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Abstract A permutation array (PA) A is a set of permutations on Zn = {0, 1, . . . , n−1}, for
some n. A PA A has pairwise Hamming distance at least d , if for every pair of permutations
σ and τ in A, there are at least d integers i in Zn such that σ(i) �= τ(i). Let M(n, d)

denote the maximum number of permutations in any PA with pairwise Hamming distance
at least d . Recently considerable effort has been devoted to improving known lower bounds
for M(n, d) for all n > d > 3. We give a partition and extension operation that enables
the production of a new PA A′ for M(n + 1, d) from an existing PA A for M(n, d − 1).
In particular, this operation allows for improvements for PA’s for M(q + 1, q) for powers
of prime numbers q , as well as for many other choices of n and d , where n is not a power
of a prime. Finally, for prime numbers p, the partition and extension technique provides an
asymptotically better lower bound for M(p + 1, p) than that given by current knowledge
about mutually orthogonal Latin squares. We prove a new asymptotic lower bound for the
set of primes p, namely, M(p + 1, p) ≥ p1.5/2 − O(p).
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1 Introduction

A permutation array (PA) A is a set of permutations on Zn = {0, 1, . . . , n − 1}, for some
n. Permutations σ and τ on Zn have Hamming distance d , denoted by hd(σ, τ ), if there
are exactly d integers i in Zn such that σ(i) �= τ(i). When σ(i) = τ(i), we say that σ

and τ agree at position i . The number of agreements between σ and τ is n − hd(σ, τ ). The
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Hamming distance between two PA’s A and B on Zn , denoted by hd(A, B), is the smallest
Hamming distance between permutations σ ∈ A and τ ∈ B. The Hamming distance of a PA
A on Zn , denoted by hd(A), is the smallest Hamming distance between two permutations
σ �= τ in A. If hd(A) = d , then A is an (n, d)-PA. Let M(n, d) denote the maximum number
of permutations on Zn in any (n, d)-PA. Recently considerable effort has been devoted to
improving known lower bounds forM(n, d), for all n > d > 3 [4,6,7,9,10,12–14,20]. Large
permutation arrays are valuable in creating better error correcting permutation codes, which
have application in the transmission of information over very noisy channels, such as power
lines [11,17]. It is known that, if q is either prime or a power of a prime, then M(q, q − 1) =
q(q −1) and M(q +1, q −1) = (q +1)q(q −1) [8,18]. More generally, if there is a sharply
k-transitive group of order n consisting of N permutations, then M(n, n − k + 1) ≥ N
[8,16]. It is also known that, for any positive integer n, if there are k mutually orthogonal
Latin squares of side n, then M(n, n − 1) ≥ kn [6]. There are known combinatorial lower
bounds and upper bounds for M(n, d) [8,9]. Several papers give both computational and
combinatorial techniques for improved lower bounds on M(n, d) [4,6,13,20]. It is known
[4], for any permutations σ, τ and ρ, that hd(σ, τ ) = hd(ρσ, ρτ), where multiplication
denotes the composition of functions. So, for any group G of permutations on n symbols,
hd(G) = hd(ρG), where ρ is any permutation on n symbols and ρG is the so-called left
coset of G, which is obtained by function composition of the permutation ρ with every
permutation in G.

We present a partition and extension operation that produces a new (n+1, d)-PA from an
existing (n, d−1)-PA. In Sect. 2 we give a detailed description of the operation. In Sect. 3 we
apply the partition and extension operation and create several PAs improving known lower
bounds for M(n + 1, d). In Sect. 4, we prove a new asymptotic lower bound for the set of
primes p, namely, M(p + 1, p) ≥ p1.5/2 − O(p).

2 The partition and extension technique

A rudimentary form of extensionwas described in [15]. Basically, the operation was specified
for a groupG of permutations on Zn , for some n, and a left coset ρG, where ρ is a permutation
not in G. For some integer d , let hd(G) = d and hd(G, ρG) = d − 1. One constructs by
extension a set of permutations G ′ = {σ ′ | σ ∈ G} ∪ {τ ′′ | τ ∈ ρG} on the symbols of
Zn+1 = {0, 1 . . . , n}, where:
(1) σ ′(i) = σ(i), for all i < n, and σ ′(n) = n, and
(2) τ ′′(i) = τ(i), for all i (0 < i < n), τ ′′(0) = n, and τ ′′(n) = τ(0).

It was shown in [15] that G ′ is a PA on n + 1 symbols with Hamming distance d . That is,
from the PA G ∪ ρG for M(n, d − 1), one extends to a PA G ′ for M(n + 1, d) which has
2|G| permutations.

We describe a new richer form of extension, which we call partition and extension, that
enables the construction of PA’s for M(n + 1, d) with considerably more than 2|G| permu-
tations from PA’s for M(n, d − 1). The necessary property to achieve the stated Hamming
distance via partition and extension is to have sets of permutations, say M1, M2, . . . , Mk , for
some k, such that each set has (intra) Hamming distance say d , at least one greater than the
(inter) Hamming distance between pairs of sets. When this is true, one can modify the sets
by replacing different symbols in different positions in each permutation of M1, M2, . . . , Mk

with the symbol n and moving the replaced symbol, in each case, to the end of the per-
mutation. In addition, for one of the sets, one can simply put the symbol n at the end of
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each permutation. Because the common new symbol may be positioned in the same location
in each set, there will be one more position with identical symbols within them. Since the
number of symbols also increases by one, the (intra) Hamming distance remains the same.
On the other hand, since the positions of the replaced symbols and the replaced symbols
themselves are different in different sets, the (inter) Hamming distance increases by one. So,
the intra-distance of d remains d and the inter-distance of d − 1 increases to d . In the case
of rudimentary extension there are two sets, in one set the replacement always happens in
the first position, but can involve any one of the original symbols, and in the second set the
new symbol is placed at the end of each permutation. Clearly one can generalize, as we do
now.

Let s be a positive integer, M1, M2, . . . , Ms be an ordered list of s pairwise disjoint sets
of permutations on Zn , and let P = (P1, P2, . . . , Ps) and Q = (Q1, Q2, . . . , Qs) be two
ordered lists of subsets of Zn such that the sets in P and Q are partitions of Zn . Each set
Pi is the set of locations for replacing symbols in the set Mi and each set Qi is the set of
symbols to be replaced. For each i , let covered(Mi ) = {σ ∈ Mi | ∃p ∈ Pi (σ (p) ∈ Qi )}. In
order for a permutation to be included in the extended set of permutation on n + 1 symbols
it must be covered. In other words, it must have one of the named symbols in one of the
named positions. In general, for integers i , when σ ∈ covered(Mi ), there may be more than
one position p ∈ Pi such that σ(p) ∈ Qi . If so, arbitrarily designate one of these positions,
denoted by p∗, to cover σ . If, on the other hand, there is exactly one position p ∈ Pi such
that σ(p) ∈ Qi , then let the designated position p∗ be p. In this case we say that σ is
uniquely covered. If, for an integer i , there is a bijection mapping Pi × Qi to covered(Mi ),
so |Pi × Qi | = |covered(Mi )|, then we say Mi is well covered by (Pi , Qi ). Otherwise, we
say that Mi is covered.

For our construction, we include an additional set of permutations Ms+1, for which there
is no corresponding set of positions or symbols. None of the permutations in Ms+1 are in any
of the setsMi . The partition and extension operation adds the new symbol n to the end of each
permutation of Ms+1, as was done with the second set in the rudimentary form of extension.
Every permutation in Ms+1 is used in the construction of our new PA. By definition we say
that Ms+1 is well covered. Thus, we create the vector M = (M1, M2, . . . , Ms+1), which
includes this extra set. We define M to be well covered if every Mi , 0 ≤ i ≤ s + 1 is well
covered.

We define a distance-d partition system for Zn to be a triple� = (M,P,Q) that satisfies
the following properties:

(1) for all Mi ∈ M, hd(Mi ) ≥ d , and
(2) for all i, j (1 ≤ i < j ≤ s + 1), hd(Mi , Mj ) ≥ d − 1.

Observe that the set consisting of the union of the sets of M does not have Hamming
distance d , because the distance between permutations in different sets may only be d − 1.

In practice, the collection of pairwise disjoint sets of permutations M = (M1, M2, . . . ,

Ms+1) will often consist of a group and some collection of its cosets. In such a case all sets
have the same cardinality. The listM, in general, will not correspond to all available cosets;
in fact, we often choose the cosets and their order in a careful manner for optimality. As
stated, the particular sets and partitions, and the order of the sets in the partitions P and Q,
will be chosen with some thought. Example 1 is a distance-7 partition system illustrating
explicitly the covered permutations in each set Mi .

Example 1 Let n = 7 andM = (M1, M2, M3, M4) be an ordered list of permutation arrays
on Z7, where:
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Table 1 Covered permutations of M
M1 covered by P1 =
{0, 3} and Q1 = {0, 1, 2}

M2 covered by P2 =
{1, 4, 6} and Q2 = {3, 5}

M3 covered by P3 =
{2, 5} and Q3 = {4, 6}

0123456 0246135 0531642

1234560 2461350 3164205

2345601 4613502 1642053

4560123 1350246 2053164

5601234 3502461

6012345 5024613

Column 1 gives permutations in M1 covered by P1 = {0, 3} and Q1 = {0, 1, 2}, with the covered symbol in
bold and underlined. Similarly, column 2 gives permutations inM2 covered by P2 = {1, 4, 6} and Q2 = {3, 5},
and column 3 gives permutations in M3 covered by P3 = {2, 5} and Q3 = {4, 6}

(1) M1 = {0123456, 1234560, 2345601, 3456012, 4560123, 5601234, 6012345},
(2) M2 = {0246135, 2461350, 4613502, 6135024, 1350246, 3502461, 5024613},
(3) M3 = {0531642, 5316420, 3164205, 1642053, 6420531, 4205316, 2053164}, and
(4) M4 = {0362514, 3625140, 6251403, 2514036, 5140362, 1403625, 4036251}.

Let P = ({0, 3}, {1, 4, 6}, {2, 5}) and Q = ({0, 1, 2}, {3, 5}, {4, 6}). The triple � =
(M,P,Q) is a distance-7 partition system.

All but one of the permutations in M1 and M2 are covered, and all but three of the
permutations of M3 are covered, as shown in Table1. In this example Ms+1 = M4. All
permutations in Ms+1 are included in the construction. Each Mi is well covered soM is well
covered. 
�

Let σ be a permutation on Zn and let k ∈ Zn . The extension of σ by position k, denoted
by extk(σ ) = σ ′, is a permutation on Zn+1 defined by: σ ′(k) = n, σ ′(n) = σ(k), and
σ ′( j) = σ( j), for all j (0 ≤ j < n, j �= k). We will always extend σ at the designated
position p∗ and refer to this new permutation as ext (σ ) and σ ′ interchangeably.

Partition and extension uses sets Pi and Qi in the two partitions P and Q to modify the
covered permutations in Mi , for 1 ≤ i ≤ s, for the purpose of creating a new PA on Zn+1

with Hamming distance d . Let � = (M,P,Q) be a distance-d partition system, where
M = (M1, M2, . . . , Ms+1), for some s. We now show how the partition and extension
operation creates a new permutation array ext (�) on Zn+1. For all i (1 ≤ i ≤ s), let
ext (Mi ) be the set of permutations defined by

ext (Mi ) = {ext (σ ) | σ ∈ covered(Mi )}.
For Ms+1, let ext (Ms+1) be the set of permutations on Zn+1 defined by:

ext (Ms+1) = {τ ′ | τ ∈ Ms+1 and τ ′( j) = τ( j),∀ j (0 ≤ j < n), and τ ′(n) = n}.
Let ext (�) be defined by ext (�)=∪s+1

i=1ext (Mi ). Note that |ext (�)| = ∑s+1
i=1 |ext (Mi )|.

A permutation σ ∈ Mi is extended only by a position in its designated position set, Pi , which
contains a symbol in its designated symbol set, Qi . This will ensure that the permutations in
ext (�) have Hamming distance d , as we shall prove in Theorem 1 below. Before we prove
the theorem, we illustrate the creation of ext (�).

Example 2 Let us use the partition and extension operation to compute ext (�) for � =
(M,P,Q), the distance-7 partition system described in Example 1. Table2 illustrates
ext (Mi ) for all Mi in M. 
�
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Table 2 Permutations in ext (�)

Column 1 gives permutations in
ext (M1). Similarly, columns 2,
3, and 4 give permutations in
ext (M2), ext (M3), and
ext (M4), respectively. There are
23 permutations in ext (�)

altogether

ext (M1) ext (M2) ext (M3) ext (M4) = ext (Ms+1)

71234560 02461375 05316724 03625147

72345601 24617503 31742056 36251407

73456012 46137025 16720534 62514037

45671230 17502463 20531746 25140367

56072341 37024615 51403627

60173452 50246173 14036257

40362517

Of course, our goal is to use ext (�) to obtain improvements on M(n + 1, d). For this we
need to compute hd(ext (�)) and |ext (�)|. Theorem 1 and Corollary 1 below show us how
to compute these quantities.

Theorem 1 Let d be a positive integer. Let� = (M,P,Q) be a distance-d partition system
for Zn, with M = (M1, M2, . . . , Ms+1) for some positive integer s. Let ext (�) be the PA
on Zn+1 created by partition and extension. Then, hd(ext (�)) ≥ d.

Proof First, suppose that both σ ′, τ ′ are in ext (Ms+1). Then hd(σ ′, τ ′) ≥ d , because σ

and τ are in Ms+1, hd(Ms+1) = d , and by definition of ext (Ms+1), σ ′( j) = σ( j) and
τ ′( j) = τ( j), for all j (0 ≤ j < n). That is, hd(ext (Ms+1)) ≥ d .

Next suppose τ ′ is in ext (Ms+1), and suppose that σ ′ is in ext (Mi ) for some i . This
means that σ ′ = extx (σ ) for some covered permutation σ in Mi , where 0 ≤ x < n.
Hence τ ′(n) = n �= σ ′(n), τ ′(x) �= n = σ ′(x). In other words, the two positions that
the partition and extension operation have altered in σ and τ , namely positions x and n,
contain different symbols. That is, no additional agreement has been created. Furthermore
since hd(Mi , Ms+1) ≥ d − 1, there are at most n − (d − 1) = n − d + 1 positions k such
that σ(k) = τ(k), so, there are at least (n + 1) − (n − d + 1) = d positions where σ ′ and τ ′
do not agree. Hence hd(σ ′, τ ′) ≥ d , and hd(ext (Ms+1), ext (Mi )) ≥ d , for all i .

What remains is to show that hd(ext (Mi ), ext (Mj )) ≥ d , for all i, j (1 ≤ i, j ≤ s).
The rest of the proof is divided into two cases. The cases are based on whether two covered
permutations, σ and τ , are in the same set Mi , for some i (1 ≤ i ≤ s), or are in two different
sets.

Case (1). For some i , σ and τ are covered permutations in the same set Mi .
Since � = (M,P,Q) is a distance-d partition system, for all Mi ∈ M, hd(Mi ) ≥ d .

Thus, since σ, τ ∈ Mi , hd(σ, τ ) ≥ d .We show that hd(σ ′, τ ′) ≥ d , hence hd(ext (Mi )) ≥ d ,
for all i .

Part (a): Let σ, τ both be covered by position r in Pi . Then σ ′(n) = σ(r) and τ ′(n) = τ(r).
If σ(r) = τ(r), then since hd(σ, τ ) ≥ d , there are at least d other positions m, such that
σ ′(m) = σ(m) �= τ(m) = τ ′(m). So, hd(σ ′, τ ′) ≥ d . On the other hand, if σ(r) �= τ(r),
since hd(σ, τ ) ≥ d , there are at least d − 1 positions m, such that σ ′(m) = σ(m) �= τ(m) =
τ ′(m). Hence, including position n, where σ ′(n) = σ(r) �= τ(r) = τ ′(n), there are at least
d positions where σ ′ and τ ′ disagree, so hd(σ ′, τ ′) ≥ d .

Part (b): For some r, t (0 ≤ r, t < n, r �= t), let σ be covered by position r in Pi and let
τ be covered by position t in Pi . So σ ′(r) = n �= τ ′(r) and τ ′(t) = n �= σ ′(t). Moreover,
since hd(σ, τ ) ≥ d , there are at least d − 2 other positions m, (0 ≤ m < n,m /∈ {r, t}) such
that σ ′(m) = σ(m) �= τ(m) = τ ′(m). So, hd(σ ′, τ ′) ≥ d . Note that it is not necessary in
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this argument to separate cases when σ(r) = τ(r) or σ(t) = τ(t), because regardless, as
shown above by counting, there must be at least d positions in σ ′ and τ ′ with different values.
Hence hd(σ ′, τ ′) ≥ d . Thus, for all i , (1 ≤ i ≤ s), hd(ext (Mi )) ≥ d .

Case (2). For some i, j (1 ≤ i < j ≤ s), σ, τ are covered permutations in Mi and Mj ,
respectively.

Since � = (M,P,Q) is a distance-d partition system, for all Mi , Mj ∈ M,
hd(Mi , Mj ) ≥ d − 1. Thus, hd(σ, τ ) ≥ d − 1. We show that hd(σ ′, τ ′) ≥ d .

Let σ be covered at position r by the pair (Pi , Qi ), and let τ be covered at position
t by the pair (Pj , Q j ). As Pi and Pj are disjoint, it follows that r �= t . It follows that
σ ′(r) = n �= τ ′(r) and τ ′(t) = n �= σ ′(t). Also, since hd(σ, τ ) ≥ d − 1 there are at least
d −3 other positionsm, (0 ≤ m < n,m /∈ {r, t}) such that σ ′(m) = σ(m) �= τ(m) = τ ′(m).
Note that, since Qi and Q j are disjoint, σ(r) �= τ(t). Hence σ ′(n) �= τ ′(n). Hence, there
are at least d positions where σ ′ and τ ′ disagree, so hd(σ ′, τ ′) ≥ d . Thus, for all i, j ,
(1 ≤ i < j ≤ s), hd(ext (Mi ), ext (Mj )) ≥ d .

We have shown that for all i, j , (1 ≤ i, j ≤ s + 1), hd(ext (Mi ), ext (Mj )) ≥ d . That is,
hd(ext (�)) ≥ d . 
�

Corollary 1 Let � = (M,P,Q) be a distance-d partition system for Zn, where M =
(M1, M2, . . . , Ms+1), and where |Ms+1| = m.

(1) If M is covered (but not well covered), then |ext (�)| = ∑s+1
i=1 |ext (Mi )|.

(2) If M is well covered by P = (P1, P2, . . . , Ps) and Q = (Q1, Q2, . . . , Qs), then
|ext (�)| = m + ∑s

i=1 |Pi | · |Qi |. Hence,

M(n + 1, d) ≥ m +
s∑

i=1

|Pi | · |Qi |.

Proof For (1), for all Mi , |ext (Mi )| = |covered(Mi )|, by definition of ext (Mi ), and
|ext (Ms+1)| = |Ms+1|. Hence |ext (�)| = ∑s+1

i=1 |ext (Mi )|.
For (2), clearly, |ext (Ms+1)| = |Ms+1| = m. Because M is well covered, for any i ,

(1 ≤ i ≤ s), |ext (Mi )| = |covered(Mi )| = |Pi × Qi | = |Pi | · |Qi |. Hence, |ext (�)| =
|Ms+1| + ∑s

i=1 |Mi | = m + ∑s
i=1 |Pi | · |Qi |. Since ext (�) consists of permutations of

length n + 1, M(n + 1, d) ≥ m + ∑s
i=1 |Pi | · |Qi |. 
�

3 New PAs obtained by partition and extension

Distance-d partition systems � = (M,P,Q), as described, are useful for obtaining better
lower bounds for M(n+1, d) for many cases of n and d . There are generally three situations:

1. improving the lower bound for M(q + 1, q), where q is a power of a prime,
2. improving the lower bound for M(n + 1, n), where n is not a power of a prime, and the

current bound for M(n, n − 1) is given by mutually orthogonal Latin squares (MOLS),
and

3. improving the lower bound for M(n + 1, d), given a group G = M1 of permutations
over Zn with hd(G) = d and cosets M2, M3, . . . , Mk such that hd(Mi , Mj ) ≥ d − 1,
1 ≤ i, j ≤ k, i �= j .

We now illustrate the use of the partition and extension operation on certain distance-d
partition systems � to obtain new results.
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Results 1 and 2 below illustrate the use of the partition and extension technique to obtain
better lower bounds for M(q, d) where q is a power of a prime. We create PAs from subsets
of AGL(1, q). AGL(1, q) is the affine general linear group of permutations on Zq , where
AGL(1, q) = {ax + b | a, b, x ∈ GF(q), a �= 0} [19]. Note that, for any choice of
a, b ∈ GF(q), a �= 0, the function f (x) = ax + b is a permutation, so AGL(1, q) is a
set of q(q − 1) permutations. GF(q) denotes the Galois field on the elements of Zq . If
q = p1, where p is a prime, then the operations are addition and multiplication mod p [19].
When q = pα, α �= 1, (i.e. q is a power of a prime), elements of GF(q) can be viewed as
polynomials of degree at most α − 1 with coefficients in Z p . Addition of two polynomials
is done with mod p arithmetic of the coefficients. Multiplication in GF(q) depends on a
primitive polynomial r(x) of degree α. That is, the elements of GF(q) can be viewed as
1, x, x2, . . . , xq−1, where if t > α − 1, then xt is replaced by its remainder when divided by
r(x) [19].

AGL(1, q) can be viewed as a collection of permutations given by a group B1 = {x +
b | b, x ∈ GF(q)} together with q − 2 cosets of permutations denoted by Ba = {ax +
b | a, b, x ∈ GF(q), a > 1}. For example, the coset B2 is given by {2x +b | b, x ∈ GF(q)};
the coset B3 is given by {3x + b | b, x ∈ GF(q)}, and so on. Note that, for any a ∈ Zq ,
where a > 1, Ba is the left coset of B1, given by Ba = πa B1, where πa is the permutation by
πa(x) = ax and the group operation is composition of permutations. When q = p1 where
p is prime, then B1 = Cp , the cyclic group of permutations on Z p , consisting of the identity
permutation and its cyclic shifts.

It is known that AGL(1, q) is sharply 2-transitive, hence, hd(AGL(1, q)) = q −2+1 =
q − 1. Consequently, for any subset X of AGL(1, q), hd(X) = q − 1 as well.

Result 1: M(26, 25) ≥ 130.
We begin with an example of type (1) for q = 25, a power of the prime p = 5, with

α = 2. We show that M(26, 25) ≥ 130. The best previous lower bound, M(26, 25) ≥ 104,
was obtained by exhibiting 4 MOLS of side 26 [5].

Consider the Galois field GF(52). We use the primitive polynomial r(x) = x2 + 2x + 3
to obtain the cyclic group containing of the 24 non-zero elements: 1̂ = x0, 2̂ = x1, 3̂ =
x2, . . . , 2̂4 = x23, of GF(52), where we refer to the i th non-zero element xi−1 temporarily
as î . We reduce each of these terms to polynomials of degree α − 1 = 1 by computing the
remainder when divided by the primitive polynomial (mod 5). Thus we have 1̂ = x0 =
1, 2̂ = x1 = x, 3̂ = x2 = 3x + 2, 4̂ = x3 = 3x2 + 2x = x + 1, 5̂ = x4 = x2 + x = 4x + 2,
and so on. The element 0̂ is simply 0. Eliminating the hats on top of the names of the elements,
we get the first two rows of the addition table of GF(52), which are:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 19 4 10 18 6 16 13 24 5 23 22 20 0 9 12 14 21 17 7 11 2 15 8 3

Here, the second row gives 1 + x , for each x in GF(52). For example, 1̂ + 2̂ = 4̂, since
4̂ = 1 + x , as shown above. The remaining rows of the addition table for GF(52) can be
obtained using distributive laws of multiplication over addition. Specifically, if xi +x j = xk ,
then xi+1 + x j+1 = x(xi + x j ) = x(xk) = xk+1. So, if the entry in the i th row (i ≥ 2) and
j th column is xk , then the entry in the (i + 1)st row and ( j + 1)st column is xk+1(mod 24).
Similarly, if the entry in the i th row (i ≥ 2) and j th column is 0, then the entry in the (i +1)st
row and ( j + 1)st column is also 0. Also, if j = 24, then the ( j + 1)st column is column
1. This can be seen in Table3, where the addition table of GF(52), after a partition and
extension operation, is shown in the first twenty four rows.

Create the distance-25 partition system � = (M,P,Q), where:
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1. M = (M1, M2, M3, M4, M5, M6), where M1 is the group B1, M2 is its coset B2, M3 =
B3, M4 = B4, M5 = B5 and the extra set is M6 = B6,

2. P = {P1, P2, P3, P4, P5}, where P1 = {0, 5, 11, 17, 23}, P2 = {1, 7, 16, 21, 24}, P3 =
{2, 6, 9, 13, 19}, P4 = {3, 10, 12, 15, 18}, P5 = {4, 8, 14, 20, 22}, and

3. Q = {Q1, Q2, Q3, Q4, Q5}, where Q1 = {0, 1, 2, 3, 10}, Q2 = {4, 6, 8, 12, 23}, Q3 =
{9, 14, 15, 17, 24}, Q4 = {11, 13, 16, 18, 19}, Q5 = {5, 7, 20, 21, 22}.
Table3 show the covered permutations from B1, B2, B3, B4, B5, and B6, after the partition

and extension operation has replaced designated symbols in each covered permutation with
the symbol 25 and put the original symbols at the end. The group B1 is well covered by
(P1, Q1), as can be seen in Table3. That is, there are 5 positions in P1 and 5 symbols in
Q1, and all 25 = 5 · 5 permutations in B1 are covered. The cosets B2, B3, B4, and B5 are
covered (but not well covered) by (P2, Q2), (P3, Q3), (P4, Q4), (P5, Q5), respectively, as
can be seen also in Table3. In fact, (P2, Q2) covers 21 permutations of B2, (P3, Q3) covers
21 permutations of B3, (P4, Q4) covers 19 permutations of B4, and (P5, Q5) covers 19
permutations of B5. The extra coset, B6, is completely covered by putting the symbol 25 in the
last position of each of its permutations. It follows from Theorem 1 that hd(ext (�)) ≥ 25.
Furthermore, by Corollary 1, |ext (�)| = 25 + 21 + 21 + 19 + 19 + 25 = 130. Hence
M(26, 25) ≥ 130. 
�
Result 2: M(30, 29) ≥ 170.

Another example of type (1) is for the prime number p = 29. We show that M(30, 29) ≥
170. The best previous lower bound, M(30, 29) ≥ 120, was obtained by exhibiting four
mutually orthogonal Latin squares of side 30 [5]. Let p = 29 and consider the group G =
AGL(1, 29) of permutations on Z29, where hd(G) = 28. G consists of the cyclic group C29

together with 27 cosets Ba defined by non-zero values a in GF(29), 1 < a ≤ 28.
Create the distance-29 partition system � = (M,P,Q), where:

1. M = (M1, M2, M3, M4, M5, M6, M7), where M1 = C29, and M2, . . . M7 are its cosets:
M2 = B28, M3 = B2, M4 = B27, M5 = B4, M6 = B7, M7 = B3,

2. P = (P1, P2, P3, P4, P5, P6), where P1 = {0, 9, 14, 19, 24}, P2 = {1, 6, 11, 16, 21},
P3 = {2, 7, 12, 17, 22}, P4 = {3, 8, 13, 18, 23}, P5 = {5, 10, 15, 20, 25}, P6 =
{4, 26, 27, 28}, and

3. Q = (Q1, Q2, Q3, Q4, Q5, Q6), where Q1 = {0, 1, 2, 3, 4}, Q2={5, 6, 7, 8, 9}, Q3 =
{10, 14, 18, 22, 26}, Q4 = {11, 15, 19, 23, 27}, Q5 = {12, 16, 20, 24, 28}, Q6 =
{13, 17, 21, 25}.

Since � = (M,P,Q) is a distance-29 partition system, it follows from Theorem 1 that
hd(ext (�)) ≥ 29. Furthermore, M is well covered, so it follows from Corollary 1 that
|ext (�)| = |M7| + 5 · 25 + 4 · 4 = 170. Hence, M(30, 29) ≥ 170. 
�

Results 1 and 2 give new values M(q + 1, q) for q a power of a prime. We now give two
results of type (3). Results 3 and 4 below illustrate the partition and extension technique to
obtain better lower bounds for M(q + 2, d) where q = pα, α �= 1, is a power of a prime.
We use the group PGL(2, q), the projective general linear group of permutations on Zq+1.
Denote the symbols of Zq+1 by 0, 1, 2, . . . , q − 1,∞. The permutations of PGL(2, q) are
defined for all a, b, c, d ∈ GF(q) such that ad �= bc:

• if x ∈ GF(q), but x �= −d/c, then g(x) = ax+b
cx+d ,• if x = −d/c, then g(−d/c) = ∞,

• if c �= 0, then g(∞) = a/c,
• if c = 0, then g(∞) = ∞.
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Then |PGL(2, q)| = (q + 1)q(q + 1). It is known that PGL(2, q) is sharply 3-transitive
[16,19], hence

hd(PGL(2, q)) = (q + 1) − 3 + 1 = q − 1. (1)

Result 3: M(10, 7) ≥ 1504.
This is an example of type (3). We use the partition and extension technique to show that

M(10, 7) ≥ 1504, which improves on the previous lower bound of M(10, 7) ≥ 1484 [13].
Consider G = PGL(2, 8) on Z9, which is sharply 3-transitive, has 504 = 9 · 8 · 7 elements
and shows that M(9, 7) = 504. We consider two cosets of G, say f1G and f2G, where f1
and f2 are the permutations defined by the Frobenius mappings f1(x) = x2 and f2(x) = x4

[19] and hd( f1G,G) = hd( f2G,G) = hd( f1G, f2G) = 6.
Create the distance-7 partition system � = (M,P,Q), where:

1. M = (M1, M2, M3), where M1 = G, M2 = f1G and the extra set M3 is f2G,
2. P = (P1, P2), where P1 = {0, 1, 2, 3}, P2 = {4, 5, 6, 7, 8}, and
3. Q = (Q1, Q2), where Q1 = {0, 1, 2, 3, 4}, Q2 = {5, 6, 7, 8}.
It can be seen that (P1, Q1) covers all but four of the permutations in M1 = G. This is
because all but 4 of the permutations have one of the integers 0, 1, 2, 3 or 4 (i.e., one of the
symbols in Q1) in one of the first four positions (i.e., a position in P1). Similarly, (P2, Q2)

covers all but four of the 504 permutations in M2. Lastly, the 504 permutations in M3 are all
included. Hence, by Theorem 1, ext (�) is a PA of 1504 = 504 · 3−8 permutations of length
10 with Hamming distance 7. So, by Corollary 1, M(10, 7) ≥ 1504. 
�

The PA of 1504 permutations for M(10, 7) is provided in [2].
Result 4: M(18, 14) ≥ 12240.
Another example of type (3) shows that M(18, 14) ≥ 12240, which improves the

previous lower bound of M(18, 14) ≥ 4896 [20]. Consider the projective linear group
G = PGL(2, 16), which is sharply 3-transitive, has 4080 = 17 · 16 · 15 elements,
and shows that M(17, 15) = 4080. We use two left cosets of G, namely those with
the representatives: σ = (3, 5, 12, 11, 14, 10, 9, 8, 4, 7, 6, 0, 2, 1, 16, 13, 15), and τ =
(1, 7, 3, 16, 5, 15, 0, 10, 9, 2, 6, 8, 4, 11, 13, 14, 12). It can be seen that hd(σG,G) ≥
13, hd(τG,G) ≥ 13, and hd(σG, τG) ≥ 13.

Create the distance-14 partition system � = (M,P,Q), where:

1. M = (M1, M2, M3), where M1 = G, M2 = σG and the extra set M3 is τG,
2. P = (P1, P2),where P1 = {0, 1, 2, 3, 8, 9, 10, 11}, P2 = {4, 5, 6, 7, 12, 13, 14, 15, 16},

and
3. Q = (Q1, Q2), where Q1 = {0, 1, 2, 3, 4, 5, 6, 7}, Q2 = {8, 9, 10, 11, 12, 13, 14,

15, 16}.
It can be seen that (P1, Q1) covers all of the permutations in M1 = G, (P2, Q2), covers all of
the permutations in M2. Hence, all of the permutations in M are covered, and by Corollary
1, ext (�) is a PA of 4080 · 3 = 12240 permutations of length 18 with Hamming distance
14. So, M(18, 14) ≥ 12240. 
�

The PA of 12240 permutations for M(18, 14) is provided at [2].
Result 5: M(33, 32) ≥ 183.
An example of type (1) shows that M(33, 32) ≥ 183, whereas the previous lower bound,

obtained by demonstrating five MOLS of side 33, was M(33, 32) ≥ 165 [21]. Define the
group AGL(1, 32) = {ax + b | a, b, x ∈ GF(32), a �= 0}, which has 992 permutations.

Create the distance-32 partition system � = (M,P,Q), where:

1. M = (M1, M2, M3, M4, M5, M6, M7), where M1 = B1, and M2 through M7 are the
cosets B2 through B7, respectively.
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Specifically, for the primitive polynomial r(x) = x5 + x2 + 1, the element named 1̂ is
x0, the element named 2̂ is x1, the element named 3̂ is x2, the element named 4̂ is x3,
the element named 5̂ is x4, the element named 6̂ is x5, which is equivalent to x2 + 1 by
dividing by the primitive polynomial, and so on. As the non-zero elements form a cyclic
group under multiplication, they can be denoted by x0, x1, x2, . . . , x30, and renamed
as the remainders of division by the primitive polynomial given above. For example,
the addition of 1̂ and 6̂ is 3̂, because 1 + (x2 + 1) is x2. Note that 1 + 1 = 0, as the
coefficients of the polynomials are added viaGF(2). Also, as can be verified, 1̂9 is x+1,
so 1̂ + 2̂ = 1̂9. Using this process we see that M1 consists of the 32 permutations given
by rows of an addition table for GF(32), where rows 0, 1 and 2 (with hats on top of the
names removed) are:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 0 19 6 30 11 3 28 23 21 17 5 20 24 15 14 25 10 31 2 12 9 26 8 13 16 22 29 7 27 4 18
2 19 0 20 7 31 12 4 29 24 22 18 6 21 25 16 15 26 11 1 3 13 10 27 9 14 17 23 30 8 28 5

where, when viewed as a matrix with entries mi, j .
(a) for i = 0 and all j (0 ≤ j ≤ 31),m0, j = j . (This generates the 0th row of M1 shown
above, which consists of the integers 0 through 31 in increasing order).
(b) for j = 0 and all i (1 ≤ i ≤ 31),mi,0 = m0,i . (This generates the 0th column of M1,
which is the transpose of the 0th row).
When viewed as a matrix, the diagonal elements of M1 are zero, and 0th row and 0th
column consist of the integers 0 through 31 in increasing order. The sub-matrix starting
at row 1 column 1 through row 31 column 31 (except for the main diagonal) is generated
row by row, where row i + 1 is a right cyclic shift of row i , followed by adding 1 to each
element, with the rule that 31 + 1 = 1.
Furthermore, for all k (1 < k ≤ 7), Mk is defined as the table with 32 permutations on
Z32, in which the 0th column is 0, 1, 2, 3, . . . , 31, and each row, excluding the element
in the 0th column, is the left cyclic shift of the corresponding row of Mk−1 (excluding
the element in the 0th column).
Note that addition and multiplication are abelian, so the j th row and the j th column of
Mi are identical for all Mi ∈ M.

2. P = (P1, P2, P3, P4, P5, P6), where P1 = {1, 5, 8, 18, 24, 27}, P2 = {2, 9, 13, 21, 30},
P3 = {0, 4, 14, 15, 20, 23}, P4 = {3, 7, 11, 16}, P5 = {10, 12, 19, 25, 28, 29, 31}, P6 =
{6, 17, 22, 26}, and

3. Q = (Q1, Q2, Q3, Q4, Q5, Q6), where Q1 = {6, 10, 11, 12, 13, 21}, Q2 = {3, 8,
15, 16, 20, 24, 29}, Q3 = {5, 9, 17, 26, 30}, Q4 = {0, 1, 2, 7, 19, 27, 28}, Q5 =
{18, 23, 25, 31}, and Q6 = {4, 14, 22}.

(P1, Q1) covers 28 permutations in M1. (P2, Q2) covers 29 permutations in M2. (P3, Q3)

covers 28 permutations in M3. (P4, Q4) covers 24 permutations in M4. (P5, Q5) covers
27 permutations in M5 and (P6, Q6) covers 12 permutations in M6. So, by Theorem 1
hd(ext (�)) ≥ 32, and by Corollary 1, |ext (�)| = 28+29+26+28+28+12+32 = 183.
Thus, M(33, 32) ≥ 183. 
�
Result 6: M(118, 117) ≥ 936.

We give an example of type (2) for n = 118. The previous bound is M(118, 117) ≥ 708,
by demonstrating 6 MOLS of side 118 [5,21]. There are 8 MOLS of side 117 [5,21], hence
M(117, 116) ≥ 8 · 117 = 936. It is known [5] that a set of k MOLS of side n, for integers
k and n, can be transformed into a PA, A, of permutations on Zn with kn elements such that
hd(A) = n − 1. The transformation is such that the resulting PA A consists of k disjoint
sets of permutations, say M1, M2, . . . , Mk such that hd(Mi ) = n and hd(Mi , Mj ) = n − 1,
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for all i, j (1 ≤ i < j ≤ k). By the partition and extension technique we cover all 936
permutations in the PA A. Therefore, M(118, 117) ≥ 936. The PA of 936 permutations for
M(118, 117) is provided in [2].

A natural question arises. Is it possible to use the partition and extension operation itera-
tively to obtain PA’s on Zn+k , for k > 1? The answer is a qualified “yes”, but improved
lower bounds may result only for large n. To see this consider the following: Given a
distance-n partition system � = (M,P,Q) for Zn , whereM = (M1, M2, . . . , Ms, Ms+1),
P = (P1, P2, . . . , Ps), and Q = (Q1, Q2, . . . , Qs), we can obtain an extended set of per-
mutations, namely ext (�), which consists of permutations of Zn+1 with Hamming distance
n. For all i , ext (Mi ) does not have Hamming distance n + 1, because the new symbol n in
Zn+1 (but not in Zn) is often inserted in the same position by the extension operation. So, the
ordered list of sets M ′ = (ext (M1), ext (M2), . . . , ext (Ms), ext (Ms+1)), is not appropriate
for a distance-(n + 1) partition system. Subsets of these PA’s can be used for another exten-
sion. For each set ext (Mi ) we create a collection of subsets with Hamming distance n + 1.
For a pair of integers u, v, with u in Pi and v in Qi , let perm(u, v) be a permutation σ in
Mi such that σ(u) = v. Note that there is at most one permutation in Mi with this property,
because hd(Mi ) = n. It follows that extu(σ ) has the symbol n in position u and the symbol
v in position n. Let r �= u be a position, let t �= v be a symbol, and let τ = perm(r, t).
Then the Hamming distance between σ and τ is n + 1. That is, the new symbol n in Zn+1

in extu(σ ) is in position u and in extr (τ ) is in position r , with u �= r , and the symbols
in position n in extu(σ ) and extv(τ ), respectively, are v and t with v �= t . It follows that,
for any set of pairs A = {(u1, v1), (u2, v2), . . . , (um, vm)} such that no two pairs agree in
either coordinate, the subset Mi (A) = {perm(ui , v j ) |(ui , v j ) ∈ A,∀ j, (1 ≤ j ≤ m)} has
Hamming distance n+ 1. That is, the sets ext (Mi ) can be partitioned into subsets, each with
Hamming distance n + 1. This allows, for suitable partitions P ′ and Q′, a distance-(n + 1)
partition system �′ = (M′,P ′,Q′) for Zn+1. It should be noted that the sets in M′ are
much smaller than the sets inM and, hence, the size of the PA produced by the partition and
extension operation is also smaller.

For suitably large n, which is, say, 2 more than a power of a prime, iteration of the partition
and extension operation could produce better bounds for M(n, n − 1) than can be achieved
with MOLS. This is an area of continuing research.

Many other examples of improved values for M(n, n − 1) exist. For many small inte-
gers we did the partition and extension by hand. We also developed a simple program
for computing partitions and extensions of PA’s and used it on primes p, 61 ≤ p ≤ 309
to construct PAs for n = p + 1. For each such prime, the program uses partitions of
m = �√p� consecutive integers, that is, for all i , (1 ≤ i ≤ �p/m�), it uses the set
Pi = Qi = {(i −1)m, (i −1)m+1, . . . , (i −1)m+ (m−1)} and determines the number of
permutations covered by (Pi , Qi ) inwhichever coset (among those remaining)maximizes the
number. Because of the arithmetic, since �p/m�·m is less than p, there are t = p−�p/m�·m
of positions and symbols not used so far. The program chooses another coset and uses a par-
tition consisting of these t symbols and positions to cover additional permutations in this
coset. Finally, the program includes an additional coset (Ms+1 in the definition of distance-d
partition systems) from the remaining cosets. Recall that for Ms+1, no symbols are swapped,
but the permutations are extended by putting the integer p in position p (at the end) of each
permutation. This gives us a distance-p partition system �. The size of the resulting ext (�)

is our lower bound for M(p + 1, p). Our new results are summarized in Table 4 along
with other known bounds M(n, n − 1) for 10 ≤ n ≤ 309. PAs that exhibit some of
our improved results are provided in [2]. In Table 4, improved lower bounds by our
techniques, if known, are given in bold at the top of a cell. The second entry gives the
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Table 4 Lower bounds for M(n, n − 1), for n ∈ {10, 11, . . . , 309}
0 1 2 3 4 5 6 7 8 9

10 49 [12] – 112 [11] – 59 [11] 90 [11] – – – –

20 110 60 156 56 60 240 272 90 342

2 10 5 12 4 4 15 16 5 18

20 120 [11] 147 [11] 121 [11] – – – 130 – – –

80 105 66 506 168 600 104 702 140 812

4 5 3 22 7 24 4 26 5 28

30 170 – – 183 – – – – 254 –

120 930 992 165 136 175 288 1332 152 195

4 30 31 5 4 5 8 36 4 5

40 – – 282 – 296 – – – – –

280 1640 210 1806 220 270 184 2162 384 2352

7 40 5 42 5 6 4 46 8 48

50 – – – – 408 – – – – –

300 255 260 2756 270 330 392 399 290 3422

6 5 5 52 5 6 7 7 5 58

60 481 – 478 – – – – – 568 –

300 3660 310 378 4032 455 330 4422 340 414

5 60 5 6 63 7 5 66 5 6

70 – – 588 – 620 – – – – –

420 4970 504 5256 370 525 456 462 468 6162

6 70 7 72 5 7 6 6 6 78

80 – – – – 776 – – – – –

720 6480 656 6806 504 510 516 522 616 7832

9 80 8 82 6 6 6 6 7 88

90 866 – – – – – – – 956 –

540 637 552 558 564 570 672 9312 588 792

6 7 6 6 6 6 7 96 6 8

100 – – 1030 – 1070 – – – 1090 –

800 10100 612 10506 728 735 636 11342 648 11772

8 100 6 102 7 7 6 106 6 108

110 1130 – – – 1192 – – – 936 –

660 666 1456 12656 684 805 696 936 708 714

6 6 13 112 6 7 6 8 6 6

120 – – – – – – – – – –

840 14520 732 738 744 15500 756 16002 16256 903

7 120 6 6 6 124 6 126 127 7

130 – – 1508 – – – – – 1614 –

780 17030 792 931 804 945 952 18632 828 19182

6 130 6 7 6 7 7 136 6 138
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Table 4 continued

0 1 2 3 4 5 6 7 8 9

140 1640 – – – – – – – – –

840 987 852 1430 1440 1015 876 1029 888 22052

6 7 6 10 10 7 6 7 6 148

150 1818 – 1832 – – – – – 1922 –

900 22650 1064 1224 1232 1085 936 24492 1106 954

6 150 7 8 8 7 6 156 7 6

160 – – – – 2042 – – – 2070 –

1440 1127 972 26406 984 1155 996 27722 1176 28392

9 7 6 162 6 7 6 166 7 168

170 – – – – 2316 – – – – –

1020 1368 1032 29756 1044 1050 2464 1593 1068 31862

6 8 6 172 6 6 14 9 6 178

180 2404 – 2498 – – – – – – –

1080 32580 1092 1098 1288 1665 1116 1870 1128 1512

6 180 6 6 7 9 6 10 6 8

190 – – 2638 – 2680 – – – 2786 –

1140 36290 1344 37056 1164 1365 1176 38612 1188 39402

6 190 7 192 6 7 6 196 6 198

200 2842 – – – – – – – – –

1400 1407 1212 1421 1224 1640 1236 1656 2912 2299

7 7 6 7 6 8 6 8 14 11

210 – – 3026 – – – – – – –

2100 44310 1272 1491 1284 1505 1512 1736 1308 2190

10 210 6 7 6 7 7 8 6 10

220 – – – – 3260 – – – 3380 –

1320 2652 1332 49506 2912 1800 1356 51302 1368 52212

6 12 6 222 13 8 6 226 6 228

230 3512 – – – 3602 – – – – –

1380 1617 1624 54056 1404 1645 1416 1659 1428 56882

6 7 7 232 6 7 6 7 6 238

240 3656 – 3716 – – – – – – –

1680 57840 1452 58806 1464 1715 1476 2964 1736 1743

7 240 6 242 6 7 6 12 7 7

250 – – 3932 – – – – – 4066 –

1500 62750 1512 3036 2286 1785 65280 65792 1548 3108

6 250 6 12 9 7 255 256 6 12

260 – – – – 4228 – – – – –

1560 2088 2096 68906 1848 2120 1862 2670 1876 72092

6 8 8 262 7 8 7 10 7 268

270 4318 – 4408 – – – – – 4574 –

1890 73170 4080 4368 1644 3575 2760 76452 1668 2511
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Table 4 continued

0 1 2 3 4 5 6 7 8 9

7 270 15 16 6 13 10 276 6 9

280 – – 4684 – 4706 – – – – –

1960 78680 1692 79806 1704 3420 1716 2009 4320 83232

7 280 6 282 6 12 6 7 15 288

290 – – – – 5068 – – – – –

1740 1746 1752 85556 1764 1770 2072 2970 2980 3588

6 6 6 292 6 6 7 10 10 12

300 – – – – – – – – 5360 –

2100 2107 2114 2121 4560 4575 1836 93942 2156 2163

7 7 7 7 15 15 6 306 7 7

For each entry, the first row, if present, contains bounds better than the bounds derived from MOLS, which
are in the second row. The bounds in bold are obtained in this paper. The third row indicates the number of
MOLS which can be found in [5,21]

previous lower bound. If the second entry comes fromMOLS, the number of MOLS is given
in the bottom entry of the cell.

4 A new lower bound for M( p+ 1, p), for primes p

Previous lower bounds for M(n, n − 1) have been obtained by exhibiting sets of mutually
orthogonal Latin squares (MOLS). Optimum results are known for powers of primes. When
n is a power of a prime M(n, n − 1) = n(n − 1); otherwise, finding a large set of MOLS
is a combinatorial problem of considerable difficulty and ongoing interest [5,18]. Work
has also been done on establishing an asymptotic lower bound on the number of MOLS.
Let N (n) denote the number of MOLS of side n. It is known that N (n) ≥ n1/14.8 for
sufficiently large n [3]. As previously mentioned, for any positive integer n, if there are k
mutually orthogonal Latin squares of side n, then M(n, n−1) ≥ kn [6]. From this we obtain
M(n, n − 1) ≥ n1+1/14.8 for sufficiently large n.

Using the partition and extension technique,wenowshow that for primes p,M(p+1, p) ≥
p1.5/2−O(p). So, for an infinite set of integers, the partition and extension techniqueprovides
an asymptotically better lower bound than that given by current knowledge about MOLS.

The proof considers, for each prime p ≥ 17, partitions P and Q, where P =
{P1, P2, P3, . . . , Pt (p)}, Q = {Q1, Q2, Q3, . . . , Qt (p)}, Pi = Qi = {(i − 1)s(p), (i −
1)s(p) + 1, (i − 1)s(p) + 2, . . . , is(p) − 1}, and where s(p) = �√p/2� and t (p) ≤
�p/(s(p))�will be selected later. Note that the number of positions included inP is s(p)t (p),
which is less than or equal to p. The same is true for the number of symbols in Q. In order
to ensure that P andQ are partitions, we can add the missing elements to an arbitrary set Pk
(resp. Qk). This addition has no effect on the proof of Lemma 1. The important property is
that the sets comprising P are pairwise disjoint (and likewise for Q).

Lemma 1 For any prime p ≥ 17, and for any j , s(p) ≤ j ≤ 3s(p) or −3s(p) ≤ j ≤
−s(p), the permutations in the coset B j = { j x + b | b ∈ GF(p)} are uniquely covered by
(Pi , Qi ), where Pi = Qi = {(i − 1)s(p), (i − 1)s(p) + 1, (i − 1)s(p) + 2, . . . , is(p) − 1},
for all i (1 ≤ i ≤ t (p)).
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Proof First, let b = 0. We show that, for any choice of j , with s(p) ≤ j ≤ 3s(p), and
for any position x in P1 = {0, 1, . . . , s(p) − 1}, the permutation π0(x) = j x (mod p)
cannot have two values in Q1 = {0, 1, . . . , s(p) − 1}. In particular, the values in these
specific positions are: π0(0) = 0, π0(1) = j, π0(2) = 2 j, . . . , π0(s(p)− 1) = (s(p)− 1) j .
Since j ≥ s(p), all of the values except π0(0) = 0 are larger than the elements in Q1, at
least when we do not compute remainders modulo p. Since j ≤ 3s(p), the largest such
value, say L , when j = 3s(p), namely L = π0(s(p) − 1) = (s(p) − 1) j , is at most
(s(p) − 1)3s(p) = (�√p/2� − 1)3(�√p/2�) < 3p/4 < p. For all values v �= 0 in
V = {0, j, 2 j, . . . , L = s(p) j}, s(p) ≤ v < p and the remainder of v divided by p is equal
to v. Thus, only one value in V , namely, π0(0) = 0, occurs in Q1. Hence, π0 is uniquely
covered by (P1, Q1).

Observe that other permutations in the coset Bj , namely πb(x) = j x + b (mod p)
for 0 < b < p, which represent all cyclic shifts of π0, have the same property. That is, if
πb(0) = j ·0+b (mod p) = b is in Q1, then πb(1) = j+b, πb(2) = 2 j+b, . . . , πb(s(p)−
1) = (s(p) − 1) j + b are all larger than the elements of Q1, at least when we don’t compute
remaindersmodulo p. Again since j ≤ 3s(p), the largest such value, say L , when j = 3s(p),
namely L = πb(s(p)−1) = (s(p)−1) j +b, is at most (s(p)−1)3s(p)+b = (�√p/2�−
1)3�√p/2�+�√p/2�−1 < 3p/4−�√p/2�−1 < 4p/4 ≤ p. (Note that b ≤ �√p/2�−1,
since b is in Q1.) So, in fact, for each value v in V = {b, j + b, 2 j + b, . . . , L = (s(p) −
1) j + b}, the remainder of v divided by p is equal to v. Thus, only one value in V , namely,
πb(0) = b, occurs in Q1. Hence, πb is uniquely covered by (P1, Q1). That is, every covered
permutation in the coset Bj is uniquely covered by (P1, Q1).

By a symmetric argument we can show that cosets Bj , with −3s(p) ≤ j ≤ −s(p), are
also uniquely covered by (P1, Q1). That is, in this case, one subtracts j instead of adding,
but otherwise the argument is the same.

We may also generalize to the sets (Pi , Qi ), for 0 < i ≤ t (p). In the first paragraph of
this proof it was shown that for each j , with s(p) ≤ j ≤ 3s(p), the permutation π( j) = j x
(mod p) cannot have two values in Qi = {(i − 1)s(p), (i − 1)s(p) + 1, . . . , i · s(p) − 1}.
Furthermore, as shown in the first paragraph of the proof, the maximum element in the
sequence j, 2 j, 3 j, . . . , (s(p) − 1) j is less than p, so even when considering remainders
modulo p it is not possible for two values to be in Qi . Together with the generalization in
the second paragraph to permutations of the form π( j) = j x + b (mod p), we have shown
that every covered permutation in the coset Bj = { j x + b | b ∈ GF(p)} is uniquely covered
by (Pi , Qi ), Pi = Qi = {(i − 1)s(p), (i − 1)s(p) + 1, (i − 1)s(p) + 2, . . . , is(p) − 1}, for
all i (1 ≤ i ≤ t (p)). 
�
Theorem 2 For primes p, M(p + 1, p) ≥ p1.5/2 − O(p).

Proof Create the distance-p partition system � = (M,P,Q) on Z p , where:

1. M = (M1, M2, . . . , Mt (p)+1), where Mj = Bj as described above, and Mt (p)+1 is an
additional coset that is not part of the partition process,

2. P = (P1, P2, . . . , Pt (p)),
3. Q = (Q1, Q2, . . . , Qt (p)).

By Theorem 1, hd(ext (�)) ≥ p. By Lemma 1, for any prime p ≥ 17, the covered
permutations in the cosets Bj , for all j (s(p) ≤ j ≤ 3s(p) or −3s(p) ≤ j ≤ −s(p)), are
uniquely covered by (Pi , Qi ). All of these cosets are candidates for sets Mi . Recall that we
can select at most �p/�√p/2�� cosets. Hence the number of cosets to be partitioned and
extended is

t (p) = min{4�√p/2� + 2, �p/�√p/2��}.
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We show that

min{4�√p/2� + 2, �p/�√p/2��} ≥ 2
√
p − 2,

by noting that

(i) 4�√p/2� + 2 ≥ 2
√
p − 2 or, equivalently, �√p/2� ≥ √

p/2 − 1, and
(ii) p/�√p/2� ≥ 2

√
p or, equivalently, �√p/2� ≤ √

p/2.

When we have sets Mi of permutations on Z p such that hd(Mi ) = p, if the permutations
are uniquely covered, then Mi is well covered. That is, when Mi is viewed as a matrix with
rows corresponding to permutations, each symbol vk in Qi appears once in each column
u j . So, for each column u j there are |Qi | covered permutations. Since the permutations are
uniquely covered, none of the permutations covered in column u j are covered by another
column ur (r �= j). So, altogether |covered(Mi )| = |Pi | · |Qi | for all i . Hence M is well
covered by P = (P1, P2, . . . , Pt (p)) and Q = (Q1, Q2, . . . , Qt (p)). So, by Corollary 1,

|ext (�)| = |Mt (p)+1| + ∑t (p)
i=1 |Pi | · |Qi | = p + ∑t (p)

i=1 |Pi | · |Qi |. There are |Pi | · |Qi | =
�√p/2�2 ≥ (

√
p/2 − 1)2 = p/4 − √

p + 1 covered permutations in each covered coset.
Hence, the total number of covered permutations is at least

p + (2
√
p − 2) · (p/4 − √

p + 1) = p1.5/2 − 3p/2 + 4
√
p − 2. (2)

The theorem follows. 
�

As an example, consider the prime p = 10007. By Eq. (2), M(10008, 10007) ≥
100071.5/2 − 3 · 10007/2 + 4 · 100070.5 − 2 ≥ 485, 912. With more care in the choice
of a partition system, we conjecture that one can show M(10008, 10007) is at least one
million.

5 Conclusions

Using a new partition and extension operation, we have given an algorithm for creating
permutation arrays with a larger number of permutations than those generated by previous
techniques. Hence, we improve results for M(n, d) for various values of n and d . The size of
the permutation arrays obtained by our techniques is related to the quality of the partitions,
and it is quite likely that the results can be further improved by additional effort. Finding
better values for M(n, d) is an ongoing area of research.

The partition and extension operation has also allowed us to improve previous lower
bounds on M(n, n − 1) which were obtained from MOLS. Our results are constructive. We
use the partition and extension technique to build permutation arrays for primes p that exhibit
M(p + 1, p) ≥ p1.5/2 − O(p). Explicitly, for any prime p ≥ 17 the technique yields a
permutation array of p1.5/2−1.5p+4

√
p−2 permutations at Hamming distance p. Results

for M(n, d) can be obtained from our website [1]. Permutation arrays exhibiting some of our
results can be found in [2].
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