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Abstract Point compression is an essential technique to save bandwidth and memory when
deploying elliptic curve based security solutions in wireless communication systems. In this
contribution, we provide new linear algebra (LA) based compression algorithms for multiple
points on elliptic curves, that are compression algorithms which only make use of LA (with
a constant number of field multiplications and at most one inversion, with no quadratic or
higher degree polynomial root finding). In particular, we extend the results of Khabbazian et
al. (IEEE Trans Comput 56(3):305–313, 2007) to four (resp. five) points on elliptic curves by
generically storing five (resp. six) field elements and provide an asymptotic generalization
to any number n of points on a curve y2 = f (x) by generically storing n + 1 values.
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1 Introduction

The rapid progress in wireless communication systems, personal communication systems,
and smartcard technologies is impacting people’s life at a staggering rate and in significant
ways. New security challenges have to be solved in order to protect those communication
systems from malicious attacks. Elliptic curve cryptosystems (ECC) provide efficient and
robust solutions to many of the existing security issues in wireless communication systems
[9,10,32]. When implementing ECC based cryptographic protocols on smart devices such
as RFID tags, smart cards, and wireless sensor nodes, it is often necessary to transmit or
store points on elliptic curves. Since those smart devices usually have constrained resources
in terms of computational capabilities, memory, and bandwidth, it is desirable to represent a
point in a compact form.

Point compression is a technique that allows points on an elliptic curve to be represented
with fewer bits of data, thereby reducing both the storage space on smart devices as well as
the amount of data that needs to be transmitted to and from those devices [5]. A single point
compression usually involves solving a quadratic equation over a finite field, which might
be computationally expensive for low-cost smart devices. To overcome the aforementioned
issue, Khabbazian et al. [20] proposed a double and a triple point compression schemes,
respectively, which allow a compact representation of two or three points on an elliptic
curve without the computational cost associated with ordinary single point compression.
Moreover, the authors pointed out that the point compression can be used to reduce the
required bandwidth in the case of the random point multiplication. We notice that double
point compression technique can also be directly applied to some pairing-free identity-based
signature schemes (see [8,17] for example) to reduce the required bandwidth during wireless
transmission. Additional applications of various point compression techniques include the
following.
Message authentication in vehicular ad hoc networks (VANETs)

In VANETs, vehicles are equippedwith Dedicated Short Range Communication (DSRC)
capabilities to enable vehicles’ On-Board Units (OBUs) communicate wirelessly with
other vehicles’ OBU or Road Side Units (RSUs) [26]. Safety provision is one of the core
goals of VANET deployment. To this end, an OBU periodically broadcasts traffic-related
messages to surrounding vehicles in an authenticated manner. Elliptic curve cryptogra-
phy and digital certificates have been employed to ensure the authenticity of broadcast
safety messages [19]. To save the communication bandwidth in VANETs, public keys
in digital certificates are stored and transmitted in compressed form. For verifying digi-
tal signatures, an OBU needs first to decompress the received public keys, followed by
the verification of multiple digital signatures. Multiple point compression can be directly
applied in this case to accelerate the point decompression for multiple public keys, which
provides an efficient method to achieving a good trade-off between decompression per-
formance and storage requirement.

Multi-user broadcast authentication in wireless sensor networks (WSNs)

Multi-user broadcast is an efficient and common communication paradigm in WSNs,
where multiple users disseminate messages (i.e., queries or commands) into networks
for retrieving the information of their interest [25,34]. Due to the constrained resources
of wireless sensor nodes, elliptic curve cryptography and digital certificates are usually
used to ensure the authenticity of the broadcast messages in WSNs [15]. Again, public
keys of network users are stored in digital certificates in compressed form to save the
energy consumption of sensor nodes. When receiving broadcast messages from multiple
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Multiple point compression on elliptic curves 567

users, sensor nodes will verify both digital certificates and signatures. Application of
multiple point compression technique enables sensor nodes to balance the performance
for signature verifications and the memory footprint on wireless sensor nodes.

Countermeasures against attacks

Nowadays ECDSA [3], ECDH [4] and other elliptic-curve based cryptographic algo-
rithms are often implemented on secure devices such as smartcards. Such devices must
be protected against side channel attacks and perturbation attacks.
A well-known countermeasure against many side channel attacks is to use randomized
projective coordinates. If a smartcard stores only x-coordinates of several points and the
sum of their y-coordinates it is possible to randomize or to re-randomize the coordinates
in an efficient manner with less field multiplications. The whole set of points will get a
common randomly chosen z-coordinate.
A classical countermeasure against perturbation attacks is the integrity check, such as
a parity check or a CRC check. In the case when elliptic-curve points are compressed
they can be stored in a smaller buffer and thus the checksum or the CRC value can be
computed more efficiently [29].

Other potential applications

The ciphertext of the ElGamal Elliptic Curve Cryptosystem [21] is a pair of points of an
elliptic curve. Point compression may result in shorter ciphertexts, which is crucial for
many applications.
The internal state of some ECC-based pseudorandom generators includes two points of
an elliptic curve. If the pseudorandom generator is rarely invoked it makes sense to store
its state in a compressed form and decompress it when needed. In particular, the two-point
compression method can be effective. An example of such a pseudorandom generator is
Dual_EC_DRBG [27]. This pseudorandom generator has recently been deprecated by
NIST due to certain security flaws [28]. The point compression techniques are likely to
be applicable to the successors of Dual_EC_DRBG as well.

Considering potential applications of multiple point compression technique, we present
new linear algebra (LA) based compression algorithms formultiple points on elliptic curves in
this paper. Let us emphasize from the start that the goal of these new compression algorithms
is not to reduce storage requirements by achieving a higher compression rate, but rather
to trade current compression techniques with one which is asymptotically (in storing many
points) almost as good and additionally achieves a superior decompression speed.

To this end, a four- and five-point compression scheme is proposed which further gener-
alizes the Khabbazian et al. [20]. Our new compression algorithms only make use of basic
linear algebra (multiplications, addition, subtractions and at most one division) and do not
need to solve any quadratic or higher degree equations over finite fields. In particular, the
number of equivalent basic field multiplications (without considering the division/inversion)
is constant and does not increase with the field size. Let us note that the running time for
one division is equivalent to finding one square root. However, the strength of our method
is that k inversions can be combined into a single inversion and 3k − 3 multiplications [11,
Algorithm 10.3.4 p. 489 a.k.a. Montgomery’s trick], whereas several square root extractions
cannot be combined into one modulo a constant number of multiplications.

The remainder of this paper is organized as follows. Section 2 briefly reviews the previous
work for double and triple point compression schemes in [20], followed by the new four and
five point LA based compression algorithm in Sect. 3. In Sect. 4, we generalize this method
to an arbitrary number of points. Finally, Sect. 5 concludes this work.
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568 X. Fan et al.

2 Compression algorithms and previous work

For simplicity in this work we will restrict ourselves to curves over odd characteristic fields
F. Given a plane equation y2 = f (x), where f is a polynomial in F[x] without multiple
roots, we usually store a point P1 = (x1, y1) by its coordinates (so called trivial, or no
compression), otherwise by x1 plus one extra bit and recovering y1 by solving a quadratic
equation in F, using the bit to discriminate between the two solutions. The latter method
requires less memory, but more resources to decompress the point in order to find all its
coordinates. In particular solving a quadratic equation in F requires the equivalent of a field
inversion, costing a number of field multiplications which increases linearly in the field
bit size. For instance, solving y2 ≡ a (mod p) for p ≡ 3 (mod 4) will entail computing
a(p+1)/4 mod p.

We are interested in this work to study compression-decompression algorithms which
make use of a constant number of field operations (multiplications, additions and inversions,
with inversions grouped into a single one), independently of the field size. These methods
will typically make use of linear algebra only, therefore we are going to call them LA meth-
ods. We can distinguish between the following two flavours of compression-decompression
algorithms:

(1) LA compression, non-LA decompression (e.g. the classical method of storing x1 and 1
bit, recover y1 by solving a quadratic equation),

(2) LA compression, LA decompression (fully LA).

Additionally, one could conceive of a non-LA compression, LA decompression algorithm,
although we could not find any in the literature. Nevertheless, our new compression method
below (see Sect. 2.2) for two points is a first step towards this paradigm of a slow compression
and very fast decompression method.

In [20] a fully LAmethod is presented to compress P1, . . . , Pn points when n = 2, 3. The
object of the present article is to extend their work to all values of n less than the characteristic
of the field and to present an efficient implementation of this when n = 4, 5.

We review the results of [20] here, in the case of fields of characteristic at least 5. Minor
modifications can adapt this method to characteristic 2 and 3. Note that the exact performance
improvement of multiple point compression technique over the traditional approach highly
depends on the efficiency of solving a quadratic equation over finite fields (see Sect. 3.4 for
more details).

2.1 Two-point compression

Given an elliptic curve y2 = x3+ax+b = f (x) and points P1 = (x1, y1) and P2 = (x2, y2),
we can represent them in general by (x1, x2, α = y1 + y2). Then

y1 = α

2
+ x1 − x2

8α

(
3(x1 + x2)

2 + (x1 − x2)
2 + 4a

)

and

y2 = α − y1 .

This is easily seen by remarking that

y1 − y2 = y21 − y22
y1 + y2

= f (x1) − f (x2)

α
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and knowledge of α = y1 + y2 will readily yield y1, y2 by linear algebra. This algorithm
works, as long as α �= 0. This condition can be checked a priori before decompression
by computing y2i = f (xi ) and checking that y21 �= y22 (a stronger condition). Otherwise, if
y21 = y22 , the compression algorithm stores (x1, x2, y1, b)where b is an extra bit to distinguish
between the generic case and the exceptional case when y2 = −y1. Two-point compression
can thus be achieved by storing 3 field elements and up to one extra bit.1

When α �= 0, the computational complexity of the decompression is 2M + 2S + I .

2.2 Alternative two-point compression

We introduce new two-point compression algorithm which requires an inverse operation in
compression part while decompression phase needs only multiplication and square opera-
tions.

In this case, points P1 = (x1, y1) and P2 = (x2, y2) are represented by
(
A = x1−x2

y1−y2
, B =

y1 − y2, x2
)
. Decompression algorithm works as follows:

Since x1 − x2 = AB we obtain x1 = AB + x2.
Then, having two elliptic curve equations

y21 = x31 + ax1 + b

y22 = x32 + ax2 + b

the following two expressions are derived:

y21 − y22 = x31 − x32 + a(x1 − x2)

y1 + y2 = x1 − x2
y1 − y2

(
(x1 − x2)

2 + 3x1x2 + a
) = A

(
(x1 − x2)

2 + 3x1x2 + a
)

Since y1 − y2 = B, y1 and y2 are easily obtained by Linear Algebra:

y1 = A
(
(x1 − x2)2 + 3x1x2 + a

) + B

2
y2 = y1 − B

The overall computational cost of the algorithm is 3M+1S if multiplication by constant
elements is disregarded. This algorithm does require an inverse operation in compression
phase. However, decompression part needs only multiplication and square operations, which
considerably reduces its computational complexity compared to previously described two-
point decompression method.

The algorithm works when y21 �= y22 . In case y21 = y22 , follow the compression algorithm
described in the Sect. 2.1.

2.3 Three-point compression

In this case, the generic compression algorithm represents Pi = (xi , yi ) by (x1, x2, x3, α =
y1 + y2 + y3). Decompression works as follows. Let

β = α2 + y23 − y21 − y22 = 2(y3 + y1)(y3 + y2).

1 In fact, as noticed by a reviewer of a previous version of this work, since one inversion is roughly equivalent
to one square root extraction, there is the easier compression method of always storing (x1, x2, y1, b), where
b is a bit allowing to compute y2 from f (x2) = y22 . The decompression then simply costs 1 inversion.
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570 X. Fan et al.

Then

y3 = β2 + 4α2y23 − 4y21 y
2
2

4αβ

and since y1 + y2 = α − y3 we recover y1, y2 by the previous two-point compression
algorithm. We are in the generic case provided α �= 0 and y2i �= y2j for 1 ≤ i < j ≤ 3, in
which case by the above β �= 0. We look at the exceptional cases:

(1) y2i �= y2j for 1 ≤ i < j ≤ 3 and α = 0. In this case, the compression part will store
(x1, x2, x3, y1+ y2). We can recover y1, y2 by the generic case of two-point compression
and then y3 = −y1 − y2.

(2) Two squares are equal but not three.Without loss of generality, y21 = y22 �= y23 . In this case,
represent the three points as (x1, x2, x3, y2 + y3, q1), where q1 ∈ {0, 1}. Decompression
works out y2, y3 using generic two-point compression, and bit q1 is used to tell if y1 = y2
or −y2.

(3) y21 = y22 = y23 . In this case, store (x1, x2, x3, y1, q1, q2), with bi ∈ {0, 1}. The bits are
used to pinpoint the sign of y2 and y3 compared to y1.

Three-point compression can thus be achieved by storing 4 field elements and up to 2 extra
bits. As shown in [20], in the computational complexity in the generic case is 12M +6S+ I .

We next present our generalization of this method to four points.

3 Four- and five-point compression

3.1 General idea

Let n be the number of points to be compressed and let y1, y2, . . . , yn be the y-coordinates
of these points. Denote

a1 = y1 + y2 + · · · + yn,

a2 =
∑

1≤i< j≤n

yi y j ,

. . .

an = y1y2 . . . yn−1yn

the elementary symmetric polynomials in the yi ’s. We want to express yi in terms of the a j ’s
and the even powers of yi , since we know the value y2i = f (xi ).

Theorem 1 For even values of n the y-coordinates y1, . . . , yn can be generically expressed
as follows:

yi = an + y2i an−2 + · · · + yn−2
i a2 + yni

an−1 + y2i an−3 + · · · + yn−2
i a1

, i = 1, . . . , n. (1)

For odd values of n,

yi = an + y2i an−2 + · · · + yn−1
i a1

an−1 + y2i an−3 + · · · + yn−3
i a2 + yn−1

i

, i = 1, . . . , n. (2)

Proof We have

(x + y1) · · · (x + yn) = xn + a1x
n−1 + · · · + an−1x + an .
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Multiple point compression on elliptic curves 571

Letting x = −yi , we get

0 = an − yian−1 + y2i an−2 − y3i an−3 + · · ·
= an + y2i an−2 + · · · − yi (an−1 + y2i an−3 + · · · )

which is what we want. ��
We will not consider the exceptional situations when the denominators are equal to 0 (see
Sect. 4 for a discussion of this).

3.2 Four-point compression

As a next step, we introduce a four-point compression algorithm based on Theorem 1. The
compression algorithm represents the four points Pi , i = 1, 2, 3, 4, by (x1, x2, x3, x4, a1 =
y1 + y2 + y3 + y4). The decompression algorithm first retrieves a2, a3, a4 and then uses the
following equation to compute yi ’s:

yi = a4 + y2i a2 + y4i
a3 + y2i a1

, for i = 1, 2, 3, 4. (3)

Our initial goal is to express the elementary symmetric polynomials a2, a3 and a4 in terms
of a1 and y2i ’s. Note that

a2 = a21 − b1
2

, (4)

a1a3 − a4 = a22 − b2
2

, (5)

a2a4 = a23 − b3
2

, (6)

where

b1 = y21 + y22 + y23 + y24 ,

b2 = y21 y
2
2 + y21 y

2
3 + y21 y

2
4 + y22 y

2
3 + y22 y

2
4 + y23 y

2
4 ,

b3 = y21 y
2
2 y

2
3 + y21 y

2
2 y

2
4 + y21 y

2
3 y

2
4 + y22 y

2
3 y

2
4 .

From (4) a2 is easily computable. Denote the right-hand side of Eq. (5) as A. A is computable
since a2 is known. Hence, from (5) we get the following linear relationship between a3 and
a4:

a3 = A + a4
a1

. (7)

Substituting a3 in Eq. (6) by the above expression gives the following quadratic equation in
a4:

2a21a2a4 = A2 + 2Aa4 + a24 − a21b3.

a24 is efficiently computable since it is equal to y21 y
2
2 y

2
3 y

2
4 . Therefore

a4 = A2 + a24 − a21b3
2
(
a21a2 − A

) . (8)
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572 X. Fan et al.

Formula (7) implies that

a3 = 2a21a2A − A2 + a24 − a21b3
2a1

(
a21a2 − A

) . (9)

Substituting a3 and a4 from (8) and (9) into (3) gives

yi =
a1

(
A2 + a24 − a21b3 + 2

(
a21a2 − A

)(
y2i a2 + y4i

))

2a21a2A − A2 + a24 − a21b3 + 2a21 y
2
i

(
a21a2 − A

) . (10)

The computational complexity of the decompression algorithm described above is 55M +
11S + 1I , where M , S, and I denote the complexity of the final field multiplication, squaring
and inversion, respectively. The complexity can be reduced significantly when only one y-
coordinate has to be retrieved. For more details, the reader is referred to Appendix 2. The
calculation of the computational complexity is based on the principles described in [23].

3.3 Five-point compression

Theorem 1 can also be used as a basis for a five-point compression algorithm. The compres-
sion algorithm represents the five points Pi , i = 1, 2, 3, 4, 5, by (x1, x2, x3, x4, x5, a1 =
y1 + y2 + y3 + y4 + y5). The decompression algorithm exploits Eq. (2) for n = 5:

a2 = (a21 − b1)/2, (11)

a3a1 − a4 = (a22 − b2)/2, (12)

a4a2 − a5a1 = (a23 − b3)/2, (13)

a5a3 = (a24 − b4)/2. (14)

Equation (11) immediately yields a2 since a1 and bi , i = 1, 2, 3, 4, are known. It follows
from (12) that a3 can be expressed as a linear function of a4:

a3 = (A + a4)/a1. (15)

Here Formula (15) substituted into (13) gives

a4a2 − a5a1 =
(
A2 + 2Aa4 + a24

a21
− b3

) /
2,

which can be used to express a24 as follows:

a24 = a21(2a4a2 − 2a5a1 + b3) − A2 − 2Aa4. (16)

As a next step, we use this expression as well as (15) to rewrite (14) as follows:

a5 ·
(
A + a4
a1

)
= [

a21
(
2a4a2 − 2a5a1 + b3

) − A2 − 2Aa4 − b4
]/

2,

which implies

a4 = a5
(
2a41 + 2A

) + a1
(
A2 + b4 − b3a21

)

a1
(
2a21a2 − 2A

) − 2a5
. (17)

As before, let C = a1
(
2a21a2 −2A

)
. Let F = 2a41 +2A and G = a1

(
A2 +b4 −b3a21

)
. Then

a4 = Fa5 + G

C − 2a5
.
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Now formula a24 = 2a5a3 + b4, which follows directly from (14), can be written as follows:
(
Fa5 + G

C − 2a5

)2

= 2a5 ·
(
A + a4
a1

)
+ b4

or
(
Fa5 + G

C − 2a5

)2

= 2a5 ·
(
A + (Fa5 + G)/(C − 2a5)

a1

)
+ b4.

Note that a25 can be efficiently computed, a25 = y21 y
2
2 y

2
3 y

2
4 y

2
5 . Thus we get

a5 = −F2a25a1 − G2a1 − 8ACa25 + 2FCa25 − 4Ga25 + C2b4a1 + 4b4a1a25
2GFa1 − 2AC2 − 8Aa25 − 2GC + 4Fa25 + 4Cb4a1

.

Let J be the numerator and let H be the denominator of the formula so a5 = J/H . Then

a4 = F J + GH

CH − 2J
.

Denote K = CH − 2J , L = F J + GH . Then

a4 = L/K .

and

a3 = AK + L

a1K
.

Since n = 5

yi = a5 + y2i a3 + y4i a1

a4 + y2i a2 + y4i
,

where i = 1, 2, 3, 4, 5. Using the expressions above for a3, a4, a5 we get

yi = J Ka1 + Hy2i
(
AK + L + Ka21 y

2
i

)

Ha1
(
L + Ky2i (a2 + y2i )

) . (18)

Let Mi be the numerator of yi : Mi = J Ka1 + Hy2i (AK + L + Ka21 y
2
i ). Then yi can be

converted to the common denominator

N = Ha1
(
L + Ky21

(
a2 + y21

)) ·
(
L + Ky22

(
a2 + y22

)) · · ·
(
L + Ky25

(
a2 + y25

))

as follows:

y1 =
M1

(
L + Ky22

(
a2 + y22

)) · · ·
(
L + Ky25

(
a2 + y25

))

N
,

. . .

y5 =
M5

(
L + Ky21

(
a2 + y21

)) · · ·
(
L + Ky24

(
a2 + y24

))

N
. (19)

The latter formula can be used for the efficient computation of y1, y2, y3, y4, y5.
The overall computational complexity of the decompression is 120M + 12S + I in the

case when the goal is to retrieve the y-coordinates of all five points. As before, the complexity
can be reduced if the goal of the algorithm is to retrieve the y-coordinate of only one point.
Please refer to Appendix 3 for details.
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3.4 Discussion on the occupied memory and computational complexity

The two-point and three-point compression algorithms proposed by [20] as well as the four-
point and five-point compression algorithms presented in this paper reduce the computational
cost of the decompression compared to the ordinary single point compression, in which
only the x-coordinates are stored and the y-coordinates are extracted through square root
operations. On the other hand, the multiple point compression algorithms require roughly
100
n %more storage space than the ordinary point compression, where n denotes the number
of points to compress.

3.4.1 Square-and-multiply exponentiation, p ≡ 3 (mod 4)

We will make a concrete comparison for the case of 256-bit curves. Observe that solving
x2 ≡ a (mod p) for p ≡ 3 (mod 4) translates into computinga(p+1)/4 mod p.At the same
time, x−1 (mod p) can be computed as x p−2 (mod p). Thus wemay assume that the square
root operation and the inversion operation require roughly the same number of operations
on average, that is R ≈ I ≈ 127M + 254S. The complexity of the inversion operation can
be reduced by applying the extended Euclidean algorithm instead of the exponentiation. For
the sake of simplicity we do not consider this enhancement in the two tables below; in Sect.
3.4.5 alternative values of R and I are discussed.

The following table provides a comparison between the ordinary-point and multiple-point
compression algorithms.

n Occupied memory Computational complexity

Ordinary Multiple Ordinary Multiple

2 2 3 2R = 254M + 508S 129M + 256S
3 3 4 3R = 381M + 762S 139M + 260S
4 4 5 4R = 508M + 1016S 182M + 265S
5 5 6 5R = 635M + 1270S 247M + 266S

Here the unit of memory is one field element; columns “ordinary” and “multiple” correspond
to the ordinary-point and multiple-point compression algorithms, respectively. In this table
we neglect the extra storage bits needed in exceptional situations (the reader is referred to
Sect. 4 for more details).

The table above can be used to illustrate the differences in the memory usage and in
the computational complexity between the ordinary-point and multiple-point compression
algorithms. We assume that S = 0.8M , which is one of the possibilities considered in the
database [23]. Then the table can be rewritten as follows.

n Occupied memory Computational complexity

Ordinary Multiple Percentage Ordinary Multiple Percentage

2 2 3 +50 660M 334M −49
3 3 4 +33 991M 347M −65
4 4 5 +25 1321M 394M −70
5 5 6 +20 1651M 460M −72
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Multiple point compression on elliptic curves 575

The new two-point compression algorithm described in Sect. 2.2 requires one inversion
operation in its compression phase. However, the computational complexity of decompres-
sion part is 3M + 1S which requires 99.4% less time than decompression phase of ordinary
point compression method.

Please note that the multi-exponentiation technique [33] cannot be used to speed up
the ordinary point compression algorithm. The end result of the multi-exponentiation is a
product of several exponentiations while the ordinary point compression needs the result of
each exponentiation separately.

3.4.2 Case p ≡ 2s + 1 (mod 2s+1)

So far we have considered only one example of the characteristic p, namely p ≡ 3 (mod 4).
To get a broader view on the computational complexity of multiple point compression let us
consider one more example.

Let p ≡ 2s + 1 (mod 2s+1) for a small positive integer s. In this case square roots can
be computed using the algorithm proposed by Koo et al. [22]. The algorithm is useful for
small values of s such as s = 2, 3, 4 since the number of branches increases exponentially
as s grows. In order to compute x such that x2 = a for a given square a ∈ Fp the algorithm

requires one of the following exponentiations a
p−5
8 , a

p−9
16 or a

p−17
32 depending on whether

s = 2, 3 or 4. This means that the square root calculation is about as expensive for p ≡ 2s +1
(mod 2s+1) and for p ≡ 3 (mod 4) for any fixed bit length. Thus the comparison tables given
in the previous section are applicable for p ≡ 2s + 1 (mod 2s+1) as well.

3.4.3 Quadratic extension fields

In [1], the authors proposed two efficient algorithms for computing square roots over even
field extensions of the form Fq2 , with q = pn , p an odd prime and n ≥ 1. The proposed
two algorithms address the case when q ≡ 1 (mod 4) and q ≡ 3 (mod 4), respectively,
and have an associate computational cost roughly equivalent to one exponentiation in Fq2 .
In the case when q ≡ 3 (mod 4), the authors showed that the complex method of [14] is the
most efficient algorithm for square root computation. For instance, when p = 2256 − 2224 +
2192 + 296 − 1 and q = p, the square root computation using the complex method requires
1Ip + 1149Mp + 6Mcp , where Ip, Mp and Mcp denote the inversion, multiplication and
multiplication by constant over the underlying Fp . Hence, decompressing two points costs
2Ip + 2298Mp + 12Mcp . Using the two-point decompression technique in Sect. 2.1, one
only needs Ip + 14Mp + 7Mcp , given that Mp2 = 3Mp + Mcp, Sp2 = 2Mp + 2Mcp and
Ip2 = Ip+4Mp+Mcp . Using the same complexity estimation as in Sect. 3.4.1, one can find
that the two-point compression technique requires 87.5% less time when compared to the
traditional approach. A similar analysis is also applicable to the case when q ≡ 1 (mod 4)
and we omit the details here.

3.4.4 Small characteristic fields

Elliptic curves over binary fields have the shape y2+xy = f (x) or y2+ay = f (x) for some
cubic polynomial f and constant a. In this case, the trivial compression method stores x and
one bit. To decompress we have to solve a quadratic Artin–Schreier equation y2 + by = c
instead of taking a square root.
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For elliptic curves defined over F2m (m is odd), solving a quadratic equation is highly
efficient when compared to other finite fields. As shown experimentally in [18], the time
complexity is approximately 2/3 the time of a field multiplication. Even in this extreme
case, it is not difficult to demonstrate that the two-point decompression technique (which
requires I +3M + S [20]) is roughly 50% faster than the traditional method (which requires
2 · (I + 5

3M + S
)
) for decompressing two points on elliptic curves defined over binary fields,

provided that I ≥ 10M and S = 0.1M [6].
For elliptic curves defined overF3m (m is odd), the best algorithm for square root extraction

takes O(m2 logm) steps [7]. Ifm = 2k+1 for some k, it is easily verified that the square root
computation requires

(
log2 k� + ω(k) + 1
) · M in this case, where ω(k) is the Hamming

weight of the binary representation of k. In the case of m = 239, extracting a square root
over F3239 requires 13M . While the traditional method requires 26M (i.e., two square root
computations) for decompressing two points, the proposed two-point decompression tech-
nique only requires 1I + 2M + S, which results in about 50% performance improvement.
Here we assume that I = 10M, S = M and a Type-II normal basis is used, as illustrated in
[2]. If I = 30M the computational complexity of the two-point decompression is roughly
the same as that of the traditional method.

3.4.5 Application to resource-constrained environments

When applying multiple point compression technique to resource-constrained environ-
ments such as wireless sensor networks, the performance improvement over ordinary point
decompression method is further amplified due to the low-power processor architecture
design. For instance, when implementing the 192-bit NIST curve on an 8-bit AVR micro-
controller, the multiplication, squaring and inversion operations take 4, 042, 2, 658 and
280, 829 clock cycles, respectively [24], which gives us I ≈ 70M , S ≈ 0.65M and
R = 127M + 189S ≈ 250M . Similar to the above estimations, we can obtain that the
two-, three-, four- and five-point decompression algorithms requires 85.3, 88.5, 86.8 and
84.2% less time than the traditional approach, respectively, which further demonstrates the
great advantages of using multiple point compression technique on embedded devices.

4 A unified treatment of n-point compression

Considering the F-rational generic points Pi = (xi , yi ), (i = 1, . . . , n), lying on the curve
y2 = f (x), we now describe a fully LA method to compress-decompress these points using
only n + 1 field values. When referring to a “constant number of operations” we mean that
this number does not depend on the field size, but only on n and the polynomial f . Our
method shows that asymptotically, one can achieve a very fast compression–decompression
algorithm by storing only one extra value, compared to the trivial algorithm which stores
only the xi ’s. However, in practice, ad hoc methods such as those presented in the previous
sections will be more efficient. Also, there are exceptional cases which in applications would
not arise but can be dealt theoretically by storing a fixed number of extra bits, as in [20], hence
our focus on an algorithm for generic points.2 Additionally, with cryptographic applications
in mind, we assume that n < char F to avoid dividing by zero.

To compress n generic points, simply store the values
(
x1, . . . , xn, a1 = y1 + · · · + yn

)
. (20)

2 Meaning that the 2n sums ±y1 ± · · · ± yn are all distinct.
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To decompress, let a1, . . . , an as in Sect. 3 be the elementary symmetric polynomials in
the yi ’s. Then, by Newton’s identities,

y21 + · · · + y2n = a21 − 2a2,

y41 + · · · + y4n = a41 − 4a21a2 + 2a22 + 4a1a3 − 4a4, (21)

y61 + · · · + y6n = a61 − 6a41a2 + 9a21a
2
2 + 6a31a3 − 2a32 − 12a1a2a3

− 6a21a4 + 3a23 + 6a2a4 + 6a1a5 − 6a6,

and so on for p2k = y2k1 +· · ·+ y2kn for k = 1, . . . , n. The left-hand sides are computable in a
constant number of operations. The right-hand sides are polynomials f2k(a1, . . . , an), so the
previous system (21) can be rewritten as p2k = f2k(a1, . . . , an) for k = 1, . . . , n. One can
solve it in a1, . . . , an by considering the ideal I of F(p2, . . . , p2n)[a1, . . . , an] generated
by the p2k − f2k(a1, . . . , an) for k = 1, . . . , n and computing its reduced Gröbner basis
with respect to the lexicographic ordering of the variables with a1 < a2 < · · · < an . In
fact, the Newton identities applied to the symmetric polynomials in the y2i ’s show that the
knowledge of p2k for k = 1, . . . , n determines y21 , . . . , y

2
n uniquely up to permutation. By our

assumption, thismeans that given a1 there are either none or unique values (up to permutation)
of y1, . . . yn for which their symmetric polynomials (a1, . . . an) belong to the variety V
associated to I. Therefore #V = 2n and the points of V are separated by a1 (they have all
distinct first coordinate). Let’s note that in this reasoningwe have kept inmind specializations
of the p2k to particular values inF corresponding to generic y1, . . . yn . In fact, what this shows
is that as we work with undetermined coefficients, i.e. with I ⊂ F(p2, . . . , p2n)[a1, . . . , an]
we have a fortiori #V = 2n , where V ⊂ (

F(p2, . . . , p2n)
)n , as well as separation by the first

coordinate a1.
MoreoverI is a radical ideal: consider again the symmetric polynomials e1 = y21+· · ·+y2n ,

…, en = y21 . . . y2n in the y2i ’s. We write the identity
(
x2 − y21

) · · · (x2 − y2n
) = (x − y1) · · · (x − yn)(x + y1) · · · (x + yn)

as

x2n − e1x
2n−2 + e2x

2n−4 + · · · + (−1)nen

=
(
xn − a1x

n−1 + a2x
n−2 + · · · + (−1)nan

)

×
(
xn + a1x

n−1 + a2x
n−2 + · · · + an

)

This gives rise to the following system of n equations

e1 = −2a2 + a21 ,

e2 = 2a4 − 2a1a3 + a22 , (22)

e3 = −2a6 + 2a1a5 − 2a2a4 + a23 ,

etc.

Newton’s identities imply that F[p2, . . . , p2n] = F[e1, . . . , en] since we are supposing that
char F > n and hence the two systems (21) and (22) are equivalent in the sense that the ideals
they define are equal in F(p2, . . . , p2n)[a1, . . . , an] = F(e1, . . . , en)[a1, . . . , an]. Looking
at I as described by (22), we apply Bézout’s Theorem for hypersurfaces [16, Ch.12.3]:
since we already know that the n hyperquadrics (22) intersect in 2n points (the maximum
allowed without common components), the multiplicity of intersection at each point is one
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and therefore by [13, Ch.4, Corollary 2.6] we deduce that I is radical (we don’t need the
hypothesis that the field k be algebraically closed if we have already found V (I)).

The Shape Lemma [12,30] says that under the preceding conditions, the reduced Gröbner
basis will look as follows.

[g1(a1), a2 + g2(a1), . . . , an + gn(a1)] ,

where gk ∈ F(p2, . . . , p2n)[a1] with deg g1 = 2n and deg gk < 2n for k = 2, . . . , n. This
Gröbner basis can be precomputed (it depends only on n) and from its form, given a1, the other
ak’s for k = 2, . . . , n can be recovered in a constant number of operations. See Appendix 1
for the expressions of gk when n = 4.

Once we know the symmetric polynomials, we can compute the right-hand sides of

y1 + · · · + yn = a1,

y31 + · · · + y3n = a31 − 3a1a2 + 3a3,

y51 + · · · + y5n = a51 − 5a31a2 + 5a1a
2
2 + 5a21a3 − 5a2a3 − 5a1a4 + 5a5,

...

up to y2n−1
1 + · · · + y2n−1

n . Since

y2k−1
1 + · · · + y2k−1

n = y1 · y2k−2
1 + · · · + yn · y2k−2

n

wewill get n linear equations in the n variables y1, . . . , yn , whosematrix is theVandermonde
⎛

⎜⎜⎜
⎝

1 · · · 1
y21 · · · y2n
...

...

y2n−2
1 · · · y2n−2

n

⎞

⎟⎟⎟
⎠

which will be invertible since y2i �= y2j for 1 ≤ i < j ≤ n (otherwise not all 2n sums
±y1 ± · · · ± yn would be distinct). We can solve this system by linear algebra in a constant
number of operations, thereby concluding the LA decompression. Thus we have proved the
following theorem.

Theorem 2 Given a curve y2 = f (x) over a field F of odd characteristic greater than n
and F-rational generic points Pi = (xi , yi ), i = 1, . . . , n on it, we can fully LA compress
and decompress them by storing n + 1 field elements.

5 Conclusion

In this paper, we presented novel LA based compression techniques for multiple points on
elliptic curves. Four- and five-point compression schemes are first described which extend
Khabbazian et al. [20]. We then extend this analysis to deal with n points by generically
storing n + 1 field elements. Using our new algorithms, the compression process requires
almost no computational effort and the decompression does not involve solving any quadratic
or higher degree equations over finite fields. Hence, the proposed techniques can be employed
to reduce the required bandwidth/memory when single point compression is computationally
expensive. It is possible to generalise this method to deal with divisors on hyperelliptic
curves represented in Mumford form. One aspect that would be interesting to explore is
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the possibility to design a fully LA algorithm where compression and decompression take
comparable amount of time, or even where decompression is fast but compression slower, in
contrast with the present algorithm where compression is immediate and decompression is
much slower.
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Appendix 1: Expression of the polynomials gi when n = 4

g1 (a1) = a161 + (−8p2) a
14
1 + (

20p22 + 8p4
)
a121 +

(
−88

3
p32 + 16p2 p4 − 128

3
p6

)
a101

+
(

−94

3
p42 + 360p22 p4 − 248p24 − 1664

3
p2 p6 + 544p8

)
a81

+
(
72p52 − 1696

3
p32 p4 + 480p2 p

2
4 + 768p22 p6 − 512

3
p4 p6 − 640p2 p8

)
a61

+
(

−428

9
p62 + 1192

3
p42 p4 − 624p22 p

2
4 − 4352

9
p32 p6 + 480p34

+ 512

3
p2 p4 p6 + 576p22 p8 + 4096

9
p26 − 896p4 p8

)
a41

+
(

−56

9
p72 + 304

3
p52 p4 − 480p32 p

2
4 − 896

9
p42 p6 + 320p2 p

3
4 + 3584

3
p22 p4 p6

− 128

3
p32 p8 − 512p24 p6 − 8192

9
p2 p

2
6 − 256p2 p4 p8 + 2048

3
p6 p8

)
a21

+ 25

9
p82 − 40p62 p4 + 472

3
p42 p

2
4 + 640

9
p52 p6 − 96p22 p

3
4

− 512p32 p4 p6 − 160

3
p42 p8

+ 16p44 + 512

3
p2 p

2
4 p6 + 4096

9
p22 p

2
6 + 384p22 p4 p8 − 128p24 p8

− 2048

3
p2 p6 p8 + 256p28 ,

g2(a1) =
(

−1

2

)
a21 + 1

2
p2.

Next, g3(a1) equals

(3141p62 − 29916p42 p4 + 73575p22 p
2
4 + 27288p32 p6 − 22950p34

− 107568p2 p4 p6 − 9558p22 p8 + 41472p26 + 24300p4 p8)a
15
1

+ (−24228p72 + 229068p52 p4 − 559224p32 p
2
4 − 203544p42 p6

+ 174528p2 p
3
4 + 788832p22 p4 p6

+ 67824p32 p8 + 7776p24 p6 − 290304p2 p
2
6 − 158112p2 p4 p8 − 31104p6 p8)a

13
1
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+ (56205p82 − 498654p62 p4 + 1024839p42 p
2
4 + 438408p52 p6 + 177660p22 p

3
4

− 1425312p32 p4 p6

− 130086p42 p8 − 178092p44 − 885600p2 p
2
4 p6 + 539136p22 p

2
6

+ 168696p22 p4 p8 + 331776p4 p
2
6 + 166536p24 p8 + 186624p2 p6 p8 + 23328p28)a

11
1

+ (−78726p92 + 789120p72 p4 − 2350998p52 p
2
4 − 722856p62 p6

+ 2106360p32 p
3
4 + 4069584p42 p4 p6

+ 169452p52 p8 − 486216p2 p
4
4 − 5601312p22 p

2
4 p6 − 1869312p32 p

2
6 − 589680p32 p4 p8

+ 1046592p34 p6

+ 5612544p2 p4 p
2
6 + 907632p2 p

2
4 p8 + 252288p22 p6 p8 − 1769472p36

− 1306368p4 p6 p8 − 171072p2 p
2
8)a

9
1

+ (−113973p102 + 2247624p82 p4 − 14414355p62 p
2
4 − 2873976p72 p6 + 35073162p42 p

3
4

+ 31435920p52 p4 p6 + 2121606p62 p8 − 26740476p22 p
4
4 − 88583328p32 p

2
4 p6

− 17567232p42 p
2
6

− 20887092p42 p4 p8 + 5739336p54 + 40201920p2 p
3
4 p6

+ 78474240p22 p4 p
2
6 + 51563304p22 p

2
4 p8

+ 20431872p32 p6 p8 − 10616832p24 p
2
6 − 24772608p2 p

3
6

− 18752688p34 p8 − 74428416p2 p4 p6 p8

− 4854816p22 p
2
8 + 23887872p26 p8 + 13421376p4 p

2
8)a

7
1

+ (183552p112 − 3089004p92 p4 + 18070524p72 p
2
4 + 3134904p82 p6 − 43127352p52 p

3
4

− 31349184p62 p4 p6 − 1758456p72 p8 + 37337904p32 p
4
4

+ 86126976p42 p
2
4 p6 + 13088256p52 p

2
6

+ 15252912p52 p4 p8 − 8725536p2 p
5
4 − 54885888p22 p

3
4 p6

− 52205568p32 p4 p
2
6 − 32713632p32 p

2
4 p8

− 9452160p42 p6 p8 + 1798272p44 p6 + 22321152p2 p
2
4 p

2
6

+ 7077888p22 p
3
6 + 12156480p2 p

3
4 p8

+ 15422976p22 p4 p6 p8 + 1019520p32 p
2
8 − 7077888p4 p

3
6 + 8805888p24 p6 p8

+ 15925248p2 p
2
6 p8 + 4582656p2 p4 p

2
8 − 17915904p6 p

2
8)a

5
1

+ (−119357p122 + 2165658p102 p4 − 14673531p82 p
2
4

− 2088552p92 p6 + 46760208p62 p
3
4

+ 23773056p72 p4 p6 + 1897398p82 p8 − 73942056p42 p
4
4
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− 86667456p52 p
2
4 p6 − 9014784p62 p

2
6

− 22437504p62 p4 p8 + 57054240p22 p
5
4 + 117450240p32 p

3
4 p6

+ 43920384p42 p4 p
2
6 + 87558768p42 p

2
4 p8

+ 17627904p52 p6 p8 − 12932784p64 − 68144256p2 p
4
4 p6

− 20305920p22 p
2
4 p

2
6 − 3506176p32 p

3
6

− 124350336p22 p
3
4 p8 − 111430656p32 p4 p6 p8 − 6348672p42 p

2
8

+ 8687616p34 p
2
6 − 46006272p2 p4 p

3
6

+ 45537120p44 p8 + 143926272p2 p
2
4 p6 p8 + 36790272p22 p

2
6 p8

+ 41478912p22 p4 p
2
8 + 18874368p46

− 23003136p4 p
2
6 p8 − 48169728p24 p

2
8 − 35665920p2 p6 p

2
8 + 15303168p38)a

3
1

+ (5186p132 − 10704p112 p4 − 936990p92 p
2
4 + 105288p102 p6

+ 8434128p72 p
3
4 + 1229136p82 p4 p6

− 370452p92 p8 − 26146800p52 p
4
4 − 23498496p62 p

2
4 p6 − 907776p72 p

2
6

+ 3779424p72 p4 p8 + 28215360p32 p
5
4

+ 92255232p42 p
3
4 p6 + 26336256p52 p4 p

2
6 − 9767520p52 p

2
4 p8

− 3057024p62 p6 p8 − 7140960p2 p
6
4

− 90170496p22 p
4
4 p6 − 132544512p32 p

2
4 p

2
6 − 8880128p42 p

3
6

− 3844224p32 p
3
4 p8 + 9347328p42 p4 p6 p8

+ 2239488p52 p
2
8 + 13130496p54 p6 + 87527424p2 p

3
4 p

2
6

+ 88473600p22 p4 p
3
6 + 11524032p2 p

4
4 p8

+ 60120576p22 p
2
4 p6 p8 − 9338880p32 p

2
6 p8 − 15123456p32 p4 p

2
8

− 17694720p24 p
3
6 − 18874368p2 p

4
6

− 36615168p34 p6 p8 − 85819392p2 p4 p
2
6 p8 + 2087424p2 p

2
4 p

2
8

+ 25436160p22 p6 p
2
8 + 14155776p36 p8

+28532736p4 p6 p
2
8 − 12192768p2 p

3
8)a1

divided by

82560p122 − 1615872p102 p4 + 11757312p82 p
2
4 + 1855488p92 p6 − 38739456p62 p

3
4

− 24600576p72 p4 p6 − 1230336p82 p8 + 55052928p42 p
4
4 + 105615360p52 p

2
4 p6

+ 12435456p62 p
2
6 + 16137216p62 p4 p8 − 26417664p22 p

5
4 − 150552576p32 p

3
4 p6

− 92061696p42 p4 p
2
6 − 67834368p42 p

2
4 p8 − 16588800p52 p6 p8 + 3995136p64
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+ 41213952p2 p
4
4 p6 + 127401984p22 p

2
4 p

2
6 + 28311552p32 p

3
6 + 90740736p22 p

3
4 p8

+ 120029184p32 p4 p6 p8 + 6068736p42 p
2
8 − 5308416p34 p

2
6 − 28311552p2 p4 p

3
6

− 24440832p44 p8 − 132710400p2 p
2
4 p6 p8 − 63700992p22 p

2
6 p8 − 43960320p22 p4 p

2
8

+ 21233664p4 p
2
6 p8 + 38320128p24 p

2
8 + 55738368p2 p6 p

2
8 − 17915904p38.

The formula for g4(a1) is

(−180p32 + 756p2 p4 − 648p6)a
14
1

+ (1323p42 − 5382p22 p4 − 459p24 + 4536p2 p6 + 486p8)a
12
1

+ (−2682p52 + 8424p32 p4 + 9918p2 p
2
4 − 7992p22 p6 − 5616p4 p6 − 3564p2 p8)a

10
1

+ (3111p62 − 13500p42 p4 + 7389p22 p
2
4 + 15528p32 p6 − 3978p34 − 45072p2 p4 p6

+ 7182p22 p8 + 27648p26 + 4212p4 p8)a
8
1

+ (8520p72 − 106788p52 p4 + 340092p32 p
2
4 + 139368p42 p6 − 190872p2 p

3
4

−696480p22 p4 p6 − 106200p32 p8 + 176544p24 p6

+ 387072p2 p
2
6 + 419472p2 p4 p8 − 373248p6 p8)a

6
1

+ (−8067p82 + 83322p62 p4 − 209049p42 p
2
4 − 88728p52 p6 + 11412p22 p

3
4

+ 347040p32 p4 p6 + 26586p42 p8 + 118116p44 − 9696p2 p
2
4 p6 − 119808p22 p

2
6

+ 75528p22 p4 p8 + 119808p4 p
2
6 − 382104p24 p8 − 235008p2 p6 p8 + 272160p28)a

4
1

+ (−818p92 + 16344p72 p4 − 104490p52 p
2
4 − 14312p62 p6 + 177288p32 p

3
4

+ 244944p42 p4 p6 − 10188p52 p8 + 66312p2 p
4
4 − 618336p22 p

2
4 p6 − 180224p32 p

2
6

+ 5040p32 p4 p8 − 115008p34 p6 + 645120p2 p4 p
2
6 − 66672p2 p

2
4 p8 + 161280p22 p6 p8

− 294912p36 + 248832p4 p6 p8 − 160704p2 p
2
8)a

2
1

+ 3809p102 − 58848p82 p4 + 320919p62 p
2
4 + 57464p72 p6 − 707514p42 p

3
4

− 565968p52 p4 p6 − 33006p62 p8 + 532188p22 p
4
4 + 1485984p32 p

2
4 p6 + 272384p42 p

2
6

+ 312660p42 p4 p8 − 113832p54 − 721344p2 p
3
4 p6 − 1096704p22 p4 p

2
6 − 749448p22 p

2
4 p8

− 296448p32 p6 p8 + 165888p24 p
2
6 + 294912p2 p

3
6 + 331056p34 p8 + 912384p2 p4 p6 p8

+ 97632p22 p
2
8 − 221184p26 p8 − 222912p4 p

2
8

divided by

− 16512p82 + 204288p62 p4 − 840960p42 p
2
4 − 159744p52 p6 + 1202688p22 p

3
4

+ 1155072p32 p4 p6 + 87552p42 p8 − 332928p44 − 1658880p2 p
2
4 p6 − 442368p22 p

2
6

− 635904p22 p4 p8 + 442368p4 p
2
6 + 705024p24 p8 + 663552p2 p6 p8 − 373248p28 .

These formulas were obtained by running the following commands in SAGE
(www.sagemath.org):
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Rinit.<p2,p4,p6,p8>=QQ[’p2,p4,p6,p8]; Finit=Rinit.fraction_field();

R0.<a1,a2,a3,a4>=Finit[’a1,a2,a3,a4’];R=R0.change_ring(order=’invlex’);

r1=a1ˆ2 - 2*a2-p2;

r2=a1ˆ4 - 4*a1ˆ2*a2 + 2*a2ˆ2 + 4*a1*a3 - 4*a4-p4;

r3=a1ˆ6 - 6*a1ˆ4*a2 + 9*a1ˆ2*a2ˆ2 + 6*a1ˆ3*a3
- 2*a2ˆ3 - 12*a1*a2*a3 -6*a1ˆ2*a4 + 3*a3ˆ2 + 6*a2*a4-p6;

r4= a1ˆ8 - 8*a1ˆ6*a2 + 20*a1ˆ4*a2ˆ2 + 8*a1ˆ5*a3 - 16*a1ˆ2*a2ˆ3 -32*a1ˆ3*a2*a3
- 8*a1ˆ4*a4 + 2*a2ˆ4+24*a1*a2ˆ2*a3 + 12*a1ˆ2*a3ˆ2 +24*a1ˆ2*a2*a4 - 8*a2*a3ˆ2
- 8*a2ˆ2*a4 - 16*a1*a3*a4 +4*a4ˆ2 - p8;

I=(r1,r2,r3,r4)*R;

B=I.groebner_basis()

Appendix 2: Computational complexity of the decompression for n = 4

All points are decompressed

The calculation of the complexity is based on the principles described in [23], which are as
follows.

– Only the square and multiply operations are counted; the computational cost of the
addition and subtraction is neglected.

– Multiplication by a constant is neglected as well.

It most cases inversion is computationally costly as compared to multiplication and square
operations. For that reason, we will minimize the number of the inversions.

Denote

B = a1
(
A2 + a24 − a21b3

)
,

C = 2a1
(
a21a2 − A

)
,

D = 2a21a2A − A2 + a24 − a21b3,

E = 2a21
(
a21a2 − A

)
.

Then Eq. (10) yields

yi = B + C
(
a2y2i + y4i

)

D + Ey2i
. (23)

The computation of y1, y2, y3, y4 separately using the equation above ends up with 4 inver-
sions. For the sake of efficiency, it makes sense to compute yi ’s in the following way:

y1 =
(
B + C

(
a2y21 + y41

))(
D + Ey22

)(
D + Ey23

)(
D + Ey24

)

(
D + Ey21

)(
D + Ey22

)(
D + Ey23

)(
D + Ey24

) ,

y2 =
(
B + C

(
a2y22 + y42

))(
D + Ey21

)(
D + Ey23

)(
D + Ey24

)

(
D + Ey21

)(
D + Ey22

)(
D + Ey23

)(
D + Ey24

) ,
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Table 1 Computational complexity of the decompression algorithm

Expression Cost Comments

y21 , y
2
2 , y

2
3 , y

2
4 4S + 4M This comes from y2 = x(x2 + a) + b

b2 = y21 y
2
2 + y21 y

2
3 + y21 y

2
4 + y22 y

2
3+ y22 y

2
4 + y23 y

2
4

6M Store y21 y
2
2 , y

2
1 y

2
3 , y

2
1 y

2
4 , y

2
2 y

2
3

b3 = y21 y
2
2 y

2
3 + y21 y

2
2 y

2
4 + y21 y

2
3 y

2
4+ y22 y

2
3 y

2
4

4M Store y21 y
2
2 y

2
3

a24 = y21 y
2
2 y

2
3 y

2
4 1M Stored value of y21 y

2
2 y

2
3 is multiplied by y24

y41 , y
4
2 , y

4
3 , y

4
4 4S y2i ’s are each squared

a21 1S a1 is squared

a2 0 a2 is computed only through addition/subtraction
operations and a multiplication by a constant

a22 1S a2 is squared

A 0 Similarly, this does not require any of M , S or I

A2 1S A is squared

B = a1
(
A2 + a24 − a21b3

)
2M

C = 2a1
(
a21a2 − A

)
2M

D = 2a21a2A − A2 + a24 − a21b3 3M

E = 2a21
(
a21a2 − A

)
2M

D + Ey21 1M

D + Ey22 1M

D + Ey23 1M

D + Ey24 1M
(
D + Ey21

)(
D + Ey22

)(
D + Ey23

)
(
D + Ey24

) 3M

((
D + Ey21

)(
D + Ey22

)(
D + Ey23

)

(
D + Ey24

))−1

1I

B + C
(
a2y21 + y41

)
2M

B + C
(
a2y22 + y42

)
2M

B + C
(
a2y23 + y43

)
2M

B + C
(
a2y24 + y44

)
2M

Final computation of y1, y2, y3, y4 4M · 4 = 16M

y3 =
(
B + C

(
a2y23 + y43

))(
D + Ey21

)(
D + Ey22

)(
D + Ey24

)

(
D + Ey21

)(
D + Ey22

)(
D + Ey23

)(
D + Ey24

) ,

y4 =
(
B + C

(
a2y24 + y44

))(
D + Ey21

)(
D + Ey22

)(
D + Ey23

)

(
D + Ey21

)(
D + Ey22

)(
D + Ey23

)(
D + Ey24

) .

Here all yi ’s are converted to the common denominator, which means that only one inversion
is needed.

Table 1 shows how the computational complexity is calculated.
Overall, the decompression algorithm require 55M + 11S + 1I .
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Table 2 Computational complexity of the preparation step

Expression Cost Comments

y21 , y22 , y23 , y24 , y25 5S + 5M Comes from y2 = x3 + ax + b

b2 = y21 y
2
2 + y21 y

2
3 + · · · + y24 y

2
5 10M Store only y21 y

2
2 , y21 y

2
3 , y22 y

2
3 , y24 y

2
5

b3 = y21 y
2
2 y

2
3 + · · · + y23 y

2
4 y

2
5 10M Store only y21 y

2
2 y

2
3 , y21 y

2
4 y

2
5 , y22 y

2
3 y

2
4

b4 = y21 y
2
2 y

2
3 y

2
4 + y21 y

2
2 y

2
3 y

2
5 +

· · · + y22 y
2
3 y

2
4 y

2
5

5M

b5 = a25 = y21 y
2
2 y

2
3 y

2
4 y

2
5 M

a21 S

a2 0 Only addition is required

a22 S

A 0 Does not require any M, S, I

C = 2a1
(
a21a2 − A

)
2M

a41 S

F = 2a41 + 2A 0

A2 S

G =
(
A2 + b4 − b3a

2
1

)
· a1 2M

C2 S

First component of H :

a1
(
2FG + 4Cb4

) 3M

Second component of H :

A
(

− 2C2 − 8a25

) M Recall that a25 ,C2 have been computed

Third component of H :
−2GC + 4Fa25

2M

H 0 Addition of the three components

1st component of J :

a1
(
−F2a25 −G2+C2b4+4b4a

2
5

) 4M + 2S Recall that a25 ,C2 have been computed

Second component of J :

C
(

− 8Aa25 + 2Fa25

) 3M

Third component of J : −4Ga25 M

J 0 Addition of the three components

K = CH − 2J M

L = F J + GH 2M

Only one point is decompressed

The complexity of the decompression can be reduced when one has to extract only one
yi , i ∈ {1, 2, 3, 4}, and not all of them. Note that in many practical situations only one of the
y-coordinates has to be extracted for the archive.

Without loss of generality, suppose we have to recover y1. We will compute y1 using Eq.
(23).
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Table 3 Computational complexity of the final computation: all yi ’s are retrieved

Expression Cost Comments

Ka21 y
2
i , i = 1, 2, 3, 4, 5 2M · 5 = 10M a21 , y

2
i have already been

computed

Hy2i M · 5 = 5M

AK + L M

JKa1 2M

Mi = J Ka1 + Hy2i
(
AK + L + Ka21 y

2
i

)
,

i = 1, 2, 3, 4, 5
M · 5 = 5M Numerator of yi in (18)

L + y2i K
(
a2 + y2i

)
, i = 1, 2, 3, 4, 5 2M · 5 = 10M

Ha1 M

Ha1
(
L + y2i K

(
a2 + y2i

))
, i = 1, 2, 3, 4, 5 M · 5 = 5M Denominator of yi in (18)

N = Ha1
(
L + y21K

(
a2 + y21

)) · · ·
(
L + y25K

(
a2 + y25

))
4M Common denominator

N−1 I Inversion of the common
denominator

Final computation of yi , i = 1, 2, 3, 4, 5 5M · 5 = 25M See (19)

Table 4 Computational complexity of the final computation: only y1 is retrieved

Expression Cost Comments

Ka21 y
2
1 2M a21 , y

2
1 have already been computed

Hy21 M

AK + L M

JKa1 2M

JKa1 + Hy21 (AK + L + ka21 y
2
1 ) M Numerator of y1 in (18)

L + y21K (a2 + y21 ) 2M

Ha1 M

Ha1(L + y21K (a2 + y21 )) M Denominator of y1 in (18)

Ha1(L + y21K (a2 + y21 ))−1 I

Final computation of y1 M Product of the numerator and the
inverse of the denominator in (18)

Then in Table 1 we can avoid the computation of the following values: D+Ey22 , D+Ey23 ,
D+Ey24 ,

(
D+Ey21

)(
D+Ey22

)(
D+Ey23

)(
D+Ey24

)
, B+C

(
a2y22 + y42

)
, B+C

(
a2y23 + y42

)
,

B + C
(
a2y24 + y42

)
. This saves us 1M + 1M + 1M + 3M + 2M + 2M + 2M = 12M .

Instead of inverting
(
D+Ey21

)(
D+Ey22

)(
D+Ey23

)(
D+Ey24

)
wewill invert

(
D+Ey21

)

so we still need 1I .
In the endwe needed extra 16M to compute y1, y2, y3, y4 (see the very end of Sect. 1). And

now we will need 1M instead: this is the multiplication
(
B+C

(
a2y21 + y41

)) · (D+ Ey21
)−1.

This saves us 15M .
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In total we save 12M +15M = 27M and the overall complexity becomes (55M +11S+
1I ) − 27M = 28M + 11S + 1I .

Furthermore, in the case when the decompression algorithm may output the projective
coordinates of the point (which is acceptable e.g. when the decompressed point is used for
the point addition or point doubling) we can avoid the inversion.

Appendix 3: Computational complexity of the decompression for n = 5

Preparation step

Table 2 shows the cost of computing y2i , bi , i = 1, 2, 3, 4, 5 as well as C , F , G, H , K , L .

Final computation of yi

Table 3 demonstrates the cost of the computation of yi , i = 1, 2, 3, 4, 5 in the case when
the goal is to retrieve the y-coordinates of all five points. Table 4 shows the cost of the
computational complexity can be reduced significantly when the goal is to retrieve only one
yi , i ∈ {1, 2, 3, 4, 5}.

The overall computational complexity of the decompression algorithm is 120M+12S+ I
in the case when the goal is to retrieve the y-coordinates of all five points. If only one
point has to be retrieved the complexity reduces to 64M + 12S + I . Furthermore, when the
decompression algorithm may output the projective coordinates we can avoid the inversion.
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