
Des. Codes Cryptogr. (2017) 82:543–558
DOI 10.1007/s10623-016-0177-8

Fourier transforms and bent functions on faithful actions
of finite abelian groups

Yun Fan1 · Bangteng Xu2

Received: 18 June 2015 / Revised: 1 October 2015 / Accepted: 6 January 2016 /
Published online: 23 January 2016
© Springer Science+Business Media New York 2016

Abstract Let G be a finite abelian group acting faithfully on a finite set X . The G-bentness
and G-perfect nonlinearity of functions on X are studied by Poinsot and co-authors (Discret
Appl Math 157:1848–1857, 2009; GESTS Int Trans Comput Sci Eng 12:1–14, 2005) via
Fourier transforms of functions on G. In this paper we introduce the so-called G-dual set ̂X
of X , which plays the role similar to the dual group ̂G of G, and develop a Fourier analysis
on X , a generalization of the Fourier analysis on the group G. Then we characterize the
bentness and perfect nonlinearity of functions on X by their own Fourier transforms on ̂X .
Furthermore, we prove that the bentness of a function on X can be determined by its distance
from the set of G-linear functions. As direct consequences, many known results in Logachev
et al. (Discret Math Appl 7:547–564, 1997), Carlet and Ding (J Complex 20:205–244, 2004),
Poinsot (2009), Poinsot et al. (2005) and some new results about bent functions on G are
obtained. In order to explain the theory developed in this paper clearly, examples are also
presented.
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1 Introduction

Bent functions, perfect nonlinear functions, and their generalizations have been studied in
many papers. The notion of a Boolean bent function was introduced by Rothaus [10]. More
than a decade ago, Logachev et al. [4] generalized this concept to bent functions on finite
abelian groups. As a further generalization, Poinsot [5] studied bent functions on finite non-
abelian groups. Recently, a closely related notion, perfect nonlinear functions between finite
abelian groups as well as between arbitrary finite groups, has been studied in quite a few
papers; for example, see [2,8,9,12–15]. These functions have numerous applications in cryp-
tography, coding theory, and other fields. A critical tool in these studies is the Fourier analysis
on finite groups.

Let G and H be finite abelian groups, and let f : G → H be a function. The perfect
nonlinearity of f is defined via its derivatives f ′

α : G → H, x �→ f (αx) f (x)−1, for all
non-identity α ∈ G, and characterized by the bentness of the complex functions ξ◦ f , for
all non-trivial irreducible characters ξ of H . Fourier transforms of complex functions on the
group G play a key role. Poinsot et al. [6,7] generalized the perfect nonlinearity to a function
g : X → H , where X is a finite set with an action of G on it (such X is called a G-set).
The derivatives of g are defined by g′

α : X → H, x �→ f (αx) f (x)−1, for any α ∈ G.
By introducing functions gx : G → H, α �→ g(αx), for all x ∈ X , and using the Fourier
transforms of gx , Poinsot et al. [6,7] obtained the characterizations of the perfect nonlinearity
of g (see Corollaries 4.12 and 5.4 below).

Our concern in this research is how to establish the Fourier analysis on a finite G-set X ,
as a generalization of the classical Fourier analysis on the finite abelian group G, and use it
as a tool to study the bentness and perfect nonlinearity of functions on X .

The set of functions from the G-set X to the complex field C, denoted by C
X , is a CG-

module, whereCG is the group algebra ofG overC.CX is also a unitary space with the usual
Hermitian inner product. The canonical decomposition of C

X is the orthogonal direct sum of
theψ-components (CX )ψ , whereψ are irreducible characters ofG. Using this decomposition
we obtain an orthogonal basis ̂X of C

X which consists of G-linear functions and is closed
under complex conjugation (see Theorem 2.3 below). Such a basis ̂X , called a G-dual set
of X , plays a role in C

X similar to the dual group of G, ̂G, in C
G . We define the Fourier

transform ̂f of f ∈ C
X as a function on ̂X (see Definition 3.1 below), and define the bentness

of f in terms of ̂f (λ) for all λ ∈ ̂X (see Definition 4.1 below).
Then using the Fourier analysis on the G-set X , we study the characterizations of bent

functions on X . We will prove that (Theorem 4.6) a function f : X → T , where T is
the unit circle in C, is bent if and only if the derivatives of f in all nontrivial directions
are balanced. Furthermore, we will prove that (Theorem 4.9) a function f ∈ T X is bent
if and only if the distance from f to the set of G-linear functions, denoted by (CX )G ,
reaches the best possible upper bound of the distance between (CX )G and any function in
T X . This result gives another geometric interpretation of the importance of bent functions
in cryptography. The perfect nonlinearity of functions from X to a finite abelian group H is
also characterized in terms of Fourier transforms of functions on X (Theorem 5.2 below).
As expected, many known results in [2,4,6,7] and some new results about bentness and
nonlinearity of functions on finite abelian groups are obtained as immediate consequences.
To explain the theory established in this paper, several examples are also included.

The rest of the paper is organized as follows. In Sect. 2 we present the classical decom-
position of the CG-module C

X , and prove the existence of the G-dual set ̂X of X . Then in
Sect. 3 we introduce the Fourier transforms of functions in C

X , and investigate their basic
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Fourier transforms and bent functions on actions of groups 545

properties. Section 4 is devoted to the study of the characterizations of bent functions on X .
Finally, perfect nonlinear functions are discussed in Sect. 5, and explanatory examples are
presented in Sect. 6.

2 G-dual sets of G-sets

Throughout the paper, let G be a finite abelian group, and let X be a finite G-set. That is,
there is a map G × X → X, (a, x) �→ ax , such that a(bx) = (ab)x and 1x = x for all
x ∈ X and a, b ∈ G, where 1 is the identity of G. Let C be the complex field. The complex
conjugate of any z ∈ C is denoted by z. Let C

X be the set of functions from X to C. Then
C
X is a vector space over C. Let GL(CX ) be the group of automorphisms of C

X ; that is, the
elements of GL(CX ) are bijective linear transformations of C

X . Define

ρ : G → GL(CX ), a �→ ρ(a),

where ρ(a) is defined by
(

ρ(a)( f )
)

(x) := f (a−1x), for any f ∈ C
X , x ∈ X.

Then ρ is a group homomorphism; that is, ρ is a linear representation of G on C
X . Let CG

be the group algebra of G over C. Then C
X is a CG-module, with the G-action defined by

(α f )(x) = f (α−1x), ∀ f ∈ C
X ∀ α ∈ G ∀ x ∈ X. (2.1)

We also call C
X a complex G-space. Let ̂G be the dual group of G. For any irreducible

character ψ ∈ ̂G, let (CX ))ψ be the sum of irreducible submodules of C
X that afford ψ .

Since G is abelian, any irreducible character of G is also an irreducible representation of G.
Hence by [11, Theorem 8, p. 21], ρ induces the canonical decomposition of C

X as follows:

C
X =

⊕

ψ∈̂G

(CX ))ψ ,

and the projection Pψ : C
X → (CX ))ψ is given by

Pψ( f ) := 1

|G|
∑

a∈G
ψ(a)ρ(a)( f ), for any f ∈ C

X . (2.2)

Therefore,

f =
∑

ψ∈̂G

Pψ( f ), for any f ∈ C
X .

Furthermore, f ∈ (CX ))ψ if and only if f = Pψ( f ). If f = Pψ( f ), then for any a ∈ G and
x ∈ X ,

f (a−1x) = Pψ( f )(a−1x) = 1

|G|
∑

b∈G
ψ(b−1) f (b−1a−1x)

= ψ(a)
1

|G|
∑

b∈G
ψ(b−1a−1) f (b−1a−1x) = ψ(a)Pψ( f )(x)

= ψ(a) f (x).

On the other hand, if for any a ∈ G and x ∈ X , f (a−1x) = ψ(a) f (x), then f = Pψ( f ).
Thus,
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(CX ))ψ = { f ∈ C
X | f (a−1x) = ψ(a) f (x),∀a ∈ G,∀x ∈ X}. (2.3)

(CX ))ψ is called the ψ-component of C
X .

Definition 2.1 For any ψ ∈ ̂G, functions in (CX ))ψ are said to be ψ-linear. A function
f ∈ C

X is said to be G-linear if it is ψ-linear for some ψ ∈ ̂G.

The complex conjugate of a function f ∈ C
X is f defined by f (x) = f (x), x ∈ X . It

is well known that C
X is a unitary space with the usual Hermitian inner product: 〈 f, g〉 =

∑

x∈X f (x)g(x) for f, g ∈ C
X . Note that

〈a f, g〉 = 〈 f, a−1g〉, for any a ∈ G, f, g ∈ C
X . (2.4)

Hence, for distinct ψ, ϕ ∈ ̂G, (CX ))ψ and (CX ))ϕ are orthogonal. The length (or norm) | f |
of any f ∈ C

X is | f | = √〈 f, f 〉. We say that a basis u1, . . . , un of C
X is an �-normal

orthogonal basis (where � is a positive real number) if 〈ui , u j 〉 = δi j�, where δi j is the
Kronecker delta.

Definition 2.2 A basis ̂X of the unitary G-space C
X is called a G-dual set of X if the

following conditions are satisfied:

(i) any λ ∈ ̂X is G-linear;
(ii) ̂X is an |X |-normal orthogonal basis; and
(iii) ̂X is closed under complex conjugation, i.e. λ ∈ ̂X for all λ ∈ ̂X .

Theorem 2.3 For any G-set X, there exists a G-dual set ̂X.

Proof Let |X | = n. Since ψ ∈ ̂G for any ψ ∈ ̂G, it follows from (2.3) that for any
f ∈ (CX )ψ , f ∈ (CX )ψ . That is, (C

X )ψ = (CX )ψ , where (CX )ψ = {

f
∣

∣ f ∈ (CX )ψ
}

. For

anyψ ∈ ̂G, it is known that there is an n-normal orthogonal basis (̂X)ψ for theψ-component

(CX )ψ of C
X . Hence, (̂X)ψ = {

λ
∣

∣ λ ∈ (̂X)ψ
}

is also an n-normal orthogonal basis of the

ψ-component (CX )ψ . Thus, if ψ �= ψ , then (̂X)ψ ∪ (̂X)ψ is an n-normal orthogonal basis

of (CX )ψ ⊕ (CX )ψ which is closed under complex conjugation.

In the following we prove that if ψ = ψ , then there is an n-normal orthogonal basis (̂X)ψ
of (CX )ψ such that for any λ ∈ (̂X)ψ , λ = λ. Let f ∈ (CX )ψ such that f �= 0. Then at

least one of f + f and
√−1( f − f ) is not zero. Thus, (CX )ψ = (CX )ψ implies that there

is a λ1 ∈ (CX )ψ such that λ1 �= 0, and λ1 = λ1. We may also assume that 〈λ1, λ1〉 = n.
Note that (CX )ψ = Cλ1 ⊕ (Cλ1)

⊥. Also for any f ∈ (Cλ1)
⊥, it follows from λ1 = λ1

that f ∈ (Cλ1)
⊥. Hence, if (Cλ1)

⊥ �= {0}, then as above, there is λ2 ∈ (Cλ1)
⊥ such that

λ2 = λ2, 〈λ2, λ2〉 = n, and (Cλ1)
⊥ = Cλ2⊕(Cλ1⊕Cλ2)

⊥. Continuing this process, we see
that λ1, λ2, . . . form an n-normal orthogonal basis of (CX )ψ which is closed under complex
conjugation.

Therefore, the orthogonal direct sum C
X = ⊕

ψ∈̂G(CX )ψ implies that the union ̂X

of the n-normal orthogonal bases of the G-linear components of C
X chosen in the above

two paragraphs is an n-normal orthogonal basis of (CX )ψ which is closed under complex
conjugation. ��
Remark 2.4 (i) If ̂X is a G-dual set of X , then ̂Y = {ελ | λ ∈ ̂X , ε ∈ T } is also a G-dual

set of X , where T is the unit circle in C. We call ̂Y a rescaling of ̂X by T .
(ii) If X is a transitive G-set, then every non-zero G-linear component (CX )ψ of C

X is
1-dimensional, and hence (̂X)ψ consists of exactly one function of length

√
n. Thus, X

has a unique G-dual set ̂X up to rescaling by T . In particular, if X = G is the regular
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G-set, then X has a unique G-dual set up to rescaling by T . Usually, the dual group ̂G
is chosen as ̂X .

(iii) However, if the number of the G-orbits of X is greater that 1, then the G-dual set ̂X is
not unique up to rescaling by T . The proof of Theorem 2.3 provides a way to chose a
G-dual set. Later we will show another way to obtain a G-dual set (see Example 6.4
below).

Fromnowon, for theG-set X wefix aG-dual set ̂X as follows. For anyψ ∈ ̂G, let (̂X)ψ be

an n-normal orthogonal basis of (CX )ψ such that (̂X)ψ = (̂X)ψ , and let ̂X = ⋃

ψ∈̂G(̂X)ψ . So

(CX )ψ = ⊕

λ∈(̂X)ψ
Cλ for anyψ ∈ ̂G. Note that some (̂X)ψ may be empty (correspondingly,

some component (CX )ψ may be zero).
Let ̂X = {λ1, . . . , λn} and X = {x1, . . . , xn}. Then we have an n × n matrix � =

(

λi (x j )
)

1≤i, j≤n . The n-normal orthogonality of ̂X implies that � · �T = nI , where I is the

identity matrix and �
T
is the conjugate transpose of �. Hence we also have �

T · � = nI .
Thus, we have the following

Lemma 2.5 (Orthogonality Relations) The following hold:

∑

x∈X
λ(x)μ(x) =

{

n, λ = μ;
0, λ �= μ; ∀ λ, μ ∈ ̂X . (2.5)

∑

λ∈̂X

λ(x)λ(y) =
{

n, x = y;
0, x �= y; ∀ x, y ∈ X. (2.6)

3 Fourier transforms of functions on G-sets

Given a G-set X , in this section we discuss the Fourier transform of f ∈ C
X on a G-dual

set ̂X . We will need to consider the space C
̂X of complex functions on ̂X , which is also a

unitary space with the usual inner product 〈g, h〉 = ∑

λ∈̂X g(λ)h̄(λ), ∀ g, h ∈ C
̂X .

For any σ ∈ C
G , the Fourier transform σ̂ of σ at anyψ ∈ ̂G is σ̂ (ψ) = ∑

α∈G σ(α)ψ(α).
The next definition generalizes this notion to the functions on G-sets. In the following we
always assume that |X | = n.

Definition 3.1 For any f ∈ C
X , the Fourier transform of f , ̂f ∈ C

̂X , is defined as:

̂f (λ) =
∑

x∈X
f (x)λ(x), ∀ λ ∈ ̂X .

For any g ∈ C
̂X , the Fourier inversion of g, ĝ ∈ C

X , is defined as:

ĝ(x) = 1

n

∑

λ∈̂X

g(λ)λ(x), ∀ x ∈ X.

Remark 3.2 (i) For x ∈ X we have the characteristic function 1x (i.e. 1x (y) = 0 if y �= x ,
and 1x (x) = 1), whose Fourier transform iŝ1x (λ) = λ(x), for any λ ∈ ̂X . We can rewrite
the definitions of ̂f and ĝ in Definition 3.1 as follows:

̂f (λ) = 〈 f, λ〉, ∀ f ∈ C
X ,∀ λ ∈ ̂X and ĝ(x) = 1

n
〈g,̂1x 〉, ∀ g ∈ C

̂X ,∀ x ∈ X.
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(ii) Since ̂X is an n-normal orthogonal basis of C
X , and {̂1x | x ∈ X} is an n-normal

orthogonal basis of C
̂X , it is straightforward to check that

f = 1

n

∑

λ∈̂X

̂f (λ)λ, ∀ f ∈ C
X and g =

∑

x∈X
ĝ(x)̂1x , ∀ g ∈ C

̂X . (3.1)

That is, the Fourier transform and the Fourier inversion are just transformations between
bases ̂X and {̂1x | x ∈ X}.

(iii) It is also straightforward to check that

̂
̂f = f, ∀ f ∈ C

X and ̂ĝ = g, ∀ g ∈ C
̂X . (3.2)

To simplify the notation, for any f ∈ C
X and ψ ∈ ̂G, let fψ := Pψ( f ) defined in (2.2).

Lemma 3.3 For any f ∈ C
X and ψ ∈ ̂G, the following hold.

(i) For any ϕ ∈ ̂G and λ ∈ (̂X)ϕ , ̂fψ(λ) = δψϕ
̂f (λ).

(ii) For any ψ ∈ ̂G,

fψ = 1

n

∑

λ∈(̂X)ψ

̂f (λ)λ.

(iii) |̂fψ |2 = ∑

λ∈(̂X)ψ

| ̂f (λ)|2.

Proof Note that by (2.2) and (2.3),

̂fψ(λ) =
∑

x∈X
fψ(x)λ(x) = 1

|G|
∑

x∈X

∑

a∈G
ψ(a) f (a−1x)λ(x)

= 1

|G|
∑

y∈X

∑

a∈G
ψ(a) f (y)λ(ay) = 1

|G|
∑

y∈X

∑

a∈G
ψ(a) f (y)ϕ(a)λ(y)

= δψϕ
̂f (λ).

So (i) holds. Now (ii) follows directly from (i) and (3.1), and (iii) follows directly from (i)
and the definition of the length |̂fψ |. ��
Lemma 3.4 〈 ̂f , ĝ 〉 = n〈 f, g〉, for all f, g ∈ C

X .

Proof By (3.1) and the orthogonality of ̂X , we get that

〈 f, g〉 =
〈

1

n

∑

λ∈̂X

̂f (λ)λ,
1

n

∑

μ∈̂X

ĝ(μ)μ

〉

= 1

n2
∑

λ,μ∈̂X

f̂ (λ)ĝ(μ) · 〈λ,μ〉

= 1

n

∑

λ∈̂X

f̂ (λ)ĝ(λ) = 1

n
〈 ̂f , ĝ 〉.

��
The next corollary is immediate from Lemma 3.4. Recall that T is the unit circle in C.

Corollary 3.5 If f ∈ T X , then 〈 f, f 〉 = n and 〈 ̂f , ̂f 〉 = n2.

Corollary 3.6 Let f, g ∈ C
X and α ∈ G. Then

〈α−1 f, g〉 = 1

n

∑

ψ∈̂G

ψ(α)
∑

λ∈(̂X)ψ

̂f (λ)ĝ(λ).
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Proof By Eq. (2.4) and Lemma 3.4, we have that

〈α−1 f, g〉 = 〈 f, αg〉 = 1

n
〈 ̂f , α̂g〉 = 1

n

∑

λ∈̂X

̂f (λ)α̂g(λ) = 1

n

∑

ψ∈̂G

∑

λ∈(̂X)ψ

̂f (λ)α̂g(λ).

For each λ ∈ (̂X)ψ we have λ(αx) = ψ(α)λ(x) by (2.3). So
∑

λ∈(̂X)ψ

̂f (λ)α̂g(λ) =
∑

λ∈(̂X)ψ

̂f (λ)
∑

x∈X
(αg)(x)λ(x) =

∑

λ∈(̂X)ψ

̂f (λ)
∑

x∈X
g(α−1x)λ(αα−1x)

= ψ(α)
∑

λ∈(̂X)ψ

̂f (λ)
∑

y∈X
g(y) λ(y) = ψ(α)

∑

λ∈(̂X)ψ

̂f (λ)ĝ(λ).

So the corollary holds. ��

4 Bent functions on G-sets

Let T X be the set of all T -valued functions on the G-set X , where T is the unit circle in C.
In this section we define the bentness of functions in T X , and study its characterizations. In
the following we assume that |X | = n and |G| = m.

Definition 4.1 A function f ∈ T X is called a bent function on the G-set X if

∑

λ∈(̂X)ψ

∣

∣ ̂f (λ)
∣

∣

2 = |X |2
|G| , for all ψ ∈ ̂G.

If X = G is the regular G-set, then ̂X = ̂G and (̂G)ψ = {ψ} for any ψ ∈ ̂G. By the
above definition, a function f ∈ T G is bent if | ̂f (ψ)|2 = |G| for any ψ ∈ ̂G. This is just the
classical definition of bent functions on G (cf. [4]).

The bentness of functions onG-sets are also defined in [6, Definition 6], and calledG-bent
functions. But the definition in [6] is different; it uses the Fourier transforms of functions
on G. However, we will show that the definition in [6] is equivalent to Definition 4.1 (see
Corollary 4.12 below).

Although the bent function is defined by the use of λ ∈ ̂X , the next lemma says that the
bentness of a function on X is independent of the choice of ̂X .

Lemma 4.2 For a function f : X → T , the following are equivalent.

(i) f is a bent function.
(ii) For any ψ, ϕ ∈ ̂G, | ̂fψ | = | ̂fϕ |.
(iii) For any ψ, ϕ ∈ ̂G, | fψ | = | fϕ |.
Proof By Lemma 3.3(iii), (i) implies (ii). Assume (ii). From Lemma 3.3 and Corollary 3.5
we see that

∑

ψ∈̂G

|̂fψ |2 =
∑

ψ∈̂G

∑

λ∈(̂X)ψ

| ̂f (λ)|2 = 〈 ̂f , ̂f 〉 = n2.

Hence, for any ψ ∈ ̂G,
∑

λ∈(̂X)ψ

∣

∣ ̂f (λ)
∣

∣

2 = |̂fψ |2 = n2/m, and (i) holds.
(ii) and (iii) are equivalent by Lemma 3.4. ��
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The support of f ∈ C
X in X is Supp( f ) := {x ∈ X | f (x) �= 0}. Then f �= 0 if and

only if Supp( f ) �= ∅. A nonempty subset Y of X is G-invariant if ay ∈ Y for any a ∈ G and
y ∈ Y .

Definition 4.3 If f ∈ C
X is a non-zero function and Supp( f ) is G-invariant, then f is said

to be differentiable. For any differentiable function f ∈ C
X we define a function f ′

α on
Supp( f ) as follows:

f ′
α(x) = f (αx) f (x)−1, ∀ x ∈ Supp( f ).

f ′
α is called the derivative of f in direction α.

Any function f ∈ T X is differentiable and f ′
α ∈ T X . Also any non-zeroG-linear function

is differentiable. The following lemma is a geometric explanation of the G-linearity of a
function by its derivatives.

Lemma 4.4 Let f ∈ C
X be differentiable. Then f ′

α is a constant function on Supp( f ) for
any α ∈ G if and only if f is G-linear.

Proof It is clear that if f is ψ-linear for some ψ ∈ ̂G, then for any α ∈ G, f ′
α(x) = ψ(α)

for x ∈ Supp( f ), and f ′
α is a constant function. Now assume that for any α ∈ G, f ′

α(x) =
ψ f (α), for all x ∈ Supp( f ). Then for any α, β ∈ G, it is straightforward to check that
ψ f (αβ) = ψ f (α)ψ f (β). So ψ f is an irreducible character of G, and f is ψ f -linear. ��

Functions far away from G-linear functions on X are more useful and interesting in
cryptography. So by Lemma 4.4 we want to investigate those functions whose derivatives in
all nontrivial directions are far away from constant functions. As for the functions on finite
groups, a function h : X → T is said to be balanced if

∑

x∈X h(x) = 0.

Definition 4.5 A function f : X → T is said to have totally balanced derivatives if
∑

x∈X
f ′
α(x) = 0, ∀ α ∈ G\{1G}.

We are ready to present the characterizations of bent functions on G-sets.

Theorem 4.6 A function f ∈ T X is bent if and only if f has totally balanced derivatives.

Proof Since f is T -valued,
∑

x∈X
f ′
α(x) = ∑

x∈X f (αx) f (x) = 〈α−1 f, f 〉. By Corollary 3.6
we have that

∑

x∈X
f ′
α(x) = 1

n

∑

ψ∈̂G

ψ(α)
∑

λ∈(̂X)ψ

̂f (λ) ̂f (λ) = 1

n

∑

ψ∈̂G

(
∑

λ∈(̂X)ψ

| ̂f (λ)|2
)

ψ(α).

Since (̂X)ψ = (̂X)ψ , Lemma 3.3(iii) implies that

∑

x∈X
f ′
α(x) = 1

n

∑

ψ∈̂G

|̂fψ |2ψ(α). (4.1)

If f has totally balanced derivatives, i.e.
∑

x∈X f ′
α(x) = 0 for all α ∈ G\{1G}, then

Eq. (4.1) implies that the function
∑

ψ∈̂G |̂fψ |2ψ on G takes zero on G\{1G}, and hence it

must be a multiple of the regular character ρ = ∑

ψ∈̂G ψ of G. Thus, for any ψ, ϕ ∈ ̂G we

have |̂fψ |2 = |̂fϕ |2, and f is bent by Lemma 4.2.
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Conversely, if f is bent, i.e. |̂fψ |2 = n2
m for all ψ ∈ ̂G, then by Eq. (4.1) we have

∑

x∈X
f ′
α(x) = 1

n

∑

ψ∈̂G

n2

m
ψ(α) = n

m

∑

ψ∈̂G

ψ(α) = 0, for all α ∈ G\{1G}.

That is, f has totally balanced derivatives. ��
Let f ∈ T X . From Corollary 3.6 and the proof of Theorem 4.6, the following are equiv-

alent: (i) f is bent; (ii) for any α ∈ G\{1G}, 〈α f, f 〉 = 0; (iii) for any α ∈ G\{1G},
〈 ̂f , ̂α f 〉 = 0.

Corollary 4.7 If there is a ψ ∈ ̂G such that (CX )ψ = 0 (i.e. (̂X)ψ = ∅), then there exists
no bent function f ∈ T X .

Proof For any f ∈ T X , (̂X)ψ = ∅ implies that |̂fψ | = 0. ��
Remark 4.8 The above corollary says that the condition “(CX )ψ �= 0 for all ψ ∈ ̂G” is a
necessary condition for the existence of bent functions.

If the G-action on X is not faithful, i.e. the kernel K of the action is nontrivial, then
there must be an irreducible character ψ of G which takes nontrivial values on K , and hence
(CX )ψ = 0. So by the above corollary, there exists no bent functions on X .

However, even if the G-action on X is faithful, there may still exist some ψ ∈ ̂G such
that (CX )ψ = 0, and hence the bent functions on X do not exist. See Example 6.3 below for
such an example.

The distance of f, g ∈ C
X is d( f, g) := | f − g|, and the distance between two subsets

S1, S2 ⊆ C
X is

d(S1, S2) := min
{

d( f1, f2)
∣

∣ f1 ∈ S1, f2 ∈ S2
}

. (4.2)

Our next characterization of a bent function is given by its distance from the set (CX )G
of G-linear functions. The next theorem says that

√
(m − 1)n/m is the best possible upper

bound of the distance from any T -valued function to (CX )G , and the upper bound is attained
if and only if the function is bent.

Theorem 4.9 Let f ∈ T X . Then the following hold.

(i) d
(

f, (CX )G
) ≤

√

(m−1)n
m .

(ii) f is bent if and only if d
(

f, (CX )G
) =

√

(m−1)n
m .

Proof Recall that for any f ∈ C
X , f = ∑

ψ∈̂G fψ . For any G-linear function g, there is a

ϕ ∈ ̂G such that g is ϕ-linear. So g = gϕ ∈ (CX )ϕ , and gψ = 0 for any ψ ∈ ̂G \ {ϕ}. Since
any two distinct G-linear components are orthogonal to each other,

[

d( f, g)
]2 = | f − g|2 =

∣

∣

∣

∑

ψ∈̂G

( fψ − gψ)

∣

∣

∣

2 = | fϕ − gϕ |2 +
∑

ψ �=ϕ

| fψ |2 ≥
∑

ψ �=ϕ

| fψ |2,

and the equality holds if and only if g = fϕ . By Corollary 3.5,

∑

ψ∈̂G

| fψ |2 =
∑

ψ∈̂G

〈 fψ, fψ 〉 =
〈

∑

ψ∈̂G

fψ,
∑

ψ∈̂G

fψ

〉

= 〈 f, f 〉 = | f |2 = n.
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So according to the definition of the distance in Eq. (4.2), we have
[

d
(

f, (CX )ϕ
)]2 = n − | fϕ |2.

Hence the square of the distance between f and (CX )G is
[

d
(

f, (CX )G
)]2 = min

ϕ∈̂G

{

n − | fϕ |2} = n − max
ϕ∈̂G

{| fϕ |2}.

By the equality
∑

ψ∈̂G | fψ |2 = n again, |̂G| = m implies that

max
ϕ∈̂G

{| fϕ |2} ≥ n

m
,

where the equality holds if and only if | fψ |2 = | fϕ |2 for all ψ, ϕ ∈ ̂G. In conclusion,

d
(

f, (CX )G
)2 ≤ n − n

m
= (m − 1)n

m
, (4.3)

and the equality in (4.3) holds if and only if | fψ |2 = | fϕ |2 for all ψ, ϕ ∈ ̂G. By Lemma 4.2,
the equality in (4.3) holds if and only if f is bent. ��

By taking X = G as the regular G-set, we have the next corollary from Theorem 4.6,
Theorem 4.9 and Lemma 4.2. Note that the equivalence of (i) and (ii) in Corollary 4.10 below
was proved in [4].

Corollary 4.10 Let f ∈ T G. Then the following are equivalent.

(i) f is a bent function.
(ii) f has totally balanced derivatives.
(iii) Among all functions in T G, f has the greatest distance

√|G| − 1 from the set (CG)G
of G-linear functions.

(iv) |〈 f, ψ〉| are equal for all ψ ∈ ̂G.

Proof The equivalence of (i), (ii), and (iii) is immediate from Theorems 4.6 and 4.9. Since
̂G is a basis of C

G , we may assume that f = ∑

ψ∈̂G cψψ , where cψ ∈ C. Hence, the

ψ-component of f is fψ = cψψ , for any ψ ∈ ̂G. Thus,

|〈 f, ψ〉| = |〈cψψ,ψ〉| = |cψ | = √|〈 fψ, fψ 〉|, for any ψ ∈ ̂G.

So the equivalence of (i) and (iv) holds by Lemma 4.2. ��
Lemma 4.11 For any f ∈ C

X and x ∈ X, let fx ∈ C
G be defined by fx (α) = f (αx) for

all α ∈ G. Then ̂fx (ψ) = m fψ(x) for all ψ ∈ ̂G.

Proof It follows from (2.2) that

̂fx (ψ) =
∑

α∈G
fx (α)ψ(α) =

∑

α∈G
f (αx)ψ(α−1) = m fψ(x).

��
The next corollary is one of the main results of [6,7], where the G-bentness of f ∈ T X is

defined by the condition (ii) of Corollary 4.12. So Corollary 4.12 implies that the G-bentness
defined in [6,7] is equivalent to the bentness defined by Definition 4.1.
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Corollary 4.12 (Cf. [6,7]) Let f ∈ T X . Then the following are equivalent.

(i) f has totally balanced derivatives. That is, f is a bent function by Definition 4.1.
(ii) 1

n

∑

x∈X |̂fx (ψ)|2 = m for all ψ ∈ ̂G. That is, f is a G-bent function by [6, Definition
6].

Proof By Lemmas 4.11 and 3.4, we have

1

n

∑

x∈X
|̂fx (ψ)|2 = m2

n

∑

x∈X
| fψ(x)|2 = m2

n
〈 fψ, fψ 〉 = m2

n2
〈̂fψ, ̂fψ 〉 = m2

n2
|̂fψ |2.

Thus, (ii) holds if and only if |̂fψ |2 = n2
m for all ψ ∈ ̂G if and only if f has totally balanced

derivatives by Theorem 4.6 and Lemma 4.2. ��
Remark 4.13 For any f, g ∈ C

X , the pseudo-convolution f � g of f and g is defined as (cf.
[7])

f � g : G → C, α �→
∑

x∈X
f (x)g(αx).

By Lemma 2.5 and (3.2), it is straightforward to show that

̂( f � g)(ψ) = m

n

∑

λ∈(̂X)ψ

̂f (λ)ĝ(λ), for any ψ ∈ ̂G.

The equivalence of (i) and (ii) of Corollary 4.12 can also be proved by the above equality.

5 Perfect nonlinear functions on G-sets

As an application of the characterizations of bent functions on G-sets, in this section we
discuss the characterizations of perfect nonlinear functions from a G-set to an abelian group.
Our approach here is different from that of [6,7]. Let X be a G-set as before, and let H be
an abelian group whose operation is multiplication. The set of all functions from X to H is
denoted by HX . An f ∈ HX is said to be evenly-balanced (cf. [13,15]) if |H | divides |X |
and

∣

∣{x ∈ X | f (x) = h}∣∣ = |X |
|H | , for any h ∈ H.

An evenly-balanced function is also called a balanced or uniformly distributed function in
literature. The derivative of f ∈ HX in direction α ∈ G is

f ′
α : X → H, x �→ f (αx) f (x)−1.

Definition 5.1 (cf. [7,Definition 1])A function f : X → H is said to beG-perfect nonlinear
if for any α ∈ G\{1G}, the function f ′

α is evenly-balanced.

Any g ∈ HX induces a non-negative integral function g# on H as follows:

g# : H → N ∪ {0}, h �→ ∣

∣{x ∈ X | g(x) = h}∣∣.
Hence, g# is constant on H if and only if g is evenly-balanced. Thus, a function f : X → H
is G-perfect nonlinear if and only if for any α ∈ G\{1G}, f ′#

α is constant on H .
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Theorem 5.2 Let f ∈ HX . Then following are equivalent.

(i) For any ξ ∈ ̂H\{1} the composition function ξ◦ f : X → T has totally balanced
derivatives.

(ii) For any ξ ∈ ̂H\{1} the composition function ξ◦ f : X → T is bent.
(iii) The function f : X → H is G-perfect nonlinear.

Proof It is enough to show that (i) ⇔ (iii). Since (ξ◦ f )(x) ∈ T , we have (ξ◦ f )(x)−1 =
(ξ◦ f )(x), for any x ∈ X . So

∑

x∈X
(ξ◦ f )′α(x) =

∑

x∈X
(ξ◦ f )(αx)(ξ◦ f )(x)

=
∑

x∈X
ξ
(

f (αx)
)

ξ
(

f (x)
) =

∑

x∈X
ξ
(

f (αx)
)

ξ
(

f (x)−1)

=
∑

x∈X
ξ
(

f (αx) f (x)−1) =
∑

x∈X
ξ
(

f ′
α(x)

)

.

For any h ∈ H , let X ( f ′
α, h) = {x ∈ X | f ′

α(x) = h}. Then X is the disjoint union X =
⋃

h∈H X ( f ′
α, h), and the cardinality |X ( f ′

α, h)| = f ′#
α (h). So

∑

x∈X
(ξ◦ f )′α(x) =

∑

h∈H

∑

x∈X ( f ′
α,h)

ξ(h) =
∑

h∈H
f ′#
α (h)ξ(h) = ̂f ′#

α (ξ). (5.1)

Thus, (ξ◦ f )′α is balanced if and only if ̂f ′#
α (ξ) = 0. Hence for any ξ ∈ ̂H\{1}, the function

(ξ◦ f )′α is balanced if and only if ̂f ′#
α is zero on ̂H\{1} if and only if f ′#

α is constant on H .
That is, for any ξ ∈ ̂H\{1}, the function ξ◦ f has totally balanced derivatives if and only if
f is G-perfect nonlinear. ��
Taking X = G to be the regular G-set, we have the next

Corollary 5.3 (Cf. [2]) Let G, H be abelian groups, and f : G → H a function. Then the
following are equivalent.

(i) f is perfect nonlinear.
(ii) For any ξ ∈ ̂H\{1} the composition function ξ◦ f : G → T is bent.

Let f ∈ HX . Then for any x ∈ X , there is a function (cf. [6,7])

fx : G → H, α �→ f (αx).

Also for any ξ ∈ ̂H , there is a function (ξ◦ f )x : G → T, α �→ (ξ◦ f )(αx). Note that
(ξ◦ f )x = ξ◦ fx , for any x ∈ X . The next corollary is immediate from Theorem 5.2 and
Corollary 4.12.

Corollary 5.4 (cf. [6, Theorems 5 and 7]) Let f ∈ HX . Then the following are equivalent.

(i) f is G-perfect nonlinear.
(ii) For any ξ ∈ ̂H\{1} and α ∈ G,

1

|X |
∑

x∈X

∣

∣

∣(̂ξ◦ fx )(α)

∣

∣

∣

2 = |G|.
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6 Examples

In this section we present a few examples that explain the theory developed in the previous
sections.

Example 6.1 Assume that X = G is the regular G-set. As mentioned in Remark 2.4, the
G-dual set ̂X is unique up to rescaling by T , and the typical choice of ̂X is just the dual
group ̂G. So the theory developed in previous sections includes the corresponding theory for
finite abelian groups as a special case. For example, some well-known results in [2,4,12] as
well as other properties of bent functions on finite abelian groups are given in Corollary 4.10
and Corollary 5.3 as immediate consequences.

The next theorem gives a necessary condition under which a G-set admits a bent function.

Theorem 6.2 Let G be a finite abelian group and let X be a G-set with exactly two orbits.
If X admits a bent function, then X has a regular orbit.

Proof Toward a contradiction, assume that the orbits of X are X1, X2, none of which is
regular. Let Ki be the kernel of the action of G on Xi , i = 1, 2. Then |Ki | ≥ 2, and hence
|Xi | = |G|/|Ki | ≤ |G|/2, i = 1, 2. Thus |X | = |X1| + |X2| ≤ |G|, and |̂X | = |X | ≤ |G|.
Letψ1 be the principal irreducible character of G. Then |(̂X)ψ1 | = |(̂X1)ψ1 |+|(̂X2)ψ1 | = 2.
Hence, |̂X | ≤ |G| implies that there is ϕ ∈ ̂G such that (̂X)ϕ = ∅. So X does not admit a
bent function by Corollary 4.7, a contradiction. ��

The next example gives a G-set which does not admit a bent function.

Example 6.3 Let G = {1, α, β, γ } be the Klein four group. That is, G is an abelian group
such that

α2 = β2 = γ 2 = 1, αβ = γ, βγ = α, γ α = β.

Let X = {x1, x2, x3, x4} be a faithful G-set with two orbits X1 and X2 as follows:

1. X1 = {x1, x2}, 1 and α fix both points x1 and x2, while β and γ interchange the two
points;

2. X2 = {x3, x4}, 1 and β fix both points x3 and x4, while γ and α interchange the two
points.

Since none of these two orbits is regular, X does not admit a bent function by Theorem 6.2.

The next example gives a G-set X and a bent function on X .

Example 6.4 As in Example 6.3 above, let G = {1, α, β, γ } be the Klein four group and
̂G = {ψ1, ψ2, ψ3, ψ4} given by the Table 1.

But this time we consider the G-set X = {x1, x2, x3, x4, x5, x6} with three orbits:

• X1 = {x1, x2}, 1 and α fix both points x1 and x2, while β and γ interchange the two
points;

• X2 = {x3, x4}, 1 and β fix both points x3 and x4, while γ and α interchange the two
points;

• X3 = {x5, x6}, 1 and γ fix both points x5 and x6, while α and β interchange the two
points.
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Table 1 Character Table of the
Klein Four Group

1 α β γ

ψ1 1 1 1 1

ψ2 1 1 −1 −1

ψ3 1 −1 1 −1

ψ4 1 −1 −1 1

Table 2 The G-dual set of X for
Example 6.4

x1 x2 x3 x4 x5 x6

1√
3
λ1 1 1 0 0 0 0

1√
3
λ2 1 −1 0 0 0 0

1√
3
λ3 0 0 1 1 0 0

1√
3
λ4 0 0 1 −1 0 0

1√
3
λ5 0 0 0 0 1 1

1√
3
λ6 0 0 0 0 1 −1

We can take ̂X = {λ1, λ2, λ3, λ4, λ5, λ6} as in Table 2 (to simplify the table, we list 1√
3
λi

instead of λi ).
We can check that the G-linear components of C

X are

(̂X)ψ1 = {λ1, λ3, λ5}, (̂X)ψ2 = {λ2}, (̂X)ψ3 = {λ4}, (̂X)ψ4 = {λ6}.

Let ω = −1+√−3
2 be a primitive third root of unity. Take f ∈ T X as follows:

f (x j ) = ω(1+(−1) j )/2 =
{

1, j = 1, 3, 5;
ω, j = 2, 4, 6.

Then

∑

x∈X j

f ′
α(x) =

∑

x∈X j

f (αx) f (x)−1 =
{

1 + 1 = 2, j = 1;
1 · ω−1 + ω · 1 = −1, j = 2, 3.

So
∑

x∈X
f ′
α(x) = 0. Similarly,

∑

x∈X
f ′
β(x) = ∑

x∈X
f ′
γ (x) = 0. That is, f has totally balanced

derivatives.
On the other hand,

〈 ̂fψ1 ,
̂fψ1〉 =

∑

λ∈(̂X)ψ1

| ̂f (λ)|2 =
∑

j=1,3,5

∣

∣

∑

x∈X
f (x)λ j (x)

∣

∣

2

=
∑

j=1,3,5

∣

∣

√
3(1 + ω)

∣

∣

2 = 3
∣

∣

√
3(1 + ω)

∣

∣

2 = 9,

〈 ̂fψ2 ,
̂fψ2〉 =

∑

λ∈(̂X)ψ2

∣

∣ ̂f (λ)
∣

∣

2 = ∣

∣

∑

x∈X
f (x)λ2(x)

∣

∣

2 = ∣

∣

√
3(1 − ω)

∣

∣

2 = 9.
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Similarly, 〈 ̂fψ3 ,
̂fψ3〉 = 〈 ̂fψ4 ,

̂fψ4〉 = ∣

∣

√
3(1−ω)

∣

∣

2 = 9. In conclusion, we have 〈 ̂fψ, ̂fψ 〉 =
9, ∀ ψ ∈ ̂G, and f is a bent function.

The next example gives a G-perfect nonlinear function.

Example 6.5 We continue Example 6.4 and further take H = {1, h, h2} with h3 = 1 to be a
cyclic group of order 3. Let g : X → H be as follows:

g(x j ) = h(1+(−1) j )/2 =
{

1, j = 1, 3, 5;
h, j = 2, 4, 6.

It is known that ̂H = {1, ξ, ξ2}, where ξ(hi ) = ωi , i = 0, 1, 2. Then the composition function
ξ◦g : X → C is just the function f in Example 6.4, and hence ξ◦g is a bent function on X .
Similarly we can check that ξ2◦g is also a bent function on X . So g : X → H is a G-perfect
nonlinear function from the G-set X to the abelian group H . It is also straightforward to
check that g′#

α = g′#
β = g′#

γ = 2 are constant functions on H .

The next example discusses the constructions of new bent functions from old ones.

Example 6.6 (i) Let G be an abelian group, and let X1 and X2 be two disjoint G-sets. Let
f : X1 ∪ X2 → T be a function such that both f |X1 and f |X2 are bent functions. Then
for any a ∈ G \ {1}, ∑x∈X f ′

a(x) = ∑

x∈X1
f ′
a(x) + ∑

x∈X2
f ′
a(x) = 0. So f is also a

bent function by Theorem 4.6.
(ii) Let G be an abelian group, and let X1 and X2 be two G-sets. Let fi : Xi → T , i = 1, 2,

be two functions, and let f : X1 × X2 → T be a function defined by f (x1, x2) :=
f1(x1) f2(x2), for any (x1, x2) ∈ X1 × X2. Let G act on X1 × X2 by a(x1, x2) =
(ax1, ax2), for any a ∈ G and (x1, x2) ∈ X1 × X2. Then for any a ∈ G \ {1},

∑

(x1,x2)∈X1×X2

f ′
a(x1, x2) =

(
∑

x∈X1

( f1)
′
a(x1)

)

·
(

∑

x2∈X2

( f2)
′
a(x2)

)

.

Thus, if one of f1 and f2 is bent, then f is also bent by Theorem 4.6.
(iii) LetGi be an abelian group, and let Xi be aGi -set, i = 1, 2. Then X1×X2 is a (G1×G2)-

setwith action (a1, a2)(x1, x2) = (a1x1, a2x2), for any (a1, a2) ∈ G1×G2 and (x1, x2) ∈
X1 × X2. Let fi : Xi → T , i = 1, 2, be two functions, and let f : X1 × X2 → T be
a function defined by f (x1, x2) := f1(x1) f2(x2), for any (x1, x2) ∈ X1 × X2. Then for
any (a1, a2) ∈ G1 × G2 \ {(1, 1)},

∑

(x1,x2)∈X1×X2

f ′
(a1,a2)(x1, x2) =

(
∑

x∈X1

( f1)
′
a1(x1)

)

·
(

∑

x2∈X2

( f2)
′
a2(x2)

)

.

Thus, f is a bent function if and only if both f1 and f2 are bent by Theorem 4.6.
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