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Abstract Symbol-pair code is a new coding framework which is proposed to correct errors
in the symbol-pair read channel. In particular, maximum distance separable (MDS) symbol-
pair codes are a kind of symbol-pair codes with the best possible error-correction capability.
Employing cyclic and constacyclic codes,we construct three newclasses ofMDSsymbol-pair
codes with minimum pair-distance five or six. Moreover, we find a necessary and sufficient
condition which ensures a class of cyclic codes to beMDS symbol-pair codes. This condition
is related to certain property of a special kind of linear fractional transformations. A detailed
analysis on these linear fractional transformations leads to an algorithm, which produces
many MDS symbol-pair codes with minimum pair-distance seven.

Keywords Algebraic construction · Constacyclic codes · Cyclic codes · Linear fractional
transformations · MDS symbol-pair codes · Symbol-pair codes

Mathematics Subject Classification 68P20 · 94B15 · 94B60

1 Introduction

Motivated by high-density storage applications, a new coding framework named symbol-
pair code was proposed in [1,2] to correct errors in the so-called symbol-pair read channel.
Consider a scenario where we want to read data from certain storage medium.When the data
is written in a very compact way and our data reader has relatively low resolution, instead
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of individual symbols, we can only receive overlapping pairs of symbols. Suppose the data
symbols belong to an alphabet �. Then, what we receive are pairs of symbols belonging to a
different alphabet� ×�. In order to recover the original data reliably, we need a new coding
scheme which is able to correct errors in this symbol-pair read channel.

Cassuto and Blaum laid the foundation of symbol-pair codes in [1,2], which play the roles
of error-correcting codes for the symbol-pair read channel. They presented several bounds
and constructions, as well as a decoding algorithm for symbol-pair codes. The construction of
symbol-pair codes are further studied in a series of papers, including algebraic constructions
[3,5,7] and combinatorial constructions [5]. Moreover, an efficient decoding algorithm of
cyclic symbol-pair codes is proposed in [8].

In [5], the authors derived a Singleton-type bound for symbol-pair codes. Consequently,
the concept of maximum distance separable (MDS) symbol-pair codes is proposed. The
construction of MDS symbol-pair codes is interesting because they have the best possible
capability against errors in the symbol-pair read channel. In general, there are two ways to
construct MDS symbol-pair codes. The first one is direct construction using linear codes
with appropriate properties, such as MDS codes [5], as well as cyclic and constacyclic codes
[7]. The second way is recursive construction employing the interleaving technique [4,5],
the Eulerian graph [4,5,7] and other combinatorial configurations [4,5].

In particular, we focus on the construction of (n, dp)q MDS symbol-pair code whose
minimum pair-distance dp is small. The known parameters of (n, dp)q MDS symbol-pair
codes with small dp are the following ones:

(a) q ≥ 2, n ≥ 2, dp ∈ {2, 3} [5],
(b) q ≥ 2, n ≥ 4, dp = 4 [5],
(c1) q is an even prime power, n ≤ q + 2, dp = 5 [5],
(c2) q is an odd prime, 5 ≤ n ≤ 2q + 3, dp = 5 [5],
(c3) q is a prime power, n | q2 − 1, n > q + 1, dp = 5 [7],
(c4) q is a prime power, n = q2 + q + 1, dp = 5 [7],

(c5) q ≡ 1 (mod 3) is a prime power, n = q2+q+1
3 , dp = 5 [7],

(d1) q is a prime power, n = q2 + 1, dp = 6 [7],

(d2) q is an odd prime power, n = q2+1
2 , dp = 6 [7],

(e) q is an odd prime, n = 8, dp = 7 [5].

In this paper, we follow the idea in [7] to construct MDS symbol-pair codes by employing
cyclic and constacyclic codes. We use vp(n) to denote the largest integer a, such that pa | n,
where p is a prime. We obtain the following new classes of (n, dp)q MDS symbol-pair codes
with dp ∈ {5, 6}.
(1) Let q be a prime power. Let n and r be two integers such that

r | q − 1, nr | q3 − 1, nr � q − 1,

(
q − 1

r
, n

)
= 1.

Then there exists an (n, dp)q MDS symbol-pair code with dp = 5.
(2) Let q be a prime power, Let n and r be two integers such that

nr | (q − 1)(q2 + 1), nr � q2 − 1,

(
q − 1

r
, n

)
= 1.

Then there exists an (n, dp)q MDS symbol-pair code with dp = 6.
(3) Let q be a prime power. Suppose n | q2−1, n is odd or n is even and v2(n) < v2(q2−1),

then there exists an (n, dp)q MDS symbol-pair code with dp = 6.
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We remark that the class (1) (resp. class (2)) is an extension of the classes (c4) and (c5) (resp.
classes (d1) and (d2)). More interestingly, for a class of cyclic codes, we find a necessary
and sufficient condition which guarantees them to beMDS symbol-pair codes with minimum
pair-distance dp = 7.We observe that this condition is related to the property of a special kind
of linear fractional transformations. Moreover, we present a detailed analysis of these linear
fractional transformations, which leads to a precise characterization of this condition. Using
this characterization, we obtain many examples of MDS symbol-pair codes with minimum
pair-distance dp = 7.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to cyclic
and constacyclic codes. Some preliminaries concerning symbol-pair codes andMDS symbol-
pair codes are also presented. Employing cyclic and constacyclic codes, several constructions
of MDS symbol-pair codes are presented in Section 3. Section 4 concludes the paper.

2 Preliminaries

2.1 Cyclic and constacyclic codes

Let q be a prime power, Fq be a finite field and ω ∈ F∗
q . An ω-constacyclic code C is a linear

code which is invariant under the constacyclic shift. Namely, if

(c0, c1, . . . , cn−1) ∈ C,

then

(ωcn−1, c0, . . . , cn−2) ∈ C.

An ω-constacyclic code C of length n over Fq can be identified with an ideal of the principal
ideal ring Fq [x]/(xn −ω). Thus, C can be generated by one element. There is a unique monic
polynomial g(x) ∈ Fq [x] of minimum degree in C, such that g(x) | xn − ω and C = 〈g(x)〉.
This polynomial is called the generator polynomial of C. Given the ring Fq [x]/(xn −ω) and
a generator polynomial g(x), an ω-constacyclic code C = 〈g(x)〉 of length n is determined,
which is a linear subspace of Fn

q with dimension n − deg(g(x)). When ω = 1, an ω-
constacyclic code is simply a cyclic code.

Supposeω ∈ F∗
q is an element of order r andm is the smallest integer such that nr | qm−1.

Then we can find an element δ ∈ F∗
qm of order nr , such that ω = δn . Therefore the roots of

xn − ω are of the form {δ1+ jr | 0 ≤ j ≤ n − 1}. Define � = {1 + jr | 0 ≤ j ≤ n − 1}.
For s ∈ �, the q-cyclotomic coset modulo nr containing s is defined to be Cs = {qi s
(mod nr) | 0 ≤ i ≤ m − 1}. Since g(x) ∈ Fq [x] and g(x) | xn − ω, we have g(x) =∏

s∈S
∏

j∈Cs
(x − δ j ), where S ⊂ � is a subset of representatives of the q-cyclotomic cosets

modulo nr .
For cyclic codes,we have thewell-knownBCHbound on theminimumdistance. Similarly,

we have the following BCH-type bound on the minimum distance of a constacyclic code,
which is a slight generalization of [7, Theorem 3].

Proposition 1 Let q be a prime power and n be a positive integer with (n, q) = 1. Letω ∈ F∗
q

be an element of order r . Let m be the smallest positive integer such that nr | qm − 1. Then
there exists δ ∈ F∗

qm , such that δ has order nr and ω = δn. Define ξ = δr . Let C = 〈g(x)〉 ⊂
Fq [x]/(xn − ω) be an ω-constacyclic code with length n. Let l be an integer with (l, n) = 1
and d be an integer with 1 ≤ d ≤ n− 1. Suppose each element of {δξ li | b ≤ i ≤ b+ d − 1}
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is a root of the generator polynomial g(x), where b is an arbitrary integer. Then the minimum
distance of C is at least d + 1.

Proof The condition (n, q) = 1 ensures that g(x) has no repeated roots. Since each element
belonging to {δξ li | b ≤ i ≤ b + d − 1} is a root of g(x), the matrix⎛

⎜⎜⎜⎝
1 δξbl · · · δn−1ξ (n−1)bl

1 δξ (b+1)l · · · δn−1ξ (n−1)(b+1)l

...
...

...

1 δξ (b+d−1)l · · · δn−1ξ (n−1)(b+d−1)l

⎞
⎟⎟⎟⎠

is a submatrix of the parity matrix of C. Employing the condition (l, n) = 1 and the property
of the Vandermondematrix, we conclude that any submatrix of the above one with d columns
must be nonsingular. Consequently, the minimum distance of C is at least d + 1. 
�
2.2 Symbol-pair codes and MDS symbol-pair codes

Let � be an alphabet consisting of q elements. Given u = (u0, u1, . . . , un−1) ∈ �n , the
symbol-pair read vector of u is defined to be

π(u) = ((u0, u1), (u1, u2), . . . , (un−2, un−1), (un−1, u0)) ∈ (� × �)n .

Let u = (u0, u1, . . . , un−1) ∈ �n and v = (v0, v1, . . . , vn−1) ∈ �n , the pair-distance
between u and v is

dP (u, v) = |{0 ≤ i ≤ n − 1 | (ui , ui+1) �= (vi , vi+1)}| ,
where the subscripts are regarded as integers modulo n. An (n, M, dp)q symbol-pair code is
a subset C ⊂ �n with |C| = M , such that dp = min{dP (u, v) | u, v ∈ C,u �= v}. If � is a
finite field Fq , define the pair-weight of u ∈ Fn

q to be

wP (u) = |{0 ≤ i ≤ n − 1 | (ui , ui+1) �= (0, 0)}| ,
where the subscripts are regarded as integers modulo n. In particular, if the (n, M, dp)q
symbol-pair code C is a linear subspace of Fn

q , then dp = min{wP (u) | u ∈ C,u �=
(0, 0, . . . , 0)}.

Let u = (u0, u1, . . . , un−1) be the original vector. Let

((u′
0, u

′′
1), (u

′
1, u

′′
2), . . . , (u

′
n−2, u

′′
n−1), (u

′
n−1, u

′′
0)) ∈ (� × �)n

be the received vector via the symbol-pair read channel. Then the number of pair errors is
defined to be ∣∣{0 ≤ i ≤ n − 1 | (ui , ui+1) �= (u′

i , u
′′
i+1)

}∣∣
where the subscripts are regarded as integers modulo n. Similar to the classical error-
correcting codes, an (n, M, dp)q symbol-pair code can correct up to � dp−1

2 � pair errors
[2, Proposition 3]. Hence, given q , n and M , we aim to construct symbol-pair codes with
dp as large as possible. To this end, we want to take advantage of the fruitful results con-
cerning classical error-correcting codes. A first step is to understand the connection between
symbol-pair codes and classical error-correcting codes.

The pair-distance was first introduced in [1,2], which has been shown to be a well-
defined metric. Recall that the Hamming distance between u = (u0, u1, . . . , un−1) and
v = (v0, v1, . . . , vn−1) is defined to be

dH (u, v) = |{0 ≤ i ≤ n − 1 | ui �= vi }|.
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Constructions of MDS symbol-pair codes 363

In order to build a connection between the pair-distance and the Hamming distance, we need
the following definition.

Definition 2 Let S be a subset of {0, 1, . . . , n − 1}. Thus, the elements of S can be regarded
as elements of Zn , the ring of integers modulo n. S can be partitioned into a union of subsets,
such that each subset consists of elements ofZn , which are consecutive in the sense ofmodulo
n. Clearly, the partition of S with smallest number of subsets is unique. Therefore, we define
L(S) to be the number of subsets in this unique partition.

The following proposition reveals the connection between the pair-distance and the Ham-
ming distance.

Proposition 3 [2, Proposition 1 and Theorem 2] Let u = (u0, u1, . . . , un−1) and v =
(v0, v1, . . . , vn−1) be two vectors of �n with 0 < dH (u, v) < n. Define S = {0 ≤ i ≤
n − 1 | ui �= vi }. Then

dP (u, v) = dH (u, v) + L(S).

Therefore, we have L(S) = dP (u, v)−dH (u, v) ≤ n−dH (u, v). Together with 1 ≤ L(S) ≤
dH (u, v), we have

dH (u, v) + 1 ≤ dP (u, v) ≤ min{2dH (u, v), n}.
In addition,

dP (u, v) =
{
0 i f dH (u, v) = 0,

n i f dH (u, v) = n.

In particular, for linear symbol-pair codes, we have the following corollary concerning
the relation between the Hamming weight and the pair-weight of a codeword.

Corollary 4 Let C be an (n, M, dp)q symbol-pair code, which is a linear subspace of Fn
q .

For any c = (c0, c1, . . . , cn−1) ∈ C, define
I (c) = L({0 ≤ i ≤ n − 1 | ci �= 0}).

Suppose 0 < wH (c) < n, where wH (c) denotes the Hamming weight of c. Then we have

wP (c) = wH (c) + I (c). (1)

Therefore, we have I (c) = wP (c)−wH (c) ≤ n−wH (c). Together with 1 ≤ I (c) ≤ wH (c),
we have

wH (c) + 1 ≤ wP (c) ≤ min{2wH (c), n}.
In particular, if the minimum Hamming distance of C is d < n, then the minimum pair
distance

d + 1 ≤ dp ≤ min{2d, n}. (2)

Similar to classical error-correcting codes, there are several bounds providing fundamental
restrictions on the parameters of symbol-pair codes. One of them is the following Singleton-
type bound.

Proposition 5 [5, Theorem2.1]Let q ≥ 2 and 2 ≤ d ≤ n. If C is an (n, M, dp)q symbol-pair
code, then M ≤ qn−dp+2.
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The symbol-pair code C achieving this Singleton-type bound is called an MDS symbol-
pair code. We denote it by an (n, dp)q MDS symbol-pair code. Below, we focus on the direct
construction ofMDS symbol-pair codes. In fact, classical MDS codes directly generateMDS
symbol-pair codes.

Proposition 6 [5, Proposition 3.1] If C is an MDS code, then C is an MDS symbol-pair code.
Moreover, if C is an [n, n − d + 1, d]q MDS code with d < n, then C is an (n, d + 1)q MDS
symbol-pair code.

Together with the knowledge concerning classical MDS codes, the above proposition
implies that we have known a systematic construction for (n, dp)q MDS symbol-pair codes
with q being a prime power and 2 ≤ dp ≤ n ≤ q+1. Below,wewill focus on the construction
of (n, dp)q MDS symbol-pair codes with q being a prime power and n > q + 1.

We observe that if C is a constacyclic code and is not MDS, then the lower bound in (2)
can be improved.

Proposition 7 Let C be an [n, k, d]q constacyclic code with generator polynomial g(x) and
d ≤ n − k. Let c(x) ∈ C be a codeword with Hamming weight d ′ ≤ n − k. Then we have
I (c(x)) ≥ 2 and wP (c(x)) ≥ d ′ + 2. In particular, C is an (n, qk, dp)q symbol-pair code
with dp ≥ d + 2.

Proof It suffices to show that I (c(x)) ≥ 2, which implies wP (c(x)) ≥ d ′ + 2 by (1).
Otherwise,wemust have I (c(x)) = 1.This implies the indices of nonzero entries in c(x) form
one consecutive subset. Without loss of generality, we can assume that c(x) = ∑d ′−1

i=0 ci xi ,
where ci ∈ F∗

q for each 0 ≤ i ≤ d ′ − 1. Note that g(x) | c(x). This leads to a contradiction
since deg(g(x)) = n − k ≥ d ′ > deg(c(x)). Therefore, we have wP (c(x)) ≥ d ′ + 2.
In particular, since C is a linear code, the minimum pair-distance of C equals its minimum
nonzero pair-weight. Since d ≤ n − k, we can easily see that dp ≥ d + 2 by Corollary 4. 
�

This proposition is an essential ingredient for the constructions in [7] (see [7, Lemma 5]).
In the following, we will employ cyclic and constacyclic codes to generateMDS symbol-pair
codes.

3 New constructions of MDS symbol-pair codes

Let q be a prime power and n be a positive integer. In this section, we are going to construct
(n, dp)q MDS symbol-pair codes with dp ∈ {5, 6, 7}.

First, we consider the construction ofMDS symbol-pair codeswith dp = 5, which extends
the results of [7, Theorem 16] and [7, Theorem 19].

Theorem 8 Let q be a prime power. Let n and r be two positive integers such that

r | q − 1, nr | q3 − 1, nr � q − 1, (
q − 1

r
, n) = 1.

Then there exists an (n, 5)q MDS symbol-pair code.

Proof Let ω ∈ F∗
q be an element of order r . Let δ ∈ F∗

q3
be an element of order nr , such that

δn = ω. Since nr � q−1,we have δ ∈ F∗
q3

\Fq , and the polynomial g(x) = (x−δ)(x−δq)(x−
δq

2
) ∈ Fq [x] divides xn − ω. Let C be the ω-constacyclic code 〈g(x)〉 ⊂ Fq [x]/(xn − ω).

Employing Proposition 1 with l = q−1
r , we have the minimum distance of C is at least three.
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Constructions of MDS symbol-pair codes 365

In addition, by the Singleton bound, C is an [n, n − 3, d]q code with 3 ≤ d ≤ 4. A direct
application of Propositions 6 and 7 shows that C is an (n, 5)q MDS symbol-pair code. 
�

Remark 9 By [6, Corollary 7.4.4], when n > 2(q − 1), the code C in the above theorem
must have minimum distance 3. In addition, when n = q2 +q +1, C is simply the Hamming
code with minimum distance 3. In this case, C also achieves the pair-sphere packing bound
[2, Theorem 19].

Next, we provide two constructions of MDS symbol-pair codes with dp = 6. The first
one extends the results of [7, Theorem 12] and [7, Theorem 13].

Theorem 10 Let q be a prime power. Let n and r be two integers such that

r | q − 1, nr | (q − 1)(q2 + 1), nr � q2 − 1,

(
q − 1

r
, n

)
= 1.

Then there exists an (n, 6)q MDS symbol-pair code.

Proof Let ω ∈ F∗
q be an element of order r . Let δ ∈ F∗

q4
be an element of order nr ,

such that δn = ω. Since nr � q2 − 1, we have δ ∈ F∗
q4

\Fq2 , and the polynomial g(x) =
(x − δ)(x − δq)(x − δq

2
)(x − δq

3
) ∈ Fq [x] divides xn −ω. Let C be the ω-constacyclic code

〈g(x)〉 ⊂ Fq [x]/(xn−ω). Employing Proposition 1with l = q−1
r , we have that theminimum

distance of C is at least three. In addition, by the Singleton bound, C is an [n, n− 4, d]q code
with 3 ≤ d ≤ 5. Below, we are going to show that d �= 3.

Assume theminimumdistance ofC is three.Without loss of generality,we have a codeword
1 + ai xi + a j x j , where 1 ≤ i, j ≤ n − 1, i �= j and ai , a j ∈ F∗

q . Thus, we have 1 + aiδi +
a jδ

j = 0. Since nr | (q − 1)(q2 + 1), we get

(1 + aiδ
i )(q−1)(q2+1) = (−a jδ

j )(q−1)(q2+1) = 1,

which implies that (1 + aiδi )q(q2+1) = (1 + aiδi )(q
2+1). A direct computation leads to

δqi + δq
3i + aiδ(q3+q)i = δi + δq

2i + aiδ(q2+1)i . Since q3 + q ≡ q2 + 1 (mod nr), we have
δq

3+q = δq
2+1 and δq

3−1 = δq
2−q . Consequently, we have δ(q−1)i +δ(q3−1)i = 1+δ(q2−1)i .

Noting that δq
3−1 = δq

2−q , we have δ(q−1)i + δ(q2−q)i = 1 + δ(q2−1)i , which implies

(δ(q−1)i − 1)(δ(q2−q)i − 1) = 0.

This forces that nr | (q − 1)i for some 1 ≤ i ≤ n − 1. However, since
(
q−1
r , n

)
= 1, this is

impossible.
Hence, the minimum distance of C is either four or five. It is easily followed from Propo-

sitions 6 and 7 that C is an (n, 6)q MDS symbol-pair code. 
�

When n | q2 −1, we have the following construction of (n, 6)q MDS symbol-pair codes.

Theorem 11 Let q be a prime power and n be an integer with n > q + 1 and n | q2 − 1.
Then

(1) There exists an (n, 6)q MDS symbol-pair code when n is odd.
(2) There exists an ( n2 , 6)q MDS symbol-pair code when n is even.
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Proof (1) Let δ ∈ F∗
q2

\Fq be an element of order n with n being odd. The polynomial

g(x) = (x − δ−q)(x − δ−1)(x − δ)(x − δq) ∈ Fq [x] divides xn − 1. Let C1 be the cyclic
code 〈g(x)〉 ⊂ Fq [x]/(xn − 1). Note that δ−1 and δ are two roots of g(x) and (2, n) = 1.
Employing Proposition 1 with r = 1, l = 2, b = −1 and d = 2, we can see that δ−1 and
δ are two consecutive roots and the minimum distance of C1 is at least three. Together with
the Singleton bound, C1 is an [n, n − 4, d]q code with 3 ≤ d ≤ 5. When 4 ≤ d ≤ 5, it
is easily followed from Propositions 6 and 7 that C1 is an (n, 6)q MDS symbol-pair code.
When d = 3, by Propositions 6 and 7, any codeword whose weight is greater than three has
pair-weight at least six. Thus, by (1), it suffices to show that for each codeword c(x) ∈ C
with wH (c(x)) = 3, we have I (c(x)) ≥ 3. To this end, we are going to show that there is no
codeword of the form 1+ a1x + ai xi , where 2 ≤ i ≤ n − 1 and a1, ai ∈ F∗

q . Below, we will
split our discussion into two cases.

Firstly, assume there is a codeword 1+ a1x + a2x2, where a1, a2 ∈ F∗
q . Then we have the

following system
{
1 + a1δ + a2δ2 = 0,

1 + a1δ−1 + a2δ−2 = 0.

By solving this system, one can see that a1 = −(δ + 1
δ
). Therefore, we have δ + 1

δ
∈ F∗

q .

Thus, (δ + 1
δ
)q = δ + 1

δ
, which implies that (δq+1 − 1)(δq−1 − 1) = 0. Then, we have either

δq+1 = 1 or δq−1 = 1. Namely, we have either n | q + 1 or n | q − 1. This is impossible
because n > q + 1.

Secondly, assume there is a codeword 1+a1x+ai xi , where 3 ≤ i ≤ n−2 and a1, ai ∈ F∗
q .

Then we have the following system
{
1 + a1δ + aiδi = 0,

1 + a1δ−1 + aiδ−i = 0.

By solving the system, one can see that a1 = − δ2i−1
δ2i−1−δ

and ai = δi+1−δi−1

δ2i−1−δ
. Therefore, we

have δ2i−1
δ2i−1−δ

, δi+1−δi−1

δ2i−1−δ
∈ F∗

q . Since

δ2i − 1

δ2i−1 − δ
+ δi+1 − δi−1

δ2i−1 − δ
= δi+1 − 1

δi − δ
∈ F∗

q ,

and

δ2i − 1

δ2i−1 − δ
− δi+1 − δi−1

δ2i−1 − δ
= δi+1 + 1

δi + δ
∈ Fq ,

we have

δi − δ

δi+1 − 1
+ δi+1 + 1

δi + δ
= (δ2i − 1)(δ2 + 1)

(δi + δ)(δi+1 − 1)
∈ F∗

q .

Note that δ2i−1
δ2i−1−δ

∈ F∗
q and δi+1−1

δi−δ
∈ F∗

q . Together with the above equation, we have

(δ2i−1 − δ)(δ2 + 1)

(δi + δ)(δi − δ)
= δ + 1

δ
∈ F∗

q .

However, as shown in the above, δ + 1
δ

∈ F∗
q is impossible.
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Constructions of MDS symbol-pair codes 367

(2) Let δ ∈ F∗
q2

\Fq be an element of order n with n being even. Since δ
n
2 = −1, the

polynomial g(x) = (x − δ−q)(x − δ−1)(x − δ)(x − δq) ∈ Fq [x] divides x n
2 + 1. Let C2 be

the (-1)-constacyclic code 〈g(x)〉 ⊂ Fq [x]/(x n
2 + 1). Note that δ−1 and δ are two roots of

g(x). Employing Proposition 1 with r = 2, l = 1, b = −1 and d = 2, we can see that δ−1

and δ are two consecutive roots and the minimum distance of C2 is at least three. Together
with the Singleton bound, C2 is an [ n2 , n

2 − 4, d]q code with 3 ≤ d ≤ 5. The remaining part
is similar to the proof of (1) and we omit it here. 
�
Remark 12 For n | q2 − 1, (n, 6)q MDS symbol-pair codes are constructed in Theorem 11,
when n is odd or n is even and v2(n) < v2(q2 − 1). If n is even and v2(n) = v2(q2 − 1),
the construction in Theorem 11 generates codes with minimum distance two, which are not
MDS symbol-pair codes.

Remark 13 By [6, Corollary 7.4.4], the code C1 (resp. C2) in the above theorem hasminimum
distance 3 ≤ d ≤ 4 when n > 2(q − 1) (resp. n > 4(q − 1)). Moreover, the codes C1 and C2
do have minimum distance 3 in some cases. For instance, when 3 | n, C1 contains a codeword
1+ x

n
3 + x

2n
3 with weight three and C2 contains a codeword 1− x

n
6 + x

n
3 with weight three.

In the following theorem, we will show that under certain condition, MDS symbol-pair
codes with minimum pair-distance dp = 7 can be generated from certain cyclic codes.

Theorem 14 Let q be a prime power and n be a positive integerwith n | q2−1 and n > q+1.
Let δ ∈ F∗

q2
\Fq be an element of order n. Let C ⊂ Fq [x]/(xn − 1) be an [n, n− 5, d]q cyclic

code having generator polynomial g(x) = (x−δ−q)(x−δ−1)(x−1)(x−δ)(x−δq) ∈ Fq [x].
Then

(1) When 5 ≤ d ≤ 6, C is an (n, 7)q MDS symbol-pair code.
(2) When d = 4 and n is odd, C is an (n, 7)q MDS symbol-pair code if and only if for each

3 ≤ i ≤ n − 3, δi+1−1
δi−δ

/∈ F∗
q .

Proof By the BCH bound and the Singleton bound, the minimum distance 4 ≤ d ≤ 6.
We only prove (2) since the proof of (1) is easy. When d = 4, by Propositions 6 and 7,
any codeword whose weight is greater than four has pair-weight at least seven. Thus, by
(1), it suffices to show that for each codeword c(x) ∈ C with wH (c(x)) = 4, we have
I (c(x)) ≥ 3. Below, we are going to study the necessary and sufficient condition which
ensures this restriction on codewords of weight four.

Suppose there is a codeword c(x) of weight four, such that I (c(x)) = 1. Then without
loss of generality, we can assume that c(x) = 1+a1x +a2x2 +a3x3, where a1, a2, a3 ∈ F∗

q .
Consequently, the following system holds:⎧⎪⎨

⎪⎩
1 + a1 + a2 + a3 = 0,

1 + a1δ + a2δ2 + a3δ3 = 0,

1 + a1δ−1 + a2δ−2 + a3δ−3 = 0.

By solving this system, we have a2 = 1 + δ + 1
δ
. However, δ + 1

δ
∈ Fq implies that

(δq+1 − 1)(δq−1 − 1) = 0. This leads to a contradiction since n > q + 1.
Suppose there is a codeword c(x) of weight four, such that I (c(x)) = 2. Then without

loss of generality, we have the following two cases

(i) There is a codeword c(x) = 1 + a1x + a2x2 + ai xi , where 3 ≤ i ≤ n − 2 and
a1, a2, ai ∈ F∗

q .
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(ii) There is a codeword c(x) = 1 + a1x + ai xi + ai+1xi+1, where 3 ≤ i ≤ n − 3 and
a1, ai , ai+1 ∈ F∗

q .

For Case (i), we must have the following system:⎧⎪⎨
⎪⎩
1 + a1 + a2 + ai = 0,

1 + a1δ + a2δ2 + aiδi = 0,

1 + a1δ−1 + a2δ−2 + aiδ−i = 0.

By solving this system, we have

a1
a2

= − δi−2 − δ

δi−1 − 1
− 1, a2 = δi − 1

δi−1 − δ
,

which implies

δi−2 − δ

δi−1 − 1
∈ Fq \ {−1}, δi − 1

δi−1 − δ
∈ F∗

q .

Thus,

δi−1 − 1

δi−2 − δ
− δi − 1

δi−1 − δ
= δi−2(δ + 1)(δ − 1)2

(δi−1 − δ)(δi−2 − δ)
∈ F∗

q ,

δi−1 − δ

δi − 1
− δi−2 − δ

δi−1 − 1
= δi−1(δ − 1)2

(δi − 1)(δi−1 − 1)
∈ F∗

q .

By comparing the right hand side of the above two equations, we have 1+ 1
δ

∈ F∗
q , which is

impossible.
For Case (ii), we must have the following system:⎧⎪⎨

⎪⎩
1 + a1 + ai + ai+1 = 0,

1 + a1δ + aiδi + ai+1δ
i+1 = 0,

1 + a1δ−1 + aiδ−i + ai+1δ
−(i+1) = 0.

If n is even, the above system holds if i = n
2 , a1 = a n

2 +1 = −1 and a n
2

= 1. Hence, the
condition of n being odd is necessary. By solving the above system, we have

a1 = −δi+1 − 1

δi − δ
, ai = δi+1 − 1

δi − δ
, ai+1 = −1.

Thus, the above system does not hold, if and only if for each 3 ≤ i ≤ n − 3, δi+1−1
δi−δ

/∈ F∗
q .

Therefore, we complete the proof. 
�

Given an integer 3 ≤ i ≤ n − 3, δi+1−1
δi−δ

= θ ∈ F∗
q is equivalent to δi = 1−θδ

−θ+δ
for

θ ∈ F∗
q . Thus, the necessary and sufficient condition in 2) of Theorem 14 is related to the

property of the linear fractional transformation 1−θδ
−θ+δ

with respect to δ, where θ ∈ F∗
q . This

provides a motivation to study this special type of linear fractional transformation. Using the
result derived in the Appendix, we have the following theorem which gives a more precise
characterization of the necessary and sufficient condition.

Theorem 15 Let q be a prime power and n be an integer with n | q2 − 1 and n > q + 1.
Let δ ∈ Fq2\Fq be an element of order n. Let x2 − bx − c be the monic minimal polynomial
of δ over Fq . For an integer i ≥ 2, define
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a(i)
0 =

� i−2
2 �∑

j=0

(
i − 2 − j

j

)
bi−2−2 j c j+1, a(i)

1 =
� i−1

2 �∑
j=0

(
i − 1 − j

j

)
bi−1−2 j c j . (3)

Let C ⊂ Fq [x]/(xn − 1) be an [n, n − 5, d]q cyclic code having generator polynomial
g(x) = (x − δ−q)(x − δ−1)(x − 1)(x − δ)(x − δq). Then C is an [n, n − 5, d]q code with
4 ≤ d ≤ 6. When 5 ≤ d ≤ 6, C is an (n, 7)q MDS symbol-pair code. When d = 4 and n is
odd, C is an (n, 7)q MDS symbol-pair code if and only if for each 3 ≤ i ≤ n − 3, one of the
following holds:

(1) a(i)
1 = 0,

or when a(i)
1 �= 0,

(2) if a(i)
1 = 1, then a(i)

0 �= −b or c = 1,

(3) if a(i)
0 = 0, then a(i)

1 �= 1
c or b = 0,

(4) if a(i)
0 �= 0 and a(i)

1 �= 1, then a(i)
1 c = 1 or

a(i)
1 b+a(i)

0

a(i)
1 −1

�= a(i)
1 c−1

a(i)
0

.

Proof The conclusion is a direct application of Theorem 14 and Corollary 18. 
�
Remark 16 By the sphere packing bound, when n(n − 1) ≥ 2q5

(q−1)2
, the code C in the above

theorem has minimum distance d = 4.

The above theorem and remark suggest an algorithm which aim to construct (n, 7)q MDS

symbol-pair codes with n | q2 − 1, n(n − 1) ≥ 2q5

(q−1)2
and n being odd. We run a numerical

experiment for all pairs

{(q, n) | q prime power, q ≤ 100, n | q2 − 1, n odd, n > q + 1}.
For these instances, the corresponding [n, n − 5, d]q code C in Theorem 15 always has
d = 4. The code C is an (n, 7)q MDS symbol-pair code whenever q is odd, except for
(q, n) ∈ {(59, 435), (67, 561), (83, 861)}. Moreover, the experimental result suggests that C
is not an MDS symbol-pair code when q is even. However, it seems not easy to prove that q
being odd is a necessary condition for C being an (n, 7)q MDS symbol-pair code.

4 Conclusion

Following the idea in [7], we use cyclic and constacyclic codes to constructMDS symbol-pair
codes with minimum pair-distance dp ∈ {5, 6, 7} in this paper. Our constructions extend the
results in [7]. Moreover, we derive a necessary and sufficient condition which ensures a class
of cyclic code to be MDS symbol-pair codes. This condition is related to the property of a
special kind of linear fractional transformations. We study these linear fractional transfor-
mations in detail and propose a more precise characterization of the necessary and sufficient
condition. This characterization leads to an algorithm aiming to construct MDS symbol-pair
codes with minimum pair-distance dp = 7. We believe that a deeper understanding on this
characterization may bring new classes of MDS symbol-pair codes.

We observe that most of the known constructions of (n, dp)q MDS symbol-pair codes
focus on the casewhere dp is small. In this case, if we use an [n, k, d]q linear code to construct
a symbol-pair code, then the difference dp−d is necessarily small. Thus, it is relatively easy to
show that the requiredminimumpair-distance is achieved. It is an interesting researchproblem
to consider the constructions of MDS symbol-pair codes with large minimum pair-distances.
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Appendix

Let q be a prime power. For u, v, w, z ∈ Fq and δ ∈ Fq2 , define a linear fractional transfor-
mation from Fq2 to Fq2 by

fu,v,w,z(δ) = u + vδ

w + zδ
,

wherew+ zδ �= 0 and uz−vw �= 0. We further assume that z �= 0, since otherwise, fu,v,w,z

degenerates into a linear function. Below, we will study this special kind of linear fractional
transformation. In particular, suppose δ ∈ Fq2\Fq , we will present a necessary and sufficient
condition such that

δi = u + vδ

w + zδ

for some integer i . This condition provides a criterion to determine whether the linear frac-
tional transformation fu,v,w,z maps δ to an element belonging to the multiplicative cyclic
group generated by δ.

Proposition 17 Let δ ∈ Fq2\Fq . Let x2 −bx − c be the monic minimal polynomial of δ over
Fq . For an integer i ≥ 2, define

a(i)
0 =

� i−2
2 �∑

j=0

(
i − 2 − j

j

)
bi−2−2 j c j+1, a(i)

1 =
� i−1

2 �∑
j=0

(
i − 1 − j

j

)
bi−1−2 j c j . (4)

Then for i ≥ 0, δi = u+vδ
w+zδ if and only if one of the following holds:

(1) If i = 0, then u = w, v = z.
(2) If i = 1, then b = v−w

z and c = u
z .

(3) If i ≥ 2, then

a(i)
1 �= 0, b = −a(i)

0

a(i)
1

+ v

za(i)
1

− w

z
, c = −wa(i)

0

za(i)
1

+ u

za(i)
1

.

Proof (1) and (2) are trivial. We only consider (3) below. Since δi = u+vδ
w+zδ and z �= 0, we

have δi+1+ w
z δi − v

z δ− u
z = 0. Therefore, δ is a root of the polynomial xi+1+ w

z x
i − v

z x− u
z

and

xi+1 + w

z
xi − v

z
x − u

z
≡ 0 (mod x2 − bx − c).

For an integer i ≥ 0, we define a polynomial Ti (x) = xi+1 + w
z x

i . For any i ≥ 2, we have
the following recurrence relation:
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Ti (x) ≡ xi+1 + w

z
xi

≡ bxi + cxi−1 + w

z
(bxi−1 + cxi−2)

≡ b(xi + w

z
xi−1) + c(xi−1 + w

z
xi−2)

≡ bTi−1(x) + cTi−2(x) (mod x2 − bx − c).

By employing this recurrence relation repeatedly, we have

Ti (x) ≡ d(i)
2 T2(x) + d(i)

1 T1(x)

≡ e(i)
1 T1(x) + e(i)

0 T0(x) (mod x2 − bx − c),

where d(i)
1 , d(i)

2 , e(i)
0 , e(i)

1 ∈ Fq . Now, we aim to determine e(i)
0 and e(i)

1 explicitly. The recur-
rence relation implies that T0(x) necessarily originates from T2(x) by subtracting a proper
multiple of x2 − bx − c. Since T2(x) ≡ bT1(x) + cT0(x) (mod x2 − bx − c), we have
e(i)
0 = cd(i)

2 . Apparently, d(i)
2 is a summation of monomials regarding of b and c. More

precisely, suppose i −2 can be expressed as an ordered sum containing i −2−2 j ones and j
twos. Then this ordered sum corresponds to a monomial bi−2−2 j c j in the summation of d(i)

2 .
Recall that there are

(i−2− j
j

)
ways to decompose i − 2 into distinct ordered sums containing

i − 2 − 2 j ones and j twos. Therefore, we have

d(i)
2 =

� i−2
2 �∑

j=0

(
i − 2 − j

j

)
bi−2−2 j c j ,

and

e(i)
0 = cd(i)

2 =
� i−2

2 �∑
j=0

(
i − 2 − j

j

)
bi−2−2 j c j+1 = a(i)

0 .

Similarly, by analyzing the decomposition of i − 1 into ordered sums consisting of ones and
twos, we have

e(i)
1 =

� i−1
2 �∑

j=0

(
i − 1 − j

j

)
bi−1−2 j c j = a(i)

1 .

Consequently,

xi+1 + w

z
xi − v

z
x − u

z
≡ Ti (x) − v

z
x − u

z

≡ a(i)
1 T1(x) + a(i)

0 T0(x) − v

z
x − u

z

≡ a(i)
1 x2 + (a(i)

0 + wa(i)
1

z
− v

z
)x + wa(i)

0

z
− u

z

≡ 0 (mod x2 − bx − c).

Hence, we must have a(i)
1 �= 0 and x2 + (

a(i)
0

a(i)
1

+ w
z − v

za(i)
1

)x + wa(i)
0

za(i)
1

− u
za(i)

1

= x2 − bx − c.

The conclusion follows by comparing the coefficients. 
�
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Particularly, given δ ∈ Fq2\Fq and an integer i ≥ 2, we have the following easy criterion

to determine if δi = 1−θδ
−θ+δ

for some θ ∈ F∗
q .

Corollary 18 Let δ ∈ Fq2\Fq . Let x2 − bx − c be the monic minimal polynomial of δ over

Fq . For an integer i ≥ 2, δi = 1−θδ
−θ+δ

for some θ ∈ F∗
q if and only if a(i)

1 �= 0 and one of the
following condition holds

1) If a(i)
1 = 1, then a(i)

0 = −b and c �= 1,

2) If a(i)
0 = 0, then a(i)

1 = 1
c and b �= 0,

3) If a(i)
0 �= 0 and a(i)

1 �= 1, then a(i)
1 c �= 1 and

a(i)
1 b+a(i)

0

a(i)
1 −1

= a(i)
1 c−1

a(i)
0

.

where a(i)
0 and a(i)

1 are defined in (4). Moreover, let Fr be a subfield of Fq . If b, c ∈ Fr , then
δi = 1−θδ

−θ+δ
for some i ≥ 2 only if θ ∈ Fr .

Proof By setting u = z = −1 and v = w = θ in Proposition 17, we have δi = 1−θδ
−θ+δ

for
some θ ∈ F∗

q if and only if

b = (a(i)
1 − 1)θ − a(i)

0

a(i)
1

, c = a(i)
0 θ + 1

a(i)
1

.

If a(i)
0 = 0 and a(i)

1 = 1, then we have b = 0 and c = 1, which is impossible since x2 − 1

is reducible over Fq . If either a
(i)
1 = 1 or a(i)

0 = 0, then the Condition 1) or the Condition

2) holds. If a(i)
0 �= 0 and a(i)

1 �= 1, the Condition 3) is derived from the expressions of b and

c. Suppose b and c belong to a subfield Fr , then a(i)
0 , a(i)

1 ∈ Fr by definition. Since we have

either a(i)
0 �= 0 or a(i)

1 �= 1, it is easy to see that θ ∈ Fr . 
�
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