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Abstract LS-designs are a family of bitslice ciphers aiming at efficient masked implemen-
tations against side-channel analysis. This paper discusses their security against invariant
subspace attacks, and describes an alternative family of eXtended LS-designs (XLS-designs),
that enables additional options to prevent such attacks. LS- and XLS-designs provide a large
family of ciphers from which efficient implementations can be obtained, possibly enhanced
with countermeasures against physical attacks. We argue that they are interesting primitives
in order to discuss the general question of “how simple can block ciphers be?”.
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1 Introduction

LS-designs are a family of block ciphers proposed at FSE 2014, aimed for efficient bitslice
implementations [18]. They essentially combine linear diffusion L-boxes with non-linear
bitslice S-boxes. The instances proposed so far (namely the involutive cipher Robin and
the non-involutive cipher Fantomas) have additionally been selected to minimize the total
number of AND gates, in order to allow efficient masked implementations against side-
channel attacks [8],which is also beneficial tomultiparty computation and fully homomorphic
encryption [2]. In a more recent work by Leander et al., it has been shown that the involutive
instance Robinwas susceptible to an invariant subspace attack, leading to a weak keys set of
density 2−32 [25]. This raised questions regarding the origin of the attack and the possibility
to prevent it for involutive LS-designs.
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In this paper, we complement these works with two main contributions.
First, we analyze the invariant subspace attack against Robin and show that it can be

prevented with simple heuristics, e.g. a better choice of round constants. For this purpose,
we exploit the fact that these constants should have all their bits varying (in bitslice repre-
sentation), in order to avoid invariant subspaces for the S-boxes or L-boxes to be trivially
propagated through the rounds.

Second we question the possibility to improve the efficiency of LS-designs with a better
choice (and different sizes) of components. In particular,Robin and Fantomas are based on
8-bit S-boxes and 16-bit L-boxes. While it is very convenient from an implementation point-
of-view, the selection of these components was partially heuristic (since, e.g. an exhaustive
analysis of 8-bit S-boxes is computationally out of reach). As a result, we investigate an
alternative approach in two steps. First, we design 32-bit “Super S-Boxes” taking advan-
tage of optimal components, i.e. 4-bit S-boxes and 32-bit L-boxes based on a maximum
distance separable (MDS) code. Second, we combine these Super S-boxes with an addi-
tional ShiftColumns operation. Both the use of Super S-boxes and their combination with
a ShiftColumns operation are naturally reminiscent from an AES-like cipher [11,17], but
with a bitslice rather than block-oriented structure. Interestingly, we show that the resulting
eXtended LS-designs (XLS-designs) can also be implemented very efficiently on various
platforms, e.g. based only on table lookups and word-oriented operations, yet leading to
slightly more complex tradeoffs than LS-designs, due to their slightly more involved struc-
ture. For concreteness and further investigations, we additionally specify an instance of such
XLS-design, denoted asMysterion, with 128-bit or 256-bit block size.

2 The invariant subspace attacks against Robin

2.1 LS-design, Robin and Fantomas

LS-designs are a family of block ciphers that are composed of a combination of lookup table-
based L-boxes and bitslice S-boxes. The definition of s-bit S-boxes and l-bit L-boxes directly
gives rise to an instance of n = s · l-bit cipher. One advantage of LS-designs is their inherent
simplicity, as illustrated with the short specifications given in Algorithm 1. The cipher takes
n-bit plaintext and key blocks as input, and follows substitution permutation network (SPN)
approach. Namely, the inputs and state are represented as s · l arrays of bits, with s the
number of rows and l is the number of columns. In each round, the S-box operation acts on
the columns, and the L-box operation acts on the rows. These two components combined
with constant and key addition define the round function of LS-designs, that is iterated Nr

times in order to obtain the ciphertext.

Algorithm 1 LS-design with l-bit L-boxes and s-bit S-boxes
x ← P ⊕ K ; � x is an s · l-bit matrix
for 0 ≤ r < Nr do

for 0 ≤ i < l do � S-box Layer
x[�, i] = S[x[�, i]];

for 0 ≤ j < s do � L-box Layer
x[ j, �] = L[x[ j, �]];

x ← x ⊕ K ⊕ C(r); � Key addition and round constant
return x
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Fig. 1 An example of invariant subspace attack against one round of Robin

Concretely, both Robin and Fantomas were based on 8-bit S-boxes and 16-bit L-boxes.
For the former one, these components are involutive, in order to improve the performances
of the cipher when decryption has to be implemented.

2.2 Invariant subspace attacks and results on Robin

The invariant subspace attack was first introduced at CRYPTO 2011 [23] and applied to the
lightweight “PRINTcipher” [21]. We can summarize the attack as follows. Let us consider
an n-bit iterative block cipher, with round function Rk : Fn2 × F

n
2 → F

n
2, such that Rk(x) =

E(x + k), with E an n-bit permutation. If there exists a subspace S ⊆ F
n
2 and two constants

a, b ∈ F
n
2 such that E(S + a) = S + b, then for a round key k = s + a + b with s ∈ S, the

following holds:

Rk(S + b) = E
(
(S + b) + (s + a + b)

) = E(S + a) = S + b.

That is, the round function maps the affine subspace S + a onto S + b. Furthermore, if all
round keys are in S + (a + b), then this property is iterative. This is the case for some key-
alternating ciphers [5], where the samemaster key is used as subkey through thewhole cipher,
e.g. LED [19], Zorro [16], Noekeon [13], Fantomas and Robin [18], which are therefore
natural targets for invariant subspace attacks. The Eurocrypt 2015 paper [25] that exhibits a
weak keys set of density 2−32 for Robin is based on this property, and takes advantage of
the involutive nature of its components together with weak round constants.

More precisely, the involutive building blocks of Robin help finding self-similarities
within the cipher—a new type of such self-similarities (for the L-boxes) is actually given in
the Eurocrypt paper. Besides, and as mentioned above, LS-designs are such that S-boxes act
through columns and the linear layer acts through rows. Hence, if there exists an invariant
subspace (e.g.) for the S-box layer and all inputs to the S-boxes are chosen from it, then
the linear layer will not change this subspace.1 That is, if we call the bits which form the
invariant subspace active and other bits passive (as in differential cryptanalysis), then the
linear layer does not mix active and passive bits. Combined with the fact that the round
constants of Robin are sparse, and only apply to one state row, this allowed the propagation
of invariant subspaces through the cipher. An illustration of the attack based on an invariant
subspace for the S-box layer is given in Fig. 1, where black boxes represent bits that form an
invariant subspace.

3 A simple tweak: modifying the round constants

Based on the previous description, a couple of ways to fix the invariant subspace attack could
be considered forRobin, e.g. changing its components (linear layer & S-box), applying a key

1 As just mentioned, this attack can be applied by finding an invariant subspace for the linear layer as well, in
which case the S-box layer will not change the subspace.
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scheduling, or changing the round constants. Among those, changing the round constants is
the easiest one, since it implies minimum changes on the design. Concretely, one suggestion
is to use a dense set of round constants, applied to all the rows rather than a single one. For
example, a linear feedback shift register (LFSR) with 16-bit state size (and e.g. primitive
polynomial P(X) = X16 + X5 + X3 + X2 + 1) could be used for this purpose. Eight con-
secutive states can then be combined together to form each round constant. We verified with
the same generic algorithm as described in [24] that this choice was sufficient to remove the
invariant subspace from the Robin rounds (up to the computational limits of the algorithm).
We also checked exhaustively that no invariant subspaces can propagate through the rounds
of reduced (32-bit) LS-designs using such dense constants. Note that despite no invariant
subspace attack has been exhibited against the non-involutive cipher Fantomas, it has a
similar structure as Robin, and its round constants are sparse as well. Therefore, tweaking
this cipher (e.g. with stronger round constants) could be advisable.

3.1 Concrete proposal for Robin�

While conceptually simple, the tweak in the previous section is still quite expensive, since it
requires generating 8 × 16 pseudorandom bits per round. Yet, adding a full round constant
seems to be the only simple way to avoid the invariant subspaces in Robin. In the following,
we suggest a simple intermediate path and a concrete proposal for Robin�. Namely, instead
of generating (and keeping in memory) 8× 16 bits at each round with an LFSR, we generate
16-bit constants that we then rotate before addition to the state. Concretely, the 16-bit round
constants in Robin� are defined as:

T (ρ) = 2199 · ρ mod 216.

We consider constants of the form T (ρ) = T · ρ mod 216 because they can implemented
by incrementing a counter by steps of T . However, we would rather avoid the trivial choice
T = 1 because this implies simple linear relations between the constants, such as T (2ρ+1) =
T (2ρ) ⊕ 1. Following, we built 16 × 16 matrices with the binary representation of T (1),
T (2), …, T (16), and computed the rank of these matrices. There are a few values that give
a full rank matrix, and we decided to use the smallest value with this property: 2199. Next,
Algorithm 2 describes how the 16-bit round constants will be extended to 128 bits, where
Rot L(x, y) stands for the left rotation of x by y bits, and Ti is the 16-bit constant of round i .
The heuristic tool of [25] did not exhibit any difference between this solution and the more
(memory) expensive one in the previous paragraph. Eventually, Robin� mostly follows the
specifications in Algorithm 1, with only modification that the 8-bit constants C are replaced
by 128-bit constants C∗.

Algorithm 2 n-bit constants C�(Ti , s) from l-bit constants Ti
C� ← 0; � C� is an s · l-bit matrix
for 0 ≤ j < s do

C�[ j, �] = Rot L(Ti , j)
return x
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Improving the security and efficiency of block ciphers 499

4 eXtended LS-designs andMysterion

The previous sections highlighted that invariant subspace attacks against (involutive) LS-
designs exploit the structural simplicity of these ciphers. While this simplicity is highly
beneficial to implementation efficiency, it also leads to the question whether a slightly more
involved structure could provide better security margins. In this section, we investigate this
option and, motivated by the efficient masking goal of LS-designs, combine it with a further
improvement of the balance between linear and non-linear operations within the cipher. The
rationale behind this tweaked approach is twofold. First, for the linear part, we observe that
from the security point-of-view it would be interesting to take advantage of a (non-binary)
MDS code to build the diffusion layer. Second, for the non-linear part, S-boxes with smaller
bit sizes are chosen since it is known how to construct optimal ones. For example, Ullrich et al.
found an optimal (from the linear and differential cryptanalysis points-of-view) 4-bit S-box
requiring only 4 AND gates (later denoted as Class 13) [30]. Based on these observations,
we propose new instances of ciphers where an optimal 4-bit S-box with an MDS diffusion
matrix are combined, which results in 32-bit Super S-boxes, and then combine these Super
S-boxes with a ShiftColumns operation to obtain 128- and 256-bit ciphers. Admittedly, this
approach does not strictly follow the LS-design specifications, since (i) its diffusion layer
is not based on binary matrices anymore, and (ii) it requires an additional ShiftColumns
operations. So it primarily aims to improve the security margins of LS-designs, e.g. against
linear and differential cryptanalysis and invariant subspace attacks (see Sect. 4.2). Yet, and
quite interestingly, wewill show in Sect. 4.3 that the resulting XLS-designs can still be imple-
mented efficiently, taking advantage of the linearity of theMDS diffusion andShiftColumns
operations. So intuitively, the main price to pay for the latter approach is slightly more com-
plex specifications (although they can be viewed as a bitslice counterpart to AES-like ciphers
and have a concise description), which are interesting to compare with the extreme simplicity
of LS-designs, both from the implementation efficiency and the physical security points-of-
view.

4.1 Specifications

XLS-designs can be described as combination of b LS-designs of s · l bits, where s is the size
of the S-box (in bits, as in LS-designs), and l is the size of the underlying MDS matrix of the
L-box (and no longer the bit size of the L-box as in LS-designs), resulting in a n = b · s · l-bit
cipher. Note that the change on l notation is necessary to keep notations consistent with
LS-designs, since a binary matrix cannot be MDS. Concretely, the internal state of an XLS-
design can be written as X [�, �, �], such that X [i, �, �] is an s · l-bit block (with 1 ≤ i ≤ b),
X [i, j, �] is block i’s j th l-bit row (with 1 ≤ j ≤ s) and X [i, �, j] is block i’s j th s-bit
column (with 1 ≤ j ≤ l). As illustrated in Fig. 2, the S-box layer of XLS-designs is strictly
the same as in Algorithm 1. Their L-box layer slightly changes compared to LS-designs,
since it is applied to all the rows of each block at once (rather than to row by row in LS-
designs). And the main difference is the additional ShiftColumns layer, that can be viewed
as the bitslice dual to the ShiftRows operation in the AES Rijndael, and will be defined
next.

XLS-designs are succinctly described in Algorithm 3. We now describe the different
components that give rise to theMysterion-128 (4×32-bit blocks), and theMysterion-256
(8 × 32-bit blocks), that both exploit 4-bit S-boxes.
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Fig. 2 128-bit LS-design versus 128-bit XLS-design

Algorithm 3 XLS-design with l · s-bit L-boxes, s-bit S-boxes and b blocks
1: x ← P ⊕ K � x is a s · (l.b) bits matrix
2: for 0 ≤ r < Nr do
3: for 0 ≤ j < b do
4: for 0 ≤ i < l do
5: x[ j, �, i] = S[x[ j, �, i]]; � S-box layer
6: for 0 ≤ j < b do
7: x[ j, �, �] = L[x[ j, �, �]]; � L-box layer
8: for 0 ≤ k < s do
9: x[�, k, �] = ShiftColumns[x[�, k, �]]; � ShiftColumns layer
10: x ← x ⊕ K ⊕ C(r) � Key and round constant addition

return x

The S-box Mysterion uses the Class13 S-box [30], that has a bitslice representation
with four AND2 and four XOR gates (see Appendix 1), algebraic degree three, differential
probability of 2−2, and linear probability of 2−1.

The L-box Mysterion uses a linear transformation derived from the recent paper by
Augot and Finiasz [3], in which an algorithm that allows to find recursive MDS diffu-
sion layers using shortened BCH codes is described. (Recursive MDS matrices can be
expressed as a power of the companion matrix of a polynomial.) This algorithm uses the
degree of the polynomial k (hence the size of the companion matrices), and the field size
q = 2s as parameters, and provides all the polynomials of degree k over F2s such as their
companion matrices raised to the power k gives MDS diffusion layers. We ran it with para-
meters k = 8 and s = 4 using Magma, in order to obtain an 8 × 8 MDS matrix over
F24 . The selected degree-8 polynomial with coefficients in F24

∼= F2[α]/(α4 + α + 1), is
P(X) = X8 + α3 · X7 + α4 · X6 + α12 · X5 + α8 · X4 + α12 · X3 + α4 · X2 + α3 · X + 1.
The resulting diffusion layer is coming from an MDS code [16, 8, 9]F24 and therefore has
both its differential and linear branch number equal to 9.

2 More precisely, three ANDs and one OR, which can be masked at the same cost.
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ShiftColumns For Mysterion-128, ShiftColumns acts on columns two by two. The first
two columns of each block are not moved, the second two columns are moved by one
block, the third two columns are moved by two blocks, and the fourth two columns are
moved by three blocks. This operation can also be described as a bit permutation of a 32-bit
word, with logic operations: X = (X & 0xC0C0C0C0) ∨ ROL(X & 0x03030303,8) ∨
ROL(X & 0x0C0C0C0C,16) ∨ ROL(X & 0x30303030,24), where ∨ and & stand for
logic OR and AND, and ROL(X,n) stands for the left rotation of X by n bits. ForMysterion-
256, ShiftColumns acts on columns one by one. The first columns of each block are not
moved, the second columns are moved by one block, . . ., and the eighth columns are moved
by seven blocks. See Appendix 1 for the alternative description.

These components directly define our two instances Mysterion-128, with parameters
b = 4, s = 4, l = 8, andMysterion-256, with parameters b = 8, s = 4, l = 8. As for round
constants, we suggest to use simpler ones as in the original Robin and Fantomas ciphers.
This will be further justified in the next section.

4.2 Security analysis

We now exhibit the good cryptanalytic properties of Mysterionwith two main goals. On the
one hand, we show that simple 4-round bounds against linear and differential cryptanalyses
can be obtained for XLS-designs, inheriting from their AES-like structure. On the other hand,
we argue why its more complex structure also improves resistance against invariant subspace
attacks. We also (briefly discuss) a couple of additional standard cryptanalyses against block
ciphers. Note that as for LS-designs, no related-key security is claimed for Mysterion.

Security against linear and differential cryptanalyses A straightforward application of the
wide-trail strategy [10] leads to the following theorems.

Theorem 1 Four rounds of Mysterion-128 has at least 45 active S-boxes.

Theorem 2 Four rounds of Mysterion-256 has at least 81 active S-boxes.

A sketch of the proofs is given in Appendix 1. As a result, we have the next bounds for the
probabilities Prlin(4R) (resp. Prdi f f (4R)) of linear (resp. differential) characteristics over 4
rounds of Mysterion-128, where Prmax

lin (S-box) (resp. Prmax
di f f (S-box)) stands for the linear

(resp. differential) probability of the S-box:

Prlin(4R) ≤ Prmax
lin (S-box)45 = 2−45, Prdi f f (4R) ≤ Prmax

di f f (S-box)
45 = 2−90.

And similarly, for the Mysterion-256, we have:

Prlin(4R) ≤ Prmax
lin (S-box)81 = 2−81, Prdi f f (4R) ≤ Prmax

di f f (S-box)
81 = 2−162.

Table 1 compares the upper bounds for the maximum probabilities of differential charac-
teristics for Robin, Fantomas and Mysterion. Setting the number of rounds to 12 for
Mysterion-128 and 16 for Mysterion-256 leads to very comfortable security margins, and
better bounds than for Robin and Fantomas. Linear characteristics behaves in the same
way, leading to similar recommendations.

Security against invariant subspace attacks As discussed in Sect. 2.2, invariant subspace
attacks can be of two types. A (simpler) one taking advantage of invariant subspaces in the
S-box and (a more intricate) one using equality spaces in the L-box (that is highly structured
in the case of Robin). The first one is easy to bypass with a good choice of S-box, e.g.
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Table 1 Maximum probability
of differential characteristics for
LS- and XLS-designs

Number of rounds 8 12 16

Prob. diff char. for Robin 2−128 2−192 2−256

Prob. diff char. for Fantomas 2−160 2−256 2−344

Prob. diff char. for Mysterion-128 2−180 2−270 2−360

Prob. diff char. for Mysterion-256 2−324 2−486 2−648

the Class13 S-box has no trivial invariant subspaces.3 The second one is more difficult to
analyze. So far, results of [25] only describe a heuristic tool allowing to look for such invariant
subspaces.Hence, running this tool (with the available computational resources) on full cipher
instances, and exhaustively searching on reduced cipher instances, is the best that one can
currently do. For example, invariant subspaces against Fantomas (andRobin�) could not be
spotted by using this approach. In the case of Mysterion, we first note that the use of a 32-bit
L-box is not sufficient to prevent the existence of invariant subspaces within the rounds (as
revealed by an exhaustive analysis performed on a 32-bit block). However, the addition of a
ShiftColumns operationwill break the propagation of any subspace found for the L-boxwith
high probability. This was confirmed by a computationally-bounded analysis performed on
Mysterion-128. We therefore conclude that XLS-designs can withstand invariant subspace
attacks even with sparse round constants (as usually used in block cipher designs, to limit
their memory requirements).

Algebraic attacks Algebraic attacks on block ciphers were introduced by Courtois and
Pieprzyk [9]. They essentially represent a block cipher as a system of non-linear equations
and look for solution using some specialized solver. Since block ciphers are defined as itera-
tions of a complex round function, the number of equations and variables grows rapidly and
solving them is expected to be a hard problem. Exactly determining the security level against
such attacks is difficult. Yet, one usually evaluates the number of variables and quadratic
equations of the cipher for this purpose [4]. In Mysterion, we used 4-bit S-boxes with alge-
braic degree d = 3 and every 4-bit S-box has at least e = 21 quadratic equations for the v = 8
input/output variables. This means (d2 ·Nr ·e) quadratic equations in (d2 ·Nr ·v) variables for
Nr rounds. In the case of Mysterion-128, we end up with 4032 equations in 1536 variables.
These numbers are increased to 5376 equations in 2048 variables for Mysterion-256. In
comparison, the AES has 6296 equations in 3296 variables [4]. We expect these numbers to
be sufficient for both instances of Mysterion to be secure against algebraic attacks.

Higher-order differential attacks/cube attacks Higher-order differential cryptanalysis [20]
and Cube attacks [14] are powerful cryptanalytic tools based on differential derivatives of
high orders. One recent extension of these attacks is the zero-sum distinguisher described
in [6]. The usual strategy to prevent such cryptanalyses is to guarantee a high algebraic
degree after some cipher rounds. We used the tools from [7] to compute this number of
rounds. As reported in Table 2, the algebraic degree reaches its maximum after 7 and 9
rounds, respectively for Mysterion-128 and Mysterion-256. In these cases, a partition of
size 2127 and 2255 would be required to construct zero-sum distinguishers.

Integral attacks / division property Integral cryptanalysiswas proposed in [12,22]. The attack
considers a collection of m-bytes of plaintexts and their corresponding ciphertext values and

3 Any S-box has (small dimensional) subspaces that gets mapped to subspaces.
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Table 2 Estimated algebraic degree for Mysterion in function of the number of rounds

No of rounds 1 2 3 4 5 6 7 8 9 Reference

Mysterion-128 3 9 27 81 112 123 127 – – [7]

– – 12 28 84 113 124 – – [29]

Mysterion-256 3 9 27 81 198 237 250 254 255 [7]

– – 12 28 84 199 237 250 254 [29]

aims at extracting key information byobserving the sumof ciphertext values for this collection
of chosen plaintexts. It can be efficiently applied to block ciphers based on SPNs like the
AES or LED. Since the Mysterion design also fits into this category, we briefly discuss its
susceptibility to such attacks. For AES, the best integral property can be found up to four
rounds, and then this property can be used to mount an attack from seven rounds to nine
rounds depending on key sizes [15,26]. For Mysterion, a similar result can be obtained
for four rounds, but that leaves comfortable security margin for the full cipher since we
have 12 and 16 rounds for Mysterion-128 and Mysterion-256. We further mention a new
type of integral property, namely the division property, introduced recently at EUROCRYPT
2015 [29]. It allows to construct more efficient integral distinguishers exploiting the limited
algebraic degree of reduced ciphers. We complement the results of [7] with new bounds from
this reference in Table 2 (which suggest sufficient security margins).

Boomerang attacks The boomerang attack [31] is a special type of differential cryptanaly-
sis, where the main idea is to divide a cipher E into two sub-ciphers E0 and E1 such that
E = E0 ◦ E1. The attacker then constructs two relatively short differentials for E0 and E1

instead of finding a long differential for the cipher E . This may improve the results since
shorter differentials usually have better probabilities. We know from Theorem 1 that four
rounds of Mysterion-128 has at least 45 active S-boxes. If we use two four-round charac-
teristics for E0 and E1, then the best differential probability of a boomerang distinguisher
becomes 2−45× 2 × 2−45× 2 = 2−180, which is smaller than 2−n = 2−128. Therefore,
we can deduce that any boomerang distinguisher with eight rounds or more will not work
against Mysterion-128 (a similar conclusion can be reached for Mysterion-256, for which
an eight-round boomerang distinguisher will have the best differential probability equal to
2−81× 2 × 2−81× 2 = 2−324  2−256).

4.3 Performances

One of the goals of LS-designs (hence, by extension, XLS-designs) is to allow efficient
masked implementations. In this respect, a natural problem is to find out whether the slightly
more complex structure of XLS-designs, using (non-binary)MDSmatrices and an additional
ShiftColumns transformation, leads to a loss of efficiency. In this section, we briefly discuss
this issue and detail how efficient table lookup-based implementations of Mysterion-128
can be obtained.

In general, the implementation of a 32-bit Super S-box can be directly implemented with
logic operations (which is more time consuming), or with table lookups as in the case of
the AES Rijndael (which is faster, but requires 16 tables of 256 bytes, rather than 4 such
tables for a 128-bit LS-design). Next, the ShiftColumns operation mixes bits of different
blocks, which can exploit the logic representation given in Sect. 4.1, or be implemented with
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Fig. 3 Encryption times for different 128-bit block ciphers in an Atmel AtMega644p

table lookups. This leads to interesting tradeoffs from the physical security point-of-view.
On the one hand, the logic representation of ShiftColumns requires less memory than its
table-based execution, and acts at the row level. On the other hand, performing ANDs with
constants including some bits set to zero can be viewed as a bit manipulation that may be
harder to prevent leakages (as argued in [18]).

We implementedMysterion-128 on a 8-bit microcontroller (Atmel AVR, AtMega644p),
based on a mixed approach, namely table lookups for the L-boxes and logic operations for
ShiftColumns. We also implemented Robin� for which we use a look-up table for the 16
round constants.4 Our reference code is written inC and used the avr-libc librarywith headers
#include < avr/pgmspace.h > and #include < avr/ io.h >. The PROGMEM attribute
is used to save RAM. Results were obtained with the avr-gcc compiler and optimization
option -O2. The execution time of the implementations are simulated using the Atmel AVR
Studio 6 software. Performances are reported for an unrolled version of the code.

Figure 3 summarizes our results in terms of number of cycles for Mysterion-128,
together with natural competitors, i.e.Robin and Fantomas [18], Zorro [16], Noekeon [13],
PICARO [27] and the AES [28]. Security order 0 means unprotected implementation i.e. no
mask, security order 1means two shares or onemask, and so on. Themain conclusion of these
evaluations is that such an XLS-design has excellent performances, except for unprotected
implementations (for which Mysterion-128 is slightly less efficient than its competitors,
Robin being the best one). More precisely, the reduced amount of non-linear operations in
Mysterion-128 allows its implementations to compare favorablywith its competitors already
for first-order security. As previously mentioned, the price to pay for these excellent perfor-
mances are potentially more leaky operations, which can be avoided using table lookups,
but would then lead to larger memory requirements. Eventually we observe that Robin� has
a only limited cycles’ overhead compared to Robin, due to its XORs on the full state and
rotations for the constants.

5 Conclusions

Thiswork extends the block cipher design space fromLS-designs toXLS-designs.We believe
this is an interesting step forward, since it is in line with the general question of “how simple
can block ciphers be?”, in a context—i.e. considering the risk of side-channel analysis—

4 For more constrained space, they could be computed as suggested in Sect. 3.1.
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where simplicity is usually correlatedwith security. Indeed, simple andvery structured ciphers
are generally easier to protect against physical attacks. In this respect, our first contribution is
to show that LS-designs are not inherently susceptible to invariant subspace attacks, but that
their instantiation should be carefully considered. And our second contribution is to show that
XLS-designs can indeedbe implemented efficiently (and lead to better security bounds against
linear and differential cryptanalysis), but that their best implementation requires informed
decisions (e.g. on whether the use of bit manipulations can be critical). These questions
lead to many open problems regarding the best cipher instances for different block/key
sizes. For example, instances with 3-bit S-boxes could be considered to minimize the AND
depth as in [2]; instances with 5-bit S-boxes could lead to even reduced round requirements
(for linear and differential attacks); even for the 4-bit instances, it could be interesting to
investigate the use of L-boxes based circulant matrices such as advertised in [1], which
would allow alternative implementations to prevent cache-based timing attacks (although
SSSE3 instructions can also be used for this),… And should we use LS- or XLS-designs for
any of those instances? Whether a key scheduling has to be included and how, especially
for cipher instances claiming some related key security (contrary to this work), but also to
prevent invariant subspace attacks, is another interesting question.
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Appendix: Specifications of Mysterion’s components

Mysterion S-box

Algorithm 4 Class13 S-box, bitslice representation
Require: 4 input bits (A, B,C, D)

Ensure: 4 output bits such as (a, b, c, d) = S(A, B,C, D)

1: a = A&B;
2: a = a ⊕ C ;
3: c = B | C ;
4: c = c ⊕ D;
5: d = a&D;
6: d = d ⊕ A;
7: b = c&A;
8: b = b ⊕ B;
9: return (a, b, c, d)

Mysterion L-box

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 α3 α4 α12 α8 α12 α4 α3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,C8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 α3 α4 α12 α8 α12 α4 α3

α3 α13 α4 α 1 α2 α2 α12

α12 α14 α12 α14 α2 α7 α5 α8

α8 1 α5 α14 α7 α α2 α3

α3 α14 α9 α10 α10 α9 α14 α3

α3 α2 α α7 α14 α5 1 α8

α8 α5 α7 α2 α14 α12 α14 α12

α12 α2 α2 1 α α4 α13 α3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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C is the companion matrix of the polynomial defined in Sect. 4.1.C8 is the underlying matrix
of theMysterion L-box.

ShiftColumns of Mysterion-256

Proofs for the bound of the number of active S-boxes

Proof of Theorem 2 The internal state of Mysterion-256 can be seen as a square, since the
number of blocks is equal to the number of columns in a block in this case. Therefore, the
proof directly results from the Four-Round Propagation Theorem of the AES Rijndael given
in [10]. That is, the number of active S-boxes over four rounds of Mysterion-256 is lower
bounded by the square of the branch number of the L-box, which corresponds to 92 = 81
active S-boxes (See Fig. 4). ��

Proof of Theorem 1 Contrary to Mysterion-256, we cannot directly use the Four-Round
Propagation Theorem of the AES to lower bound the number of active S-boxes inMysterion-
128, since its number of columns is larger than its number of blocks (i.e. the state is no longer
a square). However, similar bounds can be deduced from a modified version of the theorem
proven in [10]. We show in the following how Mysterion-128 can fulfill the hypotheses of
this theorem with a simple rearrangement of its operations. For this purpose, we first need to
set some definitions and notations. First, a bundle is a 4-bit word and corresponds to a column
in the representation of the internal state of Mysterion-128. We denote by L the application
of the L-box on each block of the state, which are divided into four independent parts of eight
bundles each. We call this partition of the bundles �. Mysterion-128 is a key-alternating
block cipher and iteratively applies the same round function, composed of an S-box layer,
an L-box layer, a ShiftColumns layer, and key and round constant additions. As the latter
do not influence the number of active S-boxes, we will omit them in the following. Based on
this, four rounds of Mysterion-128 can then be written as:

ShiftColumns ◦ L ◦ S ◦ ShiftColumns ◦ L ◦ S ◦ ShiftColumns ◦ L ◦ S ◦
ShiftColumns ◦ L ◦ S.

We next reorganise these operations in order to highlight a particular structure of the lin-
ear transformation for 4 rounds, which allows a simpler analysis. More precisely, since
ShiftColumns commutes with S, we have the following equivalent definition of four rounds
of Mysterion-128:

ShiftColumns ◦ L ◦ ShiftColumns ◦ S ◦ L ◦ S ◦
ShiftColumns ◦ L ◦ ShiftColumns ◦ S ◦ L ◦ S.

Thanks to this representation, we easily identify two different transformations τ a = L ◦ S
and τ b = L ◦ S, where L = ShiftColumns ◦ L ◦ ShiftColumns. Then four rounds of
Mysterion-128 are the alternation of τ a and τ b:

Fig. 4 ShiftColumns of Mysterion-256
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Fig. 5 Two equivalent representations of four rounds of Mysterion-128

τ a ◦ τ b ◦ τ a ◦ τ b.

Figure 5 summarizes our notations and modified representation of Mysterion-128. ��
We finally exploit the following theorem from [10]:

Theorem 3 For a key alternating block cipher with round tranformations τ a and τ b, the
number of active S-boxes of any trail over

τ b ◦ τ a ◦ τ b ◦ τ a

is lower bounded by B(L) × B(L, �), where B(L) is the branch number of the linear trans-
formation L and B(L, �) is the branch number of the linear transformation L with respect
to the partition of the bundles �.

The branch number of L is 9 (the L-box of Mysterion is an MDS code [16, 8, 9]F24 ). The
partition � divide the state into the 4 blocks. We say a block is active when it has at least one
active (i.e non zero) bundle. As the ShiftColumns operation spreads two bundles of each
block into other blocks, and as L is MDS, we have that the minimum number of input/output
active blocks, therefore the branch number of L with respect to the partition �, is 5. As a
result, the number of active S-boxes over four rounds is lower bounded by 9 × 5 = 45.
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