
Des. Codes Cryptogr. (2017) 82:389–409
DOI 10.1007/s10623-016-0257-9

Row reduction applied to decoding of rank-metric
and subspace codes

Sven Puchinger1 · Johan Rosenkilde né Nielsen2 ·
Wenhui Li1 · Vladimir Sidorenko3

Received: 12 October 2015 / Revised: 23 June 2016 / Accepted: 13 July 2016 /
Published online: 2 August 2016
© Springer Science+Business Media New York 2016

Abstract We show that decoding of �-InterleavedGabidulin codes, aswell as list-� decoding
ofMahdavifar–Vardy (MV) codes can be performed by row reducing skew polynomial matri-
ces. Inspired by row reduction of F[x] matrices, we develop a general and flexible approach
of transforming matrices over skew polynomial rings into a certain reduced form. We apply
this to solve generalised shift register problems over skew polynomial rings which occur in
decoding �-Interleaved Gabidulin codes. We obtain an algorithm with complexity O(�μ2)

whereμmeasures the size of the input problem and is proportional to the code length n in the
case of decoding. Further, we show how to perform the interpolation step of list-�-decoding
MV codes in complexity O(�n2), where n is the number of interpolation constraints.
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1 Introduction

Numerous recent publications have unified the core of various decoding algorithms for Reed–
Solomon (RS) and Hermitian codes using row reduction of certain F[x]-module bases. First
for the Guruswami–Sudan list decoder [2,9,21], then for Power decoding [32,33] and also
either type of decoder for Hermitian codes [34]. By factoring out coding theory from the
core problem, we enable the immediate use of sophisticated algorithms developed by the
computer algebra community such as [16,50].

The goal of this paper is to explore the row reduction description over skew polynomial
rings, with a main application for decoding rank-metric and subspace codes. Concretely,
we prove that Interleaved Gabidulin and Mahdavifar–Vardy (MV) codes can be decoded by
transforming a module basis into weak Popov form, which can be obtained by a skew-
analogue of the elegantly simple Mulders–Storjohann algorithm [31]. By exploiting the
structure of the module bases arising from the decoding problems, we refine the algorithm to
obtain improved complexities. These match the best known algorithms for these applications
but solve more general problems, and it demonstrates that the row reduction methodology is
both flexible and fast for skew polynomial rings. Building on this paper, Ref. [40] proposes
an algorithm which improves upon the best known complexity for decoding Interleaved
Gabidulin codes.

Section 1.1 summarizes related work. We set basic notation in Sect. 2. Section 3 shows
how to solve the mentioned decoding problems using row reduction and states the final
complexity results which are proven in the subsequent sections. We describe row reduction
of skew polynomial matrices in Sect. 4. Section 5 presents faster row reduction algorithms
for certain input matrices, with applications to the decoding problems.

Thisworkwas partly presented at the InternationalWorkshoponCoding andCryptography
2015 [24]. Compared to this previous work, we added the decoding of MV codes using the
row reduction approach.1 It spurred a new refinement of theMulders–Storjohann, in Sect. 5.2,
which could be of wider interest.

1.1 Related work

In this paper we consider skew polynomial rings over finite fields without derivations [38]
(see Sect. 2.1 for this restricted definition of skew polynomials). This is the most relevant
case for coding theory, partly because they are easier to compute with, though non-zero
derivations have been used in some constructions [8]. All of the row reduction algorithms
in this paper work for skew polynomial rings with non-zero derivation, but the complexity
would be worse. The algorithms also apply to skew polynomial rings over any base ring, e.g.
F(z) or a number field, but due to coefficient growth in such settings, their bit-complexity
would have to be analysed.

A skew polynomial ring over a finite field without derivation is isomorphic to a ring of
linearised polynomials under a trivial isomorphism, and the rings’ evaluation maps agree.
Our algorithms could be phrased straightforwardly to work on modules over linearised poly-
nomials. Much literature on Gabidulin codes uses the language of linearised polynomials.

1 We opted for using the term “row reduction” rather than “module minimisation”, as we used in [24], since
the former is more common in the literature.
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Row reduction applied to decoding of rank-metric and subspace codes 391

Skew polynomial rings are instances of Ore rings, and some previous work on
computing matrix normal forms over Ore rings can be found in [1,6]. The focus
there is when the base ring is Q or F(z), where coefficient growth is a main con-
cern, e.g. for modelling systems of partial differential equations. These algorithms are
slower than ours when the base ring is a finite field. Reference [29] considers a setting
more similar to ours, but obtains a different algorithm and slightly worse complex-
ity.

Gabidulin codes [11,15,41] are maximum rank distance codes over finite fields; they are
the rank-metric analogue of RS codes. An Interleaved Gabidulin code is a direct sum of
several Gabidulin codes, similar to Interleaved RS codes. In a synchronised error model
they allow an average-case error-correction capability far beyond half the minimum rank
distance [25]. Decoding of Interleaved Gabidulin codes is often formulated as solving a
simultaneous “Key Equation” [43]. Over F[x] this computational problem is also known as
a multi-sequence shift-register synthesis [14,45], simultaneous Padé approximation [4], or
vector rational function reconstruction [36]. This problem also has further generalisations,
some of which have found applications in decoding of algebraic codes, e.g. [34,42,49]. In the
computer algebra community, Padé approximations have been studied in a wide generality,
e.g. [5]; to the best of our knowledge, analogous generalisations over skew polynomial rings
have yet to see any applications.

Lately, there has been an interest in Gabidulin codes over number fields, with applications
to space-time codes and low-rank matrix recovery [3]. Their decoding can also be reduced to
a shift-register type problem [30], which could be solved using the algorithms in this paper
(though again, one should analyse the bit-complexity).

MV codes [26,28] are subspace codes whose main interest lies in their property of being
list-decodable beyond half the minimum distance. Their rate unfortunately tends to zero
for increasing code lengths. In [27], Mahdavifar and Vardy presented a refined construction
which can be decoded “with multiplicities” allowing a better decoding radius and rate; it
is future work to adapt our algorithm to this case. The decoding of MV codes is is heavily
inspired by the Guruswami–Sudan algorithm for RS codes [17], and our row reduction
approach in Sect. 3.2 is similarly inspired by fast module-based algorithms for realising the
Guruswami–Sudan [7,21].

Another family of rank-metric codes which can be decoded beyond half the minimum
distance are Guruswami–Xing codes [19]. These can be seen simply as heavily punctured
Gabidulin codes, and their decoding as a virtual interleaving of multiple Gabidulin codes.
This leads to a decoder based on solving a simultaneous shift-register equation, where our
algorithms apply. Guruswami–Wang codes [18] are Guruswami–Xing codes with a restricted
message set, so the same decoding algorithm applies.

Over F[x], row reduction, and the related concept of order bases, have been widely studied
and sophisticated algorithms have emerged, e.g. [2,16,50]. As a follow-up to this work, a
skew-analogue of the algorithm in [2] was proposed in [40].

2 Preliminaries

2.1 Skew polynomials

LetF be a finite field and θ anF-automorphism.Denote byR = F[x; θ ] the non-commutative
ring of skew polynomials over F (with zero derivation): elements ofR are of the form

∑
i ai x

i
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392 S. Puchinger et al.

with ai ∈ F, addition is as usual, while multiplication is defined by xa = θ(a)x for all a ∈ F.
When we say “polynomial”, we will mean elements of R. The definition of the degree of a
polynomial is the same as for ordinary polynomials. See [38] for more details.

The evaluation map of a ∈ R is given as:

a(·) := eva(·) : F → F

α �→ ∑
i aiθ

i (α).

This is a group homomorphism on (F,+), and it is a linear map over the fixed field of θ .
Furthermore, for two a, b ∈ R we have evab = eva ◦ evb. This is sometimes known as
operator evaluation, e.g. [8].

IfFq is the field fixed by θ for some prime power q , thenF = Fqs , s ∈ Z>0, and θ(a) = aq
i

for some 0 ≤ i < s, i.e. a power of the Frobenius automorphism of Fqs / Fq .

Definition 1 For a, b, c ∈ R, we write a ≡ b mod c (right modulo operation) if there
exists d ∈ R such that a = b + dc

In complexity estimates we count the total number of the following operations: +,−, ·, /
and θ i for any i ∈ Z>0. For computing θ i the assumption is that the Frobenius automorphism
can be done efficiently in Fqs ; this is reasonable since we can represent Fqs -elements using
a normal basis over Fq (cf. [47, Sect. 2.1.2]): in this case, aq for a ∈ Fqs is simply the cyclic
shift of a represented as an Fq -vector over the normal basis.

2.2 Skew polynomial matrices

Free modules and matrices over R behave quite similarly to the F[x] case, keeping non-
commutativity in mind:

– Any left sub-module V ofRm is free and admits a basis of at most m elements. Any two
bases of V have the same number of elements.

– The rank of a matrix M over R is defined as the number of elements in any basis of the
left R-row space of M . The rows of two such matrices M, M ′ ∈ Rn×m generate the
same left module if and only if there exists a U ∈ GLn(R) such that M = UM ′, where
GLn(R) denotes the set of invertible n × n matrices over R.

These properties follow principally fromR being an Ore ring and therefore left Euclidean,
hence left Principal Ideal Domain (PID), hence left Noetherian.2 Moreover, R has a unique
left skew field3 of fractionsQ fromwhich it inherits its linear algebra properties. See e.g. [10,
13] for more details. In this paper we exclusively use the left module structure ofR, and we
will often omit the “left” denotation.

We introduce the following notation for vectors andmatrices overR: Matrices are denoted
by capital letters (e.g. V ). The i th row of V is denoted by vi , the j th element of a vector v
is v j and vi, j is the (i, j)th entry of a matrix V . Indices start at 0.

– The degree of a vector v is deg v := maxi {deg vi } (and deg 0 = −∞) and the degree of
a matrix V is deg V := ∑

i {deg vi }.
– The max-degree of V is maxdeg V := maxi {deg vi } = maxi, j {deg vi, j }.
– The leading position of a non-zero vector v is LP(v) := max{i : deg vi = deg v}, i.e.

the rightmost position having maximal degree in the vector. Furthermore, we define the
leading term LT(v) := vLP(v) and LC(v) is the leading coefficient of LT(v).

2 R is also right Euclidean, a right PID and right Noetherian, but we will only need its left module structure.
3 Skew fields are sometimes known as “division rings”.
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Row reduction applied to decoding of rank-metric and subspace codes 393

2.3 The weak Popov form

Definition 2 A matrix V over R is in weak Popov form if the leading positions of all its
non-zero rows are different.

The following lemma describes that the rows of a matrix in weak Popov form are minimal
in a certain way. Its proof is exactly the same as for F[x] modules and is therefore omitted,
see e.g. [32].

Lemma 1 Let V be a matrix in weak Popov form, and let V be theR-module generated by its
rows. Then the non-zero rows of V are a basis of V and every u ∈ V satisfies deg u ≥ deg v,
where v is the row of V with LP(v) = LP(u).

We will need to “shift” the relative importance of some columns compared to others.
Given a “shift vector” w = (w0, . . . , w�) ∈ Z

�+1
≥0 , define the mapping

Φw : R�+1 → R�+1, u = (u0, . . . , u�) �→
(
u0x

w0 , . . . , u�x
w�

)
.

It is easy to compute the inverse of Φw for any vector in Φw(R�+1). Note that since the
monomials xwi are multiplied from the right, applying Φw will only shift the entry poly-
nomials, and not modify the coefficients. We can extend Φw to R-matrices by applying it
row-wise.

Definition 3 For any w = (w0, . . . , w�) ∈ Z
�+1
≥0 , a matrix V ∈ R·×(�+1) is in w-shifted

weak Popov form if Φw(V ) is in weak Popov form.

Given some matrix V overR, “transforming V into (w-shifted) weak Popov form” means
to find some W generating the same row space as V and such that W is in (w-shifted) weak
Popov form. We will see in Sect. 4.1 that such W always exist.

Throughout this paper, by “row reduced” we mean “in weak Popov form”.4 Similarly,
“row reduction” means “transforming into weak Popov form”.

3 Decoding problems in rank-metric and subspace codes

3.1 Interlaved Gabidulin codes: multi-sequence shift registers

It is classical to decode errors in a Gabidulin code by solving a syndrome-based “Key Equa-
tion”: that is, a shift-register synthesis problemoverR, see e.g. [15].An InterleavedGabidulin
code is a direct sum of several Gabidulin codes [25], and error-decoding can be formulated as
a shift-register synthesis of several sequences simultaneously. A slightly more general notion
of shift-register synthesis allows formulating the decoder using the “GaoKey Equation” [47].
Another generalisation accommodates error-and-erasure decoding of some Gabidulin resp.
Interleaved Gabidulin codes [23,47].

All these approaches are instances of the following “Multi-Sequence generalised Linear
Skew-Feedback Shift Register” (MgLSSR) synthesis problem:

4 There is a precise notion of “row reduced” [20, p. 384] for F[x] matrices. Weak Popov form implies being
row reduced, but we will not formally define row reduced in this paper.
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394 S. Puchinger et al.

Problem 1 (MgLSSR) Given skew polynomials si , gi ∈ R and non-negative integers γi ∈
Z≥0 for i = 1, . . . , �, find skew polynomials λ, ω1, . . . , ω� ∈ R, with λ of minimal degree
such that the following holds:

λsi ≡ ωi mod gi

deg λ + γ0 > degωi + γi

We show how to solve this problem by row reduction of a particular module basis. The
approach is analogous to how the F[x]-version of the problem is handled by Rosenkilde in
[32], with only a few technical differences due to the non-commutativity of R.

In the sequelwe consider a particular instance of Problem1, soR, � ∈ Z>0, and si , gi ∈ R,
γi ∈ Z≥0 for i = 1, . . . , � are arbitrary but fixed. We assume deg si ≤ deg gi for all i since
taking si := (si mod gi ) yields the same solutions to Problem 1.

Denote by M the set of all vectors v ∈ R�+1 satisfying the congruence relation, i.e.,

M := {
(λ, ω1, . . . , ω�) ∈ R�+1

∣
∣ λsi ≡ ωi mod gi ∀i = 1, . . . , �

}
. (1)

Lemma 2 Consider an instance of Problem 1 and M as in (1). M with component-wise
addition and left multiplication by elements of R forms a free left module over R. The rows
of M form a basis of M, where

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 s1 s2 . . . s�
0 g1 0 . . . 0
0 0 g2 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . g�

⎞

⎟
⎟
⎟
⎟
⎠

. (2)

Proof Since M ⊆ R�+1, the first half of the statement follows easily since M is clearly
closed under addition and left R multiplication. M is a basis of M by arguments analogous
to the F[x] case, cf. [32, Lemma 1]. 
�

Lemma 2 gives a simple description of all solutions of the congruence requirement of
Problem 1 in the form of the row space of an explicit matrix M . The following theorem
implies that computing the weak Popov form of M is enough to solve Problem 1. The proof
is similar to the F[x]-case but since there is no convenient reference for it, we give it here for
the R case. The entire strategy is formalised in Algorithm 1.

Theorem 1 Consider an instance of Problem 1, and M as in (1). Let w = (γ0, . . . , γ�) ∈
Z

�+1
≥0 . If V is a basis ofM inw-shifted weak Popov form, the row v of V with LP(Φw(v)) = 0

is a solution to Problem 1.

Proof By Lemma 2 the row v satisfies the congruence requirement of Problem 1. For the
degree restriction of Problem 1, note that any u ∈ M satisfies this restriction if and only if
LP(Φw(u)) = 0, since deg ui + γi = deg(Φw(u)i ). Furthermore, if this is the case, then
deg(Φw(u)) = deg u0 + γ0. Thus, not only must v satisfy the degree restriction, but by
Lemma 1, v0 also has minimal possible degree. 
�

Algorithm 1 Solve Problem 1 by row reduction
Input: Instance of Problem 1.
Output: Solution v = (λ, ω1, . . . , ω�) of Problem 1.
1 Set up M as in 2.
2 Compute V as a w-shifted weak Popov form of M .
3 return the row v of V having LP(Φw(v)) = 0.
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Row reduction applied to decoding of rank-metric and subspace codes 395

The complexity of Algorithm 1 is determined by Line 2. Therefore, in Sects. 4 and 5.1
we analyse how and in which complexity we can row-reduce R-matrices. In particular, we
prove the following statement, where μ := maxi {γi + deg gi }.

Theorem 2 Algorithm1has complexity

{
O(�μ2), if gi = xti + ci , ti ∈ Z>0, ci ∈ F ∀ i,

O(�2μ2), otherwise.

Proof The first case follows from Theorem 8 in Sect. 5.1, using Algorithm 4 for the row
reduction step. For general gi ’s, the result of Example 2 in Sect. 4 holds, which estimates the
complexity of Algorithm 3 for a shift-register input. 
�

The above theorem applies well to decoding Gabidulin and Interleaved Gabidulin codes
since the gi are often in the restricted form: specifically, gi is a power of x in syndrome Key
Equations, while gi = xn − 1 in Gao Key Equation whenever n | s. We therefore achieve
the same complexity as [44] but in a wider setting.

3.2 Decoding Mahdavifar–Vardy codes

MVcodes [26,28] are subspace codes constructed by evaluating powers of skew polynomials
at certain points. We will describe how one can use row reduction to carry out the most
computationally intensive step of theMV decoding algorithm given in [28], the Interpolation
step. In this section, R = Fqs [x; θ ] where θ is some power of the Frobenius automorphism
of Fqs/Fq .

Problem 2 (Interpolation Step of MV decoding) Let �, k, s, n ∈ Z>0 be such that
(
�+1
2

)
(k −

1) < n ≤ s. Given (xi , yi,1, . . . , yi,�) ∈ F
�+1
qs for i = 1, . . . , n, where the xi are linearly

independent over Fq , find a non-zero Q ∈ R�+1 satisfying:

Q0(xi ) +
�∑

t=1

Qt (yi,t ) = 0 i = 1, . . . , n, (3)

deg Qt < χ − t (k − 1) t = 0, . . . , �, (4)

where χ is given by

χ =
⌈
n + 1

� + 1
+ 1

2
�(k − 1)

⌉

.

The problem can be solved by a large linear system of equations whose dimensions reveals
that a solution always exists [28, Lemma 8]. Note that the requirement n >

(
�+1
2

)
(k − 1)

ensures that all the degree bounds (4) are non-negative.
Let M be the set of all Q that satisfy (3) though not necessarily (4):

M = {
Q ∈ R�+1

∣
∣ Q0(xi ) + ∑�

t=1 Qt (yi,t ) = 0 i = 1, . . . , n
}

(5)

Lemma 3 Consider an instance of Problem 2. Then M of (5) is a left R-module.

Proof M is closed under addition since a(α) + b(α) = (a + b)(α) for all a, b ∈ R and
α ∈ Fqs . Let f ∈ R, Q = (Q0, Q1, . . . , Q�) ∈ M. Then f · Q satisfies (3) since

( f · Q0)(x) +
�∑

i=1

( f · Qi )(yi ) = f

(

Q0(x) +
�∑

i=1

Qi (yi )

)

= f (0) = 0 .


�
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For explicitly describing a basis of M, we need a few well-known technical elements:

Definition 4 Givena1, . . . , am ∈ Fqs which are linearly independent overFq , theannihilator
polynomial of the ai is the monic non-zero A ∈ R of minimal degree such that A(ai ) = 0
for all i .

It is easy to show that the annihilator polynomial is well-defined and that degA = m, see
e.g. [37]. The existence of annihilator polynomials easily leads to the following analogue of
Lagrange interpolation:

Lemma 4 (Interpolation polynomial) Given any a1, . . . , am ∈ Fqs which are linearly inde-
pendent over Fq , and arbitrary b1, . . . , bm ∈ Fqs , there exists a unique R ∈ R of degree at
most m − 1 such that R(ai ) = bi for all i = 1, . . . ,m.

Lemma 5 Consider an instance of Problem 2 and letM be as in (5). Denote by G the anni-
hilator polynomial of the xi , i = 1, . . . , n, and let Rt ∈ R, t = 1, . . . , � be the interpolation
polynomial with Rt (xi ) = yi,t for i = 1, . . . , n. The rows of M form a basis of M:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m0

m1

m2
...

m�

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

G 0 0 . . . 0
−R1 1 0 . . . 0
−R2 0 1 . . . 0

...
...

...
. . .

...

−R� 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6)

Proof “⊆”: We should show that each m j all “vanish” at the points (xi , yi,1, . . . , yi,�).
Consider such a point; we have two cases:

m0 : G(xi ) = 0

mt : 1(yi,t ) − Rt (xi ) = yi,t − Rt (xi ) = 0 , t = 1, . . . , �

“⊇”: Consider some Q = (Q0, . . . , Q�) ∈ M. Then we can write

v� := Q

v�−1 := v� − v�,� · m� = (v�−1,0, . . . , v�−1,�−1, 0)

v�−2 := v�−1 − v�−1,�−1 · m�−1 = (v�−2,0, . . . , v�−2,�−2, 0, 0)

...

v0 := v1 − v1,1 · m1 = (v0,0, 0, . . . , 0).

Since v� ∈ M, and each mt ∈ M, we conclude that all the vt ∈ M and in particular
v0 ∈ M. Thus for any i we must have v0,0(xi ) = 0. This means G must right-divide v0,0:
for otherwise, the division would yield a non-zero remainder B ∈ R with deg B < degG
but still having B(xi ) = 0, contradicting the minimality of G.

Summarily, v0 = f ·m0 for some f ∈ R, and hence Q = v� is anR-linear combination
of the rows of M . 
�

To complete the interpolation step, we need to find an element of M whose components
satisfy the degree constraints (4).

Theorem 3 Consider an instance of Problem 2, and let M be as in (5). Let w = (0, (k −
1), . . . , �(k − 1)), and V be a basis of M in w-shifted weak Popov form. If v is a row of V
with minimal w-shifted degree, degΦw(v), then v is a solution to Problem 2.
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Row reduction applied to decoding of rank-metric and subspace codes 397

Proof Any rowofV satisfies (3) because it is inM.As previously remarked, there exists some
solution Q = (Q0, Q1, . . . , Q�) ∈ M satisfying the degree conditions (4). By the choice of
v and by Lemma 1 on page 5, then degΦw(v) ≤ degΦw(Q). But then if t = LP(Φw(Q))

we have that for any i :

deg
(
vi x

i(k−1)
)

≤ degΦw(Q) = deg
(
Qt x

t (k−1)
)

< χ

Hence, v satisfies (4). 
�
This results immediately in the decoding procedure outlined as Algorithm 2.

Algorithm 2 MV interpolation step by row reduction
Input: An instance of Problem 2
Output: A vector Q ∈ R�+1 solving Problem 2.
1 Set up M as in 6.
2 Compute a w-shifted weak Popov form V of M .
3 return the row v of V which has minimal w-shifted degree degΦw(v).

Theorem 4 Algorithm 2 has complexity O(�n2) over Fqs .

Proof Computing G can be done straightforwardly in O(n2) operations over Fqs . Each Rt

can be computed in the same speed using a decomposition into smaller interpolations and
two annihilator polynomials, see e.g. [39]. For Line 2, we use Algorithm 7 whose complexity
is O(�n2), proved as Theorem 10. 
�

In [48], Xie, Lin, Yan and Suter present an algorithm for solving the Interpolation Step
using a skew-variant of theKötter–Nielsen–Høholdt algorithm [35]with complexity O(�2sn)

over Fqs . Since n < s, our algorithm is at least as fast as theirs. Note that these costs probably
dominate the complexity ofMVdecoding: the other step,Root-finding, likely5 has complexity
O(�2kn).

4 Row reduction of R-matrices

4.1 The Mulders–Storjohann algorithm

In this section, we introduce our algorithmic work horse: obtaining row reduced bases of left
R-modules V ⊆ Rm . The core is an R-variant of the Mulders–Storjohann algorithm [31]
that was originally described for F[x] matrices. The algorithm and its proof of correctness
carries over almost unchanged, while a fine-grained complexity analysis is considerablymore
involved; we return to this in Sect. 4.3.

5 In [28], the claimed complexity of their root-finding is O(�O(1)k). However, we have to point out that the
complexity analysis of that algorithm has severe issues which are outside the scope of this paper to amend.
There are two problems: (1) It is not proven that the recursive calls will not produce many spurious “pseudo-
roots” which are sifted away only at the leaf of the recursions; and (2) the cost analysis ignores the cost of
computing the shifts Q(X, Yq + γY ). Issue 1 is necessary to resolve for assuring polynomial complexity. For
the original F[x]-algorithm this is proved as [42, Proposition 6.4], and an analogous proof might carry over.
Issue 2 is critical since these shifts dominate the complexity: assuming the algorithm makes a total of O(�k)
recursive calls to itself, then O(�k) shifts need to be computed, each of which costs O(� degx Q) ⊂ O(�n).
If Issue 1 is resolved the algorithm should then have complexity O(�2kn).
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398 S. Puchinger et al.

Algorithm 3 Mulders–Storjohann for R matrices
Input: A matrix V overR, whose rows span a module V .
Output: A basis of V in weak Popov form.
1 Until no longer possible, apply a simple LP-transformation on two rows in V .
2 return V .

Definition 5 Applying a simple transformation i on j at position h on a matrix V with
deg vi,h ≤ deg v j,h means to replace v j by v j − αxβvi , where β = deg v j,h − deg vi,h and
α = LC(v j,h)/θ

β(LC(vi,h)).
By a simple LP-transformation i on j , where LP(vi ) = LP(v j ), we will mean a simple

transformation i on j at position LP(vi ).

Remark 1 Note that a simple transformation i on j at position h cancels the leading term of
the polynomial v j,h . Elementary row operations keep the row space and rank of the matrix
unchanged, and in particular so does any sequence of simple transformations.

We use the following value function for R vectors as a “size” of Rm vectors:

ψ : Rm → Z≥0

v �→
{
0 if v = 0
m deg v + LP(v) + 1 otherwise

Lemma 6 For some V ∈ R·×m, consider a simple LP-transformation i on j , where v j is
replaced by v′

j . Then ψ(v′
j ) < ψ(v j ).

Proof The proof works exactly as in the F[x] case, cf. [32, Lemma 8]. 
�

Theorem 5 Algorithm 3 is correct.

Proof By Lemma 6, the ψ-value of one row of V decreases for each simple LP-
transformation. The sum of the values of the rows must at all times be non-negative so
the algorithm must terminate. When the algorithm terminates there are no i �= j such that
LP(vi ) = LP(v j ). That is to say, V is in weak Popov form. 
�

The above proof easily leads to the rough complexity estimate of Algorithm 3 of
O(m2 deg V maxdeg V ), where m is the number of columns in V .

Note that in Algorithm 3 each iteration might present several possibilities for the simple
LP-transformation; the above theorem shows that any choice of LP-transformations leads to
the correct result.

To transform V into w-shifted weak Popov form, for some shift w ∈ Z
m≥0, we let V

′ =
Φw(V ) and applyAlgorithm3onV ′ to obtainW ′ inweakPopov form.SinceAlgorithm3only
performs row operations, it is clear that Φw can be inverted on W ′ to obtain W = Φ−1

w (W ′).
Then W is in w-shifted weak Popov form by definition.

4.2 The determinant degree and orthogonality defect

The purpose of this section is to introduce the orthogonality defect as a tool for measuring
“how far” a square, full-rank matrix over R is from being in weak Popov form. It relies on
the nice properties of the degree of the Dieudonné determinant for matrices over R. The
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orthogonality defect for F[x] matrices was introduced by Lenstra [22] and used in [32] to
similar effect as we do here.

Dieudonné introduced a function for matrices over skew fields which shares some of the
essential properties of the usual commutative determinant, in particular that it is multiplica-
tive, see [12] or [13, Sect. 20]. This Dieudonné determinant can be applied to matrices over
R by consideringR inside its left field of fractions. The definition of this determinant is quite
technical, and we will not actually need to invoke it. Rather, we will use an observation by
Taelman [46] that the Dieudonné determinant implies a simple-behaving determinant degree
function for matrices with very nice properties:

Proposition 1 There is a unique function deg det : Rm×m → Z≥0 ∪ {−∞} s.t.:
– deg det(AA′) = deg det(A) + deg det(A′) for all A, A′ ∈ Rm×m.
– deg detU = 0 for all U ∈ GLm(R).
– If A is diagonal with diagonal elements d0, . . . , dm−1, then deg det A = ∑

i deg di

Corollary 1 For any A, A′ ∈ Rm×m then:

– If A′ is obtained from A by elementary row operations, then deg det A′ = deg det A.
– If B equals A ∈ Rm×m with one row or column scaled by some f ∈ R∗, then deg det B =

deg f + deg det A.
– If A is triangular with diagonal elements d0, . . . , dm−1, then deg det A = ∑

i deg di .
– deg det(Φw(A)) = deg det(A) + ∑

i wi for any shift w.

Example 1 Consider input matrix Φw(M) to Algorithm 1 for the case6 � = 2, w =
(γ0, γ1, γ2) = (100, 42, 69), deg s1 = 99, deg s2 = 95 and deg g1 = deg g2 = 100. Then

Φw(M) =
⎛

⎝
xγ0 s1xγ1 s2xγ2

g1xγ1

g2xγ2

⎞

⎠ =
⎛

⎝
1 s1 s2
g1

g2

⎞

⎠

⎛

⎝
xγ0

xγ1

xγ2

⎞

⎠ .

And so by Proposition 1, deg detΦw(M) = deg g1 + deg g2 + ∑
i γi = 411.

This description of deg det(·) is not operational in the sense that it is not clear how to
compute deg det V for general V ∈ Rm×m . The following definition and Proposition 2
implies that Algorithm 3 can be used to compute deg det V ; conversely, we show in Sect. 4.3
how to bound the complexity of Algorithm 3 based on deg det V .

Definition 6 The orthogonality defect of V ∈ Rm×m is �(V ) := deg V − deg det V .

The following observations are easy for F[x] matrices, but require more work over R:

Proposition 2 Let V ∈ Rm×m of full rank and in weak Popov form. Then �(V ) = 0.

Proof Due to Corollary 1, we can assume the columns and rows of V are ordered such that
LP(vi ) = i and deg vi,i ≤ deg v j, j for i < j . Wewill call this property “ordered weak Popov
form” in this proof. Note that it impliesψ(vi ) < ψ(v j ) for i < j . We will inductively obtain
a series of matrices V (0) = V, V (1), V (2), . . . , V (m) each in ordered weak Popov form, and
such that the first i columns of V (i) are zero below the diagonal. Then V (m) is upper triangular
and we can obtain two expressions for its deg det.

6 This is a realistic shift register problem arising in decoding of an Interleaved Gabidulin code with n = s =
100, k1 = 58, k2 = 31.
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So assume that V (i) is in ordered weak Popov form and its first i columns are zero below
the diagonal. Recall that the (left) union of two skew polynomials f, g ∈ R is the unique
lowest-degree p ∈ R such that p = a f = bg for some a, b ∈ R; it is a consequence of the
Euclidean algorithm that the union always exists, see e.g. [38]. For each j > i consider now
the coefficients in the union of v

(i)
i,i and v

(i)
j,i , i.e. a

(i)
j , b(i)

j ∈ R such that a(i)
j v

(i)
i,i = b(i)

j v
(i)
j,i .

Let

V (i+1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ii−1

1
−a(i)

i+1 b(i)
i+1

...
. . .

−a(i)
m−1 b(i)

m−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

V (i) ,

where Ii−1 is the (i − 1)× (i − 1) identity matrix. The i + 1 first columns of V (i+1) are then
zero below the diagonal. Also LP(a(i)

j v
(i)
i ) < LP(b(i)

j v
(i)
j ) = LP(v

(i)
j ) and deg(a(i)

j v
(i)
i ) ≤

deg(b(i)
j v

(i)
j ) for j > i , which means ψ(a(i)

j v
(i)
i ) < ψ(b(i)

j v
(i)
j ) and therefore ψ(v

(i+1)
j ) =

ψ(b(i)
j v

(i)
j ). This implies that V (i+1) is in ordered weak Popov form and that deg v

(i+1)
j, j =

deg b(i)
j + deg v

(i)
j, j for j > i , which inductively expands to

deg v
(i+1)
j, j = deg v j, j +

i∑

h=0

deg b(h)
j .

Inductively, we therefore arrive at an upper triangular matrix V (m) in ordered weak Popov
form, and whose diagonal elements satisfy deg v

(m)
j, j = deg v j, j + ∑ j−1

i=0 deg b(i)
j . Thus

deg det V (m) is the sum of all these degrees by Corollary 1. On the other hand V (m) is
obtained by multiplying triangular matrices on V (0) = V , so by Proposition 1 we get another
expression for deg det V (m) as:

deg det V (m) = deg det V +
m−1∑

i=0

m−1∑

j=i+1

deg b(i)
j

Combining the expressions, we get deg det V = ∑m−1
i=0 deg vi,i = deg V . 
�

Corollary 2 Let V ∈ Rm×m and full-rank, then 0 ≤ deg det V ≤ deg V .

Proof Applying Algorithm 3 on V would use row operations to obtain a matrix V ′ ∈ Rm×m

in weak Popov form. Then deg det V = deg det V ′ by Proposition 1. By Proposition 2 then
deg det V ′ = deg V ′ ≥ 0, and by the nature of Algorithm 3, then deg V ′ ≤ deg V . 
�
4.3 Complexity of Mulders–Storjohann

We can now bound the complexity of Algorithm 3 using arguments completely analogous to
the F[x] case in [32]. These are in turn, the original arguments of [31] but finer grained by
using the orthogonality defect. We bring the full proof here since the main steps are referred
to in Sect. 5.1.

Theorem 6 Algorithm 3 with a full-rank input matrix V ∈ Rm×m performs at most
m

(
�(V ) + m

)
simple LP-transformations, and it has complexity O(m2�(V )maxdeg(V ))

over F.
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Proof By Lemma 6, every simple LP-transformation reduces the ψ-value of one row with
at least 1. So the number of possible simple LP-transformations is upper bounded by the
difference of values of the input matrix V and the output matrixU , the matrices values being
the sum of their rows’. More precisely, the number of iterations is upper bounded by:

∑m−1
i=0

[
m deg vi + LP(vi ) − (

m deg ui + LP(ui )
)]

≤ m2 + m
∑m−1

i=0

[
deg vi − deg ui

]

= m[deg V − degU + m] = m(�(V ) + m),

where the last equality follows from degU = deg detU due to Proposition 2 and deg detU =
deg det V .

One simple transformation consists of calculating v j − αxβvi , so for every coefficient
in vi , we must apply θβ , multiply by α and then add it to a coefficient in v j , each being in
O(1). Since deg v j ≤ maxdeg(V ) this costs O(mmaxdeg(V )) operations in F. 
�

Since �(V ) ≤ deg V , the above complexity bound is always at least as good as the
straightforward bound we mentioned at the end of Sect. 4.1.

Example 2 [Mulders–Storjohann algorithm on an MgLSSR] Consider an instance of Prob-
lem 1. The complexity of Algorithm 1 is determined by a row reduction of

Φw(M) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

xγ0 s1xγ1 s2xγ2 . . . s�xγ�

g1xγ1

g2xγ2

. . .

g�xγ�

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Let μ := maxi {γi + deg gi }. We can assume that γ0 < maxi≥1{γi + deg si } ≤ μ since
otherwise M is already inw-shifted weak Popov form. To apply Theorem 6, we calculate the
orthogonality defect of Φw(M). Since it is upper triangular, the degree of its determinant is

deg detΦw(M) =
�∑

i=1

deg gi +
�∑

i=0

γi .

The degrees of the rows of Φ(M) satisfy

degΦw(m0) = max
i

{γi + deg si } ≤ μ ,

degΦw(mi ) = γi + deg gi for i ≥ 1.

Thus, �(Φw(M)) ≤ μ − γ0. With maxdeg(Φw(M)) ≤ μ, Theorem 6 implies a complexity
of O(�2μ2), assuming � ∈ O(μ). Note that the straightforward bound on Algorithm 3 yields
O(�3μ2). 
�
Example 3 (Mulders–Storjohann for the Interpolation Step in decoding MV codes) Line 2
of Algorithm 2 is a row reduction of Φw(M), as defined in (6) on page 8, whose degrees of
the nonzero entries are component-wise upper bounded by:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n
n (k − 1)
n 2(k − 1)
...

. . .

n �(k − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Thus�(Φw(M)) ≤ degΦw(M)−n− (
�+1
2

)
(k−1) ≤ �n. Using Theorem 6, the complexity

in operations over Fqs becomes O(�3n2).

5 Faster row reduction on matrices having special forms

In this section, we will investigate improved row reduction algorithms for matrices of special
forms. Themain goals are to improve the running time of row reducing thematrices appearing
in the decoding settings of Sects. 3.1 and 3.2, but the results here apply more broadly.

5.1 Shift register problems: the demand-driven algorithm

Our first focus is to improve the MgLSSR case of Algorithm 1 on page 7, where we are
to row reduce Φw(M), given by (7): Algorithm 4 is a refinement of Algorithm 3 which is
asymptotically faster when all gi are of the form xdi + ai for ai ∈ F. Though the refinement
is completely analogous to that of [32] for the F[x] case, no complete proof has appeared in
unabridged, peer-reviewed form before, so we give full proofs of theR case here. We begin
with a technical lemma:

Lemma 7 Consider an instance of Problem 1 and Algorithm 3 with input Φw(M)

of (7). Let g̃ j = g j xγ j . Consider a variant of Algorithm 3 where, after a simple LP-
transformation i on j , which replaces v j with v′

j , we instead replace it with v′′
j =

(v′
j,0, v

′
j,1 mod g̃1, . . . , v′

j,� mod g̃�). This does not change the correctness of the algorithm
or the upper bound on the number of simple LP-transformations performed.

Proof Correctness follows if we can show that each of the � modulo reductions could have
been achieved by a series of row operations on the current matrix V after the simple LP-
transformation producing v′

j . For each h ≥ 1, let gh = (0, . . . , 0, g̃h, 0, . . . , 0), with position
h non-zero.

During the algorithm, we will let Jh be a subset of the current rows in V having two
properties: that gh can be constructed as anR-linear combination of the rows in Jh ; and that
each v ∈ Jh has ψ(v) ≤ ψ(gh). Initially, Jh = {gh}.

After simple LP-transformations on rows not in Jh , the h’th modulo reduction is therefore
allowed, since gh can be constructed by the rows in Jh . On the other hand, consider a
simple LP-transformation i on j where v j ∈ Jh , resulting in the row v′

j . Then the h’th
modulo reduction has no effect since ψ(v′

j ) < ψ(v j ) ≤ ψ(gh). Afterwards, Jh is updated
as Jh = Jh \ {v j } ∪ {v′

j , vi }. We see that Jh then still satisfies the two properties, since
ψ(vi ) ≤ ψ(v j ) ≤ ψ(gh).

Since ψ(v′′
j ) ≤ ψ(v′

j ) the proof of Theorem 6 shows that the number of simple LP-
transformations performed is still bounded by (� + 1)(�(V ) + � + 1). 
�

Theorem 7 Algorithm 4 is correct.

Proof We first prove that an intermediary algorithm, Algorithm 5, is correct using the cor-
rectness of Algorithm 3, and then prove the correctness of Algorithm 4 using Algorithm 5
and Lemma 7. Starting fromAlgorithm 3with inputΦw(M), then Algorithm 5 is obtained by
two simple modifications: Firstly, note that initially, when V := Φw(M), then LP(vh) = h
for h ≥ 1, and therefore the only possible simple LP-transformation must involve v0. We
can maintain this property as a loop invariant throughout the algorithm by swapping v0 and
vLP(v0) when applying a simple LP-transformation LP(v0) on 0.
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Algorithm 4 Demand-Driven algorithm for MgLSSR
Input: Instance of Problem 1. s̃ j ← s1, j x

γ j , g̃ j ← g j x
γ j for j = 1, . . . , �.

Output: The zeroth column of a basis of M of (1) in w-shifted weak Popov form.
1 (η, h) ← (deg,LP) of (xγ0 , s̃1, . . . , s̃σ ).
2 if h = 0 then return (1, 0, . . . , 0).
3 (λ0, . . . , λ�) ← (xγ0 , 0, . . . , 0).
4 α j x

η j ← the leading monomial of g̃ j for j = 1, . . . , �.
5 while deg λ0 ≤ η do
6 α ← coefficient to xη in (λ0 s̃h mod g̃h).
7 if α �= 0 then
8 if η < ηh then swap (λ0, α, η) and (λh , αh , ηh).
9 λ0 ← λ0 − α/θη−ηh (αh)xη−ηh λh .

10 (η, h) ← (η, h − 1) if h > 1 else (η − 1, �).
11 return

(
λ0x

−η0 , . . . , λ�x
−η0

)
.

Intermediate Algorithm 5 for the correctness proof of Algorithm 4
Input: Instance of Problem 1. V ← Φw(M) with M as in (7).
Output: A basis V ′ ofM of (1) in w-shifted weak Popov form.
1 (η, h) ← (deg,LP) of v0.
2 if h = 0 then return Φ−1

w (V ).
3 while deg v0,0 ≤ η do
4 α ← coefficient to xη in v0,h .
5 if α �= 0 then
6 ηh ← deg vh .
7 αh ← coefficient to xηh in vh,h .
8 if η < ηh then swap (v0, α, η) and (vh , αh , ηh).
9 v0 ← v0 − α/θη−ηh (αh)xη−ηh vh .

10 (η, h) ← (η, h − 1) if h > 1 else (η − 1, �).
11 return Φ−1

w (V ).

The second modification is to maintain (η, h) as an upper bound on the (deg,LP) of
v0 throughout the algorithm: we initially simply compute these values. Whenever we have
applied a simple LP-transformation on v0 resulting in v′

0, we know by Lemma 6 thatψ(v′
0) <

ψ(v0). Therefore, either deg v′
0 < η or deg v′

0 = η ∧ LP(v′
0) < h. This is reflected in a

corresponding decrement of (η, h).
As a loop invariant we therefore have ψ(v0) ≤ η(� + 1) + h. After an iteration, if this

inequality is sharp, it simply implies that the α computed in the following iteration will
be 0, and (η, h) will be correspondingly decremented once more. Note that we never set
h = 0: when LP(v0) = 0 then V must be in weak Popov form (since we already maintain
LP(vh) = h for h > 0). At this point, the while-loop will be exited since deg v0 > η.

Algorithm 5 is then simply the implementation of these modifications, and writing out in
full what the simple LP-transformation does to v0. This proves that Algorithm 5 is opera-
tionally equivalent to Algorithm 3 with input Φw(M).

For obtaining Algorithm 4 from Algorithm 5, the idea is to store only the necessary
part of V and compute the rest on demand. Firstly, by Lemma 7 correctness would be
maintained if the simple LP-transformation on Line 9 of Algorithm 5 was followed by the
� modulo reductions. In that case, we would have v0,h = (v0,0s̃h mod g̃h), so storing only
v0,0 suffice for reconstructing v0. Consequently we store the first column of V in Algorithm 4
as (λ0, . . . , λ�). Line 6 of Algorithm 4 is now the computation of the needed coefficient of
v0,h at the latest possible time.
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As deg vh is used in Line 6 of Algorithm 5, we need to store andmaintain this between iter-
ations; this is the variables η1, . . . , η�. To save some redundant computation of coefficients,
the xηh -coefficient of vh,h is also stored as αh .

This proves that Algorithm 4 is operationally equivalent to Algorithm 5, which finishes
the proof of correctness. 
�
Proposition 3 Algorithm 4 has computational complexity O(�μ2 + ∑�

h=1
∑μ−1

η=0 Th,η),
where μ = maxi {γi + deg gi } and Th,η bounds the complexity of running Line 6 for those
values of h and η.

Proof Clearly, all steps of the algorithm are essentially free except Lines 6 and 9. Observe
that every iteration of thewhile-loop decreases an upper bound on the value of row 0, whether
we enter the if-branch in Line 7 or not. So by the arguments of the proof of Theorem 6, the
loop will iterate at most O(�μ) times in which each possible value of (h, η) ∈ {1, . . . , �} ×
{0, . . . , μ − 1} will be taken at most once. Each execution of Line 9 costs O(μ) since the λ j

all have degree at most μ. 
�
It is possible to use Proposition 3 to show that Algorithm 4 is efficient if e.g. all the gi have

few non-zero monomials.7 We will restrict ourselves to a simpler case which nonetheless has
high relevance for coding theory:

Theorem 8 Algorithm 4 can be realised with complexity O(�μ2) if gi = xdi +ai for ai ∈ Fq

for all i , where μ = maxi {γi + deg gi }.
Proof We will bound

∑μ−1
η=0 Th,η of Proposition 3. Note first that for any η, the coefficient α

to xη in (λs̃h mod g̃h) equals the coefficient to xη−γh of (λsh mod gh), so considering γh = 0
suffice. Now if η ≥ dh then α = 0 and can be returned immediately. If η < dh , then due to the
assumed shape of gi , α is a linear combination of the coefficients to xη, xη+dh , . . . , xη+tdh

in λ0sh , where t =
⌊

μ−η
dh

⌋
. Each such coefficient can be computed by convolution of λ0

and sh in O(μ), so it costs O(
μ2

d ) to compute α. Summing over all choices of η, we have
∑μ−1

η=0 Th,η ∈ O(μ2) and the theorem follows from Proposition 3. 
�
5.2 Weak Popov walking

The goal of this section is to arrive at a faster row reduction algorithm for the matrices used
for decoding MV codes in Sect. 3.2. However, the algorithm we describe could be of much
broader interest: it is essentially an improved way of computing a w-weak Popov form of
a matrix which is already in w′-weak Popov form, for a shift w′ which is not too far from
w. Inspired by “Gröbner walks”, we have dubbed this strategy “weak Popov walking”. Each
“step” of the walk can be seen as just Algorithm 3 but where we carefully choose which
LP-transformations to apply each iteration, in case there is choice.

This strategy would work completely equivalently for the F[x] case. However, to the best
of our knowledge, that has not been done before.

In this section we will extensively discuss vectors under different shifts. To ease the
notation we therefore introduce shifted versions of the following operators: LPw(v) :=
LP(Φw(v)) as well as degw(v) := degΦw(v).

7 In the conference version of this paper [24], we erroneously claimed a too strong statement concerning this.
However, one can relate the complexity of Algorithm 4 to the number of non-zero monomials of gi , as long
as all but the leading monomial have low degree; however the precise statement becomes cumbersome and is
not very relevant for this paper.
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We begin by Algorithm 6 that efficiently “walks” from a weak Popov form according to
the shiftw into one with the shiftw+ (1, 0, . . . , 0). The approach can readily be generalised
to support increment on any index, but we do not need it for the decoding problem so we
omit the generalisation to simplify notation.

Algorithm 6 Weak Popov walking

Input: Shift w ∈ Z
m≥0 and matrix V ∈ Rm×m in w-shifted weak Popov form.

Output: Matrix in ŵ-shifted weak Popov form spanning the same R-row space as V , where ŵ = w +
(1, 0, . . . , 0).

1 hi ← LPw(vi ), for i = 0, . . . ,m − 1.
2 I ← indexes i such that LPŵ(vi ) = 0.
3 [i1, . . . , is ] ← I sorted such that hi1 < hi2 < . . . < his .
4 t ← i1.
5 for i = i2, . . . , is do
6 if deg vt,0 ≤ deg vi,0 then
7 Apply a simple transformation t on i at position 0 in V .
8 else
9 Apply a simple transformation i on t at position 0 in V .

10 t ← i .
11 return V .

Theorem 9 Algorithm 6 is correct.

Proof Denote in this proof V as the input and V̂ as the output of the algorithm. The algorithm
performs a single sweep of simple transformations, modifying only rows indexed by I : in
particular, if vi , v̂i are the rows of V respectively V̂ , then either v̂i = vi , or v̂i is the result of
a simple transformation on vi by another row v j of V and i, j ∈ I . All the hi are different
since V is in w-shifted weak Popov form. We will show that the ŵ-shifted leading positions
of V̂ is a permutation of the hi , implying that V̂ is in ŵ-shifted weak Popov form.

Note first that for any vector v ∈ Rm with LPw(v) �= LPŵ(v), then LPŵ(v) = 0, since
only the degree of the 0’th position of Φŵ(v) is different from the corresponding position
of Φw(v). For each i ∈ {0, . . . ,m − 1} \ I we have v̂i = vi and so LPŵ(v̂i ) = hi . And of
course for each i ∈ I we have LPŵ(vi ) = 0. This implies for each j ∈ I that:

deg v j,0 + w0 = deg v j,h j + wh j . (8)

Consider first an index i ∈ I for which Line 9 was run, and let t be as at that point. This
means v̂i = vi +αxδvt for some α ∈ F and δ = deg vi,0−deg vt,0. Note that the if-condition
ensures δ ≥ 0 and the simple transformation makes sense. We will establish that LPŵ(v̂i ) =
hi . Since we are performing an LP-transformation, we know that degŵ v̂i ≤ degŵ vi , so we
are done if we can show that deg v̂i,hi = deg vi,hi and deg v̂i,k + wk < deg vi,hi + whi for
k > hi . This in turn will follow if αxδvt has ŵ-weighted degree less than deg vi,hi + whi on
all position k ≥ hi .

Due to LPw(vt ) = ht and (8) for index t then for any k > ht :

deg vt,k + wk < deg vt,ht + wht = deg vt,0 + w0 . (9)

Using deg vt,0 + δ = deg vi,0 and (8) for index i , we conclude that

deg vt,k + wk + δ < deg vi,0 + w0 = deg vi,hi + whi .

Since ht < hi by the ordering of the i�, this shows that deg vi,k + wk + δ < deg vi,hi + whi
for k ≥ hi . These are the degree bounds we sought and so LPŵ(v̂i ) = hi .
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Consider now an i ∈ I for which Line 9 was run, and let again t be as at that point, before
the reassignment. The situation is completely reversed according to before, so by analogous
arguments LPŵ(v̂t ) = hi .

For the value of t at the end of the algorithm, then clearly LPŵ(v̂t ) = 0 since the row
was not modified. Since we necessarily have hi1 = 0, then LPŵ(v̂t ) = hi1 . Thus every hi
becomes the ŵ-leading position of one of the v j exactly once. But the hi were all different,
and so V̂ is in ŵ-shifted weak Popov form. 
�
Proposition 4 Algorithm 6 performs at most

O
(
m deg det(V ) + ∑

i< j |wi − w j | + m2
)

operations over R.

Proof We will bound the number of non-zero monomials which are involved in simple
transformations. As remarked in the proof of Theorem 9, all simple transformations are done
using distinct rows of the input matrix, so it suffices to bound the total number of monomials
in the input matrix V .

Since we are then simply counting monomials in V , we can assume w.l.o.g. that w0 ≤
w1 ≤ . . . ≤ wm−1, and since the input matrix V was in w-shifted weak Popov form, assume
also w.l.o.g that we have sorted the rows such that LPw(vi ) = i . Since �(Φw(V )) = 0 we
have

deg detΦw(V ) = degw V that is degw V = deg det V + ∑
i wi .

We can therefore consider the assignment of degw to the individual rows of V under these
constraints that will maximise the possible number of monomials in V . We cannot have
degw vi < wi since LPw(vi ) = i . It is easy to see that the worst-case assignment is then to
have exactly degw vi = wi for i = 0, . . . ,m − 2 and degw vm−1 = deg det V + wm−1. In
this case, for i < m − 1 then deg vi, j ≤ wi − w j if j ≤ i and vi, j = 0 if j > i , so the
number of monomials can then be bounded as

⎛

⎝
m−2∑

i=0

i∑

j=0

(wi − w j + 1)

⎞

⎠ +
⎛

⎝
m−1∑

j=0

(deg det V + wm−1 − w j + 1)

⎞

⎠

≤ m2 +
∑

i< j

(w j − wi ) + m deg det V . 
�
The idea is now to iterate Algorithm 6 to “walk” from a matrix that is in weak Popov form

for one shift w into another one ŵ. Row reducing the matrix for the MV codes can be done
as Algorithm 7.

Algorithm 7 Find MV interpolation polynomial by weak Popov walk
Input: Instance of Problem 2 and the matrix V ← M of (6) on page 8
Output: A w-shifted weak Popov form of M
1 w = (

0, (k − 1), 2(k − 1), . . . , �(k − 1)
)
.

2 w′ = w + (
0, n, n, . . . , n

)
.

3 for i = 0, ..., n − 1 do
4 V ← WeakPopovWalk(V,w′).
5 w′ ← w′ + (1, 0, . . . , 0).
6 return V
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Theorem 10 Algorithm 7 is correct. It has complexity O(�n2) over Fqs .

Proof Note that M is in w′-shifted weak Popov form, where w′ is as on Line 2. Thus by the
correctness of Algorithm 6, then V at the end of the algorithm must be in

(
w + (n, . . . , n)

)
-

shifted weak Popov form. Then it is clearly also in w-shifted weak Popov form. For the
complexity, the algorithm simply performs n calls to Algorithm 6. We should estimate the
quantity

∑
i< j |wi − w j |, which is greatest in the first iteration. Since Problem 2 posits

n >
(
�+1
2

)
(k − 1), we can bound the sum as:

�∑

j=1

(n + j (k − 1)) +
∑

1≤i< j

( j − i)(k − 1) < �n + (� + 1)
(
�+1
2

)
(k − 1) ∈ O(�n) .

Since deg det(V ) = deg det(M) = n then by Proposition 4 each of the calls to Algorithm 6
therefore costs at most O(�n). 
�

6 Conclusion

Wehave explored row reduction of skew polynomialmatrices. For ordinary polynomial rings,
row reduction has proven a useful strategy for obtaining flexible, efficient while conceptually
simple decoding algorithms for RS and other code families. Our results introduce themethod-
ology and tools aimed at bringing similar benefits to Gabidulin, Interleaved Gabidulin, MV,
and other skew polynomial-based codes. We used those tools in two settings. We solved
a general form of multiple skew-shift register synthesis (cf. Problem 1), and applied this
for decoding of Interleaving Gabidulin codes in complexity O(�μ2), see Theorem 2. For
MV codes (cf. Problem 2), we gave an interpolation algorithm with complexity O(�n2),
see Theorem 4.

We extended and analysed the simple and generally applicable Mulders–Storjohann algo-
rithm to the skew polynomial setting. In both the studied settings, the complexity of that
algorithm was initially not satisfactory, but it served as a crucial step in developing more effi-
cient algorithms. For multiple skew-shift register synthesis, we were able to obtain a good
complexity for a more general problem than previously. For the MV codes, the improved
algorithm was in the shape of a versatile “Weak PopovWalk”, which could potentially apply
to many other problems. In all previously studied cases, we matched the best known com-
plexities [44,48] that do not make use of fast multiplication of skew polynomials.

Based on a preprint of this paper, in [40] it is shown how to further reduce the complexity
for decoding Interleaved Gabidulin codes using a divide-&-conquer version of Algorithm 3,
matching the complexity of [43].

The weak Popov form has many properties that can be beneficial in a coding setting,
and which we did not yet explore. For instance, it allows to easily enumerate all “small”
elements of the row space: that could e.g. be used to enumerate all solutions to a shift register
problem, allowing a chase-like decoding of Interleaved Gabidulin codes beyond half the
minimum distance.
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