
Des. Codes Cryptogr. (2017) 82:43–56
DOI 10.1007/s10623-016-0256-x

Upper bounds on the complexity of algebraic
cryptanalysis of ciphers with a low multiplicative
complexity

Pavol Zajac1

Received: 18 August 2015 / Revised: 11 July 2016 / Accepted: 13 July 2016 /
Published online: 26 July 2016
© Springer Science+Business Media New York 2016

Abstract Lightweight cipher designs try to minimize the implementation complexity of the
cipher while maintaining some specified security level. Using only a small number of AND
gates lowers the implementation costs, and enables easier protections against side-channel
attacks. In our paper we study the connection between the number of AND gates (multi-
plicative complexity) and the complexity of algebraic attacks. We model the encryption with
multiple right-hand sides (MRHS) equations. The resulting equation system is transformed
into a syndrome decoding problem. The complexity of the decoding problem depends on
the number of AND gates, and on the relative number of known output bits with respect
to the number of unknown key bits. This allows us to apply results from coding theory,
and to explicitly connect the complexity of the algebraic cryptanalysis to the multiplicative
complexity of the cipher. This means that we can provide asymptotic upper bounds on the
complexity of algebraic attacks on selected families of ciphers based on the hardness of the
decoding problem.

Keywords Algebraic cryptanalysis ·Multiplicative complexity ·Lightweight cryptography ·
Decoding problem

Mathematics Subject Classification 94A60 · 68P30 · 11T71

1 Introduction

Multiplicative complexity of a Boolean function is the minimum number of two-input AND
gates required to implement the circuit that computes this function. It is possible to compute

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Coding and Cryptography”.

B Pavol Zajac
pavol.zajac@stuba.sk

1 Slovak University of Technology in Bratislava, Ilkovičova 3, 812-19 Bratislava, Slovakia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-016-0256-x&domain=pdf

44 P. Zajac

the multiplicative complexity for small Boolean functions [21,25]. The multiplicative com-
plexity of a typical cipher with large block or internal state is unknown, but can easily be
upper bounded by summing up themultiplicative complexities of (typically small) non-linear
building blocks of the cipher (such as S-boxes). We remark that multiplicative complexity of
a random Boolean function should scale exponentially in the input size [6], but for a typical
cipher it scales only polynomially due to implementation constraints. This makes low mul-
tiplicative complexity a distinguishing property of a practical cipher w.r.t. idealized random
model.

In the whole article we will only consider circuits given in XOR and AND gates only.
Let us suppose that an encryption is realized using a circuit with a limited number of two-
input AND gates. We start with a set of secret bits, and some known or chosen initialization
vector. Each input of the first AND gate can be computed as a linear combination of secret
bits and initialization vector bits. The inputs of the second AND gate can be computed as
a linear combination of secret bits, initialization bits and the output bit of the first AND
gate, and so on. The result of the encryption is some final linear combination of the secret
bits, initialization bits, and outputs of all AND-gates. We would like to compute the secret
bits, given the output bits and initialization bits. We can model this problem as a problem of
solving a system of non-linear equations over GF(2). There are various algebraic methods
that can be applied to this problem.

MRHS equation [17] can represent a non-linear equation over GF(2) in a way, which is
particularly useful for constructing equation systems describing ciphers using an S-box as
the only means for non-linearity [13]. Similarly, we can adapt this representation to model
our problem directly from a AND-XOR circuit description. In a recent article [23], we have
introduced a new algorithm to solveMRHS equation systems. The algorithm convertsMRHS
equation system to a group factorization problem, which can be solved either by a global
gluing algorithm, or by finding a specific codeword in a linear code. In this article, we explore
the (theoretical) application of this algorithm to the algebraic cryptanalysis of ciphers with a
low multiplicative complexity.

The evaluation of the complexity of the algebraic cryptanalysis can thus be explicitly
summed up in the following three steps:

1. Convert a cryptanalytic problem to a problem of solving a MRHS equation system using
the circuit description of the cipher (Sects. 2 and 3).

2. Use linear algebra to translate the problem of solving the MRHS equation system to a
decoding problem (Sect. 4).

3. Use known upper bounds for decoding problem to obtain upper bounds on the complexity
of the algebraic attack (Sect. 5).

2 MRHS equation systems

Definition 1 [18] LetK be a finite field. Multiple-Right-Hand-Sides (MRHS) equation is an
expression in the form

xM ∈ S, (1)

where M ∈ K
(k×n) is an (k × n) matrix, and S ⊂ K

n is a set of n-bit vectors. We say that
x ∈ K

k is a solution of the MRHS equation (1), if xM ∈ S holds for this particular x .

We are interested in MRHS equations where the set S is a set of a small constant size
(typically given explicitly). In this case, it is easy to compute all solutions of the MRHS

123

Upper bounds on the complexity of ACA of ciphers with a low MC 45

equation by repeatedly solving a linear system for each right-hand side vector taken from
S. The problem becomes more difficult if we combine more MRHS equations into a MRHS
system.

A MRHS system M is a set of m MRHS equations, with the same dimension k, i.e.

M = {
xMi ∈ Si ; i = 1, 2, . . . ,m

}
,

with Mi ∈ K
(k×ni), and Si ⊂ K

ni , respectively. Vector x ∈ K
k is a solution of the MRHS

system M, if it is a solution of all MRHS equations in M, i.e. xMi ∈ Si for each i =
1, 2, . . . ,m. We denote the set of all solutions of a MRHS system M by Sol(M). Our goal
is to obtain any solution of the system, or to show that no solution of the system exists.

Note that we can understand aMRHS system as a single MRHS equation xM ∈ S, where

M = (
M1 M2 · · · Mm

)

is a left-hand side matrix composed from the individual left-hand side matrices in the system,
and S = (S1 × S2 × · · · × Sm) is a Cartesian product of the right-hand side sets.

There are various methods to solve MRHS equation systems [13,14,19]. Most of these
techniques involve joining individual equations into a larger one, so called Gluing [17].
Generally, joining twoMRHSequations produce a larger onewith a new right-hand side S that
is a cartesian product of original right-hand sides. When joining two equations with linearly
dependent left hand sides, some of the resultant right-had sides can be removed. Typically,
during the whole Gluing algorithm the number of right-hand sides grows exponentially (with
a possible time-memory trade-off), and after some point the system collapses into a single
solution (if there is one). Some space can be saved by using compressed representation of
right-hand sides through the use of binary decision diagrams [15,16].

In [23] we have proposed a new algorithm1 to solve MRHS systems. This algorithm
looks at solution space as an intersection between a linear code and an explicitly written set
of points we get from a Cartesian product of right-hand sides (which is never evaluated).
We then propose an algorithm of a different type. It uses a linear algebra and notions from
group factoring [11] to solve the system. We also noted that the solution of the system can
be obtained by finding a specific short vector in a solution set of a special linear system.
In Sect. 4 we present the adapted algorithm to transform MRHS system into a syndrome
decoding problem.

3 Using MRHS representation to model circuits of low multiplicative
complexity

In this sectionwe focus on the connection of the algebraic cryptanalysis and themultiplicative
complexity of a circuit. This connection was already spotted by Courtois in [7], but only in a
general sense. We quantify this connection exactly through the use of MRHS equations, and
the transformation of the MRHS problem to a decoding problem. In this section we show
how to efficiently transform algebraic cryptanalysis of a cipher with a low multiplicative
complexity to a decoding problem instance, and estimate the complexity of attacking such
a cipher. As mentioned in the introduction, we work with universal gate set (AND, XOR),
which corresponds to basic operations (·,+) over GF(2).

1 Which in hindsight is similar to an informal proposal from [12, Sect. 5], but based on different premises.

123

46 P. Zajac

Fig. 1 Schematic view of the circuit model of the function F based on decomposition to AND gates ⊗ and
XOR gates ⊕

Definition 2 Let F : GF(2)ν → GF(2)κ be a vectorial Boolean function. Multiplicative
complexity of F , denoted by MC(F), is the minimum number of GF(2) multiplications
required to compute, using only operations from GF(2), the value of the function F in an
arbitrary point x ∈ GF(2)ν .

If function F has multiplicative complexity MC(F) = μ, there exists a computational
circuit composed of two-input AND gates and an arbitrary number of XOR gates that
computes a value of F for any input x ∈ GF(2)ν . We can model the computation as a
sequence of ν + μ + κ bits (xi), xi ∈ GF(2). The first ν bits, i.e., xi for i = 1, 2, . . . , ν
represent the input bits. The next μ bits are computed as the outputs of two-input AND-
gates. Each input of the AND gate is an arbitrary affine function2 of the previous bits.
I.e., xν+i = (ai,0 + ⊕ν+i−1

j=1 ai, j x j) · (bi,0 + ⊕ν+i−1
j=1 bi, j x j), where ai, j , bi, j ∈ GF(2),

i = 1, 2, . . . , μ, and the
⊕

represents the sum over GF(2). The two inputs of the same
AND gate must be linearly independent, otherwise we would get an affine function, and the
ANDgate in questionwould not be required. Finally, the last κ bits are the outputs of F , which
can be computed as any affine function of the previous bits, i.e., xν+μ+i = ci,0 ⊕ν+μ

j=1 ci, j x j .
Each of the outputs of AND-gates must be used to compute at least one output bit, else
the AND-gate would not be required. The output functions should be linearly independent,
otherwise some of the outputs would be redundant (they could be computed as a linear
combination of other outputs only). The model is schematically depicted in Fig. 1.

This model can be adapted to represent all the known stream ciphers, hash functions
or block ciphers (we will call them just ciphers for the sake of simplicity), even if their
multiplicative complexity (as a whole) is not known. This requires that the cipher under
consideration can be written as a sequence of small operations with known multiplicative
complexity (such as 4 × 4 bijective S-boxes analyzed in [25]), or other operations which
can be realized by a limited number of two-input AND gates. We can work with a circuit
description with possibly higher number of AND-gates than the minimum possible, but
still low enough for the attack. It might be possible to reduce the circuit further by some
optimization techniques [7].

Due to the requirement of the efficient implementation of the cipher the number of AND
gates for a typical cipher would be very small in comparison to the expected multiplicative
complexity of a random function. In the later text, μ will denote the number of two-input
AND gates in the circuit representation of the cipher regardless of whether this number is the

2 The bits of a possible initialization vector from the introduction part become affine constants in this model.

123

Upper bounds on the complexity of ACA of ciphers with a low MC 47

multiplicative complexity, or just an upper bound on the multiplicative complexity obtained
from some existing implementation of the cipher.

The (traditional) main problem of the cryptanalysis is to compute the input bits
x1, x2, . . . , xν , if we are given the output bits xν+μ+1, xν+μ+2, . . . , xν+μ+κ (inverting the
one way function). In practice, some of the input bits might be known, e.g., the input block
of a block cipher, the initialization vector of a stream cipher, etc. We can model the known
inputs by adding additional outputs that are identically equal to the input values, or add the
known bits to the affine constants a0, b0, and simplify the circuit where possible.

The circuit representation leads to direct translation of the cryptanalytic problem to a
problem of solving a set of non-linear (degree 2) equations over GF(2), which is the domain
of the algebraic cryptanalysis. There are many techniques how to solve such a system, such as
using some of the Gröbner basis techniques [9], translation to SAT problem [2], and others.

To translate the problem to MRHS representation we do the following:

1. For each of the μ AND-gates, write an MRHS equation using (ν +μ)× 3 left-hand side
matrix Mi . The first column of Mi contains coefficients ai, j , j = 1, . . . ν + i − 1 (others
are zero), the second column of Mi contains coefficients bi, j , j = 1, . . . ν + i − 1, and
the third column contains just a single non-zero coefficient at position ν + i (representing
the output bit xi).

2. The right-hand side of each Mi encodes the AND-gate operation, and the effect of affine
constants. If affine constants ai,0 = 0 and bi,0 = 0, the right hand side contains four
3-bit vectors Si = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. The third bit in each vector
is the output of the AND gate when the first two bits are its inputs, for all 4 possible
input bit combinations. Affine constants are ”added” to the input bit prior to using the
AND-gate. Thus, the right-hand side with affine constants taken into account is given
as Si = {(ai,0, bi,0, 0), (ai,0, bi,0 + 1, 0), (ai,0 + 1, bi,0, 0), (ai,0 + 1, bi,0 + 1, 1)}. We
provide Example 1 to clarify the process.

3. The original equation system has ν + μ unknowns. The m known output bits are right
hand sides of κ (independent) linear equations (given by coefficients ci, j) in these ν + μ

unknowns. By linear algebra we can express κ of the ν +μ unknowns as affine functions
of just ν + μ − κ unknowns.

4. We can simplify a system of μ MRHS equations over GF(2)(ν+μ) to a smaller system
over GF(2)(ν+μ−κ) by applying the affine substitutions from the previous step. We add
the linear part to the left hand sides of MRHS equations (so we cancel out the substituted
variables), and add the constant to the corresponding coordinate of all vectors in the
right-hand side sets.

It is possible that some of the new MRHS equations after the last step contain linearly
dependent columns. These equations can be simplified by Agreeing algorithm [13], so the
final system is even simpler. However, in the following wewill suppose the worst case system
that cannot be further simplified after the substitution step.

Example 1 Consider an example with x ∈ GF(2)5.Wemodel an ANDgate which computes
x4 from x1, x2, x3:

x4 = (x1 ⊕ x2 ⊕ 1) ⊗ (x2 ⊕ x3)

This equation can also be written in vector form as

(x · (11000)T ⊕ 1) ⊗ (x · (01100)T ⊕ 0) = x · (00010)T

123

48 P. Zajac

This leads to an MRHS equation in the form:

(x1, x2, x3, x4, x5) ·

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0
1 1 0
0 1 0
0 0 1
0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

∈

⎧
⎪⎪⎨

⎪⎪⎩

0 0 0,
0 1 1,
1 0 0,
1 1 0,

⎫
⎪⎪⎬

⎪⎪⎭

On the right hand side, we have vectors representing all four combinations of inputs of the
AND gate, and the corresponding output bit. Note that x5 is unused in this example, and if
the system does not have any more MRHS equations, we can omit this variable. We can also
note that the second row of M is a sum of the first and the third one. This means that we
can choose any x2, and get four corresponding solutions of the MRHS equation (depending
on the choice of x2), giving a total of 8 solutions. In a larger MRHS system, this linear
dependency might disappear by additional restrictions on x2 from another MRHS equations
in the system.

4 How to solve MRHS systems with syndrome decoding

Let xM ∈ S denote a MRHS system with

M = (
M1 M2 · · · Mm

)
,

and S = S1 × S2 ×· · ·× Sm , respectively. SubmatricesMm have dimensions (k × ni), while
matrix M has dimension k × n with n = ∑

ni .
We can restrict ourselves to systemswith full row rank k (no linearly dependent variables),

and with k < n (otherwise the system can be solved by linear algebra for any choice of the
right-hand side s ∈ S). Thus, each solution x of the MRHS system produces a corresponding
codeword xM in (n, k)-code over K generated by M. Let H denote the (n − k) × n parity
check matrix of this code. For any c ∈ K

n , such that cHT = 0, there is a unique solution
x ∈ K

k such that xM = c. Moreover, vector x is a solution of the MRHS system if and only
if c ∈ S.

The algorithm to solve MRHS equation system works by trying to obtain c ∈ S, such
that cHT = 0. Given c, we can compute x by linear algebra. Vector c can be written as a
concatenation of m parts (c1, c2, . . . , cm), such that ci ∈ Si . Let

H = (
H1 H2 · · · Hm

)
,

where each Hi is (n − k) × ni matrix. The condition cHT = 0 can be rewritten as

(c1, c2, . . . , cm) ·

⎛

⎜
⎜
⎜
⎝

HT
1

HT
2
...

HT
m

⎞

⎟
⎟
⎟
⎠

= c1HT
1 + c2HT

2 + · · · cmHT
m = 0.

Let SiHT
i denote a set of vectors fromK

(n−k) such that SiHT
i = {ciHT

i ; ci ∈ Si }. We want
to choose exactly one vector from each SiHT

i in such a way that all the selected vectors sum
to zero, or to show that it is not possible to find such a set of vectors. From the corresponding
ci ’s we can construct the desired vector c by concatenation, and then obtain x by linear
algebra. This corresponds to a group factorization problem (see [23]), or in a coding theory
to a 1-regular decoding problem if the sizes of each Si are fixed.

123

Upper bounds on the complexity of ACA of ciphers with a low MC 49

Let us reformulate the problem in a different form. Let r = ∑ |Si |, and let R denote a
r × (n − k) matrix with rows composed of vectors from SiHT

i . We want to find a solution u
of uR = 0, such that wH (u) = m, and if we split u to parts u = (u1, u2, . . . , um) of sizes
ni , then each part has wH (ui) = 1. I.e., we are looking for a vector of a very specific type in
the (r, r − n + k)-code with parity check matrix RT . In [23], we append each row of R by
m bits that denote to which group SiHT

i the row belongs (the i-th of the additional bits is set
to one, and the other m − 1 bits are set to zero). We get a new system

uR′ = u

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1, 0, . . . , 0
1, 0, . . . , 0

...

R 1, 0, . . . , 0
0, 1, . . . , 0

...

0, 0, . . . , 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (0, 0, . . . , 0, 1, 1, . . . , 1).

Each solution of this system with wH (u) = m is a solution of the original MRHS system. To
find such u, we must solve a syndrome decoding problem for code with parity check matrix
(R′)T .

Let us now go in a different direction than in [23]. Let ri, j denote j-th vector in the
i-th block of (row) vectors from R. Recall that i-th block of R corresponds to SiHT

i . Let
q = ∑

ri,ni , and letQ be a (r −m)× (n−k)matrix with rows inm blocks qi,1 = ri,1−ri,ni ,
…, qi,ni−1 = ri,ni−1 − ri,ni . Let vQ = q . Suppose that wH (vi) ≤ 1 for each part of v (v now
consists of blocks with lengths ni − 1). Then ui = (vi , 1), if wH (vi) = 0, and ui = (vi , 0),
if wH (vi) = 1.

The reformulated problem can be seen as a classical syndrome decoding problem: Given
syndrome q and parity check matrix QT , find an error vector v of the weight at most m
such that vQ = q . We are working with a smaller binary (r − m, r − m − n + k)-code.
There is a unique solution, if the code can repair up to m errors, i.e., it has a code distance at
least 2m + 1. Otherwise, we must search for a specific solution with wH (vi) ≤ 1 for each
part of v (if the original MRHS system has a solution, such a vector must exist). The code
under consideration is smaller than the one given by R′, so we expect that the corresponding
decoding problem can be easier to solve.

5 On the complexity of algebraic attacks on ciphers with a low
multiplicative complexity

In Sect. 3 we have shown how to construct an MRHS equation system, whose solution is
the solution of the problem of inverting a one way function F : GF(2)ν → GF(2)κ with
multiplicative complexity at most μ. The final MRHS system has ν + μ − κ unknowns,
with μ MRHS equations with |Si | = 4 solutions each. The system matrix M has the size
(ν + μ − κ) × (3μ). I.e., n = 3μ, k = μ + ν − κ , m = μ, r = 4μ in the notation from
Sect. 4.

Applying the algorithm in Sect. 4, we transform the problem of solving theMRHS system
into a specific syndrome decoding problem vQ = q . We are working with a binary (r −
m, r −m−n+ k)-code. Translating back the values, this means that code words have length
r−m = 3μ, and the code dimension is r−m−n+k = 4μ−μ−3μ+μ+ν−κ = μ+ν−κ .

123

50 P. Zajac

Code rate is thus

R = μ + ν − κ

3μ
= 1/3 + ν − κ

3μ
.

Furthermore, we want to decode at most m = μ errors, so we would like the code with
distance at least 2μ + 1. The Singleton bound k + d ≤ n + 1 says that the code distance
is less than n + 1 − k = 2μ + 1 + (ν − κ). If ν > κ , there are more unknown bits than
the number of restrictions (known bits), so we expect that there are more solutions of the
inversion problem.

If ν = κ , we need an MDS code to provide a unique solution, i.e., every 2μ rows of
Q must be linearly independent. This is not possible in the case of binary codes. However,
we look for a specific error vector, which is unique, if the original solution of the system
is unique. Other (incorrect solutions) must contain some linear combinations of more rows
of Q in a single block, corresponding to picking a linear combination of right-hand sides,
instead of a single right-hand side.We need a special decoding algorithm that does not accept
such solutions. Furthermore, due to the construction of the matrix Q, the expected number
of errors is lower than the upper bound μ. If there is an independent and equal chance to pick
each right hand for each MRHS equation, we expect on average to only get 3/4μ non-zero
error bits.

If ν < κ , we have more additional information bits than unknowns. Thus, we have a
higher chance that the code can decode as much asμ (or the expected 3/4μ) errors. The code
rate R is at most 1/3, and goes to zero as κ − ν grows relative to the number of AND gates.
Thus, the excess bits also lower the code rate, which means the complexity of the syndrome
decoding approach is lower. If the number of excess known bits is higher than the number
of AND gates, the problem degenerates to a simple linear algebra. On the other hand, if
κ − ν = 0, the number of AND gates does not influence the code rate, but it still increases
the dimension of the problem, so the complexity of the algebraic attack grows exponentially
in the multiplicative complexity.

The new results on general decoding algorithms [4] give some (asymptotic) upper bounds
on decoding complexity for random linear codes. They estimate the worst case time com-
plexity to be 20.1019n = 20.3057μ with the space required bounded by 20.0769n = 20.2307μ.
This means that to keep the attack complexity above the expected cost of the brute-force
attack 2ν , we need ν < 0.3057μ, or equivalently μ > 3.27ν, i.e., at least 3.27 times more
AND gates than the number of unknowns/key-bits.

5.1 Upper bounds for complexity of selected cipher families

The analysis provided in this section shows that complexity of the algebraic attacks on
ciphers with a low number of ANDgates can be upper bounded by the complexity of solving a
decoding problem. Let us consider some examples of well known lightweight cipher families.
In the examples, the attack complexity derivation for block ciphers uses parameter Nb, the
block size in bits. Parameter Nb directly influences the number of AND gates we need to
implement the cipher. Furthermore, if the number of key bits Nk = Nb, we can use an
algebraic attack with data complexity 1 (a single P-C pair should yield a unique key with
high probability). It should be easy to adapt the examples to situations where Nk 	= Nb.

PRESENT [5] is an example of a cipher based on a simple substitution-permutation
network (SPN). In each round, after key addition, bijective 4-bit S-boxes are applied to the
state of the cipher, and finally the state bits are permuted. PRESENT has a specific S-box
with knownmultiplicative complexity 4 out of maximum 5 [25]. One S-box is also applied in

123

Upper bounds on the complexity of ACA of ciphers with a low MC 51

each round in the key schedule. Let Nr denote the number of rounds of PRESENT-like SPN
cipher, and Nb the block size in bits. The number of AND gates used during the encryption
can be bounded by Nr ·(Nb/4+1)·M , whereM is the multiplicative complexity of the S-box
(the +1 comes from the key-schedule, but it could be ignored in an asymptotic analysis). If
each S-box has multiplicative complexity 4, we need at least four rounds to get the estimated
attack complexity higher than 2Nb (for a large enough block size). When using S-boxes with
multiplicative complexity 5, the estimated complexity of the attack (for large enough Nb)
becomes

O(20.3057μ) = O(20.3057Nr ·(Nb/4+1)·5) ≈ O(20.3844Nr ·Nb).

In this case, we get a higher complexity estimate than 2Nb for three rounds already.
National Security Agency proposed two lightweight ciphers SIMONand SPECK [3], both

of which have simple rounds with a low multiplicative complexity. SIMON is a hardware
oriented cipher based on Feistel structure. SIMON applies single AND gate per each bit
of the half state in each (Feistel) round. This means that we can express its multiplicative
complexity as Nr · (Nb/2). This means that we need at least seven rounds of SIMON to reach
the desired security level of at least 2Nb . SPECK is based on ARX3 design. It is known that
modular addition of n-bit words has multiplicative complexity n − 1 [7]. This is the only
non-linear operation in SPECK, and it operates on half-words. Thus, if we ignore the key
schedule, we get a similar result as for SIMON: at least seven rounds required to protect
against algebraic attacks. On the other hand, key schedule uses a single modular addition
after each round. If we have to take the key schedule into account, we can only break four
rounds of SPECK with a generic algebraic attack.

A prominent example of a stream cipher with a low multiplicative complexity is Trivium
[8]. In each clock of Trivium, only 3 AND gates in each clock are applied to the cipher state.
Suppose the attacker wants to reconstruct the internal state of the generator from the known
keystream. Here, ν = κ = 288 (internal state size), and the multiplicative complexity μ is
at most 3ν. This leads to an estimated complexity bounds: 2264 time and 2199 memory. This
still does not represent a break of Trivium, as Trivium only provides an 80-bit security level.

Recently, a new design LowMCwas introduced [1]. It is based on SPN with partial S-box
layer, and thus uses a very low number of AND gates per output bit (6-9 ANDs per bit).
Although this number of bits is higher than our asymptotic bound 3.27 AND gates per bit, it
leaves a very low security margin. Furthermore, our estimate is based on the upper bounds
for the generic decoding problem based on randomly generated linear codes. In practice,
codes obtained by our algorithm from real-world ciphers are far from random linear codes.
The generating matrix of the code can be very sparse and contain some regular structure that
might be exploited by more sophisticated attacks.

Although we have prepared this article with an intention to provide theoretical results, on
a suggestion of an anonymous reviewer we have also prepared a proof-of-concept attack on a
simple 4-round SIMON. A simple decoding-based attack is approximately 2000-times faster
in average than an exhaustive search. The details of the attack are provided in Appendix.

6 Concluding remarks

The MRHS equations and simple linear algebra can be used to transform an instance of
algebraic cryptanalysis to an instance of the decoding problem, either a 1-regular decoding

3 Cipher design where only operations modular Addition, bit Rotation, and XOR are used.

123

52 P. Zajac

problem, or a specific syndrome decoding problem. We can then apply new algorithms from
the decoding area to decrypt standard block and stream ciphers, or to invert hash functions.
This is especially useful for ciphers with (very) lowmultiplicative complexity. Moreover, the
new results in syndrome decoding (and generalized birthday attacks) can provide us strong
bounds on the required multiplicative complexity of ciphers.

In this article we use the transformation of the algebraic cryptanalysis to the decoding
problem to derive upper bounds on the complexity of algebraic attacks relative to the multi-
plicative complexity of the cipher. As the analysis in Sect. 5.1 shows, the generic decoding
attacks can break only very small instances of ciphers. See also Appendix for an example
attack on a small version of SIMON.

As far as we know, there is no known cipher that can be broken by this generic technique.
However, we believe that in practice the attack techniques can be further improved. The first
type of improvements can be derived from the special structure of the decoding problem
derived from the algebraic cryptanalysis. In our analysis we use generic decoding bounds
derived for random linear codes, but the codes we get from real ciphers have specific structure
(repeated rounds, symmetries in design) that might be exploited in decoding algorithm. Other
types of improvements might be derived from multiple instances of the decoding problem.

Sendrier [20] analyzes the situation when attacker needs to decode only one out of many
syndromes in the same code. The algorithm gives a significant advantage to the attacker
when the number of errors is small. When applying the algebraic cryptanalysis to obtain a
symmetric encryption key we have many possible instances with the same key as unknown,
and we need to decode just one of them. However, the instances have different (but related)
parity-check matrices. We might ask, whether it is possible to adapt some decoding methods
to decode one out of many instances in this specific form, and profit from many possible
plaintext-ciphertext pairs in the attack.

Furthermore, the construction of the matrix Q removes last vectors from the groups of
vectors in R, sums them up and produces the instance to decode. With a single instance of
the algebraic cryptanalysis, we might construct many instances of the decoding problem by a
random selection of vectors that are taken out of the matrix R. Again, we might ask, whether
this can speed-up or simplify the decoding algorithm.

Acknowledgements This research was supported by Grant VEGA 1/0173/13 and by project Cryptography
brings security and freedom SK06-IV-01-001 funded by EEA Scholarship Programme Slovakia.

Appendix: Experimental attack on a small version of Simon

Attack description and expected complexity

To support the theoretical results, we have prepared an example of a decoding attack on a 4-
round version of a block cipher SIMON-32. SIMON is a cipher with Feistel structure, which
uses only bit rotations and bitwise AND and XOR in its round function. For the purposes
of the attack, we have restricted the key to 32 bits, and adapted the key schedule to reflect
this change (we use m = 2 instead of original m = 4). For the full description of the cipher,
please refer to the original paper [3].

123

Upper bounds on the complexity of ACA of ciphers with a low MC 53

Given a plaintext-ciphertext pair (xL |xR, yL |yR) we can compute the key k = (k0, k1)
from a set of equations

F(k0 + F(xL) + yR) = yL + F(yL) + k1

F(yL + k3 + F(yR)) = yR + k2 + k0 (2)

Bits of the subkeys k2 and k3 can be expressed as affine functions of the bits of k. Function
F(x) can be computed as F(x) = (ROT (x, 8) AND ROT (x, 1)) XOR ROT (x, 2),where
AND, XOR, ROT are bitwise vector operations on 16 bit vectors (in our example).

We can rewrite the set of equations (2) directly on a bit level as a set of 32 non-linear
equations over GF(2) of a form:

(
k · aTi,0 + ci,0

)
·
(
k · aTi,1 + ci,1

)
= k · aTi,2 + ci,2. (3)

Vectors ai, j ∈ GF(2)32 and constants ci, j ∈ GF(2) are determined from (2) and the key
schedule.

Finally, we transform the equation to a MRHS system k · M ∈ S:

k
(
aT0,0a

T
0,1a

T
0,2| · · ·

)
∈

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0) + (c0,0, c0,1, c0,2),
(0, 1, 0) + (c0,0, c0,1, c0,2),
(1, 0, 0) + (c0,0, c0,1, c0,2),
(1, 1, 1) + (c0,0, c0,1, c0,2)

⎫
⎪⎪⎬

⎪⎪⎭
× · · · (4)

Thus, in our example matrix M has dimensions 32 × 96, and |S| = 432. We expect that
there is a unique vector c ∈ S, such that k · M = c has a solution. This vector is composed
of parts that correspond to inputs and outputs of the AND-gates used in the inner two Feistel
rounds during the encryption.

In a naive way, we can find this vector either by trying all 264 vectors in S, or more
efficiently by trying all 232 options for k (which is equivalent to a brute force attack). We
will instead employ the decoding approach. By using the algorithm presented in Sect. 4, we
change the problem to a syndrome decoding form: find v ∈ GF(2)96, such that vQ = q ,
wH (v) ≤ 32, and wH (v3i..3i+2) ≤ 1 for i = 0, 1, . . . 31. Recall that Q is a block matrix
which should have 32 rows and 32 blocks of 3 columns each.

To find v we employ a modified version of a Lee-Brickel decoding algorithm [10]. In the
original algorithm, it is sufficient to find a vector of a prescribed weight. In our modification,
we must also ensure the weight in each block. The modified algorithm can be summarized
as follows :

1. Apply a random permutation to 3-bit blocks of columns in Q to obtain Q′.
2. Construct 96 × 64 matrix H = (H1|H2|H3) by randomly assigning columns from each

block of Q′ into distinct parts H1,H2,H3.
3. Use linear algebra on (H | q) to obtain

(
I64 U q̂

)
.

If this is not possible, re-randomize matrix H.
4. For each pair of vectors u0, u1 ∈ cols(U) compute u = u0 + u1 + q̂ . For each u:

(a) Test whether wH (u) ≤ ω, where ω = 32 − 2. If not, continue with different u.
(b) Non-zero bits in u can now cancelled by adding at most ω columns ui from I64 part

of H.
(c) Check that no two vectors ui are from the same original block of Q. If not, continue

with different u.

123

54 P. Zajac

(d) Construct v′ ∈ GF(2)96 that has 1’s exactly in positions corresponding to ui ’s.
Reconstruct v by applying the inverses of the column distribution and block permu-
tation to v′.

5. If no suitable u was found, re-randomize matrix H.

The result v from this algorithm can be further used to reconstruct c: if v3i..3i+2 = (0, 0, 0),
the first vector in Si is used, is v3i..3i+2 = (1, 0, 0), the second vector in Si is used, etc. Finally,
by using a simple linear algebra, we decode c to a target key k.

Note that there is no guarantee that the algorithm stops. If the system does not have a
solution, we will try to re-randomize H forever. In practice, we stop the algorithm after
some fixed amount of retries. We can estimate the expected number of retries by computing
the probability of success in each try. Originally, we have 32 non-zero ”error” positions.
We expect that 1/4 of these is summed into the syndrome q . The remaining 24 ”errors”
are distributed between H1,H2,H3 uniformly. Our algorithm can only succeed if at most
2 ”errors” fall into the H3 part, that is with probability 0.53%. This probability is further
modified by the probability that (H1,H2) is invertible. This leads to an expected 650 number
of retries before a solution is found.

The algorithm can be generalized to different matrix sizes. E.g., for SIMON-32 with 5
rounds we would get 144 × 96 matrix Q, with a condition wH (v) ≤ 48. If we also allow
re-randomization of Q and q (i.e., not just sum up the first rows of R), we can expect
approximately 37 times more retries than in the 4-round case.

In general, for SIMON-32 with r + 2 rounds, the matrix size is 48r × 32r , and target
weight is 16r . E.g., for 22 rounds we get parity check matrixQwith dimensions 1056×704,
w = 352. The asymptotic upper bound estimate leads to an expected work factor of 2108.
However, this bound was computed for a full decoding, see [4]. If we could somehow apply
their techniques from half distance decoding and lower the complexity exponent to 0.04934n,
this would lead to a work factor 252. There is a huge gap between these estimates, and we
see a lot of potential for further practical research in this area.

Experimental results

We have implemented the algorithm in SAGE [22]. The source code is available at
https://github.com/zajacpa/DecodingAttack [24]. We have tested the attack software from a
command-line interface of SAGE on a PC with Intel(R) Core(TM) i7-3820 CPU
@ 3.60GHz with 8 cores, 64 GB RAM and Lubuntu OS.

As a target instance we have selected (xL |xR) = (0, 0), and (yL |yR) = (1, 1), because
the obvious first choice y = (0, 0) did not lead to a solution. The running time for the attack
repeated 100 times was 9 min 32 s, that is an average attack time took 5.73 s. For a limited
comparison, we have also executed a modified ’simon.py’ script [26] in the same SAGE
instance. The modified script runs 10,000 encryptions and 10,000 decryptions of SIMON-32
in 0.840 s. From this we can extrapolate the expected brute-force attack time to be 11,247 s,
which is 1968-times more than the attack via decoding takes on average.

In our example the matrix Q had dimensions 96 × 65, because the row rank of M was
only 31 instead of 32. We have slightly modified the algorithm to consider only vectors u
with last bit equal to zero. Thus we can still cancel the remaining ones with the first 64-bit
reduced columns.

During the calculation we have counted the number of required re-randomisations of H.
The average number was 389 ± 383. The histogram of the distribution is depicted in Fig. 2.
The number of retries is lower than expected, mostly due to the fact that matrix (H1H2)

123

https://github.com/zajacpa/DecodingAttack

Upper bounds on the complexity of ACA of ciphers with a low MC 55

Fig. 2 Histogram of the number of re-randomisations required to decode vQ = q (from 100 experiments
with the same P-C pair)

created from random columns ofQ has a higher chance to be invertible than a random binary
matrix.

Finally, in a second experiment we have tested the attack with fixed (xL |xR) = (0, 0) and
100 randomly generated pairs (yL |yR). The stop condition was set to 1500 iterations (based
on a previous experiment). The experiment took 23 min 35 s, or 14.15 s on average. The
number of successfully decoded keys was 35. The average number of iterations for successful
attacks was 284 ± 345.

References

1. Albrecht M.R., Rechberger C., Schneider T., Tiessen T., Zohner M.: Ciphers for MPC and FHE. In:
Advances in Cryptology—EUROCRYPT 2015, pp. 430–454. Springer, Berlin (2015).

2. Bard G.V., Courtois N.T., Jefferson C.: Efficient methods for conversion and solution of sparse systems
of low-degree multivariate polynomials over GF(2) via SAT-solvers. Cryptology ePrint Archive, Report
2007/024 (2007). http://eprint.iacr.org/.

3. Beaulieu R., Shors D., Smith J., Treatman-Clark S., Weeks B., Wingers L.: The SIMON and SPECK
families of lightweight block ciphers. IACR Cryptology ePrint Archive (2013).

4. Becker A., Joux A., May A., Meurer A.: Decoding random binary linear codes in 2n/20: How 1+ 1 = 0
improves information set decoding. In: Advances in Cryptology—EUROCRYPT 2012, pp. 520–536.
Springer, Berlin (2012).

5. Bogdanov A., Knudsen L.R., Leander G., Paar C., Poschmann A., Robshaw M.J., Seurin Y., Vikkelsoe
C.: PRESENT: An Ultra-lightweight Block Cipher. Springer, Berlin (2007).

6. Boyar J., Peralta R., Pochuev D.: On the multiplicative complexity of boolean functions over the basis
(∧, ⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000).

7. Courtois N., Hulme D., Mourouzis T.: Solving circuit optimisation problems in cryptography and crypt-
analysis. Cryptology ePrint Archive, Report 2011/475 (2011).

8. De Cannière C.: Trivium: A stream cipher construction inspired by block cipher design principles. In:
Information Security, pp. 171–186. Springer, Berlin (2006).

9. Faugère J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
In: Workshop on Applications of Commutative Algebra, Catania, Italy, 3–6 Apr 2002. ACM Press, New
York (2002).

10. Lee P.J., Brickell E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Work-
shop on the Theory and Application of of Cryptographic Techniques, pp. 275–280. Springer, Berlin
(1988).

123

http://eprint.iacr.org/

56 P. Zajac

11. Magliveras S.S., Stinson D.R., van Trung T.: New approaches to designing public key cryptosystems
using one-way functions and trapdoors in finite groups. J. Cryptol. 15(4), 285–297 (2002).

12. Raddum H.: MRHS equation systems. In: Selected Areas in Cryptography. Lecture Notes in Computer
Science, pp. 232–245. Springer, Berlin (2007).

13. RaddumH., Semaev I.: Solving multiple right hand sides linear equations. Des. Codes Cryptogr. 49(1–3),
147–160 (2008).

14. Schilling T., Raddum H.: Solving equation systems by agreeing and learning. In: Hasan M., Helleseth T.
(eds.) Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 6087, pp. 151–165. Springer,
Berlin (2010). doi:10.1007/978-3-642-13797-6_11.

15. Schilling T.E., Raddum H.: Analysis of Trivium using compressed right hand side equations. In: Infor-
mation Security and Cryptology-ICISC 2011, pp. 18–32. Springer, Berlin (2012).

16. Schilling T.E., Raddum H.: Solving compressed right hand side equation systems with linear absorption.
In: Sequences and Their Applications—SETA 2012, pp. 291–302. Springer, Berlin (2012).

17. Semaev I.: On solving sparse algebraic equations over finite fields. Department of Informatics, University
of Bergen, Tech. Rep. (2005).

18. Semaev I.: On solving sparse algebraic equations over finite fields. Des. Codes Cryptogr. 49(1–3), 47–60
(2008).

19. Semaev I., MikušM.: Methods to solve algebraic equations in cryptanalysis. TatraMountainsMath. Publ.
45, 107–136 (2010).

20. Sendrier N.: Decoding one out of many. In: Post-Quantum Cryptography, pp. 51–67. Springer, Berlin
(2011).

21. Sönmez M.T., Peralta R.: The multiplicative complexity of boolean functions on four and five variables.
In: Lightweight Cryptography for Security and Privacy, pp. 21–33. Springer, Berlin (2015).

22. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 7.2) (2016). http://
www.sagemath.org.

23. Zajac P.: A new method to solve MRHS equation systems and its connection to group factorization. J.
Math. Cryptol. 7(4), 367–381 (2013).

24. Zajac P.: GitHub - zajacpa/DecodingAttack: demonstration of the decoding attack on SIMON-32. https://
github.com/zajacpa/DecodingAttack (2016).

25. Zajac P., Jókay, M.: Multiplicative complexity of bijective 4 × 4 S-boxes. Cryptogr. Commun. 6(3),
255–277 (2014).

26. Zhu B.: GitHub - bozhu/NSA-ciphers: SIMON and SPECK, the two lightweight block ciphers dedesign
by the researchers from NSA. https://github.com/bozhu/NSA-ciphers (2016).

123

http://dx.doi.org/10.1007/978-3-642-13797-6_11
http://www.sagemath.org
http://www.sagemath.org
https://github.com/zajacpa/DecodingAttack
https://github.com/zajacpa/DecodingAttack
https://github.com/bozhu/NSA-ciphers

	Upper bounds on the complexity of algebraic cryptanalysis of ciphers with a low multiplicative complexity
	Abstract
	1 Introduction
	2 MRHS equation systems
	3 Using MRHS representation to model circuits of low multiplicative complexity
	4 How to solve MRHS systems with syndrome decoding
	5 On the complexity of algebraic attacks on ciphers with a low multiplicative complexity
	5.1 Upper bounds for complexity of selected cipher families

	6 Concluding remarks
	Acknowledgements
	Appendix: Experimental attack on a small version of Simon
	Attack description and expected complexity
	Experimental results

	References

