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Abstract An efficient interpolation-based decoding algorithm for h-folded Gabidulin codes
is presented that can correct rank errors beyond half the minimum rank distance for any code
rate 0 ≤ R ≤ 1. The algorithm serves as a list decoder or as a probabilistic unique decoder
and improves upon existing schemes, especially for high code rates. A probabilistic unique
decoder with adjustable decoding radius is presented. The decoder outputs a unique solution
with high probability and requires at most O(s2n2) operations in Fqm , where 1 ≤ s ≤ h is a
decoding parameter and n ≤ m is the length of the unfolded code over Fqm . An upper bound
on the average list size of folded Gabidulin codes and on the decoding failure probability
of the decoder is given. Applying the ideas to a list decoding algorithm by Mahdavifar and
Vardy (List-decoding of subspace codes and rank-metric codes up to Singleton bound, ISIT
2012) improves the performance when used as probabilistic unique decoder and gives an
upper bound on the failure probability.
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1 Introduction

Decoding schemes for folded Gabidulin codes were independently introduced in [13] and
[10]. Both constructions allow to correct rank errors up to the Singleton bound in rank-metric
for very small code rates.

We present a new interpolation-based decoding algorithm for folded Gabidulin codes
that can correct rank errors beyond half the minimum rank distance for any code rate. This
scheme can be used as a list decoder which outputs a list of all codewords up to the decoding
radius. Although the worst-case list size of this approach is exponential in the length of the
code, we show that the decoder returns a list of size one with high probability. This allows to
use the scheme as a probabilistic unique decoder that outputs a unique solution by allowing
a very low failure probability. We present a probabilistic unique decoding algorithm with
adjustable decoding radius that allows to further reduce the failure probability by backing
off the decoding radius.

We compare our results for folded Gabidulin codes with punctured (or interleaved)
Gabidulin codes. Punctured Gabidulin codes with probabilistic unique decoding were pro-
posed in [12,16] and [19]. These decoding algorithms achieve the best known decoding
radius close to the Singleton bound by allowing decoding failures with small probability.
Later in [9] a list decoding algorithm for punctured Gabidulin codes was suggested, which
has the same decoding radius when the list size is allowed to be exponential in the code
length. An explicit construction and a list decoding algorithm for punctured Gabidulin codes
was presented in [8]. The output of this decoder is a basis for the affine subspace containing
all candidate messages, which is a large list with high probability.

This paper is structured as follows. In Sect. 2, we describe the notation and give basic
definitions. Section 3 explains the ideas of our interpolation-based decoding algorithm for
folded Gabidulin codes and shows the improvements upon existing schemes for high code
rates. In Sect. 4, we show how the interpolation-based decoder can be used for list and
probabilistic unique decoding of folded Gabidulin codes. Section 5 describes how these
results apply to the decoding scheme by Mahdavifar and Vardy [13]. Section 6 concludes
this paper.

Part of thisworkwas presented at the InternationalWorkshop onCoding andCryptography
(WCC), Apr. 2015, Paris, France [1]. In this paper we give detailed proofs and extend the
results to probabilistic unique decoding of low-rate folded Gabidulin codes.

2 Preliminaries

2.1 Finite fields and matrices

Let q be a power of a prime, denote by Fq the finite field of order q and by Fqm its extension
field of degree m. Vectors and matrices are denoted by bold lowercase and uppercase letters
such as a and A and their elements are indexed beginning from zero. We denote the rank
and the kernel of a matrix A ∈ F

m×n
q over Fq by rk(A) and ker(A), respectively. There is

a bijective mapping between any row vector a ∈ F
n
qm and a matrix A ∈ F

m×n
q under any

fixed basis of Fqm over Fq . The rank of a row vector a ∈ F
n
qm is defined as rk(a) = rk(A)

whereA ∈ F
m×n
q is the corresponding matrix over Fq . By [a, b] we denote the set of integers

{a, a + 1, . . . , b}.
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Algebraic decoding of folded Gabidulin codes 451

2.2 Linearized polynomials

For any element α ∈ Fqm and any integer i let α[i] def= αqi
be the Frobenius power of α. A

nonzero polynomial of the form

p(x) =
l∑

i=0

pi x [i] (1)

with pi ∈ Fqm , pl �= 0, is called a linearized polynomial of q-degree degq(p(x)) = l, see
[11,15]. The set of all roots of p(x) is an Fq -linear subspace of Fqm . A linearized polynomial
of q-degree l can have at most l linearly independent roots in Fqm , i.e., a root space of
dimension at most l. If the dimension of the root space of a linearized polynomial p(x)

equals the q-degree degq(p(x)) we call it a minimal linearized polynomial for this root
space. The evaluation of a linearized polynomial forms a linear map over Fq , i.e., for all
a, b ∈ Fq and x1, x2 ∈ Fqm , we have

p(ax1 + bx2) = ap(x1) + bp(x2). (2)

The noncommutative composition

p(1)(x) ⊗ p(2)(x)
def= p(1)(p(2)(x))

of two linearized polynomials p(1)(x) and p(2)(x) of q-degree d1 and d2 is a linearized
polynomial of q-degree d1 + d2. The set of all linearized polynomials over Fqm forms a non-
commutative ring Lqm[x] with identity under addition “+” and composition “⊗”. We denote
the set of all linearized polynomials from Lqm[x] with q-degree less than k by Lqm[x]<k .

Lemma 1 The set Lqm[x]<k forms a commutative group under addition “+”.

Proof The coefficients of every linearized polynomial of degree at most k −1 can be written
as a vector of length k over Fqm . The addition of polynomials is equivalent to the addition of
the coefficient vectors over the field and the statement of the lemma follows. ��

The Moore matrix of a vector a = (a0 a1 . . . an−1) ∈ F
n
qm is defined as

Mr (a) =

⎛

⎜⎜⎜⎝

a0 a1 . . . an−1

a[1]
0 a[1]

1 . . . a[1]
n−1

...
...

. . .
...

a[r−1]
0 a[r−1]

1 . . . a[r−1]
n−1

⎞

⎟⎟⎟⎠ . (3)

The rank of Mr (a) is min{r, n} if the elements a0, . . . , an−1 are linearly independent over
Fq , see [11].

2.3 (Folded) Gabidulin codes

A rank-metric code C of length N is a set of M × N matrices over Fq . Each codeword of C
can be represented by a vector of length N over Fq M . The minimum rank distance d of C is
defined as

d = min
x,y∈C,x �=y

dr (x, y)
def= min

x,y∈C,x �=y
rk(X − Y) (4)
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452 H. Bartz, V. Sidorenko

where X,Y are the matrix representations of x, y ∈ C over Fq . If C forms a group under
addition over Fq we have X′ = X − Y ∈ C \ {0} for X �= Y and get

d = min
x,y∈C,x �=y

rk(X − Y) = min
x′∈C\{0}

rk(X′).

In this case the minimum distance corresponds to the minimum rank of a nonzero codeword
in C.

Denote by B(t)(Y) a ball of radius t in rank-metric around a matrix Y containing all
matrices lying within rank distance at most t from Y. The volume |B(t)(Y)| is independent
of the center Y (see e.g., [6]).

The Singleton-like bound for rank-metric codes states that

|C| ≤
(

q M
)N−d+1

⇐⇒ d ≤ N − logq M (|C|) + 1. (5)

if M ≥ N , see [4,5].
Codes which fulfill this bound with equality are called maximum rank distance (MRD)

codes. A special class of MRD codes are Gabidulin codes [4,5], which are the analogs of
Reed–Solomon codes in rank-metric. As channel model we use the rank error channel

Y = C + E. (6)

For fixed t = rk(E) the error matrix E is assumed to be uniformly distributed over all M × N
matrices of rank t over Fq .

Folded Gabidulin codes were proposed independently in [13] and [10]. In [10] the coef-
ficients of the message polynomial are restricted to belong to a subfield of Fqm . In this work
we consider folded Gabidulin codes as defined in [13].

Definition 1 (h-folded Gabidulin code) Let {α0, α1, . . . , αn−1} ⊂ Fqm with n ≤ m be
linearly independent over Fq called code locators. Let h be a positive integer that divides n
and let N = n/h. An h-folded Gabidulin code FGab[h; n, k] of length N , dimension k is
defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

f (α0)

f (α1)
...

f (αh−1)

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

f (αh)

f (αh+1)
...

f (α2h−1)

⎤

⎥⎥⎥⎦ , . . . ,

⎡

⎢⎢⎢⎣

f (αn−h)

f (αn−h+1)
...

f (αn−1)

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠ : f (x) ∈ Lqm[x]<k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (7)

A codeword of an h-folded Gabidulin code is a matrix c ∈ F
h×N
qm or C ∈ F

hm×N
q where

each element of Fqm is written as a column vector of length m over Fq . The j th column of c
is

c j =
(

f (α jh) . . . f (α( j+1)h−1)
)T

and can be seen as an element of the field Fqhm for j ∈ [0, N − 1]. Folded Gabidulin codes
are codes of length N over a large field Fq M = Fqhm that can be decoded over the small field
Fqm . An h-folded Gabidulin code is a nonlinear code over Fqhm since for any a, b ∈ Fqhm

and any c, c′ ∈ C the Fqhm -linear combination ac + bc′ is not necessarily contained in C.
A folded Gabidulin code is Fqm -linear since the unfolded code is an Fqm -linear subspace of
F

n
qm . This also implies that the code is linear over Fq .
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Algebraic decoding of folded Gabidulin codes 453

The number of codewords in C is |C| = qmk . The code rate of a folded Gabidulin code is
the same as the code rate of the unfolded code [13], i.e.,

R = logqhm (|C|)
N

= k

n
.

The following theorem shows that folded Gabidulin codes are MRD codes if and only if
h divides k.

Theorem 1 The minimum rank distance of an h-folded Gabidulin code C with parameters
n, k, h, N = n

h is d = N − 
 k
h � + 1.

Proof An h-folded Gabidulin code forms a group under addition since Lqm[x]<k forms an
additive group over Fqm by Lemma 1. Thus the minimum distance of the code is given by
the minimum rank of a nonzero codeword, i.e.,

d = min
c∈C∗ rk(C)

where C∗ def= C \ {0}. Let C ∈ C∗ be a codeword generated by the evaluation of f (x) ∈
Lqm[x]<k at the code locators {α0, α1, . . . , αn−1}. Since N ≤ hm we have rk(C) ≤ N . If the
column rank of C is

rk(C) = N − z

then by Fq -elementary column operations (Gaussian elimination) we will get C′ with z zero
columns and N − z linearly independent columns. From (2) it follows thatC′ is generated by
the evaluation of f (x) at the new code locators α′

i that are obtained from αi by Fq -elementary
operations for all i ∈ [0, n − 1]. Thus the new code locators {α′

0, α
′
1 . . . , α′

n−1} are linearly
independent and we have f (α′

i ) = 0 for all i ∈ [0, n − 1] at most k − 1 times. Hence the
number of zero columns z in C′ satisfies

z ≤
⌊k − 1

h

⌋
=

⌈ k

h

⌉
− 1 (8)

and

d = min
c∈C∗ rk(C) ≥ N −

⌈ k

h

⌉
+ 1. (9)

From the Singleton bound (5) we have

logqhm qmk ≤ N − d + 1

⇐⇒ d ≤ N − k

h
+ 1. (10)

Combining (9) and (10) we get

N −
⌈ k

h

⌉
+ 1 ≤ d ≤ N − k

h
+ 1 (11)

and the statement of the theorem follows, since d is an integer. ��

Thus folded Gabidulin codes fulfill the Singleton bound (5) with equality (i.e., are MRD
codes) if and only if h divides k. If h does not divide k then the code has still the best minimum
distance for the given parameters N , k and h but the size of the code book could be larger in
this case.
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3 Improved interpolation-based decoding of high-rate folded Gabidulin
codes

The interpolation-based list decoding algorithm for folded Gabidulin codes by Mahdavifar
and Vardy in [13] is closely related to the list decoding algorithm for folded Reed–Solomon
codes byGuruswami and Rudra [7] andVadhan [17]. The normalized decoding radius τMV =
t/N of this decoder is

τMV <
s

s + 1

(
1 − h

h − s + 1
R

)
(12)

where the integer 1 ≤ s ≤ h is a decoding parameter. For s ≈ √
h a normalized decoding

radius τMV < 1− R −ε with ε = 1/2s can be achieved (see [13, Theorem 12]). Observe that
τMV is positive if R < h−s+1

h . Thus the decoder in [13] cannot correct any errors for code

rates larger than h−s+1
h (or 1 −

√
h−1
h for s = √

h). But many applications require high-rate
codes.

In this section we present an improved list decoding scheme that can correct errors beyond
the unique decoding radius d/2 for any code rate R > 0. The scheme is motivated by
Justesen’s idea for decoding folded Reed–Solomon codes [7, Sec. III-B] and improves upon
[13] for high code rates.

Our decoding scheme consists of an interpolation step and a root-finding step. In compari-
sonwith [13] the code construction remains the same (Definition 1) but the set of interpolation
points in the interpolation step is chosen differently.

3.1 Interpolation step

Suppose we receive a matrix

y =

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

y0
y1
...

yh−1

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

yh

yh+1
...

y2h−1

⎤

⎥⎥⎥⎦ , . . . ,

⎡

⎢⎢⎢⎣

yn−h

yn−h+1
...

yn−1

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠ = c + e (13)

where e = (
eT
0 , eT

1 , . . . , eT
N−1

) ∈ F
h×N
qm with row vectors e j ∈ F

h
qm . The error matrix over

Fq is denoted by E = (
ET
0 ,ET

1 , . . . ,ET
N−1

) ∈ F
hm×N
q with E j ∈ F

hm
q . Denote by

y j = (y jh y jh+1 . . . y( j+1)h−1)
T ∈ F

h
qm

the j th column of y for j ∈ [0, N − 1]. The code locators in Definition 1 are consecutive
powers of a primitive element α ∈ Fqm and thus form a polynomial basis over Fq . This allows
to use (s + 1)-dimensional interpolation points of the form

(
αi , yi , yi+1, . . . , yi+s−1

)
, i ∈ [0, n − s].

In other words, the received symbols y j of the received matrix y in (13) are sampled using a
sliding window of size s. The choice of the interpolation points is crucial for the performance
of the decoder.

In [13] each (s + 1)-dimensional interpolation point only contains values strictly chosen
from one received symbol y j , j ∈ [0, N − 1] resulting in h − s + 1 interpolation points per
received symbol. Instead of using only h − s + 1 interpolation points per received symbol
y j , we “overlap” to the neighboring symbol to get h interpolation points per symbol. Since
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Algebraic decoding of folded Gabidulin codes 455

αn �= α0 and f (αn) �= f (α0), we cannot “exceed” the last received symbol yN−1 and wrap
around to the first code symbol y0. Thus we can use only h − s + 1 interpolation points for
the last symbol. In total we get Nh − (s − 1) interpolation points. In the interpolation step
we must solve the following problem.

Problem 1 Given an integer s ∈ [1, h] and a degree constraint D, find a nonzero (s + 1)-
variate linearized polynomial of the form

Q (x, y1, . . . , ys) = Q0(x) + Q1(y1) + · · · + Qs(ys) (14)

which satisfies the following conditions:

• Q(α jh+i , y jh+i , y jh+i+1, . . . , y jh+i+s−1) = 0, ∀i ∈ [0, h − 1], j ∈ [0, N − 2],
• Q(αn−h+i , yn−h+i , yn−h+i+1, . . . , yn−h+i+s−1) = 0, ∀i ∈ [0, h − s],
• degq(Q0(x)) < D,
• degq(Q�(y�)) < D − (k − 1), ∀� ∈ [1, s].
The following example illustrates the choice of the interpolation points in Problem 1.

Example 1 (Interpolation Step) Suppose we transmit a codeword of a folded Gabidulin code
with parameters N = 4 and h = 3 over a rank error channel (6) and we receive a matrix

y =
⎛

⎝

⎡

⎣
y0
y1
y2

⎤

⎦ ,

⎡

⎣
y3
y4
y5

⎤

⎦ ,

⎡

⎣
y6
y7
y8

⎤

⎦ ,

⎡

⎣
y9
y10
y11

⎤

⎦

⎞

⎠ .

Denote by IHR and IMV the set of interpolation points for the improved high-rate decoder
(Problem 1) and theMahdavifar–Vardy decoder in [13], respectively. For decoding parameter
s = 2 we have the following sets of interpolation points:

IHR = {
(α0, y0, y1), (α

1, y1, y2), (α
2, y2, y3),

(α3, y3, y4), (α
4, y4, y5), (α

5, y5, y6),

(α6, y6, y7), (α
7, y7, y8), (α

8, y8, y9),

(α9, y9, y10), (α
10, y10, y11)

}

IMV = {
(α0, y0, y1), (α

1, y1, y2),

(α3, y3, y4), (α
4, y4, y5),

(α6, y6, y7), (α
7, y7, y8),

(α9, y9, y10), (α
10, y10, y11)

}
.

The improved high-rate decoder uses the interpolation points from the set IMV plus three
additional interpolation points that wrap around to the neighboring symbols.

A solution toProblem1canbe foundby solving a homogeneous linear systemof equations.
Denote the component polynomials of (14) by

Q0(x) =
D−1∑

j=0

q0, j x [ j], Q�(y�) =
D−k∑

j=0

q�, j y[ j]
� , ∀� ∈ [1, s].

Let the matrix T contain all Nh − (s − 1) interpolation points from Problem 1 as rows and
denote by t� the �th column of T for � ∈ [0, s]. The coefficients of (14) can be found by
solving the homogeneous linear system of equations

R · qT
I = 0 (15)

where R is an Nh − (s − 1) × D(s + 1) − s(k − 1) matrix

R =
(
MD(tT

0 )T ,MD−k+1(tT
1 )T , . . . ,MD−k+1(tT

s )T
)

(16)
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and
qI = (

q0,0, . . . , q0,D−1 | q1,0, . . . , q1,D−k | . . . | qs,0, . . . , qs,D−k
)
. (17)

Lemma 2 A nonzero polynomial fulfilling the interpolation constraints in Problem 1 exists
if

D =
⌈

Nh − 2(s − 1) + sk

s + 1

⌉
. (18)

Proof Problem1 forms a homogeneous systemof Nh−(s−1) equations in D(s+1)−s(k−1)
unknowns. This system has a nonzero solution if the number of conditions is less than the
number of unknowns, i.e., if

Nh − (s − 1) < D(s + 1) − s(k − 1) ⇐⇒ D ≥ Nh − 2(s − 1) + sk

s + 1
. (19)

��
We define a univariate polynomial P(x) ∈ Lqm[x] as

P(x)
def= Q(x, f (x), f (αx), . . . , f (αs−1x)) = Q0(x) +

s∑

�=1

Q�( f (α�−1x)) (20)

where f (x) ∈ Lqm[x]<k .

Lemma 3 Let rk
(
eT
0 , eT

1 , . . . , eT
N−1

) = t . Then the linearized polynomial P(x) in (20) has
at least Nh − (s − 1) − t (h + s − 1) linearly independent roots in Fqm .

Proof Since Q(x, y1, . . . , ys) is a linearized polynomial we can perform Fq -elementary
operations on the set of interpolation points from Problem 1 without affecting its root space.
Then by Fq -elementary operations on the set of interpolation points we can have at most
t (h + s − 1) interpolation points that are corrupted by the rank errors and at least Nh − (s −
1) − t (h + s − 1) interpolation points of the form

(
β j , f (β j ), f (αβ j ), . . . , f (αs−1β j )

)

for all j ∈ [0, Nh − s − t (h + s − 1)] that are not corrupted by rank errors. The elements
β j ∈ Fqm are obtained by Fq -elementary operations on the code locators α0, . . . , αn−1 and
thus linearly independent over Fq . From the interpolation constraints in Problem 1 we have

Q
(
β j , f (β j ), f (αβ j ), . . . , f (αs−1β j )

) = P(β j ) = 0

for all j ∈ [0, Nh − s − t (h + s − 1)] which implies that P(x) has at least Nh − (s − 1) −
t (h + s − 1) linearly independent roots in Fqm . ��

The result of Lemma 3 is illustrated in Example 2 in the Appendix. The decoding radius
for the improved high-rate decoder is expressed as follows.

Theorem 2 Let Q (x, y1, . . . , ys) �= 0 fulfill the interpolation constraints in Problem 1. If
the rank of the error matrix t = rk(E) satisfies

t <
s

s + 1

(
Nh − k − (s − 2)

h + s − 1

)
(21)

then
P(x) = Q(x, f (x), f (αx), . . . , f (αs−1x)) = 0. (22)

123



Algebraic decoding of folded Gabidulin codes 457

Proof By Lemma 3 the polynomial P(x) has at least Nh − (s − 1) − t (h + s − 1) linearly
independent roots in Fqm . If we choose

D ≤ Nh − (s − 1) − t (h + s − 1) (23)

then P(x) has more linearly independent roots than its degree which is only fulfilled if
P(x) = 0. Combining (19) and (23) we obtain

Nh − (s − 1) + s(k − 1) < (s + 1)(Nh − (s − 1) − t (h + s − 1))

⇐⇒ t <
s

s + 1

(
Nh − k − (s − 2)

h + s − 1

)
.

��
The normalized decoding radius τH R = t/N for the improved high-rate decoding approach
is

τH R <
s

s + 1
· h

h + s − 1
(1 − R) − s(s − 2)

N (s + 1)(h + s − 1)
. (24)

The “termination loss” s(s−2)
N (s+1)(h+s−1) is caused by the reduced number of interpolation points

for the last symbol (no wrap around to the first symbol). The term vanishes with order 1/N
for large N and h while keeping s << h.

Lemma 4 The optimal decoding parameter s for N → ∞ is sopt = √
h − 1.

Proof For N → ∞ the “termination loss” s(s−2)
N (s+1)(h+s−1) vanishes. In order to maximize the

decoding radius choose s such that

d

ds
τH R(s, h) = d

ds

(
s

s + 1
· h

h + s − 1
(1 − R)

)

= − (s2h − h2 + h)

(s2 + sh + h − 1)2
(1 − R)

!= 0.

This is fulfilled for s = ±√
h − 1 and since 1 ≤ s ≤ h we have sopt = √

h − 1.
��

For the optimal decoding parameter sopt = √
h − 1 and for N → ∞we get the maximum

normalized decoding radius

τ ∗
H R ≈ h

2
√

h − 1 + h
(1 − R). (25)

3.2 Root-finding step

In the root-finding step we must find all polynomials f (x) ∈ Lqm[x]<k that are a solution to
(22). This corresponds to solving a linear system of equations. Define the polynomial P(x)

as in (20) and define the polynomials

Bi (x) = q1,i + q2,i x + · · · + qs,i xs−1

for i ∈ [0, k − 1]. The i th coefficient pi of P(x) is then equal to

pi = q0,i + fi B0(α
[i]) + f [1]

i−1B1(α
[i]) + · · · + f [i]

0 Bi (α
[i]).
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The solution space of the interpolation system (15) can have dimension larger than one in
general. In this case there exists a set of Fqm -linearly independent linearized polynomials
with coefficients from Fqm that are a solution to Problem 1. Similar to [2,19] we use a basis
for the solution space of (15) to increase the probability that the root-finding system has full
rank. We now lower bound the dimension of the solution space of (15).

Lemma 5 Let rk(E) = t . Then the dimension dI of the solution space of the interpolation
system (15) is at least s(D − k + 1) − t (h + s − 1).

Proof The first D columns of R form an N (h + s − 1)× D Moore matrixMD(tT
0 )T of rank

D since the elements in t0 are linearly independent and D < Nh − (s − 1). The matrices
MD−k+1(tT

1 )T . . . MD−k+1(tT
s )T are linear combinations of the columns of MD(tT

0 )T and
thus do not increase the rank. Thus the rank ofR only depends on D and the rank of the error
matrix E. By Lemma 3 an error of rank t affects at most t (h + s −1) interpolation points and
thus increases the rank ofR by at most t (h + s −1) since t (h + s −1) < D(s +1)− s(k −1).
Hence we have rk(R) ≤ D + t (h + s − 1). The dimension of the solution space of the
interpolation system (15) is

dI
def= dim ker(R) ≥ D(s + 1) − s(k − 1) − rk(R)

= s(D − k + 1) − t (h + s − 1).

��
We now set up the root-finding system using dI polynomials. Define the polynomials

B(�)
i (x) = q(�)

1,i + q(�)
2,i x + q(�)

3,i x2 + · · · + q(�)
s,i xs−1

for � ∈ [1, dI ] and the vectors

bi, j =
(

B(1)
i (α[ j]) B(2)

i (α[ j]) . . . B(dI )
i (α[ j])

)T

and q0,i =
(

q(1)
0,i q(2)

0,i . . . q(dI )
0,i

)T
for i, j ∈ [0, k − 1]. Defining the root-finding matrix

B =

⎛

⎜⎜⎜⎜⎜⎝

b0,0

b[−1]
1,1 b[−1]

0,1
... . . .

. . .

b[−(k−1)]
k−1,k−1 b[−(k−1)]

k−2,k−1 . . . b[−(k−1)]
0,k−1

⎞

⎟⎟⎟⎟⎟⎠
(26)

and q =
(
q0,0 q

[−1]
0,1 . . . q[−(k−1)]

0,k−1

)T
, the coefficients of f (x) can be found by solving the

truncated system
B · f = −q (27)

for f =
(

f0 f [−1]
1 . . . f [−(k−1)]

k−1

)T
. The root-finding system (27) has always a solution if

(21) holds since the transmitted message polynomial f (x) is a solution to (22) if t satisfies
(21).

Proposition 1 Solving (27) requires at most O(k2) operations in Fqm .
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Proof The kdI × k matrix B has an upper block triangular structure. To solve (27) we only
need one equation per bi, j for i, j ∈ [0, k − 1] such that B(�)(α[ j]) �= 0. Thus the system
can be solved via back substitution requiring at most O(k2) operations in Fqm . ��

4 List and unique decoding for high code rates

Weshowhow touse the interpolation-baseddecodingprinciple fromSect. 3 as a list decoder or
as a probabilistic unique decoder which returns a unique solutionwith (very) high probability.

4.1 List decoding for high code rates

The solution space of the root-finding system (27) is an affine subspace over Fq . In case the
root-finding system (27) is underdetermined, i.e., rk(B) < k, we obtain a list of possible
message polynomials f (x) which satisfy (22).

Lemma 6 The dimension of the Fq -affine solution space of the root-finding system (27) is
at most m(s − 1).

Proof The root-finding matrix B has full rank if and only if all diagonal elements b0,0, . . . ,
b0,k−1 are nonzero vectors. The entries of each b0,i are the evaluations of dI polynomials
of degree at most s − 1 at α[i], i ∈ [0, k − 1]. Since the conjugates α, α[1], . . . , α[k−1] are
all distinct and deg(B(�)

0 (x)) < s for all � ∈ [1, dI ], we can have b0,i = 0, i ∈ [0, k − 1] at
most (s − 1) times. For each b0,i = 0, i ∈ [0, k − 1] the coefficient fi can be any element
in Fqm . Thus we have at most qm(s−1) solutions and the dimension of the Fq -affine solution
space is at most m(s − 1). ��

In the worst case the decoder outputs an exponential number of candidate message polyno-
mials. Usingmore interpolation polynomials to solve the root-finding system does not reduce
the worst case size of the list but helps to reduce the average list size.

We will now derive the average list size for folded Gabidulin codes using similar ideas as
in [19] and [14].

Lemma 7 Let the t fulfill (21). The average list size L̄ f (t) of an h-folded Gabidulin code
C, i.e., the average number of codewords in any ball of radius t that contains a codeword, is
then upper bounded by

L̄ f (t) < 1 + 4q−m(h(N−t)−k)+t (N−t). (28)

Proof Let Y ∈ F
hm×N
q be a matrix chosen uniformly at random from all matrices in F

hm×N
q .

The number of matrices lying within rank distance at most t from Y in F
hm×N
q is upper

bounded by |B(t)(Y)| < 4q(mh+N )t−t2 and independent of Y (see e.g., [18]). If t satisfies
(21)we know that the causal (transmitted) codeword is contained inB(t)(Y). There areqmk−1
noncausal codeword matrices out of qmhN possible matrices which can be in B(t)(Y). Thus
there are on average

qmk − 1

qmhN
· |B(t)(Y)| <

qmk

qmhN
· 4q(mh+N )t−t2 = 4q−m(h(N−t)−k)+t (N−t)

noncausal codewords in B(t)(Y). Including the causal codeword we get (28). ��
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4.2 A probabilistic unique decoder for high code rates

The interpolation-based decoding scheme from Sect. 3 can be used as a probabilistic unique
decoder. Themain idea behind this decoder is to output a unique solution or declare a decoding
failure if the list size is larger than one. We will now show that in most cases we obtain a
unique solution, i.e., a list of size one.

The root-finding system (22) has a unique solution if B has rank k which is fulfilled if and
only if at least one entry of each b0,i , i ∈ [0, k − 1] is nonzero.
Lemma 8 Denote by dI the dimension of the solution space of (15). The probability Pe that
B is singular is upper bounded by

Pe < k

(
k

qm

)dI

= k

(
k

qm

)s(D−k+1)−t (h−s+1)

(29)

under the assumption that the coefficients of the polynomials B(1)
0 (x), . . . , B(dI )

0 (x) are inde-
pendent and uniformly distributed over Fqm .

Proof Evaluating B(�)
0 (x),∀� ∈ [1, dI ] at the conjugates α, α[1], . . . , α[k−1] gives � code-

words of a (k, s)Reed–Solomon code CRS . The triangular matrixB has rank k if the diagonal
elements are nonzero, i.e., if we get at least one codeword of weight k. Under the assumption
that the coefficients of B(�)

0 (x), � ∈ [1, dI ] are uniformly distributed over Fqm we get a uni-
form distribution over the code book of CRS . Using the approximation from [3, Equation 1]
the probability Ps to get a codeword of full weight k is

Ps = no. of weight k codewords

total no. of codewords
≈ no. of weight k vectors in F

k
qm

total no. of vectors in F
k
qm

=
(
1− 1

qm

)k

.

The probability that one B(�)
i (α[ j]) inb0,i is zero is 1−Ps. The coefficients of the polynomials

B(�)
0 (x), � ∈ [1, dI ] are independent by assumption and thus the entries of each b0,i , i ∈

[0, k − 1] also independent. The probability that b0,i = 0, i ∈ [0, k − 1] is upper bounded
by

(1 − Ps)
dI =

(
1 −

(
1 − 1

qm

)k
)dI

<

(
k

qm

)dI

.

The probability that at least one b0,i = 0 for i = 0, . . . , k − 1 is thus upper bounded by

Pe < Pr

[
k−1⋃

i=0

b0,i = 0

]
≤

k−1∑

i=0

(
k

qm

)dI

= k

(
k

qm

)dI

.

��
Equation (29) shows that using more polynomials to set up the root-finding system increases
the probability that the root-finding matrix B has full rank, i.e., to get a unique solution.
We now relate the dimension of the solution space dI to the decoding radius and the failure
probability. The result is summarized in Theorem 3.

Theorem 3 Consider an h-folded Gabidulin code FGab[h; n, k]. Let the coefficients of the
polynomials B(1)

0 (x), . . . , B(dI )
0 (x) be independent and uniformly distributed over Fqm . Let
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μ > 0 be an integer. If the rank of the error matrix t = rk(E) satisfies

t ≤ s

s + 1

(
Nh − k − (s − 2)

h + s − 1

)
− μ

(s + 1)(h + s − 1)
(30)

then we can find a unique solution f (x) satisfying (22) with probability at least

1 − k

(
k

qm

)μ

requiring at most O(s2n2) operations in Fqm .

Proof We restrict the dimension of the solution space of the homogeneous interpolation
system (15) to be larger than a threshold μ, i.e., dI ≥ μ, and get

μ + t (h + s − 1) + s(k − 1) ≤ Ds. (31)

To ensure that f (x) is a root of P(x) in (22), the degree D must satisfy (23). We combine
(23) and (31) and get

μ + t (h + s − 1) + s(k − 1) ≤ s(Nh − (s − 1) − t (h + s − 1))

⇐⇒ t ≤ s

s + 1

(
Nh − k − (s − 2)

h + s − 1

)
− μ

(s + 1)(h + s − 1)
.

The probability of getting a unique solution follows fromLemma 8. The overall complexity is
dominated by the interpolation step, which can be solved forμ ≤ s by the efficient algorithm
from [2] requiring at most O(s2nD(h − s + 1)) < O(s2n2) operations in Fqm . ��

Theorem 3 shows that there is a tradeoff between the failure probability and the decoding
radius. Note that for μ = 1 the decoding radius is equal to the list decoding radius (21).
This is a major difference to decoding interleaved Gabidulin codes since probabilistic unique
decoding of interleaved Gabidulin codes using only one interpolation polynomial to solve
the root-finding system (i.e., μ = 1) is not possible.

The normalized decoding radius τu = t/N for the probabilistic unique decoder is

τu ≤ s

s + 1
· h

h + s − 1
(1 − R) − s(s − 2) + μ

N (s + 1)(h + s − 1)
. (32)

The decoding radius can be adjusted at the decoder by the choice of the maximum degree of
the interpolation polynomials. Substituting (30) in (23) we obtain

D(s + 1) ≤ Nh + s(k − 2) + μ + 1

and choose the degree constraint D for the unique decoder

D = Nh + s(k − 2) + μ + 1

s + 1
.

The pseudo-code for the probabilistic unique decoding algorithm is given in Algorithm 1.
The function InterpolateBasis(·) denotes the efficient interpolation algorithm from [2].
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Algorithm 1: UniqueDecodeFG(y)

Input : y = (y0, y0, . . . , yN−1) ∈ F
h×N
qm

Output: A linearized polynomial f (x) ∈ Lqm[x]<k or “decoding failure”

1 Set up T ∈ F
Nh−s+1×(s+1)
qm to contain all interpolation points of Problem 1 as rows and denote by

t0, . . . , ts the columns of T

2 Interpolation step:
3 Q(1), . . . , Q(dI ) ← InterpolateBasis(tT0 , tT1 , . . . , tTs )

4 Root-finding step:

5 Q∗ = {Q(�) : degq (Q(�)
0 ) < D and degq (Q(�)

j ) < D − (k − 1), � ∈ [1, dI ], j ∈ [1, s]}
6 Set up the root-finding matrix B as in (26) using all polynomials in Q∗
7 if b0,i �= 0,∀i ∈ [0, k − 1] then
8 Find unique solution of the root-finding system B · f = −q and define f (x) from f
9 Output: f (x)

10 else
11 Output: “decoding failure”

4.3 Performance analysis

We will compare the normalized decoding radius of the decoder from this section to the
schemes in [9,13] and [5]. The intersection point of the normalized decoding radii of the
decoder in [13] (Mahdavifar–Vardy) and our improved high-rate decoder is

τMV = τHR ⇐⇒ R = ((N + 1)(s − 1) − 1)(h − s + 1)

2Nh(s − 1)
.

The high-rate decoder improves upon [13] for code rates R ≥ ((N+1)(s−1)−1)(h−s+1)
2Nh(s−1) if

the same decoding parameter s is used for both decoding algorithms.
In Fig. 1 we consider a foldedGabidulin code with parameters N = 10, h = 20 and s = 6.

Figure 1 shows that the decoder in [13] (Mahdavifar–Vardy) cannot correct rank errors for
code rates larger than h−s+1

h = 3
4 .

The decoder for punctured Gabidulin codes (different code construction) in [9] (Guru-
swami-Xing) has a larger decoding radius for all rates. Due to the structure of the root-finding
system in [9] the decoder outputs a basis for all possible candidate polynomials, which is a
large list with high probability. Thus this decoder cannot be used as a probabilistic unique
decoder. The size of this list was reduced by pre-coding the coefficients of the message
polynomials using hierarchical subspace evasive sets in [8] but is still exponential in the
length of the code. Note that the code construction byMahdavifar and Vardy and in this work
is the same, whereas the code construction in [9] is different (i.e., no folded Gabidulin code).

Our improved high-rate decoder can correct rank errors for any code rate and will return
a list of size one with high probability which is a major benefit for applications. Figure 1
shows that for the given code parameters the scheme improves upon [13] for R ≥ 0.405 and
that the termination loss is already negligible for a code of length N = 10.

In Fig. 2 the decoding radius for the optimal decoding parameters for each decoder is
plotted. The presented decoding scheme improves upon [13] for R > 0.45 for the given
code parameters. The figure shows that using h − s + 1 interpolation points per symbol
that do not wrap around to neighboring symbols (Mahdavifar-Vardy) gives a better decoding
performance for low code rates. The improved high-rate decoder uses (s − 1) additional
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Fig. 1 The normalized decoding radius vs. the code rate R for folded Gabidulin codes with N = 10, h = 20
and decoding parameter s = 6. For comparison we show the decoding radius for punctured Gabidulin codes
(Color figure online)

Fig. 2 The normalized decoding radius vs. the code rate R for folded Gabidulin codes with N = 10, h = 20
and optimal decoding parameter s for each decoder (Color figure online)

interpolation points (i.e., h interpolation points) per symbol (full wrap around) and performs
better for high code rates. Using less than the maximum (s − 1) additional interpolation
points per symbol that wrap around to the neighboring symbols (partial wrap around) did not
improve the decoding radius for any code rate.

4.4 Simulation results

Consider an h-folded Gabidulin code with parameters m = n = 12, k = 5, h = 3 and
N = 4. For parameters s = 2 and μ = 1 our decoder can correct t = 1 rank errors. We
simulated 107 transmissions over a rank error channel (6) with t = 1 and observed a fraction
of 1.10 · 10−3 decoding failures (upper bound 6.10 · 10−3). For μ = 2 we simulated 3 · 107
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transmissions with t = 1 and observed a fraction of 2.06 · 10−7 decoding failures (upper
bound 7.45 · 10−6). The simulation results show, that the assumptions in the upper bound of
that failure probability are reasonable. The average list size using Lemma 7 is upper bounded
by L̄ f (t = 1) < 1 + 1.14 · 10−13 for the given code parameters.

5 Probabilistic unique decoding of low-rate folded Gabidulin codes

The structure of the root-finding system in the list decoding algorithm by Mahdavifar and
Vardy [13] is the same as in our decoding algorithm. We now apply our ideas from Sect. 4
to the list decoding scheme in [13] and present a probabilistic unique decoding scheme for
low-rate folded Gabidulin codes. The difference between the approach from Sect. 4 and
the Mahdavifar and Vardy decoder is in the choice of the interpolation points. Each (s + 1)-
dimensional interpolation point only contains values strictly chosen fromone received symbol
y j , j ∈ [0, N − 1].

Problem 2 (MV Interpolation Problem) Given an integer s ∈ [1, h] and a degree constraint
D, find a nonzero (s + 1)-variate linearized polynomial of the form

Q (x, y1, . . . , ys) = Q0(x) + Q1(y1) + · · · + Qs(ys) (33)

that satisfies the following conditions:

• Q(α jh+i , y jh+i , y jh+i+1, . . . , y jh+i+s−1) = 0, ∀i ∈ [0, h − s], j ∈ [0, N − 1],
• degq(Q0(x)) < D,
• degq(Q�(y�)) < D − (k − 1), ∀� ∈ [1, s].

Let the matrix TMV contain all N (h − s + 1) interpolation points
(
α jh+i , y jh+i , y jh+i+1, . . . , y jh+i+s−1

)

for all i ∈ [0, h − s], j ∈ [0, N − 1] from Problem 2 as rows and denote by tMV,� the �th
column ofTMV for � ∈ [0, s]. The N (h −s +1)×(D(s +1)−s(k −1)) interpolation-matrix
RMV is defined as

RMV =
(
MD(tT

MV,0)
T ,MD−k+1(tT

MV,1)
T , . . . ,MD−k+1(tT

MV,s)
T
)

(34)

and the coefficient vector qI is defined as in (17). The coefficients of the required polynomial
can be found by solving the linear system

RMV · qT
I = 0. (35)

In order to calculate the dimension of the solution space of (35) we first need to upper bound
on the rank of RMV.

Lemma 9 Let rk(E) = t . Then the dimension dI of the solution space of the interpolation
system (35) is at least s(D − k + 1) − t (h − s + 1).

Proof By similar arguments as in the proof of Lemma 5 the rank of RMV only depends
on D and the rank of the error matrix, i.e., rk(E) = t . An error of rank t corrupts at most
t (h − s + 1) interpolation points and increases the rank of RMV by at most t (h − s + 1),
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since t (h − s + 1) < D(s + 1) − s(k − 1). Hence we have rk(RMV) ≤ D + t (h − s + 1).
The solution space of (35) has therefore dimension

dI
def= dim ker(RMV) ≥ D(s + 1) − s(k − 1) − rk(RMV)

= s(D − k + 1) − t (h − s + 1).

��

Theorem 4 Consider an h-folded Gabidulin code FGab[h; n, k] and let the coefficients of
the polynomials B(1)

0 (x), . . . , B(dI )
0 (x) be independent and uniformly distributed over Fqm .

If the rank of the error matrix t = rk(E) satisfies

t ≤ s(N (h − s + 1) − (k − 1)) − μ

(s + 1)(h − s + 1)
(36)

we can find a unique solution f (x) satisfying (22) with probability at least

1 − k

(
k

qm

)μ

requiring at most O(s2n2) operations in Fqm .

Proof We restrict the dimension dI of the solution space of the interpolation system (35) to
be larger than a threshold μ, i.e., μ ≤ dI and get

μ + t (h − s + 1) + s(k − 1) ≤ Ds. (37)

To ensure that f (x) is a root of P(x) in (22) the degree D must satisfy (see [13, Corollary 9])

D ≤ (N − t)(h − s + 1). (38)

Combining (37) and (38) we get

t ≤ s(N (h − s + 1) − (k − 1)) − μ

(s + 1)(h − s + 1)
. (39)

The failure probability follows fromLemma 8. Forμ ≤ s the efficient interpolation algorithm
from [2] can be used requiring at most O(s2n2) operations in Fqm . ��

The normalized decoding radius τMV,u = t/N is

τMV,u ≤ s

s + 1

(
1 − h

h − s + 1
R

)
− μ − s

N (s + 1)(h − s + 1)
.

Substituting (39) in (38) we get the degree constraint

D ≤ N (h − s + 1) − s(k − 1) + μ

s + 1
.

This allows to adjust the decoding radius at the decoder by choosing the maximum allowed
degree of the interpolation polynomial. For the low-rate probabilistic unique decoder line 1
in Algorithm 1 has to be replaced by
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1 Set up TMV ∈ F
N (h−s+1)×(s+1)
qm to contain all interpolation points of Problem 2 as rows and denote

by tMV,0, . . . , tMV,s the columns of TMV

6 Conclusion

We presented an interpolation-based decoding algorithm for h-folded Gabidulin codes that
can correct rank errors beyond half the minimum rank distance for any code rate 0 ≤ R ≤ 1.
The decoding performance is improved for high-rate codes which is a major benefit for
applications. The scheme can be used as a list decoder or as a probabilistic unique decoder
which outputs a unique solution with very high probability. We derived an upper bound on
the average list size of folded Gabidulin codes and showed that probabilistic unique decoding
of folded Gabidulin codes is possible. An efficient decoder with adjustable decoding radius
was presented that allows to control the decoding radius vs. failure probability tradeoff. We
applied the ideas for the root-finding step to a list decoding algorithm for low-rate folded
Gabidulin codes by Mahdavifar and Vardy [13]. This improves the performance when used
as probabilistic unique decoder and gives an upper bound on the failure probability.
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Nielsen for fruitful discussions and helpful comments. H. Bartz was supported by the German Ministry of
Education and Research in the framework of an Alexander von Humboldt-Professorship.

Appendix

Example 2 (Root Space of Interpolation Polynomial) Suppose we transmit a codeword c of
a folded Gabidulin code with parameters N = 5 and h = 3 and we receive

y = c + e =
⎛

⎝

⎡

⎣
y0
y1
y2

⎤

⎦ ,

⎡

⎣
y3
y4
y5

⎤

⎦ ,

⎡

⎣
y6
y7
y8

⎤

⎦ ,

⎡

⎣
y9
y10
y11

⎤

⎦ ,

⎡

⎣
y12
y13
y14

⎤

⎦

⎞

⎠

where

e =
⎛

⎝

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
e1
e2
e3

⎤

⎦ ,

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
e1
e2
e3

⎤

⎦ ,

⎡

⎣
0
0
0

⎤

⎦

⎞

⎠

with t = rk(e) = 1. For decoding parameter s = 2 the set of interpolation points from
Problem 1 is

IHR =
{(

α0, f (α0), f (α1)
)
,

(
α1, f (α1), f (α2)

)
,

(
α2, f (α2), f (α3) + e1

)
,

(
α3, f (α3) + e1, f (α4) + e2

)
,

(
α4, f (α4) + e2, f (α5) + e3

)
,

(
α5, f (α5) + e3, f (α6)

)
,

(
α6, f (α6), f (α7)

)
,

(
α7, f (α7), f (α8)

)
,

(
α8, f (α8), f (α9) + e1

)
,

(
α9, f (α9) + e1, f (α10) + e2

)
,

(
α10, f (α10) + e2, f (α11) + e3

)
,

(
α11, f (α11) + e3, f (α12)

)
,

(
α12, f (α12), f (α13)

)
,

(
α13, f (α13), f (α14)

)}
.

By performing Fq -elementary operations on IHR we eliminate the errors from the interpo-
lation points for the code locators α8, α9, . . . , α11 and get the noncorrupted interpolation
points
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(
α8 − α2, f (α8 − α2), f (α(α8 − α2))

)
,

(
α9 − α3, f (α9 − α3), f (α(α9 − α3))

)
,

(
α10 − α4, f (α10 − α4), f (α(α10 − α4))

)
,

(
α11 − α5, f (α11 − α5), f (α(α11 − α5))

)
.

In total we have t (h + s − 1) = 4 interpolation points that are corrupted by errors and
Nh − (s − 1)− t (h + s − 1) = 10 noncorrupted interpolation points. The new code locators
for the noncorrupted interpolations points are linearly independent over Fq and thus P(x)

must have at least 10 linearly independent roots in Fqm .
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