, 7), (1, 4), (2, 0), (3, 4),

(5, 4), (6, 0), (7, 4), (1, 5), (2, 2), (3, 7), (5, 1), (6, 6), (7, 3), (0, 4)};
D2 = {(1, 0), (3, 0), (5, 0), (7, 0), (1, 2), (3, 6), (5, 2), (7, 6), (4, 1), (0, 2), (4, 3),

(4, 5), (0, 6), (4, 7), (1, 7), (2, 6), (3, 5), (5, 3), (6, 2), (7, 1), (4, 0)};
D3 = {(1, 1), (3, 3), (5, 5), (7, 7), (1, 3), (3, 1), (5, 7), (7, 5), (6, 1), (4, 2), (2, 3),

(6, 5), (4, 6), (2, 7), (1, 6), (2, 4), (3, 2), (5, 6), (6, 4), (7, 2), (4, 4)}.
An easy check demonstrates that these form a (64, 21, 42; 3) near-complete EDF in G, This
example can be found (with a different motivation) in [16].

These examples suggest a general approach of partitioning the nonidentity elements of a
group into partial DSs (PDSs) where each PDS has the same number of elements.

Definition 3.3 A k-element subset D of an additive group G of order v is a (v, k, λ, μ)-
PDS if the multiset {d1 − d2|d1, d2 ∈ D, d1 �= d2} contains each nonidentity element of D
exactly λ times and each nonidentity element of G\D exactly μ times.

Weoften use the group ring to verify that a subset is a PDS (this necessitates our temporarily
switching to multiplicative notation). If we allow the usual abuse of notation by writing D
both as a subset of G and also D = ∑

d∈D d in the group ring Z[G] (and we also have
G = ∑

g∈G g, D(−1) = ∑
d∈D d−1, and 1G as the identity of the group), then we get the

following equation for a PDS D.

DD(−1) = k1G + λD + μ (G − D − 1G) .

Similarly, in this language, the group ring equation for a (v, k, λ; u)-EDF {D1, D2, . . . ,

Du} is given by

u∑
i=1

∑
j �=i

Di D
(−1)
j = λ (G − 1G) .
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Near-complete external difference families 419

Theorem 3.4 Suppose D1, D2, . . . , Du are (v, k, λ, μ)PDSs that partition the nonidentity
elements of a group G. Then {D1, D2, . . . , Du} is a (ku + 1, k, ku − 1− λ − (u − 1)μ; u)

near-complete EDF in G.

Proof From the comments after Definition 3.3, we have, for 1 ≤ i ≤ u,

Di D
(−1)
i = k1G + λDi + μ (G − Di − 1G) .

Using the fact that the Di partition the nonidentity element of the group, we get

u∑
i=1

Di D
(−1)
i =

u∑
i=1

(k1G + λDi + μ (G − Di − 1G))

= ku1G + (λ − μ)

(
u∑

i=1

Di

)
+ μ

u∑
i=1

(G − 1G)

= ku1G + (λ − μ + uμ) (G − 1G) . (1)

Thus, {D1, D2, . . . , Du} is a near-complete DDF and hence is also a near-complete EDF
by Theorem 2.4. �	

Both Examples 3.1 and 3.2 are covered by Theorem 3.4. Partitioning a group with PDSs
is a common technique used to construct Association Schemes [16], so examples from Asso-
ciation Schemes provide a source for near-complete EDFs.

An interesting example of new near-complete EDFs comes from Paley PDSs, which have

parameters
(
v, v−1

2 , v−5
4 , v−1

4

)
for v = 1 mod 4. The original Paley construction uses

the squares and non squares in the field GF(q) for q a prime power, so those examples
fall under Theorem 2.1. Paley PDSs have been constructed for groups of the form G =
(Zpr1 )

2 × (Zpr2 )
2 × · · · × (Zprs )

2 for r1, r2, . . . , rs ∈ Z
+ [8], so those give examples of

near-complete EDFs in non-elementary abelian p-groups.
Even more interesting are the constructions of Paley PDSs in [15] for groups of the form

Z
2
3 ×Z

4s
p for p any odd prime. The group is not a p-group and hence any near-complete EDF

constructed in this group will have a different set of parameters than any near-complete EDF
that exists in a finite field. We focus our corollary on this case to emphasize the fact that these
examples will definitely produce new near resolvable designs.

Corollary 3.5 For p an odd prime, the group G = Z
2
3 × Z

4s
p contains a

(
9p4s, 9p4s−1

2 ,

9p4s−1
2 ; 2

)
near-complete EDF. Therefore for all odd primes p there is a

(
9p4s, 18p4s,

9p4s−1
2 , 9p4s − 1, 9p4s−3

2

)
-near-resolvable design.

Proof The first claim comes from [15] and the second claim comes from Theorem 2.5. �	

4 Construction via Galois rings

A different construction comes from using Galois rings to generalize Theorem 2.1. For back-
ground on Galois rings see [6]. For a given prime p,we define GR(p2, r) = Zp2 [x]/〈φ(x)〉
for φ(x) a basic primitive polynomial of degree r (a degree r polynomial that divides x pr −1,
similar to primitive polynomials for field extensions). The ring GR(p2, r) is a finite local
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420 J. A. Davis et al.

ringwith a uniquemaximal ideal pGR(p2, r).Themultiplicative group ofGR(p2, r) is iso-
morphic toZpr−1×Z

r
p and consists of all of the elements of the ring not in the maximal ideal.

If ξ is an element of multiplicative order pr − 1, then the set T = {0, 1, ξ, ξ2, . . . , ξ pr−2}
is a complete set of (additive) coset representatives for the maximal ideal: this set is called
the Teichmuller system for the ring. Every element x of the ring has a unique p-adic repre-
sentation x = t + pt ′, where t, t ′ ∈ T , and if t �= 0 then x = t (1 + pt−1t ′). If K = 〈ξ 〉,
then K has p2r−pr

pr−1 = pr (multiplicative) cosets Dt = (1 + pt)K (t ∈ T ), and we include

Dp = pK = pGR(p2, r)\{0} as a coset even though it is not part of the multiplicative
group of the Galois ring. The following theorem shows that this collection of subsets will be
a near-complete EDF.

Theorem 4.1 Let K = 〈ξ 〉 ⊂ GR(p2, r). The multiplicative cosets Dt (t ∈ T ) and Dp

described above form a (p2r , pr −1, pr (pr −1); pr +1) near-complete EDF in the additive
group of GR(p2, r).

Proof The proof is analogous to the proof for Theorem 2.1. For invertible elements x and
y where y = zx for z an invertible element, if x = g − g′ for g ∈ Dt , g′ ∈ Dt ′ with
t, t ′ ∈ T , then y = zg − zg′ for zg and zg′ invertible elements coming from different
invertible cosets. Thus, x and y will share the same number of solutions coming from pairs

of distinct invertible cosets. There are p2r−pr

|K |
(
p2r−pr

|K | − 1
)
ways to choose Di and Dj

with invertible elements and each of these choices will produce |K |2 differences. Out of
these |K |2 differences, exactly |K | will be elements of the maximal ideal: every difference
of elements of the form x = (1 + pt)(t ′′) ∈ Dt , y = (1 + pt ′)(t ′′) ∈ Dt ′ will satisfy
x − y = p(t − t ′)t ′′ ∈ pGR(p2, r). So each invertible element will have

p2r−pr

|K |
(
p2r−pr

|K | − 1
)

(|K |2 − |K |)
p2r − pr

= (
pr − 1

) (
pr − 2

)
,

differences of this form.
We next consider differences±(g− pg′)where g ∈ Dt and pg′ ∈ Dp. If x = ±(g− pg′),

then y = ±(zg− p(zg′)), so we still have the same number of differences for every invertible
element where the differences have one element invertible and the other element from Dp.

We can choose any of the p2r−pr

pr−1 = pr cosets Dt to combine with an element from Dp. The

total number of differences is therefore 2pr (pr − 1)2. Each invertible element will have

2pr (pr − 1)2

p2r − pr
= 2

(
pr − 1

)
,

differences of this form.When combinedwith the first computationwe see that each invertible
element will have a total of

(
pr − 1

) (
pr − 2

) + 2
(
pr − 1

) = pr
(
pr − 1

)
,

differences as claimed.
Finally we handle the case of noninvertible elements.We first observe that each noninvert-

ible element will have the same number of differences by a similar argument to the previous
ones: if x and y are noninvertible, then there is an invertible z so that y = zx . If x = g − g′
for g, g′ in different cosets of K , then y = zg − zg′ for zg, zg′ in different cosets of K and
hence x and y have the same number of differences from distinct cosets of K . There are a
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Near-complete external difference families 421

total of (pr + 1)(pr )(pr − 1)2 differences between the cosets, and (p2r − pr )pr (pr − 1) of
those differences are invertible leaving

(
pr + 1

) (
pr

) (
pr − 1

)2 − (
p2r − pr

)
pr

(
pr − 1

) = pr
(
pr − 1

)2
,

noninvertible differences. Since each of the noninvertible elements has an equal number of
differences, we have

pr (pr − 1)2

pr − 1
= pr

(
pr − 1

)
,

differences per noninvertible element. �	

Since the field GF(p2r ) has a multiplicative subgroup of order pr −1, the near-complete
EDFs in Theorem 4.1 have the same parameters as the near-complete EDFs coming from
Theorem 2.1 for a subgroup of order pr − 1. It is not known in general if the associated
near-resolvable designs are nonisomorphic.

A completely analogous proof leads to the following similar result.

Corollary 4.2 Let K = 〈ξ 〉 ⊂ GR(p3, r). The multiplicative cosets Dt,t ′ := (1 + pt +
p2t ′)K (t, t ′ ∈ T ); Dt ′′ := (p + p2t ′′)K (t ′′ ∈ T ); and Dp2 := p2K form a (p3r , pr −
1, pr (p2r − 1); p2r + pr + 1) near-complete EDF in the additive group of GR(p3, r).

We conjecture that there will be a (psr , pr −1, pr (p(s−1)r −1); p(s−1)r +· · ·+ pr +1)
near-complete EDF in the additive group of GR(ps, r).

5 Some further variations and examples

We present two variations on the definition of EDFs, both of which are motivated by various
types of DSs. The first is a modification of a PDS which was used in the last section. We note
here that the variations presented in this section allow the possibility that the subset sizes
may not be constant.

Definition 5.1 Let G be a finite group of order v. Let D1, D2, . . . , Du be subsets of G
that partition the nonidentity elements of G, let ki = |Di | for each 1 ≤ i ≤ u, and let
γ ∈ {1, . . . , u − 1}. We say that {D1, D2, . . . , Du} is a (v, {k1, k2, . . . , ku}, λ, μ; u, γ )

near-complete EPDF in G relative to ∪γ

i=1Di if every nonidentity element x ∈ ∪γ

i=1Di has
λ representations x = g − g′ with g ∈ Di , g′ ∈ Dj (i �= j) and every nonidentity element
x ∈ (G\ ∪γ

i=1 Di )} has μ such representations.

The group ring equation for a (v, {k1, k2, . . . , ku}, λ, μ; u, γ )EPDF {D1, D2, . . . , Du}
is

u∑
i=1

∑
i �= j

Di D
(−1)
j = λ

γ∑
i=1

Di + μ

u∑
i=γ+1

Di .

The following theorem provides a general construction for near-complete EPDFs.

Theorem 5.2 Let G be a group of order v and suppose D1, D2, . . . , Du are a collection
of (v, ki , λi , μi ) PDSs that partition the nonidentity elements of G. Further suppose that

123
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there exists γ ∈ {1, . . . , u − 1} such that λi − μi = c1 for 1 ≤ i ≤ γ and λi − μi = c2 for
γ + 1 ≤ i ≤ u. Then {D1, D2, . . . , Du} forms a near-complete EPDF with parameters(

v, {k1, k2, . . . , ku} , v − 2 − c1 −
u∑

i=1

μi , v − 2 − c2 −
u∑

i=1

μi ; u, γ

)
,

in G relative to ∪γ

i=1Di .

Remark To ensure construction of a “genuine” near-complete EPDF, we require c1 �= c2.

Proof The proof of this is analogous to the proof of Theorem 3.4: the term (λ−μ)
∑u

i=1 Di

in the original proof must be replaced by

u∑
i=1

(λi − μi ) Di = c1

(
γ∑

i=1

Di

)
+ c2

⎛
⎝ u∑

i=γ+1

Di

⎞
⎠

= (c1 − c2)

(
γ∑

i=1

Di

)
+ c2

(
u∑

i=1

Di

)

= (c1 − c2)

(
γ∑

i=1

Di

)
+ c2 (G − 1G) .

This implies that

u∑
i=1

∑
i �= j

Di D
(−1)
j =

(
v − 2 − c2 −

u∑
i=1

μi

)
(G − 1G) + (c2 − c1)

γ∑
i=1

Di

=
(

v − 2 − c2 −
u∑

i=1

μi

)
u∑

i=1

Di + (c2 − c1)
γ∑

i=1

Di

=
(

v − 2 − c2 −
u∑

i=1

μi

)
u∑

i=γ+1

Di

+
(

v − 2 − c2 −
u∑

i=1

μi

)
γ∑

i=1

Di + (c2 − c1)
γ∑

i=1

Di

=
(

v − 2 − c2 −
u∑

i=1

μi

)
u∑

i=γ+1

Di +
(

v − 2 − c1 −
u∑

i=1

μi

)
γ∑

i=1

Di .

�	
In order to apply the construction of Theorem 5.2, we must be able to partition a group

with PDSs which have the additional property regarding the λi −μi values. We are aware of
two different relevant results, the first of which is from [16] and the second of which is from
[4]. We follow each with a corollary recording the parameters of the relevant near-complete
EPDFs.

Proposition 5.3 LetG = (Zpr )
2t .There exist PDSs Di (1 ≤ i ≤ pt−1) that formapartition

of the nonidentity elements of G with |D1| = |D2| = (x +1)(prt −1) and |Di | = x(prt −1)
for i �= 1, 2 and x = ∑r−1

j=0 p
jt . The parameters of D1 and D2 are(

p2r t , (x + 1)
(
prt − 1

)
, (x + 1)2 − 3(x + 1) + prt , (x + 1)2 − (x + 1)

)
,
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Near-complete external difference families 423

and for i �= 1, 2, Di has parameters(
p2r t , x

(
prt − 1

)
, x2 − 3x + prt , x2 − x

)
.

Corollary 5.4 If x = ∑r−1
j=0 p

jt , then the PDSs {D1, D2, . . . , Dpt−1} in G = (Zpr )
2t

from Theorem 5.3 form a (p2r t , {k1, k2, . . . , kpt−1}, λ, μ; pt −1, 2) near-complete EPDF,
relative to D1 ∪ D2, where

u = pt − 1,

v = p2r t ,

k1 = k2 = (x + 1)
(
prt − 1

)
,

ki = x
(
prt − 1

)
(2 < i ≤ u)

λ = p2r t − 2 − (
prt − 2(x + 1)

) − 2
[
(x + 1)2 − 3(x + 1) + prt

]
− (

pt − 3
) [
x2 − 3x + prt

]
μ = p2r t − 2 − (

prt+4x
) − 2

[
(x + 1)2 − 3(x + 1) + prt

]− (
pt − 3

) [
x2−3x + prt

]
.

Proposition 5.5 Let r1, . . . rs ∈ N with ri ≥ 3, let t ∈ N, let G = (Z2r1 )
2 × (Z2r2 )

2 × · · · ×
(Z2rs )

2 × (Z4)
t and let N = 2

∑s
i=1 ri+t−1. Then G contains subsets D1, D2, and D3 that

partition the nonidentity elements of the group where D1 and D2 are (4N 2, 2N 2 −N , N 2 −
N , N 2 − N ) PDSs and D3 is a (4N 2, 2N − 1, 2N − 2, 0) PDS.

Corollary 5.6 With the notation of Proposition 5.5, the PDSs {D1, D2, D3} in G =
(Z2r1 )

2 × (Z2r2 )
2 × · · · × (Z2rs )

2 × (Z4)
t form a (4N 2, {2N 2 − N , 2N 2 − N , 2N −

1}, 2N 2, 2N 2 − 2N + 2; 3, 2) near-complete EPDF relative to D1 ∪ D2.

We note that D1 and D2 in Proposition 5.5 are actually regular DSs and hence λi − μi =
0; D3 is a subgroup (with identity element removed) satisfying λ3 = |D3| − 1 and μ3 = 0.

The second variation of a near-complete EDF is similar to the first in that the number of
differences can take two different values, but the “dividing line” between the two different
values will be a subgroup rather than a union of the subsets.

Definition 5.7 Let G be a group of order v with normal subgroup N of order m and index n
and let D1, D2, . . . , Du(|Di | = ki , 1 ≤ i ≤ u) be subsets of G that partition the noniden-
tity elements of G. We say that {D1, D2, . . . , Du} is an (n, m, {k1, k2, . . . , ku}, λ1, λ2; u)

near-complete EDDF in G relative to N if every nonidentity element x ∈ N has λ1 repre-
sentations x = g − g′ where g ∈ Di , g′ ∈ Dj (i �= j) and every element x ∈ G\N has λ2
representations x = g − g′ where g ∈ Di , g′ ∈ Dj (i �= j).

Oneexample of a near-completeEDDFcomes fromamodification ofTheorem4.1. Instead
of using the subgroup K = 〈ξ 〉 ⊂ GR(p2, r), we use the subgroup K ′ = 〈ξ, 1 + pξ 〉. We
have K ′ ∼= Zpr−1 × Zp, so there will be pr−1 cosets of K ′ in GR(p2, r)∗. When we also
include pK ′ = pGR(p2, r) [which only has p elements as opposed to all of the other cosets
of K ′ having p(pr − 1) elements], we get the following.

Theorem 5.8 Let GR(p2, r) = Zp2 [ξ ] be the Galois ring over Zp2 and let K ′ = 〈ξ, 1 +
pξ 〉. The multiplicative cosets Dt := (1 + pt)K ′, t ∈ T ∪ {0}, and Dp := pK ′ form a
(p2r , {p(pr − 1), . . . , p(pr − 1), pr − 1}, pr (pr − p), p2r − pr+1 + 2p − 2; pr−1 + 1)
near-complete EDDF in the additive group of GR(p2, r).

The proof of Theorem 5.8 is analogous to the proof of Theorem 4.1.
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Remark 5.9 We leave to future work the question of whether a version of Theorem 5.8
will produce a near-complete EDDF by changing the subgroup to K j := 〈ξ, 1 + pξ, 1 +
pξ2, . . . , 1+pξ j 〉, and also the question ofwhetherwe could change the group toGR(ps, r).
Theorem 5.8 was included to give a specific example of a near-complete EDDF.
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