Des. Codes Cryptogr. (2017) 83:83-99 @ CrossMark
DOI 10.1007/510623-016-0205-8

Complete weight enumerators of a class of linear codes

Jaehyun Ahn! . Dongseok Ka! . Chengju Li*?

Received: 3 January 2016 / Revised: 25 March 2016 / Accepted: 30 March 2016 /
Published online: 13 April 2016
© Springer Science+Business Media New York 2016

Abstract Let I, be the finite field with ¢ = p™ elements, where p is an odd prime and m is
a positive integer. For a positive integer ¢, let D C IE‘; and let Tr,, be the trace function from
IF, onto F,. In this paper, let D = {(x{, x2,...,x;) € IF; \ {(0,0,...,0)} : Tr,(x; +x2 +
-+ +x;) = 0}, we define a p-ary linear code Cp by

. 13
Cp ={clar, a2, ..., a;) : (a1, a2, ..., a;) € F},
where
cla = (T 2 2 2
1,az,...,a) = (Try(arxi +axy + - + ax;)) (x1,x2,....x)eD-

We shall present the complete weight enumerators of the linear codes Cp and give several
classes of linear codes with a few weights. This paper generalizes the results of Yang and
Yao (Des Codes Cryptogr, 2016).
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1 Introduction

Let F), be the finite field with p elements where p is an odd prime. An [n, k, d] linear
code C over I, is k-dimensional subspace of IF';) with minimum distance d. We recall the
definition of the complete weight enumerator of linear code [14]. Suppose that the elements
of F, are wo = 0, wy, ..., wy—_1, which are listed in some fixed order. The composition of a
vector v = (vg, V1, ..., Vp—1) € IFZ is defined to be comp(v)=(t9, 1, ..., t;—1), where each
t; = t;(v) is the number of components v; (0 < j < n — 1) of v that equal to w;. Clearly, we
have

Definition 1.1 Let Cbean [n, k] linear code over I, and let A(#o, t1 .. ., ;1) be the number
of codewords ¢ € C with comp(¢)=(t9, t1, . .., t;—1). Then the complete weight enumerator
of C is defined to be the polynomial

_ 1o _t Ig—1
We = Zzozl T2y
ceC
to _t Ig—1
= > Alto, 11, s 1g-1)20'2) -2,
(lo,t],...,tq_l)GB,,

g—1
where B, = {(t0, 11, ..., 14—1) : 0 < t; < n, Zz,» = n).
i=0

Recently, linear codes with a few weights have been investigated [1,6-10,13,16,19] by
using exponential sums in some cases. They may have many applications in association
schemes [3], strongly regular graphs [4], and secret sharing schemes [5,18]. In addition, the
complete weight enumerators of linear codes over finite fields can be applied to compute the
deception probabilities of certain authentication codes constructed from linear codes [11,12].
We begin to recall a class of two-weight and three-weight linear codes which were proposed
by Ding and Ding [9]. Let D = {x € IFZ S Tr(x2) = 0}, where Tr,, is the trace function
from IF; onto IF},. Then a linear code of length n = | D| over I}, can be defined by

Cp ={c(a) = (Trp(ax))ep : a € Fyg}.

It was proved that Cp is a two-weight code if m is even and a three-weight code if m is odd.
Motivated by the results given in [9], Bae et al. gave a generalization of Ding and Ding’s
case [1]. Let D = {(x1, X2, ..., %) € F/ \ {(0,0,...,0)} : Tryy (x] + x3 + -+ + x7) = 0}.
They define a p-ary linear code Cp by

Cp={cla,az,...,a) :a1,a,...,a; € Fpm},
where
c(ay,az,...,a;) = (Try(arxy +azxa + -+ + ar X)) (x,x2,....x,)eD.

It was also shown that Cp is two-weight if tm is even and three-weight if rm is odd. If
D ={x e IE‘; : Try(x) = 0} and Cp = {Trp(ax3)yep @ a € F,}, Yang and Yao [17]
determined the complete weight enumerators of Cp. In this paper, let D = {(x1, x2, ..., x;) €
]Ff] \ {(0,0,...,0)} : Trjp(x1 + x2 4+ - - - + x;) = 0}. We define a p-ary linear code Cp by

Cp ={c(ar,az, ..., a) : (a1, a2, ....4) € Fy}, ey

@ Springer



Complete weight enumerators of a class of linear codes 85

where
clar, az. ... a;) = (Try(@1X] + @2x3 + -+ + @x7)) (1) xa....o)eD- (@3
We shall present the complete weight enumerators of this class of linear codes and get

several linear codes with a few weights. In addition, this paper generalizes the results of Yang
and Yao [17].

2 Preliminaries

Let p be an odd prime and ¢ = p™ for a positive integer m. For any a € I, we can define
an additive character of the finite field F; as follows:

Va i Fg — C* Y x) = £,
where {, = e 7 is a p-th primitive root of unity. It is clear that yo(x) = 1 for all
x € Fy. Then vy is called the trivial additive character of F. If a = 1, we call ¢ := vy the
canonical additive character of . It is easy to see that ¥, (x) = ¥ (ax) for all @, x € Fy.
The orthogonal property of additive characters which can be found in [14] is given by
q,ifa =0,
Z Valx) = [ 0, ifa € F*.
xeFy q

Let A : Fy — C* be a multiplicative character of ;. Now we define the Gauss sum over F,
by

GV = D NP (x).

*
xE]Fq

Let ¢ — 1 = sN for two positive integers s > 1, N > 1 and « be a fixed primitive
element of F;. Let (a™)) denote the subgroup of IFZ generated by ™ . The cyclotomic classes

of order N in F, are the cosets Cl.(N’q) =a(@N) fori =0,1,..., N — 1. We know that
|C1¥N’4)| = %. The Gaussian periods of order N are defined by
(N ‘I) Z Ip(x)
xecW-D

Lemma 2.1 [2,14] Suppose that ¢ = p™ and n is the quadratic character of Fy where p is
an odd prime and m > 1. Then

PRI e VAN ifp=1 (mod4),
e =0 m_((—l)’"“(ﬁ)mﬁ, ifp=3 (mod 4),

where p* = (%)p = (—1)%;7.
Lemma 2.2 [14] If g is odd and f(x) = axx? + aijx +ag € Fy[x] with a; # 0, then

Try, Try, (a —a2(4a )_])
prr <f<x>>:§p 0TI (@) G (),

xeFy

where 1 is the quadratic character of IE‘;;.
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Lemma 2.3 [15] When N = 2, the Gaussian periods are given by

—1 -1 m—1 .
S0 _ G g, ifp=1 (mod4),
0 - _ _1ym=1l¢ /—_1ym
DEVT VDTG ifp =3 (mod 4),

and n(z = - n(()z’q).

3 Complete weight enumerators

In this section, we will investigate the complete weight enumerators of the linear codes Cp
defined by (1) and (2), where

D = {(x1,x2,...,%;) EF;\{(O,O,...,O)}:Trm(xl+x2+---+x,):0}.

Let 1, be the quadratic character of ]F; and let G(n,) denote the quadratic Gauss sum
over IF,. For z € IF’;, it is easily checked that n(z) = n,(z) if m is odd and (z) = 1 if m is
even, where 7 is the quadratic character of IFZ (see [9]). Since the trace function is balanced,
we have the following lemma.

Lemma 3.1 Denote n, = |{(x1,x2,...,x) € IF; cTrp(xy +x2 + -+ 4+ x¢) = c}| for each

c € Fy, thenn, = p"™~L.

By Lemma 3.1 it is easy to see that the length of Cp isn = ng — 1 = p™~! — 1. For a
codeword ¢(ay, as, ...,a;) of Cpand p € F * ,let N, := Ny(ay, az, ..., a;) be the number
of components Tr,, (alxl2 + -t ax; 2y of c(al, ..., ay) which are equal to p. Then
N, = Z ( z é,)Trm(x1+x2+ +xt)>( Z ngrm(alx 2btaix)—zp )
X1,X2,...,X €EFy ye]F,, ze]F,,
(x1,x2,...,x;)#(0,0, ...,
1 T Try, (a1 x arX,
_ YT (X1 4x2+4x;) ZTry (a; 1+ Aa;x?)—zp
=5 X (+Xa )1+ 2o )
X1,X2,...,% €Fy )e]F* ZE]F*
_ 1
=p™ 2+?(91+92+Q3), ©)
where
_ Trp (yx1) Try (yx2) Trp (yxe) _
R I LD WD WL
yeIE‘* x1€F, x2€F, xi€Fy
Trp (zajx ) T (zazx. ) Trp (za x2
Q=D ¢, 3 g Y g ML S g e
ze]F* x1€Fy x2€Fy x€Fy
and
Try (za1x3+yx1) Try (za2x? +yx2) Try (zasx, +yX)
= 2 57 2 p T 2 D g
V, ze]F* x1€F, x2€F, x€Fy
Lemma 3.2 Suppose that there are exactly k elements a;,, ..., a; # 0among ay, ..., a
forl <k <t.

@ Springer



Complete weight enumerators of a class of linear codes 87

(1) Ifm is even, then
Q =—q' " nai, - ai)G*.
(2) If m is odd, then

o —q"*n(ai, - ai )G, k is even,
2= .
g n(ai, - ai )G Gp)ny(—p), kis odd.

Proof If ay = ay = --- = a, = 0, then it is easy to see that Qp = —q’. Otherwise by
Lemma 2.2, we get

Q=q""* Z ¢, #n(zai )G (nn(zai,)G(n) - - - n(zai )G (n)

*
ZEFP

=q' " n(aian, - a)G* Y 5@k

%
zer

If m is even or if m is odd and k is even, then n(z)k = 1. Thus, we get the result.
If m is odd and k is odd, then n,(2)* = n,(z) and > ¢, %n,(2) = Gnp)np(—p).

ZEF}‘,
Thus, we get the result. O

To simplify formulas, we denote A = a; ---a; and B = al_] +- az_1 throughout this
paper.

Lemma 3.3 [fajay---a; =0, then Q3 = 0. Assume that ajay - - - a; % 0.
(1) Iftm is even, then
| -p= DGm)'n(A), if Try,, (B) = 0,
’ G'n(A) (pnp(=Trm(B)np(p) + 1), if Try (B) # 0.
(2) Iftm is odd, then
= DGM)'n(A)Gp)np(—p). if Tr,, (B) =0,
—G('n(AG 1) (np(=Tru(B)) + n(—p)), if Tr;n(B) # 0.

Proof By Lemma 2.2 we have

_.2 -1 —y2(4ay )"
2= > (5" I eanGm) - (6" M a6 )

y.,zeIF;“,

—2p . T (=¥ (Ba12) ™4+ (da; )7
= > g, gy G DT () - n(zan G ()

y.z€F}
240!
=G(n)'n(A) Z ¢! Z ¢, 42~ T (B) W
ZE]F; yE]F’;
. —y?(42)" Ty
=G (n)'n(A) Z () Z ¢y’ @) Tn8) _ | )
z€ly, yeF,,
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88 J. Ahn et al.

Now, we consider the case that tm is even. If Tr,, (B) = 0, then from (4) we have
Q3 =—(p— DG)'n(A).
If Tr,, (B) # 0, then from Lemma 2.2 and (5) we have

= G)'n(Am,(Tru(BNG(p) D ¢, ¥ n,p(—(@d)7 ") + Gm)'n(A)

*
ze]Fp

= G)'n(AM,(Tru(BNG(p) D ¢, np(=2) + G()'n(A).

"
ze]Fp

Thus, we get the result.
Now, assume that tm is odd. If Tr,,, (B) = 0, then it follows from (4) that

=(p— DG NAGnp)np(—p).
Also, if Tr,,,(B) # 0, then it follows from Lemma 2.2 and (5) that

Q3= G 1(A) Y &, np(@) (1p(= 40y (Ten (BYG 1) — 1)

ZEF;

= G'n(A) X 6 (1~ Dnp(Trn (BNG (1) = 1p(2))-

ZEF;

Thus, we get the results.

[}

By the Lemmas 3.2 and 3.3, we obtain the values of N,. To get the frequency of each

composition, we need the following lemmas.
Lemma 3.4 Forc € F), let
ne= (a1, ....a) € F)" : Tru(B) = c}].

Then we have

, _[ " =D+ (=D'(p =D}, ife=0
" =1 = (=D}, ifc #0.

Proof By the orthogonal property of additive characters we get

n’c _ Z z ;)(Trm(B) 9]

ap,..., a,E]F* yEIFp

_@=D 1)’ s e > (=30

p E]F* ap,...,a;€f*

(q—l) L z I Z gTrm(val h Z §Trm(w, )

ve]F* ale]F* a,elF
t
(q - 1) Z ¢ yc z
P
yeFy,

Thus, we get the desired results.
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Lemma 3.5 Fori € {—1, 1}, let
ni = {(a1, ..., a) € (Fp)

(1) If m is even, then

:n(A) =i and Tr,, (B) = 0}]

1
m= 2 (" = D'+ (= DD+ G)))
1
nor= (0" = D'+ (= D(D = 6m)).
(2) If m is odd, then

o ﬁ((pm_1)t+(p_1)((_])t+G(r))t)), if ¢ is even,
1= ﬁ((p’”—l)t-i-(p—l)(—l)t), if ¢ is odd.
[ =0 DD = Gay)). it pis even,
-1= zip((p’”—l)’—l—(p—l)(—l)'), if ¢ is odd.

Proof 1t follows from Lemma 3.4 that n_; = "o — n1. Thus, we only need to compute 7.

L
Let o be a primitive element of Fy. Then I, = (a7~

). Note that n(A) = 1 if and only if

Acci? = <a2>.
Trm (B)
m= 2 - Z &
AEC(Z -q) ye]Fp
1 ¥Trm(B)
- 3 L (Zame
aec® U \yeF}
_1@@- 1)’ yTrm (B)
=5t DWW
A€C(()2 -q) )E]F*
1 (g — 1)’ 5] Trm (vay! ) Trm(ya, h
yE]F* Jj=0 —— ecfz"’)
aip,..., a,\{a,1 ..... aizj}EC(()z @

_l@-D" 1
=3 + Z

p yels | j=0

Assume that m is even, then 2 divides q

lg- !

p 2

*( -D

j=0

t Trm(ya.)
(21) DI

é.Trm(ya,) . (6

- and so F% C C(2 ‘9 By (6) we can get

( J)(na Dyi=2j (22
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90 J. Ahn et al.

2.9 29 _ d n(lq) _ Q2
0

Note that n,™"" +n, —1an m = G(n). Thus, we get the result. Now suppose
that m is odd, then |]F’;, N Céz’q)| = |IB‘j;J n sz’q)| = pT_l. By (6) we have

(4]
l(q—l)’ p—1 (2 Dy =2i (@D 2]
m== 5 2 )T ()

Jj=0
[4]

p—1 Qug)i—2j  (2.0)\2j
+TZ(2J.)(771 )2 (g )

j=0
L -=D" p—1 1( Qo G, a2 t) '
=— ’ e -1 .
P B =+ 2 ) (ng =0 + (O Ny 7))+ (=1
Note thatn_; = n — n1 and this completes the proof. m]

Recall that « is a fixed primitive element of F.

Lemma 3.6 For0 <k < [1/2]and ¢ € C{*7, letnogc = l{ai, ... a; € F : Try(a} +
ctaay +ag o+ ap) = ).

(1) If m is even, then

mo_ 1yt 1
e = 2= LiGan + 0% Gm) - 1%,
)4 )4

) If misoddandk < t/4, then

t—4k

(" =-D" 1 P Bl (i 2i
e CR Z( 5 )G(n)

i=0

t—4k 4k
+1p(—c) Z (2 H)G(n)”“c(np) , if 7 is even,

M2k,c = (—4k—1

(p"-n" 1 2 2% - (’—4/‘) 2i
G- 2|y Jem

i=0

t—4k—1

2
+np(=c) > (2 +1)G(n)2’+lG(np) ,if 7 is odd.
i=0
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Complete weight enumerators of a class of linear codes 91

) Ifmisoddandk > t/4, then

4kt
(" -0 1 2 12k : (4k - t) 2
(G -1 -> G
» p( Q)] ) 2\ 2 )

4k t_
+np(—c) Z (2 +1)G(n)2’+1G(nP) , if ¢ is even,

Mk.c = dk—t—1

m __ t 2 —_ .
%4_ %(G(n)z_ 1)!721{ _ z (4k . t)G(n)Zl

2i
i=0

4kt1

+np(—c) Z (2 +1)G(n)2‘+1G(np) , if 7 is odd.

@) Ifmisodd, t =0 (mod 4) and k = t /4, then

("1 ;
Make =ny o= b = (G = 1)
P p

Proof By the orthogonal property of additive characters, we have

_ y(Trm(aa +aa2+ +aa2,\+¢12k+1+ +at) c)
N2k,c =
ar,..., a,e]F;; EIFP
1 y(Try (@al+aad ++aad +a3, +-+al)—c)
= 2 Sl2w +1
at,..., a,e]Fj; yeF*
t
_(q — 1) + l Z é—fyc z ;. m(}aal {Trm(\aaZk)é_Trm(VaZkJrl) ;Trm(xat
- P p P
p P yeF* ap,..., a,e]F;
(—1) - Ty (yaa?) Tr (vara2,)
q 2 ;, yc Z ; m (Y —1)... Z C m\yaay, -1
yEIF ay E]Fq ark E]Fq
Trp ()’a§k+1 ) Try (ya?)
X E &p z &p '
az+1€Fy a€ly

It follows from Lemma 2.2 that

(g -1

N2k,c =

+ Z ¢, )G — D* ()G — 12, (7

yEIF
Now, if m is even, then we have

m _ 1)t 1
e = = LGan + p2*Gan — 1,
)4 )4
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92 J. Ahn et al.

Suppose that m is odd and k < ¢/4. Then by (7) we have

o1 (S — sk o .
noge = 4 > ) +;(G(n)2 DI (Z (’ ; )np(y)’am)'(—l)“‘k’).
i=0

yEF*
()]

If ¢ is even, then it follows from (8) that

1—4k

@—D" 1 —ve [N (1% :
Me ==— +;(G(n)2 n* > ¢, Z( 5 )G(n)2

yeFs, i=0

Lﬁk_l

+ Z (2 +1)n,;(y)c:(mz"“(—l)

t—4k

_g-=D" 1 2 2k | — (1 4k 2i
=S+ G- (1)2( 5 )G(n)

+(=1) Z ( ) > 5 0 ()

yeF;,

Thus, we get the desired result.
It is similar to give the proof when ¢ is odd or m is odd for k > ¢ /4. Finally, if m is odd,
t =0 (mod 4) and k = ¢ /4, it follows from (7) that

—1 m_ 1t 1 '
Mok =ny .= % —Gm*-D5> ¢, % — (G = DE,

yeF*

Lemma 3.7 Fori, j € {—1, 1}, let

nij = lai, ..., ar € Fy :n(A) =i and np(=Try(B)) = j}|

Then we have

Ia L
1p—1[2 t d lp—1/(t
n = - ny—randny | = ——— n _g,
LL=575 — 9 )21 L-1= 57> . 2 )28

g1
where f = a»=1. Moreover, if tm is even, thenny| = ny —1.
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Proof For j € {—1, 1}, we have

nj =lai,....a € Fy :n(A) = 1 and n,(=Try(B)) = j}|
=la1,....a; €F: 1 A€ C§P, np(=Trw(B)) = j}|

t 2, 2, .
= (zl.)l{al,...,az,» e C* ayiy, ... a € CYP oy (=Tru(B)) = j)I

t
=5 Z( )|{b1,...,b, € Fy: mp(=Try(ab] +ab} + - +aby
i=0
F D3y oo b)) = ).

By Lemma 3.6 we have

1 t 1 t\p-1
”“ziz(zi) 2 mie= 1. (Zi) gy Al

i=0 Cec(()lp) i=0
and
1 g t
nl,,lziz(zl.) S i
i=0 ce (2,p)

If m is even, from Lemma 3.6, then it is easy to see that ny . are independent of ¢ € IF;‘,
Thus nox,—1 =nyx,—gandsony | =ny _i.
Next assume that m is odd and = 2 (mod 4). By Lemma 3.6 we have

(4]

1p—1 t\ 2 t\
T2 ok )21 T 2 2% )12k
k=[§1+1

ni
k=0
Rl LN I R
3 2 (Zk) —p e
k=0 p P
t — 4k . t — 4k :
G 2i G G 2i+1
x Z;( 5 ) m* + G, ZO (2i+1) m**h

: ty " =D 1 2 2%
+ > (Zk)‘pp(mn) -1

sty
' 3 4k — ¢ ,
G =Gy Y. (Zi +1)G(n)2’+1
i=0

< [4k —t
. Z( 2i
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94 J. Ahn et al.

By changing k with § — k in the second summation we have

(4]
1 -1 t m _ 1)t 1
= =2~ ( ) PTGy =
‘ p p

2 2 = 2k
=tk ik
t—4 2i 2i+1
: i=0( 2i )G(r]) + G(p) z (2 +1)G( ) )
(4]
t ( m __ 1)1 1
T ( ) W=D LG - 1y
= \2k p p

t—4k

l4k
~ (4 —1 2i 2i+1
x| . ( 5 )G(n) —Gnp) Z (2 +1)G()

4 1—4k

-1 4 m __ 1yt
e (B e S o

For ny,—1, we similarly have

(4]
1 p—1 t — 1 1
n_ =L~ W=D _ LG —n»
’ 2k p p

k=0

o (t—4k)G(n)2[ — G )TZ ( )G( )21+1
, 2i P — \2i +1

: ty]@-D" 1 2 y-2k
+ _Z (Zk) P CIORY

k=[§1+1
% 4k t_
4k —t 2i 2i+1
x Z(}( 5 )G(n) +G(p) Z (2 +1)G()

By changing k with § — k in the second summation we have

[%] t—4k

_r-1 @M=D 1 L 2i
T %(%) PN CIORY Z( )G()

Thus, ny1 = np,—1. Itis similar to get the desired results when m is odd and = 0 (mod 4).
This completes the proof. O

Lemma 3.8 Fori € {—1, 1}, let

si = a1, ..., a; € Fy i n(A)n,(=Try(B)) = i}
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(1) Iftm is even, then we have

p— m t t
=5 1=— - D' = (=D").
s] =951 2 ((p ) = (=1)7)
(2) Iftm is odd, then we have
(4] t—42k—1
p—1 Y]] 2 2% —4
=+ — —(G -1
S+ > szo (2k) p( m” =1 EO

1 — 4k 2i+1
2%+ 1)G(n) G(np)

2 /iy |1 g .
+ >, (2k) —(Gm* =D (zl. +1)G(n)2’“G(np)
k=[§1+1 P i=0
p—l m t t
o, (" =D = D).

Proof Itiseasytoseethats; =ny14+n_1,—1 =ni1+7 —ny -1, whereT = |{aj,...,a; €
IFZ :np(=Try(B)) = —1}|. By Lemma 3.4 we have
T =l{ai,....a € Fi 1 ~Tru(B) € C{)]
’ pP— 1
= 2 =S (0" =D =),
cec? P
Similarly, we have s_1 = nj 1 + T — ny1. If tm is even, then by Lemma 3.7, we get the
desired result.
Next, if tm is odd, then by Lemmas 3.6 and 3.7 we have

[4]
1p—1 t P"-n" 1 2 2%
St Yo L Gm?E -1
ma =5 2 (Zk) p + p( m==1

1—4k—1

t — 4k Y = [t —4k
x 2 ( 5 )G(n) +G(np) ; (

G 2i+1
2i + 1) ()

m __ 1\t
+ (t) il S T ST
i 2k p p

4k—t—1
4k — ¢ 5 =, (4k —1t
x| - 2 ( 5 )G(n)’+G<np) 2{; (
1= 1=

G 2i+1
2i + 1) (m

(41
ni lzipi_l . ! L_l)t_l_i(c(n)Z_])Zk
o2t 2 = 2k p p
t—42k 1 t—42k—1
t — 4k : t — 4k .
G 2l_G G 2i+1
x 2. ( 5 ) ) (p) ;O (21. +1) ()
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— t @P"-D" 1 2 =2k
+ > (2k) S CL R

k=[§1+1
4k—2t—l 4k—2"—1
4k —t ; 4k —t .
G 2i G G 2i+1
> ( 5 ) 0 + Gl Y (2i+1) )
i=0 i=0
Now, it is easy to get s; and s_1. This completes the proof. O

Theorem 3.9 LetCp be the linear code defined by (1) and (2), where D = {(x1, x2, ..., X;) €
IF;\{(O, 0,...,0)} : Try (x1 +x2+---+x) =0} and p € F},. ThenCp isa [p™=1—1,tm]
linear code.

(1) If m is even, then the complete weight enumerator of Cp is given as follows:

N, = 0 occurs 1 time,

£\ (p" — 1k
N, = P 4 pm(’_%)_2 (0 < k < t) occurs (k)% times,

tm— 1 tm
Ny = p" 7 p"E occurs 55 (" =D+ (p = D((=D" F p 7)) times,
p

N, = pim? 4 p#nl,(p) occurs 2 ((P™ = D' = (=1)') times.

(2) If m is odd and t is even, then the complete weight enumerator of Cp is given as follows:

N, =0 occurs 1 time,

m=2 4 m@a—%)—2 . N\ (p" — DF
N,=p +p 2 (0 < k < t and k is even) occurs ) times,
t m__ | k
N, = p™=2 £ pm=53y (p) (0<k <t and k is odd) occurs (k)% times,

m— 1 m
N, =p"™ 2+ ' ? occurs 2—((;7’" -D'+(p-D(=D'F p%)) times,
p

N, = p™2 & p™7 n,(p) occurs T——((p" = 1)' = (—1)') times.
() If mis odd and t is odd, then the complete weight enumerator of Cp is given as follows:

N, = 0 occurs 1 time,

tm—2 m—%y—2 . t (Pm — ])k .
N,=p +p 2 (0 < k < t and k is even) occurs 2 times,
3 £\ (p" — Dk
N, = P 4 p'"(“%)*%n,,(p) (0 < k <t and k is odd) occurs (k) % times,

m— 1
N, = P2 4 p% np(p) occurs ﬁ((pm — D'+ (p— D(=1)") times,

am+)(p=1)  tm—3
) 1

Ny =p"™=2+ (=1 p I occurs

[L] 1—4k—1

4 2
t 1 m(p—1) 2% t — 4k (Qi+Dm+)(p=1)  QRi+Dm+1
—((=1)" 2 "1 —1 * 2
Z(Zk) S(EDTp 1) [_E:O (zl. N 1)( ) P

k=0

p—1
t

T
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T

t 1 m(p—1) =%~ 4k —t (Qi+Dm+D(p=1)  Qi+Dm+1
E —((=1D " 2 m_1 —1 7 2
" (Zk) p (7= =0, < \2i+1 b P

p—1
2p

+ (@™ = D' = (=1)") times.

Proof Recall that N, = p’m_2 + #(Ql + Q2 + Q3). We employ Lemmas 3.2 and 3.3 to
compute N,. As computations for frequencies are done by Lemmas 3.4, 3.5, 3.6, 3.7 and 3.8
it is sufficient to give a proof for even m.
Suppose that there are exactly k elements a;,, .. ., a;, # 0Oamongay,...,a,forl <k <t.
If 1 <k <t —1, then we obtain

_ - . 2,
N ptm L #qt kG(n)ka if ail o 'aik S C(() q)7
p = _ _ . 2,
P24 g TG, i ay eay € €.

z)w — Dk

In this case, the frequencies are both (k 5

If k =t and Tr,,,(B) = 0, then
_ 1
N, =p™™% + p( —n(AGM)' — (p — Dn(AG 1))
1
=p™m?— ;n(al —a)G(n)'.

Thus,

v PTG i n(A) = Land T, (B) = 0,
P PP SGO, if n(A) = 1 and Tr,, (B) = 0.

Now the frequencies follow from Lemma 3.5.
If k =t and Tr,,,(B) # 0, then

1
Ny =p™ % + ?( —n(AGm" + G n(A) (pnp(=Ttm(B)n,(p) + 1))

1
:ptm—Z + ;n(A)G(n)’np(—Tl’m(B))np(lo)'

Thus,
PR+ S G np(p) if n(A)ny(=Trn(B)) = 1
N — and Tr,, (B) # 0,
P P = L@y (), i (AN, (~Trn(B)) = —1
and Tr,, (B) # 0.
Now the frequencies follow from Lemma 3.7. O

In fact, when r = 1, the complete weight enumerators of Cp were given by [17]. Thus
Theorem 3.9 can be viewed as a generalization of the results in [17]. From Theorem 3.9 we
can also get the weight enumerators of Cp directly.

Corollary 3.10 LetCp be a linear code defined by (1) and (2), where D = {(x1, x2, ..., X1)
€ IF‘; \{(0,0,...,0)} : Trpp(x1 +x2 + -+ - +x;) =0}.
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Table 1 The weight distribution of Cp for even m

Weight Frequency

0 1

(p—D(pm2+ Pmoi%)iz) (,t()(pm;D forO <k <t
(p—D(p"=2+p"T) 25 ((p "o 4 (p—D(=1) Fp D))
(p—1p™m=2 2L ((p" = 1) = (=1))

Table 2 The weight distribution of Cp for odd m and even ¢

Weight Frequency

0 1

(p— D(pm=2 & p=D2) (1) 27 for even k with 0 < & < ¢
(p—D(p™24p"T) (0 o (p— (=D FpT))
(p—Dpm=2 2oL (@ — 1y - 1) 4 2™

Table 3 The weight distribution of Cp for odd m and odd ¢, where s is given by Lemma 3.8(2)

Weight Frequency
0 1

k k
(p—D(pm2+ Pm(lif)iz) (,i)(l’m%l) foreven k with 0 < k < ¢

m+D(p=1)  tm=3
(p=D(P" LD F T p 7)) szl
(p=Dp™=2 5" =D = (p-1)
m_H__ ,myt
+p (%P ) 7(pm71)t

(1) Ifm is even, then the weight distribution of Cp is given by Table 1.
(2) If m is odd and t is even, then the weight distribution of Cp is given by Table 2.
3) Ifmis odd and t is odd, then the weight distribution of Cp is given by Table 3.

Remark 3.11 By Corollary 3.10, we easily get several linear codes with a few weights. For
example, we obtain 3-weight linear codes for m = 2 and ¢t = 2, and 5-weight linear codes
forevenm > 4,t = 2 and m = 2, t = 3. We also have 3-weight linear codes for odd m,
t = 2, and 5-weight linear codes for odd m, t = 3, 4.

Example 3.12 (1) Let p =3, m = 2, and t = 3. Then ¢ = 9 and n = 242. By Theorem
3.9, the code Cp is a [242, 6, 108] linear code. Its complete weight enumerator is

22 412282 (21220 + 190208 (2122) + 171280212250 4 171280270222

+ 172282 (2122)° + 12280 (z122) "%,

and its weight enumerator is
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1+ 12x"9% 4 190x % 4 3425102 4 1725180 4 124216,

which are checked by Magma.

(2) Let p =3,m = 3, and t = 3. Then ¢ = 27 and n = 6560. By Theorem 3.9, the code

Cp is a [6560, 9, 4212] linear code. Its complete weight enumerator is

6560+ 101422348(2122)2106+594022240(21Z2)2160+3922186 %458 2916
+39Z2186 2916 1458 +2929Z2186 2106 2268 +2929Z2186 2268 %106

+ 577822132(Z112)2214 + 101412024@1@)2268
and its weight enumerator is
1+ 1014x*12 4 5940x4320 4 5936x*374 4 5778x*28 4 1014x%3,

which are checked by Magma.
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