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Abstract In this paper we study a certain generalization of combinatorial designs related
to almost difference sets, namely the t-adesign, which was coined by Ding (Codes from
difference sets, 2015). It is clear that 2-adesigns are partially balanced incomplete block
designs which naturally arise in many combinatorial and statistical problems. We discuss
some of their basic properties and give several constructions of 2-adesigns (some of which
correspond to new almost difference sets and some to new almost difference families), as well
as two constructions of 3-adesigns. We discuss basic properties of the incidence matrices and
make an initial investigation into the codeswhich theygenerate.Wefind thatmanyof the codes
have good parameters in the sense they are optimal or have relatively highminimum distance.
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1 Introduction

Combinatorial designs have extensive applications in many fields, including finite geometry
[6,17], design of experiments [3,14], cryptography [5,22], and authentication codes and
secret sharing schemes [20,22]. We will assume some familiarity with combinatorial design
theory. A t-(v, k, λ) design (with v > k > t > 0) is an incidence structure (V,B) where
V is a set of v points and B is a collection of k-subsets of V (called blocks), such that any
t-subset of V is contained in exactly λ blocks [22]. When t = 2, a t-design is sometimes
referred to as a balanced incomplete block design. Denoting the number of blocks by b and
the number of blocks containing a given point by r , the identities
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bk = vr

and

r(k − 1) = (v − 1)λ

restrict the possible parameter sets. A t-(v, k, λ) design in which b = v and r = k is called
symmetric, and any two blocksmeet inλ points. A t-(v, k, λ) design is called quasi-symmetric
if there are exactly two intersection numbers among pairs of blocks. The dual (V,B)⊥ of
an incidence structure (V,B) is the incidence structure (B, V ) with the roles of points and
blocks interchanged. A symmetric incidence structure is always isomorphic to its dual.

Difference sets [16] and almost difference sets [19] also have applications in many areas
such as digital communications [12,26], sequence design [23,25], and CDMA and cryptog-
raphy [5]. We will also assume familiarity with difference sets and almost difference sets.
Let G be a finite additive group with identity 0. Let k and λ be positive integers such that
2 ≤ k < v. A (v, k, λ) difference set in G is a subset D ⊆ G that satisfies the following
properties:

1. |D| = k,
2. the multiset {x − y | x, y ∈ D, x �= y} contains every member of G − {0} exactly λ

times.

Almost difference sets are a generalization of difference sets. A (v, k, λ, t) almost difference
set in G is a subset D ⊆ G that satisfies the following properties:

1. |D| = k,
2. the multiset {x − y | x, y ∈ D, x �= y} contains t members of G − {0} which appear λ

times and v − 1 − t members of G − {0} which appear λ + 1 times.

Our motivation for studying t-adesigns is in constructing linear codes. Also, due to their
having extensive applications, it is worthwhile to study the combinatorial objects arising
from almost difference sets. In Sect. 2 we introduce the generalizations and discuss some
basic properties. In Sect. 3 we give three constructions of 2-adesigns from quadratic residues,
several constructions of 2-adesigns which are almost difference families are given in Sect. 4,
and some constructions of 2-adesigns from symmetric t-designs are given in Sect. 5. In Sect. 6
we discuss 3-adesigns and two constructions are given, and in Sect. 7 we discuss the codes of
t-adesigns (and some related structures), and include some of the codes with good parameters
in a table. Section 8 concludes the paper.

2 Preliminaries

Let G be an additive group of order v. A k-element subset D ⊆ G has difference levels
μ1 < · · · < μs if there exist integers t1, . . . , ts such that the multiset

M = {g − h | g, h ∈ D}
contains exactly ti members of G − {0} each with multiplicity μi for all i , 1 ≤ i ≤ s. We
will denote the ti members of the multiset M with multiplicity μi by Ti . Note that the Ti ’s
form a partition of G − {0}. It is easy to see that in the case where s = 1, D is a difference
set [16], and in the case where s = 2 and μ2 = μ1 + 1, D is an almost difference set [19].
In this correspondence we are concerned only with those structures having two difference
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levels, and all groups are assumed to be additive. The basic equation describing a k-element
subset D ⊆ G with difference levels μ1 < μ2 is given by

μ1t + μ2(v − 1 − t) = k(k − 1). (1)

Let V be a v-set and B a collection of subsets of V , called blocks, each having cardinality
k. If there are positive integersμ1 < μ2 such that every subset of V of cardinality t is incident
with exactly μi blocks for i = 1 or 2, and for each i, i = 1, 2, there exists a subset of V of
cardinality t that is incident with exactly μi blocks, then we say that the incidence structure
(V,B) has t-levels μ1 < μ2. We denote |B| by b. An incidence structure (V,B) is called
symmetric if b = v. In the case where s = 2, (V,B) is a partially balanced incomplete block
design, and if μ2 = μ1 + 1, we call (V,B) a t-(v, k, μ1) adesign (or simply a t-adesign),
which was coined by Ding in [10]. It is easy to see that in the case where s = 1, (V,B) is
simply a t-design [22].

We call the set {D + g | g ∈ G} of translates of D, denoted by Dev(D), the development
of D. We have the following lemmas whose proofs are omitted as they are simple counting
exercises.

Lemma 2.1 Let D be a (v, k, λ) almost difference set in an Abelian group G. Then
(G, Dev(D)) is a 2-(v, k, λ) adesign.

Let (V,B) be an incidence structure with t-levels μ1 < μ2. Let A be a v by b matrix
whose rows and columns are indexed by points and blocks respectively and whose (i, j)-th
entry is 1 if the point corresponding to the i th row is incident with the block corresponding
to the j th row, and 0 otherwise. We call A the incidence matrix of (V,B). We will denote
the n × n identity and all-one matrices by In and Jn respectively, or, when it is clear from
the context, simply by I and J .

Lemma 2.2 Let D bea k-subset of anAbelian groupG of cardinalityvwith the twodifference
levels μ1 < μ2. Let A be the v × v incidence matrix of the symmetric incidence structure
(G, Dev(D)). Then

AT A = AAT = k I + μ1A1 + μ2(J − A − I ). (2)

Next, we give some constructions of 2-adesigns from almost difference sets.

3 Constructions of 2-adesigns from quadratic residues

Cyclotomic classes have proven to be a powerful tool for constructing difference sets and
almost difference sets, e.g. see [12,13,19]. Let q be a prime power, Fq a finite field, and e a
divisor of q − 1. For a primitive element α of Fq let De

0 denote 〈αe〉, the multiplicative group
generated by αe, and let

De
i = αi De

0, for i = 1, 2, . . . , e − 1.

We call De
i the cyclotomic classes of order e. The cyclotomic numbers of order e are defined

to be

(i, j)e =
∣
∣
∣De

i ∩ (De
j + 1)

∣
∣
∣ .

It is easy to see there are at most e2 different cyclotomic numbers of order e. When it is
clear from the context, we simply denote (i, j)e by (i, j). The cyclotomic numbers (h, k) of
order e have the following properties [7]:
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(h, k) = (e − h, k − h), (3)

(h, k) =
{

(k, h), if f even,

(k + e
2 , h + e

2 ), if f odd.
(4)

Our first three constructions make use of quadratic residues. We will need the following
lemma [7].

Lemma 3.1 If q ≡ 1 (mod 4) then the cyclotomic numbers of order two are given by

(0, 0) = q − 5

4
,

(0, 1) = (1, 0) = (1, 1) = q − 1

4
.

If q ≡ 3 (mod 4) then the cyclotomic numbers of order two are given by

(0, 1) = q + 1

4
,

(0, 0) = (1, 0) = (1, 1) = q − 3

4
.

We are ready to give our first construction.

Theorem 3.2 Let q be an odd prime power andα a primitivemember ofFq .DefineCi = {z ∈
Zq−1 | αz ∈ D2

i − 1} for i = 0, 1. Then the incidence structure (Zq−1 ∪ {∞}, Dev∞(C0) ∪
Dev(C1)), where Dev∞(C0) denotes the blocks of Dev(C0) each modified by adjoining the
point “∞”, is a 2-(q,

q−1
2 ,

q−5
2 ) adesign.

Proof We will denote {αz | z ∈ Ci } by αCi . For w ∈ Zq−1 we have

|C0 ∩ (C0 + w)| =
∣
∣
∣α

C0 ∩ αC0+w
∣
∣
∣

which, since αz is nonzero and

|((D2
0 − 1) − {0}) ∩ ((D2

0 − αw) − {0})| = |((D2
0 − {1}) − 1) ∩ ((αwD2

0 − {αw}) − αw)|,
is

{∣
∣(D2

0 − {1}) ∩ (D2
0 − {αw} + (1 − αw))

∣
∣ if w even,

∣
∣(D2

0 − {1}) ∩ (D2
1 − {αw} + (1 − αw))

∣
∣ if w odd.

Since αw(1 − αw)−1 = (1 − αw)−1 − 1, this becomes
{∣

∣(D2
0 − {(1 − αw)−1}) ∩ (D2

0 − {(1 − αw)−1 − 1} + 1)
∣
∣ if w even,

∣
∣(D2

0 − {(1 − αw)−1}) ∩ (D2
1 − {(1 − αw)−1 − 1} + 1)

∣
∣ if w odd,

which simplifies to
{∣

∣D2
0 ∩ (D2

0 + 1) − {(1 − αw)−1}∣∣ if w even,
∣
∣D2

0 ∩ (D2
1 + 1) − {(1 − αw)−1}∣∣ if w odd.

123



A generalization of combinatorial designs and related codes 515

There are four cases depending on the parity of w and whether (1 − αw)−1 ∈ D2
0 or D2

1 .
By Theorem 3.1 we have

|C0 ∩ (C0 + w)| =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 0) − 1 if w even and (1 − αw)−1 ∈ D2
0,

(0, 0) if w even and (1 − αw)−1 ∈ D2
1,

(0, 1) − 1 if w odd and (1 − αw)−1 ∈ D2
0,

(1, 0) − 1 if w even and (1 − αw)−1 ∈ D2
0 .

Thus if q ≡ 1(mod 4) then

|C0 ∩ (C0 + w)| =
{

q−9
4 if w even and (1 − αw)−1 ∈ D2

0,
q−5
4 otherwise,

and if q ≡ 3(mod 4) then

|C0 ∩ (C0 + w)|=
{
q−3
4 if w odd and (1 − αw)−1 ∈ D2

0 or if w even and (1 − αw)−1 ∈ D2
1 ,

q−7
4 otherwise.

Also, we have

|C1 ∩ (C1 + w)| =
{∣

∣D2
1 ∩ (D2

1 + 1) + (1 − αw)
∣
∣ if w even,

∣
∣D2

1 ∩ (D2
1 + 1) + (1 − αw)

∣
∣ if w odd.

Thus if q ≡ 1(mod 4) then

|C1 ∩ (C1 + w)| =
{

q−5
4 if w even and (1 − αw)−1 ∈ D2

1,
q−1
4 otherwise.

and if q ≡ 3(mod 4) then

|C1 ∩ (C1 + w)| =
{

q+1
4 if w odd and (1 − αw)−1 ∈ D2

1,
q−3
4 otherwise.

We need to compute the number of blocks of (Zq−1, Dev(C0) ∪ Dev(C1)) in which
an arbitrary pair of points appear. Consider the incidence structures (Zq−1, Dev(Ci )) for
i = 0, 1. Let C⊥

i , (Ci + w)⊥ denote the points of the dual structures (Dev(Ci ),Zq−1)

corresponding to the blocksCi ,Ci+w.Wehave that (Zq−1, Dev(Ci )) is a self-dual incidence
structure and by Lemma 2.2 the number of blocks of (Zq−1, Dev(C0) ∪ Dev(C1)) in which
the points C⊥

i , (Ci + w)⊥ appear is, if q ≡ 1(mod 4),

⎧

⎪⎨

⎪⎩

q−9
4 + q−1

4 = 2q−10
4 if w even and (1 − αw)−1 ∈ D2

0,
q−5
4 + q−5

4 = 2q−10
4 if w even and (1 − αw)−1 ∈ D2

1,
q−5
4 + q−1

4 = 2q−6
4 otherwise,

and if q ≡ 3(mod 4),
⎧

⎪⎨

⎪⎩

q−3
4 + q−3

4 = 2q−6
4 if w odd and (1 − αw)−1 ∈ D2

0,
q−7
4 + q+1

4 = 2q−6
4 if w even and (1 − αw)−1 ∈ D2

1,
q−7
4 + q−3

4 = 2q−10
4 otherwise.
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It is easy to see that the block sizes of the incidence structures (Zq−1, Dev(C0)) and
(Zq−1, Dev(C1)) are q−3

2 and q−1
2 respectively and that the number of blocks contain-

ing a given point in (Zq−1, Dev(C0)) is 2q−6
4 . Then the incidence structure (Zq−1 ∪

{∞}, Dev∞(C0) ∪ Dev(C1)), where Dev∞(C0) denotes the blocks of Dev(C0) each mod-
ified by adjoining the point ∞, is a 2-adesign. �

Note that appending the symbol “∞” to certain blocks in a combinatorial design has been
done before, e.g. see [18, Chapter 8 ]. Our constructions in this section also use this symbol
only, rather than extending complimentary blocks to obtain a 3-design, we first consider
various other ways of obtaining a set of blocks where any two have lengths differing by at
most one, and then extend the shorter blocks to obtain a 2-adesign.

Example 3.3 With q = 11 and Ci defined as in Theorem 3.2 we get that (Z10 ∪
{∞}, Dev∞(C0) ∪ Dev(C1)) is a 2-(10, 5, 3) adesign with blocks:

{0, 1, 3, 4, 8} {1, 3, 4, 6, 7} {2, 4, 5, 7, 8} {0, 2, 3, 7, 9} {3, 5, 6, 8, 9}
{0, 1, 5, 7, 8} {1, 2, 4, 5, 9} {0, 2, 3, 5, 6} {0, 4, 6, 7, 9} {1, 2, 6, 8, 9}
{2, 5, 6, 7,∞} {0, 1, 6, 9,∞} {3, 6, 7, 8,∞} {1, 4, 5, 6,∞} {0, 1, 2, 7,∞}
{1, 2, 3, 8,∞} {2, 3, 4, 9,∞} {4, 7, 8, 9,∞} {0, 5, 8, 9,∞} {0, 3, 4, 5,∞}
The next two constructions will use the following lemmas.

Lemma 3.4 [1] Let p be a prime. The number of pairs of consecutive quadratic residues
mod p is

N (p) = 1

4

(

p − 4 − (−1)
p−1
2

)

and the number of pairs of consecutive quadratic non-residues mod p is

N ′(p) = 1

4

(

p − 2 + (−1)
p−1
2

)

.

In the sequel we will sometimes use the following lemma without making reference to it.

Lemma 3.5 [2] Let p ≡ 1(mod 4) be a prime. The the set of quadratic residues mod p forms

a
(

p, p−1
2 ,

p−5
4 ,

p−1
2

)

almost difference set in Zp.

Lemma 3.6 Let p ≡ 1(mod 4) be a prime and D ⊆ Zp be the set of quadratic residues. Two

distinct points x, y ∈ D occur together in exactly p−5
4 translates of D if and only if x − y

is a quadratic residue. Dually, D + x and D + y are translates of D with x − y ∈ D if and
only if |(D + x) ∩ (D + y)| = p−5

4 .

Proof Let x, y ∈ D be distinct. Denote p−5
4 by λ. Without loss of generality we can take

y = 1. Let

D, D + α1, . . . , D + αλ−1

be precisely the λ translates of D in which x and 1 appear together. Then

x = x1 + α1 = · · · = xλ−1 + αλ−1

for some distinct quadratic residues x1, . . . , xλ−1 and

1 = y1 + α1 = · · · = yλ−1 + αλ−1
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for some distinct quadratic residues y1, . . . , yλ−1. Now suppose that x − 1 is a quadratic
non-residue. Then

x − 1 = x1 − y1 = · · · = xλ−1 − yλ−1.

Since p ≡ 1(mod 4) we have (x − 1)−1 is also a quadratic nonresidue. Then we have

1 = (x − 1)−1x − (x − 1)−1 = (x − 1)−1xi − (x − 1)−1yi

for i = 1, . . . , λ − 1. This gives precisely λ pairs of consecutive non-residues, these being
the only pairs of consecutive quadratic non-residues. But this contradicts Lemma 3.4, from
which we have that the number of pairs of consecutive quadratic non-residues is λ + 1. The
condition is necessary and sufficient, and the dual argument follows from the fact that the
2-adesign (Zp, Dev(D)) is symmetric. �

We are now ready to construct two more families of 2-adesigns.

Theorem 3.7 Let p ≡ 1(mod 4) be a prime greater than 5, and let D ⊆ Zp be the set of
quadratic residues. LetB = {b∩D | b ∈ Dev(D), b �= D}, and letB∞ be the set containing
all members of B of size p−1

4 , as well as all members of B of size p−5
4 modified by adjoining

the point ∞. Then (D ∪ {∞},B∞) is a 2-( p+1
2 ,

p−1
4 ,

p−9
4 ) adesign.

Proof Let x, y ∈ D be distinct. Denote p−5
4 by λ and p−1

2 by k. If x and y appear together in
exactly λ translates of D, then x and y appear together in exactly λ blocks in B∞. Similarly,
if x and y appear together in λ + 1 translates of D then x and y appear together in λ + 1
blocks in B∞. We want to show that x and ∞ appear together in exactly λ blocks in B∞.
Without loss of generality, we can take x = 1. There are k − 1 blocks in B∞ containing 1.
Let

D, D + α1, . . . , D + αw

be precisely the translates of D containing 1. By Lemma 3.6, if |D ∩ (D + αi )| = λ, then
αi is a quadratic residue. If y + αi = 1 then we have a pair y,−αi of consecutive quadratic
residues. By Lemma 3.4, the number of pairs of consecutive quadratic residues is exactly λ.

To see that there are pairs x, y ∈ D of distinct points appearing in λ − 1 blocks as well as
those appearing in λ blocks, suppose that y1, . . . , yk−1 be the k − 1 points in D − {1}. We
can again, without loss of generality, take x = 1. Suppose that 1 and yi appear together in
exactly λ translates of D for each i , 1 ≤ i ≤ k − 1. Then yi − 1 ∈ D for all yi . By Lemma
3.4 this gives too many pairs of consecutive quadratic residues, which completes the proof.

�
Example 3.8 With p = 13 we apply Theorem 3.7 and get that (D∪{∞},B∞) is a 2-(7, 3, 1)
adesign and B∞ contains the following blocks:

{4, 10,∞} {3, 4, 10} {1, 3, 12} {4, 9, 12}
{4, 12,∞} {10, 12,∞} {1, 3,∞} {4, 9,∞}
{1, 4, 9} {1, 10, 12} {3, 9, 10} {3, 9,∞}

Let B and B∞ be defined as in Theorem 3.7. The second construction is the following.

Theorem 3.9 Let p ≡ 1(mod 4) be a prime greater than 5, and let D ⊆ Zp be the set of
quadratic residues. Let B̄∞ be the set of complements of members of B∞ in Zp ∪ {∞}. Then
(D ∪ {∞}, B̄∞) is a 2-

(
p+1
2 ,

p+3
4 ,

p−1
4

)

adesign.
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Proof Let x, y ∈ D ∪ {∞} be distinct. Denote p−5
4 by λ and p−1

2 by k. Suppose x and y
appear together in λ blocks in B∞. Then there are λ blocks in B̄∞ not containing x or y. Also
there are k − 1 blocks in B̄∞ not containing x and k − 1 blocks not containing y. Then the
number of blocks in B̄∞ containing x and y is

|B̄∞| − (|{b ∈ B̄∞ | x /∈ b}| + |{b ∈ B̄∞ | y /∈ b}|) + |{b ∈ B̄∞ | x, y /∈ b}|
which is easily seen to be λ + 1. A similar calculation shows that if x and y appear together
in λ − 1 blocks in B∞ then x and y appear together in λ blocks B̄∞. �
Example 3.10 With p = 13we apply Theorem3.9 and get that (D∪{∞}, B̄∞) is a 2-(7, 4, 3)
adesign and B̄∞ contains the following blocks:

{1, 3, 9, 12} {4, 9, 10,∞} {1, 3, 9, 10} {4, 9, 10, 12}
{3, 9, 10,∞} {1, 4, 12,∞} {1, 9, 12,∞} {1, 3, 10,∞}
{1, 3, 4, 9} {3, 4, 10, 12} {3, 4, 9,∞} {1, 4, 10, 12}

4 Constructions of 2-adesigns that are almost difference families

Almost difference families were studied by Ding and Yin in [11]. Suppsoe G is a finite
Abelian group of order v in which the identity element is denoted “0”. Let k and λ be positive
integers such that 2 ≤ k < v. A (v, k, λ) difference family in G is a collection of subsets
D0, . . . , Dl of G such that

1. |Di | = k for all i, 0 ≤ i ≤ l,
2. the multiset union ∪l

i=1{x − y | x, y ∈ Di , x �= y} contains each member of G − {0} λ

times,

and a (v, k, λ, t)almost difference family is defined similarly only themultiset union∪l
i=1{x−

y | x, y ∈ Di , x �= y} contains t members of G − {0} with multiplicity λ and v − t − 1
members of G with multiplicity λ + 1.

It is trivial that an almost difference family is a 2-adesign. All of the 2-adesigns in this
section are also almost difference families, however, our treatment will still be in terms of
2-adesigns.

Our next two constructions make use of quadratic residues. We will need the following
lemma [7].

Lemma 4.1 Let q = 4 f +1 = x2 +4y2 be a prime power with x, y ∈ Z and x ≡ 1 (mod 4)
(here, y is two-valued depending on the choice of the primitive root α defining the cyclotomic
classes). The five distinct cyclotomic numbers of order four for odd f are

(0, 0) = (2, 2) = (2, 0) = q − 7 + 2x

16
,

(0, 1) = (1, 3) = (3, 2) = q + 1 + 2x − 8y

16
,

(1, 2) = (0, 3) = (3, 1) = q + 1 + 2x + 8y

16
,

(0, 2) = q + 1 − 6x

16
,

all others = q − 3 − 2x

16
,
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and those for even f are

(0, 0) = q − 11 − 6x

16
,

(0, 1) = (1, 0) = (3, 3) = q − 3 + 2x + 8y

16
,

(0, 2) = (2, 0) = (2, 2) = q − 3 + 2x

16
,

(0, 3) = (3, 0) = (1, 1) = q − 3 + 2x − 8y

16
,

all others = q + 1 − 2x

16
.

When computing difference levels of a subsetC of a groupG, it is sometimes convenient to
use the difference function which is defined as d(w) = |C ∩ (C + w)| where C +w denotes
the set {c + w | c ∈ C}. We are now ready to give our first construction of a 2-adesign that
is a difference family.

Theorem 4.2 Let q = 4 f + 1 = x2 + 4y2 be a prime power with f odd. Let C0 =
D4
0 ∪ D4

1,C1 = D4
0 ∪ D4

2 , and C2 = D4
0 ∪ D4

3 . Then (Fq , Dev(C0) ∪ Dev(C1) ∪ Dev(C2))

is a 2-(q,
q−1
2 ,

3q−11
4 ) adesign.

Proof Letw−1 ∈ D4
h . First we letC denote D4

i ∪D4
i+1. Thenwhenwe expand |C ∩ (C + w)|

we get
∣
∣
∣D2

i+h ∩ (D2
i+h + 1)

∣
∣
∣ +

∣
∣
∣D4

i+h ∩ (D4
i+h+1 + 1)

∣
∣
∣ +

∣
∣
∣D4

i+h+1 ∩ (D4
i+h + 1)

∣
∣
∣ +

∣
∣
∣D4

i+h+1 ∩ (D4
i+h+1 + 1)

∣
∣
∣

whence
|C ∩ (C + w)| = (i + h, i + h) + (i + h, i + h + 1) + (i + h + 1, i + h) + (i + h + 1, i + h + 1)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

q−2y−3
4 for i = 0 and h = 0 or 2,

q+2y−3
4 for i = 0 and h = 1 or 3,

q−2y−3
4 for i = 3 and h = 0 or 2,

q+2y−3
4 for i = 3 and h = 1 or 3.

(by Lemmas 3.1 and 4.1)

We also have

|C1 ∩ (C1 + w)| =
{

q−5
4 for h = 0 or 2,

q−1
4 for h = 1 or 3.

Now consider the incidence structures (Fq , DevCi ) for i = 0, 1, 2. Let C⊥
i , (Ci + w)⊥

denote the points of the dual structures (Dev(Ci ),Fq) corresponding to the blocksCi ,Ci+w.
We have that (Fq , Dev(Ci )) is a self-dual incidence structure and by Lemma 2.2 the number
of blocks of (Fq , Dev(C0) ∪ Dev(C1) ∪ Dev(C2)) which the points C⊥

i , (Ci + w)⊥ appear
in is

{
3p−11

4 if w−1 ∈ D4
0 ∪ D4

2,
3p−7
4 if w−1 ∈ D4

1 ∪ D4
3 .

�
Another construction is the following.

123



520 J. Michel, B. Ding

Theorem 4.3 Let q = 4 f + 1 = x2 + 4y2 be a prime power with f even and x = 1 or −3.

Then (Fq , Dev(D4
0) ∪ Dev(D4

2)) is a 2-
(

q,
q−1
4 ,

q−7−2x
8

)

adesign.

Proof We have, by Lemma 4.1,
∣
∣D4

i ∩ (D4
i + w)

∣
∣ = ∣

∣D4
h ∩ (D4

h + 1)
∣
∣

= (i + h, i + h)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

q−11−6x
16 if h = 0, i = 0 or h = 2, i = 2,

q−3+2x−8y
16 if h = 1, i = 0 or h = 2, i = 2,

q−3+2x
16 if h = 2, i = 0 or h = 3, i = 2,

q−3+2x+8y
16 for h = 3, i = 0 or h = 0, i = 2.

Now consider the incidence structures (Fq , Dev(D4
i )) for i = 0, 2. Let C⊥

i , (Ci + w)⊥
denote the points of the dual structures (Dev(D4

i ),Fq) corresponding to the blocksCi ,Ci+w.
We have that (Fq , Dev(Ci )) is a self-dual incidence structure and by Lemma 2.2 the number
of blocks of (Fq , Dev(D4

0) ∪ Dev(D4
2)) which the points C⊥

i , (Ci + w)⊥ appear in is
{

2q−14−4x
16 if w−1 ∈ D4

0 ∪ D4
2,

2q−6+4x
16 if w−1 ∈ D4

1 ∪ D4
3 .

Thus, we have (Fq , Dev(D4
0) ∪ Dev(D4

2)) is a 2-adesign whenever x = 1, or −3. �
We close this section with yet a fewmore constructions. Now let q be an odd prime power,

and C ⊆ Fq . According to [19], if

1. C = D4
i ∪ D4

i+1, q ≡ 5(mod 8) and q = s2 + 4 with s ≡ 1(mod 4), or
2. C = D8

0 ∪ D8
1 ∪ D8

2 ∪ D8
5, q = l2 where l is a prime power of form l = t2 + 2 ≡ 3(mod

8), or

3. C = ∪i∈I D
√
q+1

i where I ⊆ {0, 1, . . . , √q} with |I | =
√
q+1
2 and q = l2 for some

prime power l,

then C is a
(

q,
q−1
2 ,

q−5
4 ,

q−1
2

)

almost difference set in Fq .

It is easy to show, also, that if q is an odd prime power, (Fq , Dev(D2
0) ∪ Dev(D2

1)) is a

2-
(

q,
q−1
2 ,

2q−6
4

)

design. We then have the following.

Theorem 4.4 Let q be an odd prime power, and C ⊆ Fq . If

1. C = D4
i ∪ D4

i+1, q ≡ 5(mod 8) and q = s2 + 4 with s ≡ 1(mod 4), or
2. C = D8

0 ∪ D8
1 ∪ D8

2 ∪ D8
5 , q = l2 where l is a prime power of form l = t2 + 2 ≡ 3(mod

8), or

3. C = ∪i∈I D
√
q+1

i where I ⊆ {0, 1, . . . , √q} with |I | =
√
q+1
2 , I contains both even and

odd numbers, and q = l2 for some prime power l,

then (Fq , Dev(D2
0) ∪ Dev(D2

1) ∪ Dev(C)) is a 2-(q,
q−1
2 ,

3q−11
4 ) adesign.

5 Constructions of 2-adesigns from symmetric designs

Let (V,B) be an incidence structure with |B| = b. The numbers of blocks in which given
single points appear (called the replication numbers) become the block sizes of the dual
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(V,B)⊥, and the intersection numbers among pairs of blocks become the numbers of blocks
of (V,B)⊥ in which any two points appear. Then the following is clear.

Lemma 5.1 Let (V,B) be an incidence structure with |V | = v, and in which the replication
numbers are a constant k and the intersection numbers among pairs of blocks are integers λ

and λ + 1. Then (V,B)⊥ is a 2-(b, k, λ) adesign.

Remark 5.1 The dual of a quasi-symmetric design whose intersection numbers x, y are such
that y − x = 1 is always a 2-adesign.

In [2] constructions of almost difference sets from difference sets were introduced. In this
section we further generalize this idea. We will use the following lemma which is actually a
trivial construction in itself.

Lemma 5.2 Let (V,B) be a symmetric 2-(v, k, λ) design. Let b1, . . . ,bk be any k blocks in
B. Let “∞” denote a point. Let B′ denote the blocks of B modified by adjoining the point
“∞” to each of b1, . . . ,bk . Then (V,B′)⊥ is a 2-(v, k, λ) adesign.

Proof The replication numbers in the incidence structure (V,B′) are all k, and the intersection
numbers among pairs of blocks in B′ are λ and λ + 1. The result follows from Lemma 5.1. �

Note that the number of times which Lemma 5.2 can be applied to any given symmetric
2-(v, k, λ) design is � v

k �.
The following theorem gives another construction.

Theorem 5.3 Let (V,B) be a symmetric 2-(v, k, λ) design. Let b = {b1, . . . , bk} be a block.
Suppose that b1, . . . ,bk are k blocks not equal to b such that

1. bi /∈ bi for all i, 1 ≤ i ≤ k, and
2. b j ∈ bl implies bl /∈ b j for all j �= l, 1 ≤ j, l ≤ k.

Let B′ denote the blocks of B modified by adjoining the point bi to the block bi for all
i, 1 ≤ i ≤ k, and then removing the block b. Then (V,B′)⊥ is a 2-(v, k, λ) adesign.

Proof It is easy to see that the replication numbers of (V,B′) are all k. The second condition
in the statement ensures that the intersection numbers among pairs of blocks of B′ are either
λ or λ + 1. The result then follows from Lemma 5.1. �

Next, we show how to construct almost difference sets from planar difference sets. The
following constructions are not optimal but, for certain dimensions, give the best known value
for d1. A (v, k, λ) difference set is called planar if λ = 1. It is easy to show that, given a planar
difference set D in an (additive) Abelian group G of order v, if we choose any a0 ∈ G − D
such that 2a0 cannot be written as the sum of two distinct members of D, then D ∪ {a0} will
be an almost difference set with λ = 1. This is simply due to the fact that, because of the
way we chose a0, we cannot have a0 − a = b − a0 for any a, b ∈ D, thereby forcing each
member of G to appear as a difference of two distinct members of D ∪ {a0} only one or two
times.

Again, let D be a (v, k, 1) difference set in an Abelian group G of order v. Also let
κ : G → Z2 × G by x �→ (0, x). Suppose a0, . . . , as−1 ∈ G are such that the differences
(1, τ ) in κ(D)∪{(1, a0), . . . , (1, as−1)} cover {1}×G each havingmultiplicity at most 2, that
exactly one of the ai s is a member of D, and twice any ai is not the sum of two other distinct
ai s. If there is at least one difference in κ(D)∪{(1, a0), . . . , (1, as−1)} having multiplicity 1,
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then since the difference (1, 0) occurs exactly twice (because exactly one of the ai s is in D),
we have both 1 and 2 occurring as multiplicities. No difference can occur with multiplicity
greater than 2 since G is planar and twice any ai is not the sum of two other distinct ai s. We
also have the differences in κ(D)∪{(1, a0), . . . , (1, as−1)} covering Z2 ×G: the differences
(0, τ ) cover {0} × G due to G being a planar difference set and we have assumed that the
differences (1, τ ) cover {1} × G. This discussion is summarized in the following.

Theorem 5.4 Let D be a (v, k, 1) difference set in an (additive) Abelian group G. Suppose
a0, . . . , as−1 ∈ G are such that the differences (1, τ ) in κ(D)∪{(1, a0), . . . , (1, as−1)} cover
{1} × G each having multiplicity at most 2, that exactly one of the ai s is a member of D,
and twice any ai is not the sum of two other distinct ai s. If there is at least one difference
in κ(D)∪{(1, a0), . . . , (1, as−1)} having multiplicity 1 then κ(D)∪{(1, a0), . . . , (1, as−1)}
is a (2v, k + s, 1, t) almost difference set in Z2 × G. The resulting symmetric 2-adesign
(Z2 × G, Dev(κ(D) ∪ {(1, a0), . . . , (1, as−1)})) has parameters (2v, k + s, 1).

Example 5.5 Consider the Singer difference set {1, 2, 4} in Z7. With a0 = 0 we have 2a0
is not the sum of two distinct members of D, and κ(D) ∪ {(1, 0)} is a (14, 4, 0, 1) almost
difference set in Z14. With a1 = 1 we have κ(D) ∪ {(1, 0), (1, 1)} is a (14, 5, 1, 6) almost
difference set in Z14

Example 5.6 Consider the Singer difference set D = {0, 1, 5, 11} in Z13. With a0 = 10,
we have 2a0 is not the sum of two distinct members of D, and it is easily checked that
κ(D) ∪ {(1, 10)} is a (26, 5, 0, 5) almost difference set in Z26. With a1 = 11 we have that
κ(D) ∪ {(1, a0), (1, a1)} is a (26, 6, 1, 11) almost difference set.

Example 5.7 Now consider the Singer difference set D = {0, 3, 13, 15, 20} in Z21. We have
{9, 13, 16} are such that the differences (1, τ ) cover {1}×Z21 withmultiplicities nomore than
2 and that 13 is the onlymember that is also in D. It is also easy to see that the difference (1, 9)
can only occur as the difference (1, 9)−(0, 0). Thus we have κ(D)∪{(1, 9), (1, 13), (1, 16)}
is a (42, 8, 1, 16) almost difference set.

6 Constructions of 3-adesigns

In this section we will give two constructions each of which produce infinitely many 3-
adesigns.

Our first constructions makes use of quadratic residues.

Theorem 6.1 Let q ≡ 3(mod 4) be an odd prime power. Then (Fq , Dev(D2
0) ∪ Dev(D2

1))

is a 3-(q,
q−1
2 ,

q−7
4 ) adesign.

Proof Denote q−1
2 by k and q−3

4 by λ′. Let x, y, z ∈ Fq be arbitrary. To count the number of
blocks in which x, y, z appear together, we first count the number of blocks of Dev(D2

0) ∪
Dev(D2

1 ∪ {0}) in which x, y, z appear together. Suppose that the three points x, y, z appear
in μ blocks in Dev(D2

0). Using the fact that (Fq , Dev(D2
0)) is a 2-(q, k, λ′) design, a simple

counting argument gives that there are q−3k+3λ′ −μ blocks in Dev(D2
0):=Dev(D2

1 ∪{0})
containing x, y, z. Thus, there are q − 3k + 3λ′ = λ′ blocks in Dev(D2

0) ∪ Dev(D2
0)

containing x, y, z. Since w ∈ D2
1 ∪ {0} + w for all w ∈ Fq , we want to know how many of

the q − 3k + 3λ′ − μ blocks in Dev(D2
0) are also in {D2

0 + x, D2
0 + y, D2

0 + z}. Without
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loss of generality suppose that both D2
0 + x and D2

0 + y contain the three points x, y, z.
Then we must have y − x, z − x /∈ D2

0 and x − y, z − y /∈ D2
0 . But this would imply that

x − y, y − x ∈ D2
1 where both x − y and y − x are nonzero. But this is impossible as the

additive inverse of any member of D2
1 cannot also be a member whenever q ≡ 3(mod 4).

Then no more than one of the blocks D2
0 + x, D2

0 + y, D2
0 + z can contain all three of x, y, z.

We now need to show that there are two different 3-levels, i.e. that (Fq , Dev(D2
0)∪Dev(D2

1))

is not a 3-design, but a 3-adesign. To show this we assume that (Fq , Dev(D2
0) ∪ Dev(D2

1))

is a 3-(q, k, λ)-design for some λ. Then the number of blocks must be given by λ
(q3)

(k3)
. The

only choices for λ are λ′ or λ′ − 1. If λ = λ′ then we get that q − 5 = q − 4. If λ = λ′ − 1
then we get that (q − 3)(q − 5) = (q − 7)(q − 2). Either way we get a contradiction, which
completes the proof. �
Example 6.2 With q = 11 we apply Theorem 6.1 and get that (Z11, Dev(D2

0) ∪ Dev(D2
1))

is a 3-(11, 5, 1) adesign with blocks:

{1, 3, 4, 5, 9} {2, 4, 5, 6, 10} {0, 3, 5, 6, 7} {1, 4, 6, 7, 8} {2, 5, 7, 8, 9} {0, 4, 5, 6, 8}
{3, 6, 8, 9, 10} {0, 4, 7, 9, 10} {0, 1, 5, 8, 10} {0, 1, 2, 6, 9} {1, 2, 3, 7, 10} {1, 5, 6, 7, 9}
{0, 2, 3, 4, 8} {2, 6, 7, 8, 10} {0, 3, 7, 8, 9} {1, 4, 8, 9, 10} {0, 2, 5, 9, 10}
{0, 1, 3, 6, 10} {0, 1, 2, 4, 7} {1, 2, 3, 5, 8} {2, 3, 4, 6, 9} {3, 4, 5, 7, 10}
Our second construction is related to graphs, though it is simple enough to avoid graph-

theoretical preliminaries.

Theorem 6.3 Let n (≥7) be an odd integer not divisible by 3. Consider, for fixed a ∈ Zn,
all pairs {a − i (mod n), a + i (mod n)} for i = 1, · · · , n−1

2 . The union of any two distinct
pairs gives a block consisting of four points. Denote, for fixed a ∈ Zn, the set of all blocks
obtained in this way by Ba. Then (Zn,∪a∈Zn Ba) is a 3-(n, 4, 2) adesign.

Proof Arrange all the points in a circle as is shown in the graph below. For any three points
x, y, z ∈ Zn , denote |x − y|, |x − z|, |y − z| by dxy , dxz , dyz respectively.

Since n is not divisible by 3, dxy = dxz = dyz cannot happen. Then suppose two of them
are equal. Without loss of generality, suppose dxz = dyz . Then when x and y are in a pair, z
must be the fixed point so that there is no block containing all three of x, y and z. When x and
z are in a pair or y and z are in pair, we can find exactly one block containing the three points
in each case. If dxy, dxz and dyz are distinct, then we can find one block containing these
three points when any two points are in pair, in which case we have three blocks containing
these three points together.

x y

z

0 1n − 1
2 ···dxy

dxz dyz

�
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Example 6.4 With n = 7 we apply Theorem 6.3 and get that (Z7,∪a∈Z7Ba) is a 3-(7, 4, 2)
adesign with blocks:

{1, 7, 2, 6} {1, 7, 3, 5} {2, 6, 3, 5} {7, 6, 1, 5} {7, 6, 2, 4} {1, 5, 2, 4} {1, 4, 2, 3}
{1, 3, 7, 4} {1, 3, 6, 5} {7, 4, 6, 5} {7, 2, 6, 3} {7, 2, 5, 4} {6, 3, 5, 4} {1, 2, 7, 3}
{1, 6, 2, 5} {1, 6, 3, 4} {2, 5, 3, 4} {7, 5, 1, 4} {7, 5, 2, 3} {7, 3, 6, 4} {1, 2, 6, 4}
Let (V,B) be an incidence structure. Let p ∈ V , and define Bp = {B − {p} | B ∈

B and p ∈ B}. We call the incidence structure (V − {p},Bp) the contraction of (V,B) at
p. It is clear that contracting at points of a 3-adesign will give a 2-adesign as long as not all
3-sets of points occur in the same number of blocks of the contraction.

Example 6.5 The contraction at the point p = 1 of the 3-(11, 5, 1) adesign in Example 6.2
is a symmetric 2-(10, 4, 1) adesign with the ten blocks:

{3, 4, 5, 9} {4, 6, 7, 8} {0, 5, 8, 10} {0, 2, 6, 9} {2, 3, 7, 10}
{4, 8, 9, 10} {0, 3, 6, 10} {0, 2, 4, 7} {2, 3, 5, 8} {5, 6, 7, 9}

Remark 6.1 Interestingly, a contraction at anypoint of the incidence structure (Fq , Dev(D2
0)∪

Dev(D2
1)) from Theorem 6.1 gives a symmetric 2-

(

q − 1, q−3
2 ,

q−7
4

)

adesign and, since it

contains punctured translates of both D2
0 and D2

1 , cannot be the development of any almost
difference set.

7 Related codes

A linear binary code C of length n and dimension k (or simply an [n, k] code), is a k-
dimensional linear subspace of the n-dimensional binary vector space F

n
2. The dual C

⊥ of
an [n, k] code C is the [n, n − k] code that is the orthogonal space of C with respect to
the inner product of the binary field. Any basis of C is called a generator matrix of C , and
any basis of C⊥ is called a parity check matrix of C . The Hamming distance between two
vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is the number of indices i such that xi �= yi .
The Hamming weight of a vector is the number of its nonzero coordinates. The minimum
distance d of a code is smallest possible distance between pairs of distinct codewords. An
[n, k] code C is self-orthogonal if C ⊆ C⊥. An [n, k] code C is optimal if, given its length
and dimension, has the largest possible minimum distance. The best codes for a given length
and dimension can be found in the code tables in [15].

7.1 Cyclic codes

We assume some familiarity with cyclic codes. For more details on the subject the reader
is referred to [10]. An [n, k] code C over F2 is called cyclic if (c0, c1, . . . , cn−1) ∈ C
implies that the circular shift (cn−1, c0, . . . , cn−2) is also in C . By identifying any vector
(c0, c1, . . . , cn−1) ∈ F

n
2 with the polynomial

c0 + c1x + c2x
2 + · · · + cn−1x

n−1 ∈ F2 [x] /(x
n − 1),

any linear code C of length n over F2 corresponds to a subset of F2 [x] /(xn − 1). The code
is cyclic if and only if the corresponding subset is an ideal in the ring F2 [x] /(xn − 1). Note
that every ideal of F2 [x] /(xn − 1) is principal. Let g(x) ∈ F2 [x] /(xn − 1) be monic and
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of minimum degree, and let C = 〈g(x)〉. Then g(x) is called the generator polynomial of C ,
and h(x) = (xn − 1)/g(x) is referred to as the parity-check polynomial. The dimension of
C is given by the degree of h(x).

The following theorem is easy to prove.

Lemma 7.1 Let D be subset of Zn with two difference levels. Define D(x) = ∑

i∈D xi ∈
F2 [x], g(x) = gcd(xn − 1, D(x)), and h(x) = (xn − 1)/g(x). Then the code C = 〈g(x)〉
is an [n, k] cyclic code where k = deg(h(x)).

7.2 Known results on cyclic codes from 2-adesigns

It is known that when p ≡ 1(mod 4) the code C = 〈D2
0(x)〉 is a quadratic residue code if 2 is

a square in F∗
p , and a trivial cyclic code otherwise [10]. When p = 9+4y2 ≡ 1(mod 4) resp.

p = 49 + 4y2 ≡ 1(mod 4) is a prime, D4
0 resp. D4

0 ∪ {0} is an almost difference set [19]. If
D is either of these almost difference sets, then some parameters for the code C = 〈D(x)〉
are known and can be found in [9]. When p1 and p2 are primes such that p2 − p1 = 4, the
set E = E (2)

1 ∪ {p1, 2p1, . . . , (p2 − 1)p1}, where E (2)
1 = {0 ≤ i ≤ p1 p2 | i

p1 p2
= −1},

is an almost difference set [19], and some of the parameters of C = 〈E(x)〉 are known
and can be found in [8]. Lastly, when q is a prime power and α a generator of F∗

q2
, the set

Dq = {0 ≤ i ≤ n − 1 | Tr(αi ) = 1} is a planar almost difference set (i.e. with difference
levels 0 and 1), and the code C = 〈Dq(x)〉 has parameters

[

q2 − 1, q + 1, q − 1
]

[10].
There are many other constructions of almost difference sets, and the parameters of their
linear codes are open in general.

7.3 Cyclic codes from sets with two difference levels

Sets with two difference levels that are not almost difference sets can also generate codes
with good parameters. For example, when q ≡ 1(mod 8) is a prime power with unique
representation q = x2 + 4y2 = a2 + 2b2 where x, a ≡ 1(mod 4), and α is a generator of
F

∗
q , we can define D = D8

0 ∪ D8
1 ∪ D8

2 ∪ D8
5 and � j = |(D + α j ∩ D|. It was shown in [13]

that

�0 = �2 = �4 = �6 = 16q − 48 + 8x − 8a − 16y

64
(5)

�1 = �5 = 16q − 80 − 16x + 16a − 32y

64
(6)

�3 = �7 = 16q − 16

64
. (7)

Thus, if 3(a − x) − 2y = 4, we have that (Fq , Dev(D)) is an incidence structure with two
difference levels given by μ1 = 16q−48+8x−8a−16y

64 and μ2 = 16q−16
64 .

Example 7.2 With q = 73 we have the unique representation is given by x = −3, y = 4
and a = 1, b = 6. Thus the two difference levels are μ1 = 16 and μ2 = 18. Since the
difference levels are ≡ 0(mod 2), the inner product over the field F2 of any two rows of the
incidence matrix will be 0, making the code C = 〈D(x)〉 self-orthogonal. We checked using
MAGMA, and C is a [73, 18, 24] code. According the code tables in [15], the best binary
code with length 73 and dimension 18 has minimum weight 24.

We also have computed the following example using cyclotomic classes of order ten. The
cyclotomic numbers of order ten are known and can be found in [24].
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Example 7.3 Let q = 151, and define D = D4 ∪ D5 ∪ D8 ∪ D9. Then D has the two
difference levels μ1 = 22 and μ2 = 24 and the code C = 〈D(x)〉 is self-orthogonal. We
checked using MAGMA, and C is a [151, 30, 48] code. According the code tables in [15],
the best binary code with length 151 and dimension 30 has minimum weight 48.

Lemma 7.4 Let A be a v × v incidence matrix of the symmetric incidence structure (G,B)

obtained from the development of some k-subset D in the Abelian group G (where |G| = v)
with difference levels μ1 < · · · < μs . Suppose that k ≡ μ1 ≡ · · · ≡ μs(mod 2).

1. If k is even the binary code of length v with generator matrix A is self-orthogonal.
2. If k is odd the matrix

⎡

⎢
⎣

1
... A
1

⎤

⎥
⎦

generates a binary self-orthogonal code of length v + 1.

Proof By Lemma 2.2 we can see that, in both cases, the weights of the rows of the generator
matrix are all even and the inner product of any two rows is even as well. �

We will refer to an incidence structure (V,B) whose incidence matrix generates a self-
orthogonal code simply as self-orthogonal.

We will use the following lemma.

Lemma 7.5 Let (G,B) be a symmetric incidence structure coming from the development
of a k-subset D of the Abelian group G (where |G| = v) with difference levels μ1 and
μ2. Let t denote the number of members of G − {0} which appear μ1 times in the multiset
{x − y | x, y ∈ D, x �= y}. The the number of pairs of points in G appearing in exactly μ1

blocks in B is vt
2 and the number of pairs of points of V appearing in μ2 blocks is

v(v−1−t)
2 .

Proof For each x ∈ V , there are t points in V −{x} each appearing together with x in exactly
μ1 blocks. Thus, there are vt

2 pairs of points of V appearing inμ1 blocks. Similarly, there are
v(v−1−t)

2 pairs of points of V appearing inμ2 blocks. It is easily seen that vt
2 + v(v−1−t)

2 = (
v
2

)

.
�

We were able to come up with the following bound on the minimum distance of a code
generated by a self-orthogonal incidence structure with two difference levels. However, as is
clear from Examples 7.2 and 7.3, there is much room for improvement.

Theorem 7.6 Let A be the incidence matrix of a self-orthogonal incidence structure (G,B)

coming from the development of a k-subset D of the Abelian group G (where |G| = v) with
difference levelsμ1 andμ2. Let t denote the number of members of G−{0} which appearμ1

times in the multiset {x − y | x, y ∈ D, x �= y}. The dual of the binary code with generator
matrix A has minimum distance

d ≥ (μ2 + k) + √

(μ2 + k)2 + 4μ2(μ2 − μ1)vt

2μ2
.

Proof Let S be a minimal set of linearly dependent columns of A. Then every row of Amust
intersect an even number of these columns in 1s. Let ni denote the number of rows of A
intersecting exactly i columns of S in 1s. Let d = |S|. Since every column of A contains k 1s
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(because the incidence structure (G,B) is symmetric) and the scalar product (over the reals)
of any two columns is either μ1 or μ2, using Lemma 7.5 we have

∑

2in2i = kd

and
∑

2i(2i − 1)n2i = μ2d(d − 1) − (μ2 − μ1)vt.

Subtracting the first equation from the second we have
∑

2i(2i − 2)n2i = d((d − 1)μ2 − k) − (μ2 − μ1)vt ≥ 0.

On one hand we get that d((d − 1)μ2 − k) ≥ (μ2 −μ1)vt ≥ 0 and on the other hand we get
that d2μ2 − d(μ2 + k) − (μ2 − μ1)vt ≥ 0. The result follows from solving the quadratic. �
7.4 Noncyclic codes from adesigns

In general, the parameters of codes generated from adesigns are open. Using MAGMA we
have computed the parameters of the codes generated by the transpose of the incidencematrix
of many of our constructions. We have included the parameters and construction information
in the following two tables.

Remark 7.1 The [159, 52, 36] code corresponding to the 2-(53, 26, 37) adesign in Table 1
actually improves the lower bound for the minimum weight given in [15] for the best binary
code with length 53 and dimension 26.

Remark 7.2 The code corresponding to the 3-(7, 4, 2) adesign in Table 2 is in fact an optimal,
projective two-weight [21, 6, 8] code, and so is an optimal code that corresponds to a strongly
regular graph [4].

Remark 7.3 The codes corresponding to the 3-(7, 3, 0) and 3-(19, 9, 3) adesigns in Table 2
are both extremal self-dual codes [21].

Table 1 Parameters of codes from new 2-adesigns computed by MAGMA

2-Adesign ref (v, k, λ) No. of blocks Code parameters Best d Optimal

Theorem 3.2 (11, 5, 3) 20 [20, 11, 4] 5 No

Theorem 3.2 (19, 9, 7) 36 [36, 19, 7] 8 No

Theorem 3.7 (9, 4, 2) 16 [16, 8, 5] 5 Yes

Theorem 3.7 (21, 10, 8) 40 [40, 20, 9] 9 No

Theorem 3.9 (9, 5, 4) 16 [16, 9, 4] 4 Yes

Theorem 3.9 (21, 11, 10) 40 [40, 21, 8] 8 No

Theorem 4.2 (13, 6, 7) 39 [39, 12, 12] 14 No

Theorem 4.2 (29, 14, 19) 87 [87, 28, 22] 24 No

Theorem 4.2 (53, 26, 37) 159 [159, 52, 36] 35 No

Theorem 4.3 (17, 4, 1) 34 [34, 16, 6] 8 No

Theorem 4.3 (73, 18, 8) 146 [146, 72, 20] 22 No

The column “Best d” contains the best known minimum distances according to [15]

123



528 J. Michel, B. Ding

Table 2 Parameters of codes from new 3-adesigns computed by MAGMA

3-Adesign ref (v, k, λ) No. of blocks Code parameters Best d Optimal

Theorem 6.1 (7, 3, 0) 14 [14, 7, 4] 4 Yes

Theorem 6.1 (19, 9, 3) 38 [38, 19, 8] 8 No

Theorem 6.3 (7, 4, 2) 21 [21, 6, 8] 8 Yes

Theorem 6.3 (11, 4, 2) 110 [110, 10, 40] 50 No

The column “Best d” contains the best minimum distances according to [15]

8 Concluding remarks

We have investigated some generalizations of combinatorial designs arising from almost
difference sets, especially the t-adesigns. We have discussed some of their basic properties
and have given several constructions for 2-adesigns, and two constructions for 3-adesigns.
Many of the codes arising from these structures have good parameters, as was discussed in
Sect. 7, and we have included some of these in the tables of the previous section. Questions
concerning the parameters of the codes arising from adesigns are open in general and, as good
codes are arising from many of these structures, further investigation would be worthwhile.
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