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Abstract For exactly and efficiently representing and storing data in flashmemories, the rank
modulation scheme has been presented. In this scheme, Gray codes over the permutations
are important, which are used to represent information in flash memories. For a Gray code,
two consecutive codewords are obtained using one “push-to-the-top” operation. Specially,
a snake-in-the-box code under the Kendall’s τ -metric is a Gray code, which is capable of
detecting one Kendall’s τ -error. In this paper, we consider only the Kendall’s τ -metric on the
permutations. And we answer one open problem proposed by Horovitz and Etzion. That is,
we prove that the length of the longest snake in S2n+2 is longer than the length of the longest
snake in S2n+1.

Keywords Flash memory · Rank modulation · Gray codes · Push-to-the-top operations ·
Snake-in-the-box codes

Mathematics Subject Classification 68P30 · 94A15

1 Introduction

Flashmemory is a kind of non-volatile storagemedium that is both electrically programmable
and electrically erasable. Its reliability, high storage density, and relatively low cost havemade
it widely used. And it has a set of cells maintained at a set of charge levels to encodemessages.
The most conspicuous property of flash memories is its inherent asymmetry between cell
programming (injecting cells with charge) and cell erasure (removing charge from cells).
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While injecting a singe cellwith charge is an easyoperation, removing the charge froma single
cell is a very difficult operation. In fact, in the current architecture of flashmemories, a single-
cell erasure operation requires copying a large whole block to a temporary location, erasing
it, and then reprogramming the whole cells in the block. When some cells may be injected
with extra charge in the programming operation, this will result in overshooting. Thus, the
overshooting (increasing a cell’s charge level above the desired amount) is a severe problem.
For this reason, in a programming cycle, charge is injected over several iterations, gradually
approaching the desirable level. This process is time-consuming. Moreover, there are other
common errors in flash memory cells because of charge leakage or reading disturbance.

In order to overcome these problems, the rank modulation scheme has been recently pro-
posed in [10]. In this scheme, one permutation suggested by the relative rankings of the
charge levels on a group of cells represents data instead of using absolute values of charge
levels. Thus, in this model codes are subsets of all the permutations on n elements, denoted by
Sn , which will represent information in flash memories. To avoid the overshooting, the pro-
gramming operation is restricted to the “push-to-the-top” operation [10]. In this framework,
a group of cells are programmed by raising the charge level of a single cell above those of
all others (“push-to-the-top” operations). Hence, in this encoding scheme, the overshooting
is no longer an issue. When errors caused by injection of extra charge or leakage are very
small, they may not affect the relative rankings, i.e., the permutation will not be changed.
However, it may happen that errors in the cells are large enough to change the relative rank-
ings. To detect and/or correct such errors we need an appropriate distance measure in the
permutations. There are several metrics on the permutations such as the �∞-metric [12,15],
the Ulam metric [5] and the Kendall’s τ -metric [2,11]. In this paper, we will consider only
the Kendall’s τ -metric.

Gray codes using only “push-to-the-top” operations have been presented in [10]. More-
over, the Gray code was firstly proposed in [8] as a sequence of distinct binary vectors of
fixed length, where every adjacent pair differs in a single coordinate. In practice, they are
useful in many applications [13]. In order to understand the Gray codes, an excellent survey
on the Gray codes is given in [14]. In the flash memory, Gray codes for the rank modulation
scheme have been discussed in [6,7,10,11,16]. In fact, a Gray code is a simple cycle in a
graph, in which the edges are defined between vertices with distance one in a given metric.
Moreover, a snake-in-the-box code is a Gray code in which the distance of any two distinct
elements in the code is at least 2. Hence, this code can detect a single error in a codeword. In
general, the snake-in-the-box codes are usually considered in the context of binary codes in
the Hamming scheme, e.g., [1].Whenwe consider the Kendall’s τ -metric, a snake-in-the-box
code for rank modulation under the Kendall’s τ -metric is a Gray code in which the Kendall’s
τ -distance between any two distinct permutations is at least 2.

In [16],Yehezkeally and Schwartz constructed a snake-in-the-box code of lengthM2n+1 =
(2n + 1)(2n − 1)M2n−1 for permutations of S2n+1, from a snake of length M2n−1 for per-
mutations of S2n−1. Later Horovitz and Etzion [9] improved on this result by constructing a
snake of length M2n+1 = ((2n + 1)2n − 1)M2n−1 for permutations of S2n+1, from a snake
of length M2n−1 for permutations of S2n−1. They also presented a direct construction aim-
ing at obtaining a snake in S2n+1 of size (2n+1)!

2 − 2n + 1. These researches on this topic
restrict the “push-to-the-top” operations only on odd indices, so a snake with this restriction
in S2n+2 is equivalent to a snake in S2n+1. Thus Horovitz and Etzion [9] proposed the open
problem to prove or disprove that the length of the longest snake in S2n+2 is not longer than
the length of the longest snake in S2n+1. Recently, Zhang and Ge [17] gave a rigorous proof
for the Horovitz-Etzion construction of a snake in S2n+1 of size (2n+1)!

2 − 2n + 1. In this
paper, we prove that the length of the longest snake in S2n+2 is longer than the length of the
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longest snake in S2n+1. Moreover, we also give a construction of a snake in S2n+2 of size
M2n+1+1 from a snake in S2n+1 of size M2n+1. Therefore, we answer the problem proposed
by Horovitz and Etzion.

The rest of this paper is organized as follows. In Sect. 2 we define the basic concepts of the
Gray codes in the rank modulation scheme, such as the Kendall’s τ -metric, the “push-to-the-
top” operation and some useful notations required in this paper. In Sect. 3 we review some
properties of the Kendall’s τ -metric, and present some properties of K-snakes. In Sect. 4
we propose a construction of a snake in S2n+2 from a snake in S2n+1. In Sect. 5 we give
a rigorous proof of the problem posed by Horovitz and Etzion. In Sect. 6 we present two
examples of a snake in S2n+2 from one of the longest snakes in S2n+1. Section 7 concludes
this paper.

2 Preliminaries

In this section we will use some notations and definitions mentioned in [3,9], and we also
give some new notations.

Let [n] be the set {1, 2, . . . , n}, and let π = [π(1), π(2), . . . , π(n)] be a permutation over
[n]. Denote Sn the set of all the permutations over [n]. For σ, π ∈ Sn , their multiplication
π ◦σ is defined as the composition of σ on π , i.e., π ◦σ(i) = σ(π(i)), for all i ∈ [n]. Under
this multiplication operation, Sn is a noncommutative group. Let εn � [1, 2, . . . , n], i.e., εn is
the identity permutation of Sn . And let π−1 be the inverse element of π ∈ Sn . Moreover, we
define an inversion as a pair (π(i), π( j)) such that π(i) > π( j) and i < j , where π ∈ Sn .

Given a set S and a subset of transformations T ⊂ { f | f : S → S}, a Gray code over S of
size M , using transformations from T , is a sequence C = (c0, c1, . . . , cM−1) of M distinct
elements from S, called codewords. In this sequence, for each i ∈ [M − 1] there exists one
t̃i ∈ T such that ci = t̃i (ci−1). We define a transformation sequence of the Gray code C by
TC , where TC = (t̃1, t̃2, . . . , t̃M−1). Moreover, the Gray code is called cyclic if there exists
t̃M ∈ T such that c0 = t̃M (cM−1). Then the transformation sequence TC of the cyclic Gray
code C is (t̃1, t̃2, . . . , t̃M−1, t̃M ).

In the rank modulation scheme for flash memories, S = Sn and the set of transformations
Tn consists of the “push-to-the-top” operations in Sn . Next, We define ti : Sn → Sn by one
“push-to-the-top” operation on index i , for 2 ≤ i ≤ n, that is,

ti [a1, a2, . . . ., ai−1, ai , ai+1, . . . , an] = [ai , a1, a2, . . . , ai−1, ai+1, . . . , an].

For simplicity, a p-transition will be an abbreviation of a “push-to-the-top” operation. Then
Tn = {t2, t3, . . . , tn}.

A sequence of p-transitions will be called a transition sequence. Then, an initial per-
mutation π0 in Sn and a transition sequence tx1 , tx2 , . . . , txl can determine a sequence of
permutations π0, π1, . . . , πl in Sn , where πi = txi (πi−1), txi ∈ Tn , for all i ∈ [l]. If πl = π0

and for each 0 ≤ i < j < l, πi �= π j , then the sequence is a cyclic Gray code using the
“push-to-the-top” operations, denoted by Cn . Thus, the transition sequence TCn of the Gray
code Cn is (tx1 , tx2 , . . . , txl ).

Given a permutation π = [π(1), π(2), . . . , π(n)] ∈ Sn , an adjacent transposition is an
exchange of two distinct adjacent elements π(i), π(i + 1) in π , for every 1 ≤ i ≤ n − 1.
Then,we obtain the transformed permutation [π(1), π(2), . . . , π(i−1), π(i+1), π(i), π(i+
2), . . . , π(n)]. The Kendall’s τ -distance between two permutations π, σ ∈ Sn , denoted by
dK (π, σ ), is theminimal number of adjacent transpositions required to obtain the permutation
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σ from the permutation π . Therefore, a snake-in-the-box code under the Kendall’s metric
is a cyclic Gray code C in which for each two distinct permutations π, σ ∈ C , we have
dK (π, σ ) ≥ 2. Consequently, a snake-in-the-box code C can detect one Kendall’s error. We
will call the snake-in-the-box code a K-snake or a snake.

For convenience, we denote by an (n, M,K)-snake aK-snake in Sn of size M . We letCπ0
TC

be an (n, M,K)-snake, where TC is its transition sequence, and π0 is its first permutation.
For simplicity, we let Cπ0

TC
� (π0, π1, π2, . . . , πM−1) and TC � (tx1 , tx2 , . . . , txM ) such

that πi = txi (πi−1) for all i ∈ [M − 1] and txM (πM−1) = π0. And we denote by |Cπ0
TC

|
the number of permutations in this permutation sequence, i.e., |Cπ0

TC
| = M . For a transition

sequence s = (tk1 , tk2 , . . . , tkl ) and a permutationπ ∈ Sn , we denote by s(π)one permutation
obtained by applying the sequence of p-transitions s on π , that is, tk1 is applied on π , tk2 is
applied on tk1(π), and so on. Then we have s(π) = tkl

(
tkl−1(· · ·(t2(t1(π))) · ··)).

Yehezkeally and Schwartz [16] proved that if C is an (n, M,K)-snake, then M ≤ n!
2 .

In particular, when n = 3, they constructed the longest (3, 3,K)-snake. Moreover, when
n = 5, Horovitz and Etzion [9] obtained the longest (5, 57,K)-snake. These two results will
be ready for constructing some examples.

Based on the above definitions and notations, we will prove that the length of the longest
K-snake in S2n+2 is longer than the length of the longest K-snake in S2n+1, for all n ≥ 1.
For convenience, we let Zn be the length of the longest K-snake in Sn . Hence, we just need
to prove that Z2n+2 > Z2n+1, for all n ≥ 1.

3 Kendall’s τ -metric and K-snake

In this section, we will give some properties of the Kendall’s τ -metric and the K-snake. And
we will also present some lemmas, which will be used for proving the main result.

According to the definition of the Kendall’s τ -distance, for any two permutations σ, π ∈
Sn , we have the following expression for dK (σ, π) [11],

dK (σ, π) = ∣∣{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)
}∣∣. (1)

Moreover, the Kendall’s τ -metric is right invariant [4], that is, for every three permutations
σ, π, ρ ∈ Sn , we have dK (σ, π) = dK (σ ◦ρ, π ◦ρ). Due to (1), we can obtain the following
lemma.

Lemma 1 For any two permutations σ, π ∈ Sn, suppose σ(l) = n, π(k) = n, and let
σ1 = [σ(1), σ (2), . . . σ (l−1), σ (l+1), . . . , σ (n)], π1 = [π(1), π(2), . . . , π(k−1), π(k+
1), . . . , π(n)], then we have that σ1, π1 ∈ Sn−1 and dK (σ1, π1) ≤ dK (σ, π).

Proof According to the definition of σ1, π1, then σ1, π1 ∈ Sn−1. Due to (1), we obtain that

dK (σ, π) =|{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)}|
=|{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j), 1 ≤ i, j ≤ n − 1}|

+ |{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j), i = n or j = n}|
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and

dK (σ1, π1) =∣
∣{(i, j) : σ1

−1(i) < σ1
−1( j) ∧ π1

−1(i) > π1
−1( j)

}∣∣

=∣
∣{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j), 1 ≤ i, j ≤ n − 1

}∣∣.

Hence, we have dK (σ1, π1) ≤ dK (σ, π). ��
AK-snake is obtained by applying its transition sequence on its first permutation. Suppose

Cπ0
TC

is an (n, M,K)-snake with its first permutation π0, where TC = (tx1 , tx2 , . . . , txM ). If
we change its first permutation with the identity permutation εn , we can get a permutation
sequence Ĉ by applying TC on εn . Then Ĉ is an (n, M,K)-snake, denoted by Cεn

TC
as stated

in the next two lemmas.

Lemma 2 For any ti ∈ Tn and π, σ ∈ Sn,we have ti (π) ◦ σ = ti (π ◦ σ). Moreover,
for a transition sequence s = (tx1 , tx2 , . . . , txl ) for all the txi ∈ Tn, i ∈ [l], we also have
s(π) ◦ σ = s(π ◦ σ).

Proof Note in [9] that ti (π) ◦ σ = ti (π ◦ σ). According to the definition of s(π) and
ti (π) ◦ σ = ti (π ◦ σ), we have that s(π) ◦ σ = s(π ◦ σ). ��
Lemma 3 Suppose Cπ0

TC
and Ĉ are defined as above, then Ĉ is an (n, M,K)-snake, denoted

by Cεn
TC

. Moreover, if Cπ0
TC

is one of the longest snakes in Sn of size Zn, then C
εn
TC

is also one
of the longest snakes in Sn of size Zn.

Proof For convenience, we let Cπ0
TC

= (π0, π1, . . . , πM−1) and Ĉ = (π̂0, π̂1, . . . , π̂M−1).
By Lemma 2, we have that πi = π̂i ◦π0 for all 0 ≤ i ≤ M − 1. Since the Kendall’s τ -metric
is right invariant [4] and Cπ0

TC
is a snake, then Ĉ is an (n, M,K)-snake. Consequently, if Cπ0

TC

is one of the longest snakes in Sn of size Zn , then C
εn
TC

is also one of the longest snakes in Sn
of size Zn . ��

Since Sn is a finite set of size n! and Tn is also a finite set of size n − 1, then the set
of all K-snakes in Sn is a finite set. Hence, there must be some of the longest K-snakes. By
Lemma 3, there must be a K-snake in which its first permutation is the identity permutation
εn . Consider one of the longest K-snakes in S2n+1 with its first permutation ε2n+1, denoted
by Cε2n+1

TC
. Then its transition sequence TC must contain one p-transition t2n+1 as stated in

the next theorem.

Theorem 1 Suppose Cε2n+1
TC

is one of the longest snakes in S2n+1 of size Z2n+1, then its
transition sequence TC must contain one p-transition t2n+1, for all n ≥ 1.

To prove Theorem 1, we need the following lemma.

Lemma 4 For all n ≥ 1, Z2n+1 > Z2n.

Proof Firstly, consider that when n = 1, we will obtain that Z2n+1 > Z2n . When n = 1, we
have that Z3 = 3 and Z2 = 0, then Z3 > Z2.

Since Zhang and Ge [17] gave a rigorous proof for Horovitz-Etzion construction of a
snake in S2n+1 of size

(2n+1)!
2 − 2n+ 1 for all n ≥ 2, we have that Z2n+1 ≥ (2n+1)!

2 − 2n+ 1

for all n ≥ 2. On the other hand, Yehezkeally and Schwartz [16] showed that Z2n ≤ (2n)!
2 for

all n ≥ 2. Therefore, Z2n+1 ≥ (2n+1)!
2 − 2n + 1 >

(2n)!
2 ≥ Z2n for all n ≥ 2. So, we have

that Z2n+1 > Z2n for all n ≥ 1. ��
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Next, we will prove Theorem 1 by using Lemma 4.

Proof Suppose the transition sequence TC has no transition t2n+1, and we let Cε2n+1
TC

�
(π0, π1, . . . , πZ2n+1−1) and TC � (tx1 , . . . , txZ2n+1

). Since π0 = ε2n+1, then π0(2n + 1) =
2n + 1. Furthermore, since πi = txi (πi−1) for all i ∈ [Z2n+1 − 1] and TC has no transition
t2n+1, then πi (2n + 1) = 2n + 1, for all i ∈ [Z2n+1 − 1]. If we delete the last same element
2n+1, we can obtain a new snake Ĉε2n

TC
in S2n . Then we have that Z2n ≥ |Ĉε2n

TC
| = |Cε2n+1

TC
| =

Z2n+1, by Lemma 4, which causes a contradiction. Hence, TC must contain at least one
p-transition t2n+1. ��

Consider one of the longest K-snakes in S2n+1 with its first permutation ε2n+1, whose
transition sequence contains t2n+1. By Theorem 1, we will obtain that every element of
[2n+1]must be transited to the top using one p-transition operation in this snake. This result
is stated in the next theorem.

Theorem 2 Suppose Cε2n+1
TC

is one of the longest snakes in S2n+1 of size Z2n+1, where

TC = (tx1 , . . . , txZ2n+1
), Cε2n+1

TC
= (π0, π1, . . . , πZ2n+1−1), and π0 = ε2n+1. And we denote

Te(C
ε2n+1
TC

) � {πi (xi+1) : 0 ≤ i ≤ Z2n+1 − 1}. Then, we have that Te(Cε2n+1
TC

) = [2n + 1].
To prove Theorem 2, we first introduce some notations and establish some lemmas.

Let Cσ,π
TC

be a noncyclic Gray code in Sn , where σ is its first permutation, π is its last
permutation and TC is its transition sequence. For convenience, we let |Cσ,π

TC
| = M ,

Cσ,π
TC

= (π0, π1, . . . , πM−1) and TC = (tx1 , . . . , txM−1). Moreover, let Te(C
σ,π
TC

) be a
set of elements which are transited to the top by using the p-transitions, defined by
Te(C

σ,π
TC

) = {πi (xi+1) : 0 ≤ i ≤ M − 2}.
Lemma 5 Suppose Cσ,εn

TC
is defined as above, where εn is the identity permutation in Sn. If

σ(1) = n, then Te(C
σ,εn
TC

) ⊇ [n − 1].
Proof Since its first permutation is σ with σ(1) = n, then σ has an inversion (n, i) for all
i ∈ [n−1]. While its last permutation is εn with ε(n) = n, then εn has no inversion (n, i) for
any i ∈ [n−1]. Only applying one p-transition on some element i ∈ [n−1], the permutation
induced by the operation will has no inversion (n, i). Hence, Te(C

σ,εn
TC

) ⊇ [n − 1]. ��
In order to prove Theorem 2, we still need the following property of the noncyclic Gray

codes.

Lemma 6 Suppose Cσ,π
TC

is defined as above, where σ(1) = n. If n /∈ Te(C
σ,π
TC

), then

π−1(n) = |Te(Cσ,π
TC

)| + 1. Furthermore, when Te(C
σ,π
TC

) = [n − 1], we have π−1(n) = n.

Proof Since n /∈ Te(C
σ,π
TC

), then the element n isn’t transited to the top all the time. For
any two permutations πk, πk−1, where k ∈ [M − 1], then we have that πk = txk (πk−1)

and πk−1(xk) �= n. Thus, πk has no inversion (n, πk−1(xk)) whether πk−1 has an inversion
(n, πk−1(xk)) or not. Hence, π has no inversion (n, i) for some i ∈ [n − 1] if only if the
element i is transited to the top in one p-transition operation. Since σ has an inversion (n, i)
for every i ∈ [n − 1] and Te(C

σ,π
TC

) is a set of elements which are transited to the top, then π

has no inversion (n, i) for any i ∈ Te(C
σ,π
TC

). Hence, π−1(n) = |Te(Cσ,π
TC

)| + 1. Specially, if

Te(C
σ,π
TC

) = [n − 1], then π−1(n) = n. ��
Next, we will prove Theorem 2 by using the above lemmas.
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Proof By Theorem 1, TC must have one p-transition t2n+1. We let tx j be the first t2n+1. Since
tx j is the first t2n+1 and π0 = ε2n+1, then πk(2n+1) = 2n+1 for all 0 ≤ k ≤ j −1. Hence,
π j (1) = tx j (π j−1)(1) = π j−1(x j ) = π j−1(2n + 1) = 2n + 1. If tx j is the last transition,
then j = Z2n+1 and π0(1) = tx j (π j−1)(1) = 2n + 1, since π0 = ε2n+1, which causes a
contradiction. Therefore, 1 ≤ j ≤ Z2n+1 − 1.

Since Cε2n+1
TC

is a snake in S2n+1 with its first permutation ε2n+1, then there is a noncyclic

snake Ĉ
π j ,ε2n+1
TĈ

, i.e., it is one part of this snake from the ( j + 1)-th permutation to the first

permutation. Hence, it is a noncyclic Gray code, where TĈ = (tx j+1 , . . . , txZ2n+1
). By Lemma

5, since π j (1) = 2n + 1 and ε2n+1 is the last permutation of Ĉ
π j ,ε2n+1
TĈ

, we have that

Te
(
Ĉ

π j ,ε2n+1
TĈ

)
⊇ [2n]. (2)

By (2) and π j−1(x j ) = 2n + 1, we have that Te(C
ε2n+1
TC

) = [2n + 1]. ��

4 Construction of a snake in S2n+2 from a snake in S2n+1

In this section, we will give a construction of a K-snake in S2n+2 from one of the longest
K-snakes in S2n+1 for all n ≥ 1. According to some properties of theK-snakes, we can prove
that this construction is feasible.

Suppose Cε2n+1
TC

is one of the longest snakes in S2n+1, where |Cε2n+1
TC

| = Z2n+1,

TC = (tx1 , tx2 , . . . , txZ2n+1
) and Cε2n+1

TC
= (π0, π1, . . . , πZ2n+1−1). Next, we will construct a

permutation sequence Ĉ in S2n+2 from Cε2n+1
TC

, where |Ĉ | = Z2n+1 + 2.

In order to construct Ĉ , we need some definitions and notations. Next, we define pk :
Sn → Sn by one “push-to-the-top” on element k, for 1 ≤ k ≤ n, that is

pk([a1, a2, . . . ., ai−1, k, ai+1, . . . , an]) = [k, a1, a2, . . . , ai−1, ai+1, . . . , an],
for any [a1, a2, . . . ., ai−1, k, ai+1, . . . , an] ∈ Sn . In particular, when k is the top element,
then pk([k, a2, . . . , an]) = [k, a2, . . . , an]. Hence, an initial permutation σ0 in Sn and a
sequence py1 , . . . , pyl can determine a sequence of permutations σ0, σ1, . . . , σl in Sn , where
σi = pyi (σi−1), yi ∈ [n] for all i ∈ [l].

ConsiderCε2n+1
TC

, we can obtain a sequence (py1 , . . . , pyZ2n+1
), denoted by PC , where yi =

πi−1(xi ) for all i ∈ [Z2n+1]. Hence, PC and π0 can generate Cε2n+1
TC

, where πi = pyi (πi−1)

for all i ∈ [Z2n+1] and πZ2n+1 = π0. Here, we call PC a generating sequence of Cε2n+1
TC

.

In order to give one construction of Ĉ , firstly, we choose ε2n+2 to be the first permutation
of Ĉ . Let PĈ be a generating sequence of Ĉ , and let T̂ be a transition sequence of Ĉ .

For convenience, we let Ĉ � (π̂0, π̂1, . . . , π̂Z2n+1+1), T̂ � (tx̂1 , tx̂2 , . . . , tx̂Z2n+1+1), and

PĈ � (pŷ1 , pŷ2 , . . . , pŷZ2n+1+1), where π̂0 = ε2n+2. Secondly, we propose one construction
of PĈ in the following.

When i = 1, we let ŷ1 = 2n + 2. Moreover, for 2 ≤ i ≤ Z2n+1 + 1, we let ŷi = yi−1.
According to the construction of PĈ and π̂0, we obtain π̂k = pŷk (π̂k−1) for all k ∈

[Z2n+1 + 1]. Hence, we get a permutation sequence Ĉ with its first permutation ε2n+2 in
S2n+2, where Ĉ = (π̂0, π̂1, . . . , π̂Z2n+1 , π̂Z2n+1+1). In the next section, we will prove that
π̂0 = π̂Z2n+1+1 = ε2n+2. For simplicity, we let Ĉε2n+2 � (π̂0, π̂1, . . . , π̂Z2n+1). Next, we will
prove that Ĉε2n+2 is a K-snake in S2n+2.
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Remark 1 When Ĉε2n+2 is a Gray code, then ŷi �= π̂i−1(1) for all i ∈ [Z2n+1 + 1].
Hence, in this case, we can use Ĉε2n+2 and PĈ to obtain the transition sequence T̂ =
(tx̂1 , tx̂2 , . . . , tx̂Z2n+1+1), where ŷi = π̂i−1(x̂i ) for all i ∈ [Z2n+1 + 1].

5 A rigorous proof of Z2n+2 > Z2n+1

In this section we will prove that the length of the longest snake in S2n+2 is longer than
the length of the longest snake in S2n+1 for all n ≥ 1. That is, we need to prove that
Z2n+2 > Z2n+1 for all n ≥ 1. Specially, assume that Ĉε2n+2 is a K-snake in S2n+2, we will
obtain that Z2n+2 ≥ |Ĉε2n+2 | = Z2n+1 + 1 > Z2n+1. In order to prove that Z2n+2 > Z2n+1,
we only need to prove that Ĉε2n+2 is a K-snake in S2n+2. To prove this result, we need the
following theorem.

Theorem 3 Let Ĉε2n+2 and Cε2n+1
TC

be defined as above. Suppose lk = π̂−1
k (2n + 2), for all

k ∈ [Z2n+1 + 1]. And let π̂<2n+2>
k � [π̂k(1), . . . , π̂k(lk − 1), π̂k(lk + 1), . . . , π̂k(2n + 2)]

for all k ∈ [Z2n+1 + 1]. Then, we have that π̂<2n+2>
k = πk−1 for all k ∈ [Z2n+1 + 1], where

πZ2n+1 = π0. Moreover, we can obtain that π̂0 = π̂Z2n+1+1 = ε2n+2 and Ĉε2n+2 is a Gray
code with PĈ .

Proof From PĈ and π̂0, we have π̂1 = pŷ1(π̂0) = [2n + 2, 1, 2, . . . , 2n + 1]. Since π0 =
ε2n+1, then

π̂<2n+2>
1 = π0. (3)

Firstly, we can obtain a fact that for any σ ∈ S2n+2 and y ∈ [2n + 1], then
py(σ )<2n+2> = py(σ

<2n+2>). (4)

For all 1 ≤ i ≤ Z2n+1, since ŷi+1 = yi , then ŷi+1 ∈ [2n + 1]. By (3) and (4), we have

π̂<2n+2>
2 = pŷ2(π̂1)

<2n+2> = pŷ2(π̂
<2n+2>
1 ) = py1(π0) = π1. (5)

Similarly, we can obtain that π̂<2n+2>
k = πk−1 for all k ∈ [Z2n+1 + 1].

By Theorem 2, we have that Te(C
ε2n+1
TC

) = [2n+ 1]. According to the construction of PĈ ,
we obtain that

Te(Ĉ
π̂1,π̂Z2n+1+1) = Te(C

ε2n+1
TC

) = [2n + 1]. (6)

Since π̂1(1) = 2n + 2, by Lemma 6 and (6), we have that π̂Z2n+1+1(2n + 2) = 2n + 2.
Moreover, π̂<2n+2>

Z2n+1+1 = πZ2n+1 = π0 = ε2n+1. Hence, we obtain π̂Z2n+1+1 = π̂0 = ε2n+2.

Since Cε2n+1
TC

is a snake and π̂<2n+2>
k = πk−1 for all k ∈ [Z2n+1], we have that π̂i �= π̂ j

for two distinct i, j ∈ [Z2n+1]. Moreover, we have π̂<2n+2>
0 = π̂<2n+2>

1 and π̂0 �= π̂1, then
π̂i �= π̂ j for two distinct i, j ∈ [Z2n+1] ∪ {0}. Hence, we obtain that Ĉε2n+2 is a Gray code
with PĈ . ��

According to Remark 1 and Theorem 3, we know that Ĉε2n+2 is a Gray code with T̂ . Next,
we prove the main result using Theorem 3.

Theorem 4 The length of the longest snake in S2n+2 is longer than the length of the longest
snake in S2n+1, for all n ≥ 1, i.e., Z2n+2 > Z2n+1.
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Proof By Lemma 3, there must be a snake Cε2n+1
TC

of size Z2n+1, where Cε2n+1
TC

=
(π0, π1, . . . , πZ2n+1−1) and π0 = ε2n+1. By the construction of Ĉε2n+2 and Theorem 3,
we know that Ĉε2n+2 is a Gray code, where Ĉε2n+2 = (π̂0, π̂1, . . . , π̂Z2n+1). Next, we will
prove that Ĉε2n+2 is a snake in S2n+2.

By Theorem (3), we have that
π̂<2n+2>
k = πk−1 (7)

for all k ∈ [Z2n+1]. According to Lemma 1 and (7), for any two distinct permutations
π̂i , π̂ j ∈ Ĉε2n+2 , 1 ≤ i, j ≤ Z2n+1, we can obtain that

dK
(
π̂i , π̂ j

) ≥ dK
(
π̂<2n+2>
i , π̂<2n+2>

j

)

= dK (πi−1, π j−1)

≥ 2. (8)

For i = 0, 2 ≤ j ≤ Z2n+1, we have that

dK
(
π̂0, π̂ j

) = dK
(
ε2n+2, π̂ j

) ≥ dK
(
ε<2n+2>
2n+2 , π̂<2n+2>

j

)

= dK (ε2n+1, π j−1)

= dK (π0, π j−1)

≥ 2. (9)

When i = 0, j = 1, since n ≥ 1, we have that

dK (π̂0, π̂1) = 2n + 1 ≥ 2. (10)

By (8), (9) and (10), since Ĉε2n+2 is a Gray code in S2n+2, then Ĉε2n+2 is a K-snake in S2n+2.
Hence, we have that

Z2n+2 ≥ |Ĉε2n+2 |
= Z2n+1 + 1

> Z2n+1.

So, the length of the longest snake in S2n+2 is longer than the length of the longest snake in
S2n+1 for all n ≥ 1. ��

6 Examples of a snake in S2n+2 from one of the longest snakes in S2n+1

6.1 A snake in S4 from one of the longest snakes in S3

Yehezkeally and Schwartz [16] proposed one of the longest snakes in S3 of size 3, denoted by
Cε3
TC

, where Cε3
TC

= ([1, 2, 3], [3, 1, 2], [2, 3, 1]) and TC = (t3, t3, t3). Next, we construct a

snake Ĉε4 in S4 from Cε3
TC

in S3 using the above construction, where Ĉε4 = (π̂0, π̂1, π̂2, π̂3).

Let PĈε4 be a generating sequence of Ĉε4 , where PĈε4 = (pŷ1 , pŷ2 , pŷ3 , pŷ4). By Cε3
TC

, we
have that PCε3

TC
= (p3, p2, p1). According to the construction of PĈε4 and π̂0, we have that

PĈε4 = (p4, p3, p2, p1) and π̂0 = ε4. Then we obtain that π̂k = pŷk (π̂k−1) for all k ∈ [3].
Therefore, we have Ĉε4 = ([1, 2, 3, 4], [4, 1, 2, 3], [3, 4, 1, 2], [2, 3, 4, 1]).
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1 3 2 5 3 2 4 3 1 5 3 1 2 3 1 4 3 5 2 1 5 2 4 5 2 3 5 1 4 5 1 2 5 1 3 5 4 2 1 4 2 3 4 2 5 4 1 3 4 1 2 4 1 5 4 3 2
2 1 3 2 5 3 2 4 3 1 5 3 1 2 3 1 4 3 5 2 1 5 2 4 5 2 3 5 1 4 5 1 2 5 1 3 5 4 2 1 4 2 3 4 2 5 4 1 3 4 1 2 4 1 5 4 3
3 2 1 3 2 5 3 2 4 3 1 5 3 1 2 3 1 4 3 5 2 1 5 2 4 5 2 3 5 1 4 5 1 2 5 1 3 5 4 2 1 4 2 3 4 2 5 4 1 3 4 1 2 4 1 5 4
4 4 4 1 1 1 5 5 2 4 4 4 5 5 5 2 2 1 4 3 3 3 1 1 1 4 4 2 3 3 3 4 4 4 2 2 1 3 5 5 5 1 1 1 3 3 2 5 5 5 3 3 3 2 2 1 5
5 5 5 4 4 4 1 1 5 2 2 2 4 4 4 5 5 2 1 4 4 4 3 3 3 1 1 4 2 2 2 3 3 3 4 4 2 1 3 3 3 5 5 5 1 1 3 2 2 2 5 5 5 3 3 2 1

Fig. 1 The (5, 57,K)-snake C
ε5
TC

1 6 3 2 5 3 2 4 3 1 5 3 1 2 3 1 4 3 5 2 1 5 2 4 5 2 3 5 1 4 5 1 2 5 1 3 5 4 2 1 4 2 3 4 2 5 4 1 3 4 1 2 4 1 5 4 3 2
2 1 6 3 2 5 3 2 4 3 1 5 3 1 2 3 1 4 3 5 2 1 5 2 4 5 2 3 5 1 4 5 1 2 5 1 3 5 4 2 1 4 2 3 4 2 5 4 1 3 4 1 2 4 1 5 4 3
3 2 1 6 3 2 5 3 2 4 3 1 5 3 1 2 3 1 4 3 5 2 1 5 2 4 5 2 3 5 1 4 5 1 2 5 1 3 5 4 2 1 4 2 3 4 2 5 4 1 3 4 1 2 4 1 5 4
4 3 2 1 6 6 6 5 5 2 4 4 4 5 5 5 2 2 1 4 3 3 3 1 1 1 4 4 2 3 3 3 4 4 4 2 2 1 3 5 5 5 1 1 1 3 3 2 5 5 5 3 3 3 2 2 1 5
5 4 4 4 1 1 1 6 6 5 2 2 2 4 4 4 5 5 2 1 4 4 4 3 3 3 1 1 4 2 2 2 3 3 3 4 4 2 1 3 3 3 5 5 5 1 1 3 2 2 2 5 5 5 3 3 2 1
6 5 5 5 4 4 4 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Fig. 2 The (6, 58,K)-snake Ĉε6

6.2 A snake in S6 from one of the longest snakes in S5

Horovitz and Etzion [9] gave one of the longest snakes in S5 of size 57, denoted by Cε5
TC

,
where Cε5

TC
= (π0, π1, . . . , π56). For convenience, we will give the permutation sequence

in Fig. 1, and its transition sequence TC = (s, s, s) with a partial transition sequence s =
(t3, t3, t5, t3, t3, t5, t3, t5, t5, t3, t3, t5, t3, t3, t5, t3, t5, t5, t5). Next, we can construct a snake
Ĉε6 in S6 from Cε5

TC
in S5 using the above construction, where Ĉε6 = (π̂0, π̂1, . . . , π̂57). Let

PĈε6 be a generating sequence of Ĉε6 , where PĈε6 = (pŷ1 , pŷ2 , . . . , pŷ58).
By Cε5

TC
, we can obtain that PCε5

TC
= (p3, p2, p5, p3, p2, p4, p3, p1, p5, p3, p1, p2, p3,

p1, p4, p3, p5, p2, p1, p5, p2, p4, p5, p2, p3, p5, p1, p4, p5, p1, p2, p5, p1, p3, p5, p4, p2,
p1, p4, p2, p3, p4, p2, p5, p4, p1, p3, p4, p1, p2, p4, p1, p5, p4, p3, p2, p1).

According to the construction of PĈε6 and π̂0, we have that π̂0 = ε6 and PĈε6 =
(p6, PCε5

TC
).

Then by PĈε6 and π̂0, we can obtain Ĉε6 = (π̂0, π̂1, . . . , π̂57) in Fig. 2, where π̂k =
pŷk (π̂k−1) for all k ∈ [57].

7 Conclusions

Gray codes in Sn under the Kendall’s τ -metric using only “push-to-the-top” operations play
an important role in the framework of rank modulation scheme for flash memories. In this
paper, we proved the conjecture of Horovitz and Etzion that the length of the longest snake
in S2n+2 is longer than the length of the longest snake in S2n . We also gave a construction of
a snake with size Z2n+1 + 1 in S2n+2 from one of the longest snakes of Z2n+1 in S2n+1.
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