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Abstract Let L be a linear set of pseudoregulus type in aline £ in ¥* = PG(t—1, ¢"),t =5
ort > 6. We provide examples of g-order canonical subgeometries X, X, C X* such that
thereis a (t —3)-subspace I C X*\ (XU X, U{) with the property that fori = 1, 2, L is the
projection of X; from center I” and there exists no collineation ¢ of X* such that I'® = I"
and 2% = 27>. Condition (ii) given in Theorem 3 in Lavrauw and Van de Voorde (Des Codes
Cryptogr 56:89-104, 2010) states the existence of a collineation between the projecting
configurations (each of them consisting of a center and a subgeometry), which give rise by
means of projections to two linear sets. It follows from our examples that this condition is
not necessary for the equivalence of two linear sets as stated there. We characterize the linear
sets for which the condition above is actually necessary.
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1 Introduction

If V is a vector space over the finite field Fy:, then PGy: (V) denotes the projective space
whose points are the one-dimensional F,:-subspaces of V. If V has dimension n over Fr,
then PG, (V) = PG(n — 1, q"). For a point set T C PG(n — 1, q") we denote by (T) the
projective subspace of PG(n — 1, g") spanned by the points in 7. For m | ¢ and a set of
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elements S C V we denote by (S),m the Fm-vector subspace of V spanned by the vectors
in S. For the rest of the paper we assume that ¢ = p¢ is a power of the prime p.

Let R = IF;l. The field reduction map [8] Fy.; 4 is a map from the points of PG4 (R) =
PG(r — 1, ¢") to the (t — 1)-subspaces of PG, (R) =PG(rt — 1,q). Let P = PG, (T) be a
point of PG(r — 1, g"), where T is a one-dimensional [F,:-subspace of R. Then F.; ,(P) :=
PGy (T). As dimp, (T) = t, it follows that 7, ,(P) is a (f — 1)-dimensional subspace of
PG(rt — 1, q). Denote the point set of PG(r — 1, g") by P. Then Fr.1,4(P) is a Desarguesian
(t — I)-spread of PG(rt — 1, g) [13]. Let S be a subspace of PG(rt — 1, g) = PG, (R), then

B(S):={P ePG(r—1,q9"): Frig(P)NS # 0}.

When S is an F,-vector space of R, then we define B(S) analogously. A point set L C
PG(r — 1, g") is said to be Fy-linear (or just linear) of rank n if L = B(S) for some (n — 1)-
subspace S € PG(rt — 1, g). If L has size (¢" — 1)/(¢g — 1) (which is the maximum size for
a linear set of rank n), then L is a scattered linear set. For further information on linear sets
see [8,17].

Definition 1 Let PG, (V) = PG(n — 1, g") and let W be an F,-vector subspace of V. If
dimp, (W) = diqu,(V) =nand (W), =V, then X = {{w)yr: w € W*}is a canonical
subgeometry of PG, (V).

Let X' = PG(n — 1, ¢) be a canonical subgeometry of X* = PG(n — 1,4"). Let I' C
X*\ X' bean (n — 1 —r)-subspace and let A C X* \ I" be an (r — 1)-subspace of X*. The
projection of X’ from center I' to axis A is the point set

L=pra(X)={r.P)nA:PeX}. 1)

In [15] Lunardon and Polverino characterized linear sets as projections of canonical sub-
geometries. They proved the following.

Theorem 1 ([15, Theorems 1 and 2]) Let X*, X/, A, I' and L = pr 4(X’) be defined as
above. Then L is an IF;-linear set of rank n and (L) = A. Conversely, if L is an F;-linear set
of rankn of A =PG(r — 1,q") C X* and (L) = A, then there is an (n — 1 — r)-subspace
I disjoint from A and a canonical subgeometry X' = PG(n — 1, q) disjoint from I" such
that L = pr, A(E’).

Note that when r = n in Theorem 1, then L = pr 4(X’) = X', hence L is a canonical
subgeometry. We rephrase here a theorem by Lavrauw and Van de Voorde.

Theorem 2 ([6, Theorem 3]) Fori = 1,2, let X¥; = PG(n — 1, q) be two canonical subge-
ometries of X* = PG(n — 1, ¢q") and let T; be two (n — 1 — r)-subspaces of X*, such that
I'NX; =0. Let A; C X*\ I betwo (r — 1)-subspaces and let L; = p r; 4, (X;). Suppose
that L; is not an Fy-linear set of rank k < n. Then the following statements are equivalent.

(i) There exists a collineation o: A1 — Ay, such that L1* = L,
(ii) there exists a collineation B of £* such that 1% = X5 and I'P = I,

(iii) for all canonical subgeometries X = PG(n — 1,q) in X%, there exist §,¢, V¥
collineations of X*, such that! X8 =3 N =RV, 319 = X and 5,V = X.

We are going to prove that the implication (i) = (ii) does not hold. In Sects. 3 and 4, we
will show this in the case when L1 = L is a linear set of pseudoregulus type in PG(1, ¢"),

1 Compositions are executed from the left to the right.
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forn = 5orn > 6.In Sect. 5 a characterization will be given of the linear sets for which (i)
= (ii) holds.

In this paper, the results which lead to counterexamples are presented in a general setting.
In the remainder of this introduction some hints are given to a better understanding of the
key facts.

1.1 A minimal counterexample

The idea of a counterexample arose from the investigation of the linear sets of pseudoregulus
type [3,14]. A minimal counterexample to Theorem 2 (i) = (ii) can be obtained as follows. In
PG4, q5), with coordinates X1, X», ..., X5, let I" be the plane of equations X; = X, =0,
and let £ be the line X3 = X4 = X5 = 0. The sets

5 = [<(A,MI,A‘12,M3,M4)> :Aelﬁ‘*s]
@ gl
and
> = <(x,x‘12,x‘1,x‘13,x‘14)> LA e FY,
7 4
are canonical subgeometries. Defining PG(4,q) = {{x),: x € FZS}’ the map ¢
PG4, q) — X defined by ()c)g1 = (x,xq,xqz,xq3,xq4)q5 is a collineation, as

well as the map ¢, : PG4,q) — X, similarly defined. By [3,14], the projections
pr.¢(X1) and pr ¢(X>) coincide, and are a linear set of pseudoregulus type, say L =
{{(A,29,0,0,0))45: A € ]P‘;S}.

Now assume that as stated in Theorem 2 (ii) a collineation 8 of PG(4, q5 ) exists such that
Ir'f =r, and Elﬁ = ). Itis shown in Theorem 5 that a projectivity exists having the same
two properties; call it ¢». By the arguments in Lemma 1 in Sect. 4, the collineation ¢~ . !
of PG(4, g) is the composition of a projectivity and either the map (x), (xf1) g (cfr. (6)),
or the map

-6 64—6 20
<x>q'_)(x 1)q=(x4 l)q=(xq 2>L[,
which in turn is the composition of a projectivity and (x), > (x?2 )q- However, by Corollary 2
in Sect. 3, no map of type (x), > (x )¢ With 0 < s <t = 5is a collineation, and this is a
contradiction.

1.2 Construction of counterexamples using condition (A) in Section 5

In Sect. 5 counterexamples are found with essentially distinct arguments. Theorem 7 states
that a counterexample to Theorem 2 (i) = (ii) can always be constructed in case the following
condition does not hold: (A) For any two (n — 1)-subspaces U, U’ C PG(rt — 1, q), such that
B(U) = L = B(U’), acollineation y € PI'L(rt, q) exists, such that UY = U’, y preserves
the Desarguesian spread 7., ,(P), and the induced map on PG(r — 1, ¢*) is a collineation.

If L = B(Q;-1,4), where Q; 1, C PG(2t — 1, g) is the nonsingular hypersurface of
degree ¢ studied in [5], then L is a linear set of pseudoregulus type in PG(1, ¢").

In [5] all linear subspaces contained in Q1 4 are described for ¢ > ¢. For t > 4 there
exist two (r — 1)-subspaces, say U and U’, that are contained in Q1,4 and such that for any
element y of the stabilizer of Q, 1 4, preserving the standard Desarguesian spread, it holds
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UY #U'.Fort > 5,t # 6, it is possible to choose U and U’ with the additional property
B(U) = L = B(U’). This leads to the counterexample of the previous subsection and its
generalisations.

1.3 On the proof of [6, Theorem 3]

In the opinion of the authors of this paper, the proof of [6, Theorem 3] contains a wrong
argument. The map § defined at p. 93, line 21, is declared to be a projectivity, but is dealt with
as a linear map e.g. in (1), as well as p; is. Such a § is assumed to satisfy both conditions
(1) 6 maps an [F-vector space associated with Elx onto an [F,-vector space associated with
X5, and (ii) p2(a;) = p2 (a;s), i =0,...,m. However, in the case of the minimal example
in Sect. 1.1, no such § exists.

2 Linear sets of pseudoregulus type in a projective line

A family of scattered IF-linear sets of rank rm of PG(2m — 1, ¢"), called of pseudoregulus
type, have been introduced in [16] for m = 2 and ¢ = 3, further generalized in [7] for m > 2
and r = 3 and finally in [14] for m > 1 and t > 2 (for t = 2 they are the same as Baer
subgeometries, see [14, Remark 3.4]). We will only consider linear sets of pseudoregulus
type in PG(1, ¢*). It has been proved in [14, Sect. 4] and in [3, Remark 2.2] that all linear
sets of pseudoregulus type in PG(1, g*) are PGL(2, ¢")-equivalent and hence we can define
them as follows.

Definition 2 ([3,14]) A point set L of PG (Fét) = PG(1, ¢"), t > 2, is called a linear set
of pseudoregulus type if L is projectively equivalent to

L= {((A,Aq))q,:AG]FZ,}. )
Definition 3 Let ¢ > 2 be an integer and let & be a permutation of N,_; :={0, 1,2, ..., 1 —
1}. We define X, as the following set of points in PG (IF;,) =PG(t —1,4").
Y= [<(oﬂn(0),a"”m, otq”m, e oﬂwil))> € FZ,} . 3)
q

Proposition 1 ConsiderF: as avector space overFy andlet ¥ = PG, (F 1) = PG(1—1, q).
Let w be a permutation of N;_1. Then the following statements hold.

7(0) 7(1) 7(2) 7(t—1)

1. Sy i={(? ",a?7 ,a?7 7,..., a4 ): a € Fyr} is an Fy-subspace ofIF;,.
2. gL Fyr — Sqpia > (oﬂ”(m, a"n(l),aq”(z), o aq”“_l)) is a vector space isomor-
phism.
3. () =PG(t —1,q").
4. The map
i X = Tt o)y > <(aqn(0),a"”<l),aq”(2), . .,oﬂ”('fl))> ’ 4)
q

is a collineation.

Proof 1. and 2. are trivial, and 1.,2.,3. together imply 4., so it is enough to show 3. Let
a1, a2, ..., € Fy, anddenote by My the ¢ x t matrix over F, whose jthrow is ¢ («;) for
j=1,2,...,t. According to [12, Lemma 3.51], det(M;4) # Oif and only if o1, e, . .., o
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On the equivalence of linear sets 273

are linearly independent over ;. As M;; can be obtained by permuting the columns of Mg,
it follows that det(My) # 0 if and only if det(M;4) # 0. As dimp, (F;) = ¢, it follows that
dimﬂrq, (S7) = t and hence 3. follows. ]

Let ¥* = PG(r — 1, ¢q"), and denote the coordinates in X* by X1, X2, ..., X,. Let
A = PG(1,q") bethe line X3 = ... =X, = 0andlet I' = PG(r — 3, ¢") be the (t — 3)-
subspace X1 = X, = 0 in X'*. Let = be a permutation of N;_y, it is easy to see that if
ged(m (1) —m(0), 1) = 1, then pr, A(X;) = L, see for example [14, Remark 4.2]. If ¢ is a
collineation of X* such that E;Z = X, then

¢ =000 )

[see (4)] is a collineation of X. To study the action of ¢~> we need some results regarding the
®; map defined in the next section.

3 The O map

As before, let X' denote the PG(z — 1, ¢) associated to F:.

Definition 4 For an integer s > —1 let 6; denote the number of points of PG(s, ¢), that is

0 = (6)

qg—1
The map ®;: ¥ — X is defined as follows. For each x € IF[’;, let

O5((x)g) = (x%),.

Remark 1 If s, d > —1 are two integers, then @; = O, if and only if s = d (mod ¢). As
we do not use this result, the proof is left to the reader.

In §ect. 4 we show the following. If ¢ is a collineation such that Zfi =X,andI'® =T,
then ¢ = O£ [see (5)] for some collineation £2 and integer 0 < s < t. Note that @y
is the identity. In Corollary 2, we prove that ®,, with 0 < s < ¢, is not a collineation of
PG(r — 1, g). It will follow that in most cases 5 is not a collineation and hence such ¢ cannot
exist.

To determine whether @; is a collineation or not we need some results regarding difference
sets. A (v, k, L)-difference set is a k-subset D of a group G of order v such that the list of
non-zero differences (if the group is written additively) contains each non-zero group element
exactly A times. If the group is cyclic etc., then we say that the difference set is cyclic etc.
For our purposes here, it is enough to consider cyclic difference sets, so from now on we
assume that G is cyclic. Let D be a (v, k, A)-difference set of G and let j be an integer. By
D+ jand jD wemean {d + j: d € D} modulo v and {jd: d € D} modulo v. Note that
D + j is also a (v, k, A)-difference set of G. If gcd(j, v) # 1, then letr := v/ ged(j, v) and
letd) —dy =t,where d;, dy € D. As v | t], it follows that jd| = jd, (mod v) and hence
|jD| < |D]. On the other hand, if ged(j, v) = 1, then j D is also a (v, k, A)-difference set of
G. The integer m is a (numerical) multiplier of D if mD = D + g for some integer g. The

trace of B € Fyr is Tr(B) = Trr,, /r,(B) = Z?;(]) ﬂqi.
Theorem 3 ([18, Theorem 2.1.1]) Let « be a generator of the multiplicative group of F .,
t > 3. The set of integers D = {i: 0 < i < 0,1, Tr(a) = 0} modulo 6,_, forms a
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274 B. Csajbok, C. Zanella

(cyclic) difference set in Zg,_, (written additively), with parameters (6;—1, 6;—2, 0;—3). The
set of points of PG, (F,1) = PG(t — 1, q) which corresponds to the set D, i. e. the point
set Hp = {(ai)q 1 i € D}, is a hyperplane of PG(t — 1, q). Moreover, the hyperplanes of
PG(t — 1, q) are the sets Hp+j := {(ai)q: i €D+ j}, where() < j < 6;_1.

The difference sets constructed in Theorem 3 are called classical Singer difference sets.
The next theorem describes the multipliers of these difference sets.

Theorem 4 ([18, Corollary 1.3.4 and Proposition 3.1.1]) Let D be a classical Singer differ-
ence set with parameters as in Theorem 3. Then the multipliers of D are the powers of p
modulo 6;_.

For a subset X C X and an integer m, let X™ = {(x"),: (x), € X}.

Corollary 1 Let t > 3 and m be two integers. The X — X map, (x)q + (x")4 is a
collineation if and only if m = p" (mod 6,_1), for some h € N.

Proof The map (x), — (x™), is a collineation if and only if it maps hyperplanes into
hyperplanes. Let &, D and Hp4j for 0 < j < 6,1 be defined as in Theorem 3. For any
hyperplane Hp, ; of X the point set H’gﬂ. = {(a’"i)q :i € D+ j}is ahyperplane if and
only if {mi: i € D+ j} = mD + mj is a translate of D, i.e when mD + mj = D + k for
some k and hence mD = D + g (with g = k — mj), which is equivalent to saying that m is
a multiplier of D. The assertion follows from Theorem 4. O

Corollary 2 Lett > 3. For 0 < s < t the map Oy is not a collineation.

Proof According to Corollary 1, it is enough to show that for any 0 < s < ¢ there is no
integer h such that 6y = ph (mod 6,_1). Note that ¢’ = (g — 1)6,_1 + 1, thus po =1=q'
(mod 6;_1). It is therefore enough to show the assertion when p” < ¢'. Suppose, contrary
to our claim, that §; = p” (mod 6,_;) for some p" < ¢' and 0 < s < ¢. Since p" # 0
(mod 6;_1), we have s <t — 2 and

05q'/p" =¢' =1 (mod 6,_y). 7

It is easy to see that p" # 1.If 1 < p" < 6,_1, then p" = 6, which cannot be as p does
not divide 6;. So we may assume 6;,_| < ph < ¢'. In this case ph < q’(ph — 6;_1), thus
q"0;_1 < p"(q" — 1) and hence ¢’/ p" < (¢' —1)/6;_1 = g — 1. On the other hand we have
1 < ¢'/p" and hence

1<6iq'/p" <6 20— =q""—1<6,
contrary to (7). m]

Proposition 2 For 0 < s < t, the map (x), — (x_‘)“')q is the composition of ®;_s_» and a
projectivity of X.

Proof Foreach x € IB‘Z, we have x%-1 ¢ ]FZ thus

—05\ — [ Or-1-0s :@7<7<q3+1>.
(), = ), = O i),

As (x), — (th) ¢ 1s a projectivity for each , the assertion follows. O
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4 Linear sets obtained via non-equivalent projections

Definition 5 For an integer & let @, denote the collineation of X* = PG(t — 1, ¢*), defined
as

@ h h h
<(a07a1a---vat—1))qfh =<(“6D caf 7-..,01,1:1)>q,-
Proposition 3 For each integer h and permutation w of N;—1, @y, fixes X.

Proof Foreacha € IB‘Z, we have

_ D _
aqﬂ(O) thﬂ(l) aqﬂ(t b} h _ ﬂqn(O) ﬁqzr(l) IBqn(t 1}
, PRI . s s ey qt,

h
where 8 = o O

Proposition 4 Let w be a permutation of Ny,—1 and let @ be the permutation defined such
that w(i) = 7w (i) — 7(0) (mod ¢) for eachi € N;_1. Then X; = X,

Proof Let h = —m(0)e, where ¢ = p°, p prime. It is easy to see that @, (X;) = X,. As
@y, fixes X the assertion follows. O
Lemma 1 Let I' = PG(t —3, g") be the (t —3)-space X1 = X2 = 0in X* =PG(t—1, ¢"),
t > 3. If ¢ is a projectivity of X* and 7 is a permutation of N;—1 such that Eiq; = X, and
I'® =T, thent(1) — w(0) = 1 (mod 1), or ged(rw (1) — 7(0),1) > 1.

Proof Suppose ged(r(1) — w(0),1) = 1. Let M = (m;j)1<i,j<: € GL(¢, ¢") be a matrix
associated with ¢. As ¢ fixes I", we have m;; = O wheni = 1,2 and 3 < j < t. Denote
the 2 x 2 matrix (m;;)1<;, j<2 by A. As M is non-singular, the same holds for A. According
to Proposition 4 we may assume 7(0) = 0. Let © = m (1), whence ged(u,t) = 1. As
Z‘f; = XY, foreacha € IFZ, there exist 8y, ty € IF:, such that
Sale = myjo + mypad, (8)
Std" = myya + mpad. 9
Let N denote the norm function from Fy: to F,, thatis N(x) = x0-1.As N (8at§M) =
N((Sata)N(t;’Ll) = N(841y), it follows that
N (mija +mpa?) = N (myo + maaf),
N (m11 + mlzaq_l) =N (m21 —}—mzzaq_l),
and hence for each (¢ — 1)th power z of IFj;, we have
P(z) == N(m11 +mi2z) — N(ma1 +m2z) =0,

where P (z) is a polynomial of degree at most 6;_.
We claim m11mo; = 0 and m1am»o2 = 0. First suppose m1m2; #% 0. Then the coefficient
of z7 in P(z) is
miyN(mi1)/m{; —m3,N (ma1)/m3;. (10)

The coefficient of z4H! is

1 1 1 1
m{y NG /m{ = mS N (man) /m (1
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276 B. Csajbok, C. Zanella

As P(z) vanishes for each z with z%-1 = 1, we have P(z) = a(z%!

It follows that (10) and (11) are zero, thus if mymo> # 0, then

— 1) for some a € Fyr.

miz/my = my/may,

and hence det(A) = 0, a contradiction. On the other hand if one of {m 2, my;} is zero, then
both of them are zero, thus we obtain again det(A) = 0. Now suppose m12may 7# 0. Then
the coefficient of z%~1 =7 in P(z) is

m{ N (mi2)/m{y —m% N(my)/m?,. (12)

As before, it follows that (12) is zero. Together with my1m3; = 0, it means that m | and m2;
are both zero, and hence det(A) = 0, a contradiction.
First we consider the case when A is diagonal, i.e. m12 = mp; = 0. We may assume
m11; = 1. Then (8) and (9) yield
Zgﬂ_l = mzzotq_l.

The last equation implies that a p € IF;,, exists such that p9~! = mo,. Then for any x € IE‘Z,
the following holds:

<x9;L1 >¢id¢ xeufl x‘IQ;Lfl xqt_leufl ¢
ply A\ e ot T pa! y

9#—1 qu.—l
(55, ) e
P P q' a'
(x)g” :<(x,xqﬂ,*)> :((l,xqﬂ_l,*» c X,
q' q'

Since p and ¢ are coprime, X; contains exactly one element of the form ((1, x4" -1 *))gt-
It follows that for any x € IFZ,

iad _

(x=t/p) 1 = g,

and hence qbﬂqﬁ_lqbi_dl: X — X which maps (x), to (xeﬂ—l/p)q is a collineation. Since
the map (y),; — (y/p)4 is a collineation of X, Corollary 2 yields that ¢n¢_l¢;11 is a
collineation only if . = 1.

Now consider the case when m1; = mo; = 0. We may assume m1> = 1. Then (8) and
(9) yield

gt—1 _ 1—¢
Iy =mo| .

This implies that a p € F*, exists such that ,o”/’1 = moy;. As before, it follows that
q

- Pid9
x Qﬂ’lp)qd = (x)f,
for each x € F*, and hence ¢ﬂ¢_1¢;11: X — X which maps (x), to (x_eﬂ-lp)q isa

collineation. Proposition 2 and Corollary 2 yield that this happens only if u = ¢ — 1. O

Theorem 5 Let I' = PG(t—3, q') be the (t —3)-space X1 = X» = 0in X* = PG(t—1, ¢"),
t > 3. If ¢ is a collineation of X* such that E;Z =X,and ' = T, then w(1) — 7 (0) = +1
(mod 1), or ged(z (1) — 7 (0),¢) > 1.
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On the equivalence of linear sets 277

Proof According to the Fundamental Theorem of Projective Geometry we may assume
¢ = @82, where £2 is a projectivity and @y, is as in Definition 5. As @, fixes I" and X4, it
follows that 2 satisfies the conditions of Lemma 1 and hence the assertion follows. ]

Corollary 3 Ift = 5o0rt > 6, then any linear set of pseudoregulus type in PG(1, g") can be
obtained as the projection of two different subgeometries, X1 = ¥» = PG(t — 1, q), from a
center I' = PG(1—3, g") toan axis A = PG(1, g") in the ambient space X* = PG(t—1, q"),
such that there exists no collineation ¢ of X* with I'® = I' and Zf’ = 2.

Proof Let Abetheline X3 =--- = X; = 0andlet I be the (r — 3)-subspace X| = X, =0
in X* Ast = 5ort > 6, we have ¢(tr) > 3, where ¢ is the Euler function. Thus we may
choose a permutation 7w of N;_1 suchthatged(w(1)—m(0),¢) = landw (1)—m(0) ¢ {—1, 1}.
Let ¥y = Xjgand ¥y = ¥;. Then pr a(X1) = pr, A(X2) = L and the assertion follows
from Theorem 5. O

Note that L is not a linear set of rank £ < ¢, thus (i) = (ii) in Theorem 2 cannot hold
without further conditions.

5 Equivalence of linear sets

We say that the pair (L, n), where L is a linear set of rank n in PG(r — 1, ¢"), satisfies
condition (A), if the following holds.

(A) For any two (n — 1)-subspaces U, U’ C PG(rt — 1, q), such that B(U) = L = B(U’),
acollineation y € PT'L(rt, q) exists, such that U = U’, y preserves the Desarguesian
spread . 4(P), and the induced map on PG(r — 1, q") is a collineation (which will
again be denoted by y).

In the next theorem we follow the proof of [2, Theorem 2.4] by Bonoli and Polverino.

Theorem 6 Fori = 1,2, let X; = PG(n — 1, q) be two canonical subgeometries of X* =
PG(n — 1,q") and let T; be two (n — 1 — r)-subspaces of X*, such that I'; N X; = . Let
Aj C X*\ T; be two (r — 1)-subspaces and let L; = pr. a;(X;). Suppose that (L, n)
satisfies condition (A ). Then (i) = (ii), where (i) and (ii) are the conditions stated in Theorem 2.

Proof The collineation « in Theorem 2 can be extended to an element @ € PI'L(n, ¢") such
that 1“1a = I5.Then Ly = Lii =Drn, AZ(Z‘]&). Hence it is sufficient to prove the existence
of a collineation ¢ € PI'L(n, ¢') such that ry = I> and Eiw = X. If such ¢ exists, then
B i=ag.

So it is enough to prove the assertion when I'T = [» =: ', Ay = Ay =: A and
Ly =L, =:L.Let ¥* = Pqu(IF;,) and for j = 1,2, let X¥; = B(V;), where V; is an
n-dimensional IF;-subspace of F”,. As X¥'; is a canonical subgeometry, we have (V;), = F",,
for j =1,2.Let Vi = (v, v2, ... vy)q. Alsolet I' = PG, (Z) and A = PG, (R). Note that
VJf := (V;+Z)NRis an n-dimensional F-vector spacein R. As pr, A (X)) = pr, a(22) =
L, it follows that B (Vl’ )= B(Vz’). As (L, n) satisfies condition (A), it follows that there exists
a non-singular F-semilinear map y’: R — R such that Vl/y/ = V,. The map y’ can be
extended to a non-singular semilinear map 7 : ]FZ, — IF;, such that Z” = Z. Then for each

vector v € IFZ, and u € F, we have (pcv)7 = pc”k v? for some integer k. Since all of
R+Z7Z = IF;, and V; + Z (j = 1, 2) are direct sums, for any v € V; \ {0} and z € Z, the
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intersection ({v)4 + Z) N R is a one-dimensional F,-subspace, say (v'),, with v’ € V/f; this
implies hv' = v+z7' forsome z’ € Z and h € Fy, whencev+z=hv' +(z—2') € VJf +Z.
This implies V; + Z C VJf + Z and therefore V; + Z = V/f + Z. Then we have

Vit Z=V3+Z=V"+27 =(V[+2)" =V, + 2)7,

and hence for eachi = 1,2,...,n, vl?’ = v 4 z; for some v, € V, and z; € Z. We
claim that v, v}, ..., vj, is an F4-basis of V2. To see this, suppose > i_; A;v, = 0 with

A € Fyfori = 1,2,...,n. Then X7 Ajv) = >, Aizi. As on the left-hand side

vi’, v%/ R v,l,' are FF,-independent, it follows that either A; = O fori = 1,2,...,n, or

there is a non-zero vector z € Vly N Z. The map ¥ fixes Z and hence in the latter case

ZV1 € V1 N Z, a contradiction because of Vi N Z = {0}. As X» is a canonical subgeometry,

it follows that v/l, v/z, ..., v, are linearly independent over F . Let f be the F:-semilinear

map of IFZ, such that v/ = vlf foreach i = 1,2,...,n and (uv)/ = Mpkvf for each

i
neFandv e IFZ,. If P = (z)y € I', then we have z = Z;’zl a;v; for some a; € Fyr.
k k = ~ k
Then z/ = > al v/ = 37 al ] —z) =27 = 3" al’ zi € Z, and hence the

collineation induced by f fixes I" and maps X| to X». O

Remark 2 In Theorem 6, it is not assumed, contrary to Theorem 2, that the linear sets are
not of rank <n.

Remark 3 By [2, Proposition 2.3], condition (A) holds for any F,-linear blocking set of
exponent e (where p¢ = q) in PG(2, ¢*).

Remark 4 Up to the knowledge of the authors, no linear set is known which is not of
pseudoregulus type in PG(1, ¢") and does not satisfy condition (A).

Theorem 7 IfL isalinearsetofranknin A = PG(r—1,q"), (L) = PG(r—1, g")and (L, n)
does not satisfy condition (A), theninPG(n— 1, q') D A there are a subspace I’ = I'l = I
disjoint from A, and two q-order canonical subgeometries X1, 3> C PG(n—1, g¢")\ I such
that L = pr A(X1) = pr, A(X2), and such that condition (ii) in Theorem 2 does not hold.

Proof Let U and U, be two (n — 1)-subspaces of PG, (R), where R is the r-dimensional
I, -subspace of ]FZ, such that A = PGy (R). Assume that B(U;) = L = B(U). Let
W; = (w%i), wg), R w,(f))q,i = 1, 2, be the n-dimensional vector I, -subspaces of R whose
associated projective subspaces in PG(rt — 1, ¢) are U; and U», respectively. From (L) =

PG(r—1, g") we may assume that w}l), wél), AU wfl) are I« -linearly independent, and also

that w}z), wéz) e, wfz) are IF: -linearly independent. Let I” be an (n — r — 1)-subspace in
PG(n—1, ¢") disjoint from A, associated with the vector subspace Z = (z1, z2, . . ., Zn—r)gt-
Fori = 1,2, let X; be the F,-linear set defined by the following [, -subspace of ]FZ .
Vi = <w§i), wi,w wl el w) +Zn—r> .
q
Since those n vectors of F”; are also Fy-linearly independent, X; is a canonical g-order
subgeometry. Furthermore, wii) s wg), o w,(,i), 21,22, . . -» Zn—r are Fy-linearly independent,
and this implies X; N I" = (). We summarize here some properties of our construction, which
we will use later. For i = 1, 2 we have the following.
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1. For each w € W;, there exists a unique z,, € Z such that w 4+ z,, € V;,
2. if w and w’ are two [F,-independent vectors in W;, then w + z,, and w’ + 7z, are Fyi-
independent vectors in V;.

fw=73>"_ ajw;.’) witha; € Fg, j = 1,2,...,n, then let z,, = >7_, | &;z—. The
unicity of z, follows from X;NI" = . Tosee 2., note that¥; : U; — X : (w)g > (W+zw)g
is a bijection, as |U;| = | X;| = 0,—1.

Now assume that condition (ii) in Theorem 2 holds. Let 8’ : IFZ, — F”, be the semilinear
map associated with the collineation S; so, an integer v exists such that ?or any a € Fy and

v E IF;’, there holds (av)ﬁ/ = a”"vP’. Denote by 7 the canonical projection from Z & R

to R. Fix an element w € Wj. Then 1. and the condition ¥ {9 = X, imply the existence of
Zw € Zand A € FZ, depending on z,, such that &, := A(w + zw)’g/ eVo.LetT) ={v e

Wi P e W>}. Note that T), is an [F,-vector subspace of R. As A(w + zw)ﬂ/ € Va, we
have )L(w—l—zw)ﬁ/” =P e V3 = Wy, thus w € T. We are going to show that W = T;..
Suppose to the contrary that there exists w’ € Wy \ Ty. As Tj, is an F,-vector space, w and
w’ are Fy-independent. The same argument as above yields the existence of z,; € Z and
e FZ, such that &, := p(w’ + zw)? € V5 and hence pw'?™ € W,. Then 2. yields that
(w+2zw)yr and (w’ + 2z )4 are distinct points of X'y, and hence (&), and (§,,) 4 are distinct
points of X,. First we prove

<S)w %'u)q’ NV, = <$)w éju)q- (13)

Denote by X de left hand side of (13). The inclusion D trivially holds. Suppose to the
contrary diqu (X) > 3, then there exist three F,-independent vectors, vy, v2, v3 € X. We
can extend the set {vy, v2, v3} to a basis of V5. As dim]Fq, ({v1, v2, v3)4r) = 2, it follows that
Va)gr #F Z,, a contradiction since X is a canonical subgeometry.

Let Py = (w+zy)yr and Py = (w’—i—zw/)qr . Denote by ¢ the g-order subline ( Py, P>)NXy.

Then ((w 4 z,)? + (W' + Zw,)ﬂ’)q, = (& + )»,u’léu)qr € £f N X,. It follows that there
exists some § € IFZ, such that § (&, + )»M_IS,L) € V5. It follows from (13) that § € ]FZ and

sap~l e IF;. Hence Au~! € ]F;. This is a contradiction, as in this case (Au~)pwf™ =
AT e W, contradicting the choice of w’. Hence T) = Wy, that is, awhf'™ e W, for any
w e Wi.

Now define the map ¢': R — R: v — AP As B’ is semilinear, 7 is linear and
v — Av is also linear, it follows that ¢’ is F,-semilinear. Also, ¢’ is non-singular. Let ¢ be
the associated collineation of A. Then

Uip = [(Awﬁ’”> W E Wik] = PGq (WZ) = UZ’

q
because of T;, = Wj.

We have constructed an example for which, if condition (ii) in Theorem 2 is satisfied, then
also condition (A) must be satisfied: this concludes the proof. ]

Scattered linear sets of pseudoregulus type in a line are, under the field reduction map,
embeddings of minimum dimension of PG(r — 1, ¢) x PG(¢# — 1, ¢), which have been studied
in [5]. These embeddings are projections of Segre varieties. A similar representation of the
clubs as projections of Segre varieties can be found in [11] (see also [9]). By the arguments in
the proof of [5, Theorem 16], (L, ¢) does not fulfill condition (A), for = 5Sor¢ > 6, where L.
is the scattered linear set of pseudoregulus type in PG(1, ¢*). For in this case it is possible to
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choose a subspace in the family S| and a subspacein S;,i € {2,3, ..., —2}, ged(i, 1) = 1.
By Theorem 7 this yields the counterexamples as shown in the previous sections. Many
results in [6] are on linear sets in PG(1, q3); hence, the following result can be of interest:

Proposition 5 Condition (A) is fulfilled by linear sets of rank three in PG(1, ¢°), ¢ > 2, for
n=3.

Proof A linear set L of rank three in PG(1, q3) is either a point, or a club, or a scattered
linear set.
If L is a point, then from

BU)=B(U'), dimU)=dim(U’) =2, (14)

one obtains U = U' = F» 3 4(L). This implies (A).

Assume now that L is a club. Denote by H its head, which is uniquely defined [4,6].
Assume that the subspaces U and U’ satisfy (14). Take a point P = {(vo, vi))gs € L\ H
andlet A = F3,4,(P)NU and X = F34(P) N U’. Then A = (a(vy, v1))g and X =
(B(vo, v1))g for some a, B € Iﬁ‘;, and the map y: ((xo, x1))gy +> (ﬁa’l(xo,xl))q is a
projectivity of PG(5, ¢g) belonging to the elementwise stabilizer of the Desarguesian spread,
and mapping A into X. Then X € UY NU'\ 33,4 (H). The element of PI'L(2, q3) associated
with y is the identity map. Denote by £1 and ¢; the lines UY N F> 3 4 (H) and U’ NF23,4(H),
respectively. If £ = €5, then UY = (£1, X) = U’. Otherwise let ¢’ be a line in U’ through
X such that £; N ¢, ¢ ¢'. The club L does not contain irregular sublines [6, Corollary 13],
[4, Proposition 5]. Applying this result to the g-order subline B(¢'), we have that a line £
in U exists such that B(¢) = B(¢'). The point X is on £. The lines ¢, £’ of PG(5, q) are
transversal lines to the regulus 73 3 ,(B(¢)), having a common point, whence £ = ¢'. This
implies UY = (¢, £1 N £3) = U’ and (A).

Up to projectivities there is a unique scattered linear set in PG(1, ¢3). To see this, fix a
g-order canonical subgeometry X of X* = PG(2, ¢°) and denote by 7 the set of points of
X* not contained in a line of X'. Denote by G the stabilizer of X' in the group of projectivities
of X*. Each scattered linear set of rank three of PG(1, ¢°) can be obtained as a projection
of X from a point in Z. In Theorem 2 the implication (ii) = (i) holds and hence the number
of projectively non-equivalent scattered linear sets of rank three in PG(1, ¢°) is at most the
number of orbits of G on the points of Z. It follows from [2, Proposition 3.1] that G is
transitive on Z and hence there is a unique scattered linear set of rank three in PG(1, ¢3).
An alternate proof can be obtained from [1], where the uniqueness of an exterior splash is
proved, taking into account that the exterior splashes dealt with in that paper are precisely
the scattered linear sets of rank three [10].

Assume that L is a scattered linear set of rank three, hence a linear set of pseudoregulus
type, and that (14) holds. Then U and U’ are planes contained in the hypersurface Q4
defined in [5, Egs. (7), (8)]. By [5, Corollary 101, U = Sjx, U’ = Sy for h, i’ € {1, 2},
N (k) = N(k') = 1. A collineation y satisfying (A) can be obtained in the form ¢ ¢(a, b) if
h =h', and Yo 0(a, b) if h # ', for suitable a, b € F 3. O
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