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Abstract Let L be a linear set of pseudoregulus type in a line � inΣ∗ = PG(t−1, qt ), t = 5
or t > 6. We provide examples of q-order canonical subgeometries Σ1, Σ2 ⊂ Σ∗ such that
there is a (t−3)-subspaceΓ ⊂ Σ∗ \(Σ1∪Σ2∪�)with the property that for i = 1, 2, L is the
projection of Σi from center Γ and there exists no collineation φ of Σ∗ such that Γ φ = Γ

andΣ
φ
1 = Σ2. Condition (ii) given in Theorem 3 in Lavrauw and Van de Voorde (Des Codes

Cryptogr 56:89–104, 2010) states the existence of a collineation between the projecting
configurations (each of them consisting of a center and a subgeometry), which give rise by
means of projections to two linear sets. It follows from our examples that this condition is
not necessary for the equivalence of two linear sets as stated there. We characterize the linear
sets for which the condition above is actually necessary.

Keywords Linear set · Subgeometry · Finite field · Finite projective space · Collineation

Mathematics Subject Classification 51E20

1 Introduction

If V is a vector space over the finite field Fqt , then PGqt (V ) denotes the projective space
whose points are the one-dimensional Fqt -subspaces of V . If V has dimension n over Fqt ,
then PGqt (V ) = PG(n − 1, qt ). For a point set T ⊂ PG(n − 1, qt ) we denote by 〈T 〉 the
projective subspace of PG(n − 1, qt ) spanned by the points in T . For m | t and a set of

Communicated by M. Lavrauw.

B Corrado Zanella
corrado.zanella@unipd.it

Bence Csajbók
csajbok.bence@gmail.com

1 Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova,
Stradella S. Nicola, 3, 36100 Vicenza, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-015-0141-z&domain=pdf


270 B. Csajbók, C. Zanella

elements S ⊂ V we denote by 〈S〉qm the Fqm -vector subspace of V spanned by the vectors
in S. For the rest of the paper we assume that q = pe is a power of the prime p.

Let R = F
r
qt . The field reduction map [8] Fr,t,q is a map from the points of PGqt (R) =

PG(r − 1, qt ) to the (t − 1)-subspaces of PGq(R) = PG(r t − 1, q). Let P = PGqt (T ) be a
point of PG(r − 1, qt ), where T is a one-dimensional Fqt -subspace of R. Then Fr,t,q(P) :=
PGq(T ). As dimFq (T ) = t , it follows that Fr,t,q(P) is a (t − 1)-dimensional subspace of
PG(r t − 1, q). Denote the point set of PG(r − 1, qt ) by P . Then Fr,t,q(P) is a Desarguesian
(t − 1)-spread of PG(r t − 1, q) [13]. Let S be a subspace of PG(r t − 1, q) = PGq(R), then

B(S) := {
P ∈ PG

(
r − 1, qt

) : Fr,t,q(P) ∩ S 	= ∅}
.

When S is an Fq -vector space of R, then we define B(S) analogously. A point set L ⊆
PG(r − 1, qt ) is said to be Fq -linear (or just linear) of rank n if L = B(S) for some (n− 1)-
subspace S ⊆ PG(r t − 1, q). If L has size (qn − 1)/(q − 1) (which is the maximum size for
a linear set of rank n), then L is a scattered linear set. For further information on linear sets
see [8,17].

Definition 1 Let PGqt (V ) = PG(n − 1, qt ) and let W be an Fq -vector subspace of V . If
dim Fq (W ) = dim Fqt

(V ) = n and 〈W 〉qt = V , then Σ ′ = {〈w〉qt : w ∈ W ∗} is a canonical
subgeometry of PGqt (V ).

Let Σ ′ ∼= PG(n − 1, q) be a canonical subgeometry of Σ∗ = PG(n − 1, qt ). Let Γ ⊂
Σ∗ \ Σ ′ be an (n − 1− r)-subspace and let Λ ⊂ Σ∗ \ Γ be an (r − 1)-subspace of Σ∗. The
projection of Σ ′ from center Γ to axis Λ is the point set

L = pΓ, Λ

(
Σ ′) := {〈Γ, P〉 ∩ Λ : P ∈ Σ ′} . (1)

In [15] Lunardon and Polverino characterized linear sets as projections of canonical sub-
geometries. They proved the following.

Theorem 1 ([15, Theorems 1 and 2]) Let Σ∗, Σ ′, Λ, Γ and L = pΓ, Λ(Σ ′) be defined as
above. Then L is an Fq -linear set of rank n and 〈L〉 = Λ. Conversely, if L is an Fq -linear set
of rank n of Λ = PG(r − 1, qt ) ⊂ Σ∗ and 〈L〉 = Λ, then there is an (n − 1 − r)-subspace
Γ disjoint from Λ and a canonical subgeometry Σ ′ ∼= PG(n − 1, q) disjoint from Γ such
that L = pΓ, Λ(Σ ′).

Note that when r = n in Theorem 1, then L = pΓ, Λ(Σ ′) = Σ ′, hence L is a canonical
subgeometry. We rephrase here a theorem by Lavrauw and Van de Voorde.

Theorem 2 ([6, Theorem 3]) For i = 1, 2, let Σi ∼= PG(n − 1, q) be two canonical subge-
ometries of Σ∗ = PG(n − 1, qt ) and let Γi be two (n − 1 − r)-subspaces of Σ∗, such that
Γi ∩Σi = ∅. Let Λi ⊂ Σ∗ \Γi be two (r −1)-subspaces and let Li = pΓi , Λi (Σi ). Suppose
that Li is not an Fq -linear set of rank k < n. Then the following statements are equivalent.

(i) There exists a collineation α : Λ1 → Λ2, such that L1
α = L2,

(ii) there exists a collineation β of Σ∗ such that Σ1
β = Σ2 and Γ1

β = Γ2,
(iii) for all canonical subgeometries Σ ∼= PG(n − 1, q) in Σ∗, there exist δ, φ,ψ

collineations of Σ∗, such that1 Σδ = Σ , Γ1
φδ = Γ2

ψ , Σ1
φ = Σ and Σ2

ψ = Σ .

We are going to prove that the implication (i) ⇒ (ii) does not hold. In Sects. 3 and 4, we
will show this in the case when L1 = L2 is a linear set of pseudoregulus type in PG(1, qn),

1 Compositions are executed from the left to the right.
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for n = 5 or n > 6. In Sect. 5 a characterization will be given of the linear sets for which (i)
⇒ (ii) holds.

In this paper, the results which lead to counterexamples are presented in a general setting.
In the remainder of this introduction some hints are given to a better understanding of the
key facts.

1.1 A minimal counterexample

The idea of a counterexample arose from the investigation of the linear sets of pseudoregulus
type [3,14]. Aminimal counterexample to Theorem 2 (i)⇒ (ii) can be obtained as follows. In
PG(4, q5), with coordinates X1, X2, . . . , X5, let Γ be the plane of equations X1 = X2 = 0,
and let � be the line X3 = X4 = X5 = 0. The sets

Σ1 =
{〈(

λ, λq , λq
2
, λq

3
, λq

4
)〉

q5
: λ ∈ F

∗
q5

}

and

Σ2 =
{〈(

λ, λq
2
, λq , λq

3
, λq

4
)〉

q5
: λ ∈ F

∗
q5

}

are canonical subgeometries. Defining PG(4, q) = {〈x〉q : x ∈ F
∗
q5

}, the map ϕ1 :
PG(4, q) → Σ1 defined by 〈x〉ϕ1q = 〈x, xq , xq2 , xq3 , xq4〉q5 is a collineation, as
well as the map ϕ2 : PG(4, q) → Σ2 similarly defined. By [3,14], the projections
pΓ, �(Σ1) and pΓ, �(Σ2) coincide, and are a linear set of pseudoregulus type, say L =
{〈(λ, λq , 0, 0, 0)〉q5 : λ ∈ F

∗
q5

}.
Now assume that as stated in Theorem 2 (ii) a collineation β of PG(4, q5) exists such that

Γ β = Γ , and Σ
β
1 = Σ2. It is shown in Theorem 5 that a projectivity exists having the same

two properties; call it φ. By the arguments in Lemma 1 in Sect. 4, the collineation ϕ2φ
−1ϕ−1

1
of PG(4, q) is the composition of a projectivity and either the map 〈x〉q �→ 〈xθ1〉q (cfr. (6)),
or the map

〈x〉q �→ 〈
x−θ1

〉
q = 〈

xθ4−θ1
〉
q =

〈
xq

2θ2
〉

q
,

which in turn is the composition of a projectivity and 〈x〉q �→ 〈xθ2〉q . However, byCorollary 2
in Sect. 3, no map of type 〈x〉q �→ 〈xθs 〉q with 0 < s < t = 5 is a collineation, and this is a
contradiction.

1.2 Construction of counterexamples using condition (A) in Section 5

In Sect. 5 counterexamples are found with essentially distinct arguments. Theorem 7 states
that a counterexample to Theorem 2 (i)⇒ (ii) can always be constructed in case the following
condition does not hold: (A) For any two (n−1)-subspacesU,U ′ ⊂ PG(r t−1, q), such that
B(U ) = L = B(U ′), a collineation γ ∈ P�L(r t, q) exists, such that U γ = U ′, γ preserves
the Desarguesian spread Fr,t,q(P), and the induced map on PG(r − 1, qt ) is a collineation.

If L = B(Qt−1,q), where Qt−1,q ⊂ PG(2t − 1, q) is the nonsingular hypersurface of
degree t studied in [5], then L is a linear set of pseudoregulus type in PG(1, qt ).

In [5] all linear subspaces contained in Qt−1,q are described for q ≥ t . For t ≥ 4 there
exist two (t −1)-subspaces, sayU andU ′, that are contained inQt−1,q , and such that for any
element γ of the stabilizer of Qt−1,q , preserving the standard Desarguesian spread, it holds
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272 B. Csajbók, C. Zanella

U γ 	= U ′. For t ≥ 5, t 	= 6, it is possible to choose U and U ′ with the additional property
B(U ) = L = B(U ′). This leads to the counterexample of the previous subsection and its
generalisations.

1.3 On the proof of [6, Theorem 3]

In the opinion of the authors of this paper, the proof of [6, Theorem 3] contains a wrong
argument. The map δ defined at p. 93, line 21, is declared to be a projectivity, but is dealt with
as a linear map e.g. in (1), as well as p2 is. Such a δ is assumed to satisfy both conditions
(i) δ maps an Fq -vector space associated with Σ

χ
1 onto an Fq -vector space associated with

Σ2, and (ii) p2(ai ) = p2(aδ
i ), i = 0, . . . ,m. However, in the case of the minimal example

in Sect. 1.1, no such δ exists.

2 Linear sets of pseudoregulus type in a projective line

A family of scattered Fq -linear sets of rank tm of PG(2m − 1, qt ), called of pseudoregulus
type, have been introduced in [16] for m = 2 and t = 3, further generalized in [7] for m ≥ 2
and t = 3 and finally in [14] for m ≥ 1 and t ≥ 2 (for t = 2 they are the same as Baer
subgeometries, see [14, Remark 3.4]). We will only consider linear sets of pseudoregulus
type in PG(1, qt ). It has been proved in [14, Sect. 4] and in [3, Remark 2.2] that all linear
sets of pseudoregulus type in PG(1, qt ) are PGL(2, qt )-equivalent and hence we can define
them as follows.

Definition 2 ([3,14]) A point set L of PGqt (F
2
qt ) = PG(1, qt ), t ≥ 2, is called a linear set

of pseudoregulus type if L is projectively equivalent to

L :=
{
〈(λ, λq

)〉qt : λ ∈ F
∗
qt

}
. (2)

Definition 3 Let t ≥ 2 be an integer and let π be a permutation of Nt−1 := {0, 1, 2, . . . , t −
1}. We define Σπ as the following set of points in PGqt (F

t
qt ) = PG(t − 1, qt ).

Σπ :=
{〈(

αqπ(0)
, αqπ(1)

, αqπ(2)
, . . . , αqπ(t−1)

)〉

qt
: α ∈ F

∗
qt

}
. (3)

Proposition 1 ConsiderFqt as a vector spaceoverFq and letΣ = PGq(Fqt ) ∼= PG(t−1, q).
Let π be a permutation of Nt−1. Then the following statements hold.

1. Sπ := {(αqπ(0)
, αqπ(1)

, αqπ(2)
, . . . , αqπ(t−1)

) : α ∈ Fqt } is an Fq -subspace of Ftqt .

2. φ′
π : Fqt → Sπ : α �→ (αqπ(0)

, αqπ(1)
, αqπ(2)

, . . . , αqπ(t−1)
) is a vector space isomor-

phism.
3. 〈Σπ 〉 = PG(t − 1, qt ).
4. The map

φπ : Σ → Σπ : 〈α〉q �→
〈(

αqπ(0)
, αqπ(1)

, αqπ(2)
, . . . , αqπ(t−1)

)〉

qt
(4)

is a collineation.

Proof 1. and 2. are trivial, and 1., 2., 3. together imply 4., so it is enough to show 3. Let
α1, α2, . . . , αt ∈ Fqt and denote by Mπ the t× t matrix over Fqt whose j th row is φ′

π (α j ) for
j = 1, 2, . . . , t . According to [12, Lemma 3.51], det(Mid) 	= 0 if and only if α1, α2, . . . , αt
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On the equivalence of linear sets 273

are linearly independent over Fq . As Mπ can be obtained by permuting the columns of Mid ,
it follows that det(Mπ ) 	= 0 if and only if det(Mid) 	= 0. As dimFq (Fqt ) = t , it follows that
dimFqt

(Sπ ) = t and hence 3. follows. ��
Let Σ∗ = PG(t − 1, qt ), and denote the coordinates in Σ∗ by X1, X2, . . . , Xt . Let

Λ ∼= PG(1, qt ) be the line X3 = . . . = Xt = 0 and let Γ ∼= PG(t − 3, qt ) be the (t − 3)-
subspace X1 = X2 = 0 in Σ∗. Let π be a permutation of Nt−1, it is easy to see that if
gcd(π(1) − π(0), t) = 1, then pΓ, Λ(Σπ) = L, see for example [14, Remark 4.2]. If φ is a
collineation of Σ∗ such that Σφ

id = Σπ , then

φ̃ := φπφ−1φ−1
id (5)

[see (4)] is a collineation of Σ . To study the action of φ̃ we need some results regarding the
Θs map defined in the next section.

3 The Θs map

As before, let Σ denote the PG(t − 1, q) associated to Fqt .

Definition 4 For an integer s ≥ −1 let θs denote the number of points of PG(s, q), that is

θs = qs+1 − 1

q − 1
. (6)

The map Θs : Σ → Σ is defined as follows. For each x ∈ F
∗
qt let

Θs(〈x〉q) = 〈xθs 〉q .
Remark 1 If s, d ≥ −1 are two integers, then Θs = Θd if and only if s ≡ d (mod t). As
we do not use this result, the proof is left to the reader.

In Sect. 4 we show the following. If φ is a collineation such that Σφ
id = Σπ and Γ φ = Γ ,

then φ̃ = ΘsΩ [see (5)] for some collineation Ω and integer 0 ≤ s < t . Note that Θ0

is the identity. In Corollary 2, we prove that Θs , with 0 < s < t , is not a collineation of
PG(t −1, q). It will follow that in most cases φ̃ is not a collineation and hence such φ cannot
exist.

To determinewhetherΘs is a collineation or not we need some results regarding difference
sets. A (v, k, λ)-difference set is a k-subset D of a group G of order v such that the list of
non-zero differences (if the group is written additively) contains each non-zero group element
exactly λ times. If the group is cyclic etc., then we say that the difference set is cyclic etc.
For our purposes here, it is enough to consider cyclic difference sets, so from now on we
assume that G is cyclic. Let D be a (v, k, λ)-difference set of G and let j be an integer. By
D + j and j D we mean {d + j : d ∈ D} modulo v and { jd : d ∈ D} modulo v. Note that
D + j is also a (v, k, λ)-difference set of G. If gcd( j, v) 	= 1, then let t := v/ gcd( j, v) and
let d1 − d2 = t , where d1, d2 ∈ D. As v | t j , it follows that jd1 ≡ jd2 (mod v) and hence
| j D| < |D|. On the other hand, if gcd( j, v) = 1, then j D is also a (v, k, λ)-difference set of
G. The integer m is a (numerical) multiplier of D if mD = D + g for some integer g. The
trace of β ∈ Fqt is Tr(β) = TrFqt /Fq (β) = ∑t−1

i=0 βqi .

Theorem 3 ([18, Theorem 2.1.1]) Let α be a generator of the multiplicative group of Fqt ,
t ≥ 3. The set of integers D := {i : 0 ≤ i < θt−1,Tr(αi ) = 0} modulo θt−1 forms a
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274 B. Csajbók, C. Zanella

(cyclic) difference set in Zθt−1 (written additively), with parameters (θt−1, θt−2, θt−3). The
set of points of PGq(Fqt ) ∼= PG(t − 1, q) which corresponds to the set D, i. e. the point
set HD := {〈αi 〉q : i ∈ D}, is a hyperplane of PG(t − 1, q). Moreover, the hyperplanes of
PG(t − 1, q) are the sets HD+ j := {〈αi 〉q : i ∈ D + j}, where 0 ≤ j < θt−1.

The difference sets constructed in Theorem 3 are called classical Singer difference sets.
The next theorem describes the multipliers of these difference sets.

Theorem 4 ([18, Corollary 1.3.4 and Proposition 3.1.1]) Let D be a classical Singer differ-
ence set with parameters as in Theorem 3. Then the multipliers of D are the powers of p
modulo θt−1.

For a subset X ⊆ Σ and an integer m, let Xm = {〈xm〉q : 〈x〉q ∈ X }.
Corollary 1 Let t ≥ 3 and m be two integers. The Σ → Σ map, 〈x〉q �→ 〈xm〉q is a
collineation if and only if m ≡ ph (mod θt−1), for some h ∈ N.

Proof The map 〈x〉q �→ 〈xm〉q is a collineation if and only if it maps hyperplanes into
hyperplanes. Let α, D and HD+ j for 0 ≤ j < θt−1 be defined as in Theorem 3. For any
hyperplane HD+ j of Σ the point set Hm

D+ j = {〈αmi 〉q : i ∈ D + j} is a hyperplane if and
only if {mi : i ∈ D + j} = mD + mj is a translate of D, i.e when mD + mj = D + k for
some k and hence mD = D + g (with g = k − mj), which is equivalent to saying that m is
a multiplier of D. The assertion follows from Theorem 4. ��
Corollary 2 Let t ≥ 3. For 0 < s < t the map Θs is not a collineation.

Proof According to Corollary 1, it is enough to show that for any 0 < s < t there is no
integer h such that θs ≡ ph (mod θt−1). Note that qt = (q − 1)θt−1 + 1, thus p0 = 1 ≡ qt

(mod θt−1). It is therefore enough to show the assertion when ph < qt . Suppose, contrary
to our claim, that θs ≡ ph (mod θt−1) for some ph < qt and 0 < s < t . Since ph 	≡ 0
(mod θt−1), we have s ≤ t − 2 and

θsq
t/ph ≡ qt ≡ 1 (mod θt−1). (7)

It is easy to see that ph 	= 1. If 1 < ph < θt−1, then ph = θs , which cannot be as p does
not divide θs . So we may assume θt−1 < ph < qt . In this case ph < qt (ph − θt−1), thus
qtθt−1 < ph(qt − 1) and hence qt/ph < (qt − 1)/θt−1 = q − 1. On the other hand we have
1 < qt/ph and hence

1 < θsq
t/ph < θt−2(q − 1) = qt−1 − 1 < θt−1,

contrary to (7). ��
Proposition 2 For 0 ≤ s < t , the map 〈x〉q �→ 〈x−θs 〉q is the composition of Θt−s−2 and a
projectivity of Σ .

Proof For each x ∈ F
∗
qt we have x

θt−1 ∈ F
∗
q , thus

〈
x−θs

〉
q = 〈

xθt−1−θs
〉
q = Θt−s−2

〈
xq

s+1
〉

q
.

As 〈x〉q �→ 〈xqh 〉q is a projectivity for each h, the assertion follows. ��
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4 Linear sets obtained via non-equivalent projections

Definition 5 For an integer h let Φh denote the collineation of Σ∗ = PG(t − 1, qt ), defined
as

〈(α0, α1, . . . , αt−1)〉Φh
qt =

〈(
α
ph

0 , α
ph

1 , . . . , α
ph

t−1

)〉

qt
.

Proposition 3 For each integer h and permutation π of Nt−1, Φh fixes Σπ .

Proof For each α ∈ F
∗
qt we have

〈(
αqπ(0)

, αqπ(1)
, . . . , αqπ(t−1)

)〉Φh

qt
=

〈(
βqπ(0)

, βqπ(1)
, . . . , βqπ(t−1)

)〉

qt
,

where β = α ph. ��
Proposition 4 Let π be a permutation of Nt−1 and let ω be the permutation defined such
that ω(i) ≡ π(i) − π(0) (mod t) for each i ∈ Nt−1. Then Σπ = Σω.

Proof Let h = −π(0)e, where q = pe, p prime. It is easy to see that Φh(Σπ) = Σω. As
Φh fixes Σπ the assertion follows. ��
Lemma 1 Let Γ ∼= PG(t−3, qt ) be the (t−3)-space X1 = X2 = 0 inΣ∗ = PG(t−1, qt ),
t ≥ 3. If φ is a projectivity of Σ∗ and π is a permutation of Nt−1 such that Σ

φ
id = Σπ and

Γ φ = Γ , then π(1) − π(0) ≡ ±1 (mod t), or gcd(π(1) − π(0), t) > 1.

Proof Suppose gcd(π(1) − π(0), t) = 1. Let M = (mi j )1≤i, j≤t ∈ GL(t, qt ) be a matrix
associated with φ. As φ fixes Γ , we have mi j = 0 when i = 1, 2 and 3 ≤ j ≤ t . Denote
the 2 × 2 matrix (mi j )1≤i, j≤2 by A. As M is non-singular, the same holds for A. According
to Proposition 4 we may assume π(0) = 0. Let μ = π(1), whence gcd(μ, t) = 1. As
Σ

φ
id = Σπ , for each α ∈ F

∗
qt there exist δα, tα ∈ F

∗
qt such that

δαtα = m11α + m12α
q , (8)

δαt
qμ

α = m21α + m22α
q . (9)

Let N denote the norm function from Fqt to Fq , that is N (x) = xθt−1 . As N (δαt
qμ

α ) =
N (δαtα)N (tq

μ−1
α ) = N (δαtα), it follows that

N
(
m11α + m12α

q) = N
(
m21α + m22α

q),

N
(
m11 + m12α

q−1) = N
(
m21 + m22α

q−1),

and hence for each (q − 1)th power z of F∗
qt we have

P(z) := N (m11 + m12z) − N (m21 + m22z) = 0,

where P(z) is a polynomial of degree at most θt−1.
We claim m11m21 = 0 and m12m22 = 0. First suppose m11m21 	= 0. Then the coefficient

of zq in P(z) is
mq

12N (m11)/m
q
11 − mq

22N (m21)/m
q
21. (10)

The coefficient of zq+1 is

mq+1
12 N (m11)/m

q+1
11 − mq+1

22 N (m21)/m
q+1
21 . (11)
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276 B. Csajbók, C. Zanella

As P(z) vanishes for each z with zθt−1 = 1, we have P(z) = a(zθt−1 − 1) for some a ∈ Fqt .
It follows that (10) and (11) are zero, thus if m12m22 	= 0, then

m12/m11 = m22/m21,

and hence det(A) = 0, a contradiction. On the other hand if one of {m12,m22} is zero, then
both of them are zero, thus we obtain again det(A) = 0. Now suppose m12m22 	= 0. Then
the coefficient of zθt−1−q in P(z) is

mq
11N (m12)/m

q
12 − mq

21N (m22)/m
q
22. (12)

As before, it follows that (12) is zero. Together withm11m21 = 0, it means thatm11 andm21

are both zero, and hence det(A) = 0, a contradiction.
First we consider the case when A is diagonal, i.e. m12 = m21 = 0. We may assume

m11 = 1. Then (8) and (9) yield

tq
μ−1

α = m22α
q−1.

The last equation implies that a ρ ∈ F
∗
qn exists such that ρ

q−1 = m22. Then for any x ∈ F
∗
qt

the following holds:

〈
xθμ−1

ρ

〉φidφ

q
=

〈(
xθμ−1

ρ
,
xqθμ−1

ρq
, . . . ,

xq
t−1θμ−1

ρqt−1

)〉φ

qt

=
〈(

xθμ−1

ρ
,
xqθμ−1

ρ
, ∗

)〉

qt
=

〈(
1, xq

μ−1, ∗
)〉

qt
∈ Σπ ;

〈x〉φπ
q =

〈(
x, xq

μ

, ∗
)〉

qt
=

〈(
1, xq

μ−1, ∗
)〉

qt
∈ Σπ.

Since μ and t are coprime, Σπ contains exactly one element of the form 〈(1, xqμ−1, ∗)〉qt .
It follows that for any x ∈ F

∗
qt

〈
xθμ−1/ρ

〉φidφ

q = 〈x〉φπ
q ,

and hence φπφ−1φ−1
id : Σ → Σ which maps 〈x〉q to 〈xθμ−1/ρ〉q is a collineation. Since

the map 〈y〉q �→ 〈y/ρ〉q is a collineation of Σ , Corollary 2 yields that φπφ−1φ−1
id is a

collineation only if μ = 1.
Now consider the case when m11 = m22 = 0. We may assume m12 = 1. Then (8) and

(9) yield

tq
μ−1

α = m21α
1−q.

This implies that a ρ ∈ F
∗
qt exists such that ρ

q−1 = m21. As before, it follows that

〈
x−θμ−1ρ

〉φidφ

q = 〈x〉φπ
q ,

for each x ∈ F
∗
qt and hence φπφ−1φ−1

id : Σ → Σ which maps 〈x〉q to 〈x−θμ−1ρ〉q is a
collineation. Proposition 2 and Corollary 2 yield that this happens only if μ = t − 1. ��
Theorem 5 LetΓ ∼= PG(t−3, qt ) be the (t−3)-space X1 = X2 = 0 inΣ∗ = PG(t−1, qt ),
t ≥ 3. If φ is a collineation ofΣ∗ such thatΣφ

id = Σπ and Γ φ = Γ , then π(1)−π(0) ≡ ±1
(mod t), or gcd(π(1) − π(0), t) > 1.
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Proof According to the Fundamental Theorem of Projective Geometry we may assume
φ = ΦhΩ , where Ω is a projectivity and Φh is as in Definition 5. As Φh fixes Γ and Σid , it
follows that Ω satisfies the conditions of Lemma 1 and hence the assertion follows. ��
Corollary 3 If t = 5 or t > 6, then any linear set of pseudoregulus type in PG(1, qt ) can be
obtained as the projection of two different subgeometries, Σ1 ∼= Σ2 ∼= PG(t − 1, q), from a
centerΓ ∼= PG(t−3, qt ) to an axisΛ ∼= PG(1, qt ) in the ambient spaceΣ∗ = PG(t−1, qt ),
such that there exists no collineation φ of Σ∗ with Γ φ = Γ and Σ

φ
1 = Σ2.

Proof LetΛ be the line X3 = · · · = Xt = 0 and let Γ be the (t −3)-subspace X1 = X2 = 0
in Σ∗. As t = 5 or t > 6, we have ϕ(t) ≥ 3, where ϕ is the Euler function. Thus we may
choose a permutationπ of Nt−1 such that gcd(π(1)−π(0), t) = 1 andπ(1)−π(0) /∈ {−1, 1}.
Let Σ1 = Σid and Σ2 = Σπ . Then pΓ, Λ(Σ1) = pΓ, Λ(Σ2) ∼= L and the assertion follows
from Theorem 5. ��

Note that L is not a linear set of rank k < t , thus (i) ⇒ (ii) in Theorem 2 cannot hold
without further conditions.

5 Equivalence of linear sets

We say that the pair (L , n), where L is a linear set of rank n in PG(r − 1, qt ), satisfies
condition (A), if the following holds.

(A) For any two (n − 1)-subspaces U,U ′ ⊂ PG(r t − 1, q), such that B(U ) = L = B(U ′),
a collineation γ ∈ P�L(r t, q) exists, such thatU γ = U ′, γ preserves the Desarguesian
spread Fr,t,q(P), and the induced map on PG(r − 1, qt ) is a collineation (which will
again be denoted by γ ).

In the next theorem we follow the proof of [2, Theorem 2.4] by Bonoli and Polverino.

Theorem 6 For i = 1, 2, let Σi ∼= PG(n − 1, q) be two canonical subgeometries of Σ∗ =
PG(n − 1, qt ) and let Γi be two (n − 1 − r)-subspaces of Σ∗, such that Γi ∩ Σi = ∅. Let
Λi ⊂ Σ∗ \ Γi be two (r − 1)-subspaces and let Li = pΓi , Λi (Σi ). Suppose that (L2, n)

satisfies condition (A). Then (i)⇒ (ii), where (i)and (ii)are the conditions stated inTheorem2.

Proof The collineation α in Theorem 2 can be extended to an element α̂ ∈ P�L(n, qt ) such
that Γ α̂

1 = Γ2. Then L2 = L α̂
1 = pΓ2, Λ2(Σ

α̂
1 ). Hence it is sufficient to prove the existence

of a collineation φ ∈ P�L(n, qt ) such that Γ
φ
2 = Γ2 and Σ

α̂φ
1 = Σ2. If such φ exists, then

β := α̂φ.
So it is enough to prove the assertion when Γ1 = Γ2 =: Γ , Λ1 = Λ2 =: Λ and

L1 = L2 =: L . Let Σ∗ = PGqt (F
n
qt ) and for j = 1, 2, let Σ j = B(Vj ), where Vj is an

n-dimensional Fq -subspace of Fnqt . AsΣ j is a canonical subgeometry, we have 〈Vj 〉qt = F
n
qt ,

for j = 1, 2. Let V1 = 〈v1, v2, . . . vn〉q . Also let Γ = PGqt (Z) andΛ = PGqt (R). Note that
V ′
j := (Vj +Z)∩R is an n-dimensionalFq -vector space in R. As pΓ, Λ(Σ1) = pΓ, Λ(Σ2) =

L , it follows thatB(V ′
1) = B(V ′

2). As (L , n) satisfies condition (A), it follows that there exists

a non-singular Fqt -semilinear map γ ′ : R → R such that V ′γ ′
1 = V ′

2. The map γ ′ can be
extended to a non-singular semilinear map γ̂ : Fnqt → F

n
qt such that Z γ̂ = Z . Then for each

vector v ∈ F
n
qt and μ ∈ Fqt we have (μv)γ̂ = μpkvγ̂ for some integer k. Since all of

R + Z = F
n
qt and Vj + Z ( j = 1, 2) are direct sums, for any v ∈ Vj \ {0} and z ∈ Z , the
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intersection (〈v〉q + Z) ∩ R is a one-dimensional Fq -subspace, say 〈v′〉q , with v′ ∈ V ′
j ; this

implies hv′ = v + z′ for some z′ ∈ Z and h ∈ Fq , whence v + z = hv′ + (z − z′) ∈ V ′
j + Z .

This implies Vj + Z ⊆ V ′
j + Z and therefore Vj + Z = V ′

j + Z . Then we have

V2 + Z = V ′
2 + Z = V ′γ̂

1 + Z γ̂ = (
V ′
1 + Z

)γ̂ = (V1 + Z)γ̂ ,

and hence for each i = 1, 2, . . . , n, v
γ̂

i = v′
i + zi for some v′

i ∈ V2 and zi ∈ Z . We
claim that v′

1, v
′
2, . . . , v

′
n is an Fq -basis of V2. To see this, suppose

∑n
i=1 λiv

′
i = 0 with

λi ∈ Fq for i = 1, 2, . . . , n. Then
∑n

i=1 λiv
γ̂

i = ∑n
i=1 λi zi . As on the left-hand side

v
γ̂
1 , v

γ̂
2 , . . . , v

γ̂
n are Fq -independent, it follows that either λi = 0 for i = 1, 2, . . . , n, or

there is a non-zero vector z ∈ V γ̂
1 ∩ Z . The map γ̂ fixes Z and hence in the latter case

zγ̂
−1 ∈ V1 ∩ Z , a contradiction because of V1 ∩ Z = {0}. As Σ2 is a canonical subgeometry,

it follows that v′
1, v

′
2, . . . , v

′
n are linearly independent over Fqt . Let f be the Fqt -semilinear

map of Fnqt such that v
f
i = v′

i for each i = 1, 2, . . . , n and (μv) f = μpkv f for each

μ ∈ Fqt and v ∈ F
n
qt . If P = 〈z〉qt ∈ Γ , then we have z = ∑n

i=1 aivi for some ai ∈ Fqt .

Then z f = ∑n
i=1 a

pk

i v′
i = ∑n

i=1 a
pk

i (v
γ̂

i − zi ) = zγ̂ − ∑n
i=1 a

pk

i zi ∈ Z , and hence the
collineation induced by f fixes Γ and maps Σ1 to Σ2. ��
Remark 2 In Theorem 6, it is not assumed, contrary to Theorem 2, that the linear sets are
not of rank <n.

Remark 3 By [2, Proposition 2.3], condition (A) holds for any Fq -linear blocking set of
exponent e (where pe = q) in PG(2, qt ).

Remark 4 Up to the knowledge of the authors, no linear set is known which is not of
pseudoregulus type in PG(1, qt ) and does not satisfy condition (A).

Theorem 7 If L is a linear set of rank n inΛ = PG(r−1, qt ), 〈L〉 = PG(r−1, qt )and (L , n)

does not satisfy condition (A), then in PG(n−1, qt ) ⊃ Λ there are a subspace Γ = Γ1 = Γ2

disjoint fromΛ, and two q-order canonical subgeometriesΣ1,Σ2 ⊂ PG(n−1, qt )\Γ such
that L = pΓ, Λ(Σ1) = pΓ, Λ(Σ2), and such that condition (ii) in Theorem 2 does not hold.

Proof Let U1 and U2 be two (n − 1)-subspaces of PGq(R), where R is the r -dimensional
Fqt -subspace of F

n
qt such that Λ = PGqt (R). Assume that B(U1) = L = B(U2). Let

Wi = 〈w(i)
1 , w

(i)
2 , . . . , w

(i)
n 〉q , i = 1, 2, be then-dimensional vectorFq -subspaces of Rwhose

associated projective subspaces in PG(r t − 1, q) are U1 and U2, respectively. From 〈L〉 =
PG(r−1, qt )wemay assume thatw(1)

1 , w
(1)
2 , . . . , w

(1)
r areFqt -linearly independent, and also

that w(2)
1 , w

(2)
2 , . . . , w

(2)
r are Fqt -linearly independent. Let Γ be an (n − r − 1)-subspace in

PG(n−1, qt ) disjoint fromΛ, associated with the vector subspace Z = 〈z1, z2, . . . , zn−r 〉qt .
For i = 1, 2, let Σi be the Fq -linear set defined by the following Fq -subspace of Fnqt :

Vi :=
〈
w

(i)
1 , w

(i)
2 , . . . , w(i)

r , w
(i)
r+1 + z1, w

(i)
r+2 + z2, . . . , w

(i)
n + zn−r

〉

q
.

Since those n vectors of Fnqt are also Fqt -linearly independent, Σi is a canonical q-order

subgeometry. Furthermore,w(i)
1 ,w(i)

2 , . . .,w(i)
n , z1, z2, . . ., zn−r are Fq -linearly independent,

and this impliesΣi ∩Γ = ∅. We summarize here some properties of our construction, which
we will use later. For i = 1, 2 we have the following.
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1. For each w ∈ Wi , there exists a unique zw ∈ Z such that w + zw ∈ Vi ,
2. if w and w′ are two Fq -independent vectors in Wi , then w + zw and w′ + zw′ are Fqt -

independent vectors in Vi .

If w = ∑n
j=1 α jw

(i)
j with a j ∈ Fq , j = 1, 2, . . . , n, then let zw = ∑n

j=r+1 α j z j−r . The
unicity of zw follows fromΣi∩Γ = ∅. To see 2., note thatΨi : Ui → Σi : 〈w〉q �→ 〈w+zw〉qt
is a bijection, as |Ui | = |Σi | = θn−1.

Now assume that condition (ii) in Theorem 2 holds. Let β ′ : Fnqt → F
n
qt be the semilinear

map associated with the collineation β; so, an integer ν exists such that for any a ∈ Fqt and

v ∈ F
n
qt there holds (av)β

′ = a pν
vβ ′

. Denote by π the canonical projection from Z ⊕ R

to R. Fix an element w ∈ W1. Then 1. and the condition Σ
β
1 = Σ2 imply the existence of

zw ∈ Z and λ ∈ F
∗
qt depending on zw such that ξλ := λ(w + zw)β

′ ∈ V2. Let Tλ = {v ∈
W1 : λvβ ′π ∈ W2}. Note that Tλ is an Fq -vector subspace of R. As λ(w + zw)β

′ ∈ V2, we
have λ(w+ zw)β

′π = λwβ ′π ∈ V π
2 = W2, thusw ∈ Tλ. We are going to show thatW1 = Tλ.

Suppose to the contrary that there exists w′ ∈ W1 \ Tλ. As Tλ is an Fq -vector space, w and
w′ are Fq -independent. The same argument as above yields the existence of zw′ ∈ Z and
μ ∈ F

∗
qt such that ξμ := μ(w′ + zw′)β

′ ∈ V2 and hence μw′β ′π ∈ W2. Then 2. yields that

〈w+ zw〉qt and 〈w′ + zw′ 〉qt are distinct points ofΣ1, and hence 〈ξλ〉qt and 〈ξμ〉qt are distinct
points of Σ2. First we prove

〈ξλ, ξμ〉qt ∩ V2 = 〈ξλ, ξμ〉q . (13)

Denote by X de left hand side of (13). The inclusion ⊇ trivially holds. Suppose to the
contrary dimFq (X) ≥ 3, then there exist three Fq -independent vectors, v1, v2, v3 ∈ X . We
can extend the set {v1, v2, v3} to a basis of V2. As dimFqt

(〈v1, v2, v3〉qt ) = 2, it follows that
〈V2〉qt 	= F

n
qt , a contradiction since Σ2 is a canonical subgeometry.

Let P1 = 〈w+zw〉qt and P2 = 〈w′+zw′ 〉qt . Denote by � the q-order subline 〈P1, P2〉∩Σ1.

Then 〈(w + zw)β
′ + (w′ + zw′)β

′ 〉qt = 〈ξλ + λμ−1ξμ〉qt ∈ �β ∩ Σ2. It follows that there
exists some δ ∈ F

∗
qt such that δ(ξλ + λμ−1ξμ) ∈ V2. It follows from (13) that δ ∈ F

∗
q and

δλμ−1 ∈ F
∗
q . Hence λμ−1 ∈ F

∗
q . This is a contradiction, as in this case (λμ−1)μw′β ′π =

λw′β ′π ∈ W2, contradicting the choice of w′. Hence Tλ = W1, that is, λwβ ′π ∈ W2 for any
w ∈ W1.

Now define the map ϕ′ : R → R : v �→ λvβ ′π . As β ′ is semilinear, π is linear and
v �→ λv is also linear, it follows that ϕ′ is Fqt -semilinear. Also, ϕ′ is non-singular. Let ϕ be
the associated collineation of Λ. Then

Uϕ
1 =

{〈
λwβ ′π

〉

q
: w ∈ W ∗

1

}
= PGq (W2) = U2,

because of Tλ = W1.
We have constructed an example for which, if condition (ii) in Theorem 2 is satisfied, then

also condition (A) must be satisfied: this concludes the proof. ��
Scattered linear sets of pseudoregulus type in a line are, under the field reduction map,

embeddings of minimum dimension of PG(t−1, q)×PG(t−1, q), which have been studied
in [5]. These embeddings are projections of Segre varieties. A similar representation of the
clubs as projections of Segre varieties can be found in [11] (see also [9]). By the arguments in
the proof of [5, Theorem 16], (L, t) does not fulfill condition (A), for t = 5 or t > 6, where L
is the scattered linear set of pseudoregulus type in PG(1, qt ). For in this case it is possible to
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choose a subspace in the family S1 and a subspace in Si , i ∈ {2, 3, . . . , t − 2}, gcd(i, t) = 1.
By Theorem 7 this yields the counterexamples as shown in the previous sections. Many
results in [6] are on linear sets in PG(1, q3); hence, the following result can be of interest:

Proposition 5 Condition (A) is fulfilled by linear sets of rank three in PG(1, q3), q > 2, for
n = 3.

Proof A linear set L of rank three in PG(1, q3) is either a point, or a club, or a scattered
linear set.

If L is a point, then from

B(U ) = B (
U ′) , dim(U ) = dim

(
U ′) = 2, (14)

one obtains U = U ′ = F2,3,q(L). This implies (A).
Assume now that L is a club. Denote by H its head, which is uniquely defined [4,6].

Assume that the subspaces U and U ′ satisfy (14). Take a point P = 〈(v0, v1)〉q3 ∈ L \ H
and let A = F2,3,q(P) ∩ U and X = F2,3,q(P) ∩ U ′. Then A = 〈α(v0, v1)〉q and X =
〈β(v0, v1)〉q for some α, β ∈ F

∗
q3
, and the map γ : 〈(x0, x1)〉q �→ 〈βα−1(x0, x1)〉q is a

projectivity of PG(5, q) belonging to the elementwise stabilizer of the Desarguesian spread,
andmapping A into X . Then X ∈ U γ ∩U ′\F2,3,q(H). The element of P�L(2, q3) associated
with γ is the identity map. Denote by �1 and �2 the linesU γ ∩F2,3,q(H) andU ′ ∩F2,3,q(H),
respectively. If �1 = �2, then U γ = 〈�1, X〉 = U ′. Otherwise let �′ be a line in U ′ through
X such that �1 ∩ �2 /∈ �′. The club L does not contain irregular sublines [6, Corollary 13],
[4, Proposition 5]. Applying this result to the q-order subline B(�′), we have that a line �

in U γ exists such that B(�) = B(�′). The point X is on �. The lines �, �′ of PG(5, q) are
transversal lines to the regulus F2,3,q(B(�)), having a common point, whence � = �′. This
implies U γ = 〈�, �1 ∩ �2〉 = U ′ and (A).

Up to projectivities there is a unique scattered linear set in PG(1, q3). To see this, fix a
q-order canonical subgeometry Σ of Σ∗ = PG(2, q3) and denote by I the set of points of
Σ∗ not contained in a line ofΣ . Denote byG the stabilizer ofΣ in the group of projectivities
of Σ∗. Each scattered linear set of rank three of PG(1, q3) can be obtained as a projection
of Σ from a point in I. In Theorem 2 the implication (ii) ⇒ (i) holds and hence the number
of projectively non-equivalent scattered linear sets of rank three in PG(1, q3) is at most the
number of orbits of G on the points of I. It follows from [2, Proposition 3.1] that G is
transitive on I and hence there is a unique scattered linear set of rank three in PG(1, q3).
An alternate proof can be obtained from [1], where the uniqueness of an exterior splash is
proved, taking into account that the exterior splashes dealt with in that paper are precisely
the scattered linear sets of rank three [10].

Assume that L is a scattered linear set of rank three, hence a linear set of pseudoregulus
type, and that (14) holds. Then U and U ′ are planes contained in the hypersurface Q2,q

defined in [5, Eqs. (7), (8)]. By [5, Corollary 10], U = Sh,k , U ′ = Sh′,k′ for h, h′ ∈ {1, 2},
N (k) = N (k′) = 1. A collineation γ satisfying (A) can be obtained in the form ϕ0,0(a, b) if
h = h′, and ψ0,0(a, b) if h 	= h′, for suitable a, b ∈ Fq3 . ��
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