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Abstract Recently, linear codes constructed from defining sets have been extensively stud-
ied. It was shown that the linear codes may have a few nonzero weights or be optimal if
the defining sets are well chosen. The weight enumerators of these linear codes were also
presented. In this paper, we investigate the complete weight enumerators of some linear
codes constructed from the defining sets. As applications, we employ the explicit complete
weight enumerators of the linear codes to construct constant composition codes and sys-
tematic authentication codes. A new class of optimal constant composition codes and three
classes of asymptotically optimal systematic authentication codes are presented.
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1 Introduction

Let Fp be the finite field with p elements and let n be a positive integer, where p is an odd
prime. An [n, k, d] linear code C over Fp is a k-dimensional subspace of Fnp with minimum
distance d .

Now we recall the definition of the complete weight enumerator of a code [38,39].
Suppose that the elements of Fp are 0, 1, . . . , p − 1. The composition of a vector v =
(v0, v1, . . . , vn−1) ∈ F

n
p is defined to be comp(v) = (t0, t1, . . . , tp−1), where each ti = ti (v)

is the number of components v j (0 ≤ j ≤ n − 1) of v that are equal to i . Clearly, we have

p−1∑

i=0

ti = n.

Definition 1.1 Let C be a code over Fp and let A(t0, t1, . . . , tp−1) be the number of code-
words c ∈ C with comp(c) = (t0, t1, . . . , tp−1). Then the complete weight enumerator of C
is the polynomial

WC(z0, z1, . . . , z p−1) =
∑

c∈C
zt0(c)0 zt1(c)1 · · · ztp−1(c)

p−1

=
∑

(t0,t1,...,tp−1)∈Bn
A(t0, t1, . . . , tp−1)z

t0
0 z

t1
1 · · · ztp−1

p−1,

where Bn = {(t0, t1, . . . , tp−1) : 0 ≤ ti ≤ n,
p−1∑
i=0

ti = n}.

For binary linear codes, the complete weight enumerators are just their Hamming weight
enumerators. It is not difficult to see that the Hamming weight enumerators, which have
been extensively investigated, can follow from the complete weight enumerators. Constant
composition codes whose complete weight enumerators have one term have been intensively
studied and some families of optimal constant composition codes were presented [6,9,17].
Moreover, the complete weight enumerators are applied to study the Walsh transform of
monomial functions over finite fields [27] and compute the deception probabilities of cer-
tain authentication codes constructed from linear codes [16,20]. Hence it is interesting to
determine the complete weight enumerators of linear codes.

The complete weight enumerators of Reed-Solomon codes were studied by Blake and
Kith [4,29]. Kuzmin and Nechaev [30,31] presented the complete weight enumerators of the
generalized Kerdock code and related linear codes over Galois rings. The complete weight
enumerators of cyclic codes or linear codes over finite fields were studied in [1,2,17,32,34].
In this paper, we shall employ exponential sums andGalois theory to investigate the complete
weight enumerators of linear codes constructed from defining sets.

Let D = {d0, d1, . . . , dn−1} ⊂ Fq , where q = pm for a positive integerm. Let Trm denote
the trace function from Fq onto Fp . Then a linear code of length n over Fp can be defined by

CD = {
c(x) = (Trm(xd0),Trm(xd1), . . . ,Trm(xdn−1)) : x ∈ Fq

}
. (1.1)

We call D the defining set of the code CD . By definition, the dimension of CD is at mostm. In
fact, the dimension of the linear code CD is equal to the dimension of the Fp-linear subspace
of Fq spanned by D [15].
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Complete weight enumerators of some linear code 155

This construction was proposed by Ding et al. [10–15,21] to present linear codes with
a few nonzero weights and optimal codes when the sets D are well chosen. The weight
enumerators of these linear codes were also presented. The objective of this paper was to
investigate the complete weight enumerators of linear codes CD in the following three cases:

(1) D is a skew Hadamard difference set or Paley type partial difference set in Fq ;
(2) D = { f (x) : x ∈ Fq} \ {0}, where f (x) is a quadratic form over Fq ;
(3) D = {x ∈ F

∗
q : Trs(x ps+1) = 0}, where m = 2s is an even integer.

It should be remarked that the weight enumerators of CD had been determined [12,14] for
Cases (1) and (2). In this paper, the complete weight enumerators of the linear codes CD can
be explicitly presented in these three cases by using exponential sums and Galois theory.
Moreover, we employ the complete weight enumerators to construct constant composition
codes which are subcodes of the linear codes CD . Motivated by the original ideas in [16,20],
we also present some authentication codes with new parameters. A new class of optimal con-
stant composition codes and three classes of asymptotically optimal systematic authentication
codes are presented.

The rest of this paper is organized as follows. In Sect. 2, we present some preliminaries
which are veryuseful to get our results. InSects. 3, 4, and5,we investigate the completeweight
enumerators of the linear codes in the three cases. In Sect. 6, we employ the complete weight
enumerators of the linear codes to construct constant composition codes and systematic
authentication codes. In Sect. 7, we conclude this paper.

2 Preliminaries

Suppose that q = pm for an odd prime p and a positive integer m. For a ∈ Fq , an additive
character ψa of the finite field Fq can be defined as follows:

ψa : Fq → C
∗, ψa(x) = ζTrm (ax)

p ,

where ζp = e
2π

√−1
p is a primitive p-th root of unity and Trm denotes the trace function from

Fq onto Fp . It is clear that ψ0(x) = 1 for all x ∈ Fq . Then ψ0 is called the trivial additive
character of Fq . If a = 1, we call ψ := ψ1 the canonical additive character of Fq . It is easy
to see that ψa(x) = ψ(ax) for all a, x ∈ Fq . The orthogonal property of additive characters
which can be found in [33] is given by

∑

x∈Fq
ψa(x) =

{
q, if a = 0;
0, if a ∈ F

∗
q .

Let λ : F∗
q → C

∗ be a multiplicative character of F∗
q . Now we define the Gauss sum over

Fq by

G(λ) =
∑

x∈F∗
q

λ(x)ψ(x).

In general, the explicit determination of Gauss sums is a difficult problem. However, they
can be explicitly evaluated in a few cases [3,33,45]. We state a result on the quadratic Gauss
sums here.
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Lemma 2.1 [3,33] Suppose that q = pm and η is the quadratic multiplicative character of
Fq , where p is an odd prime and m ≥ 1. Then

G(η) = (−1)m−1
√

(p∗)m =
{

(−1)m−1√q, if p ≡ 1 (mod 4),
(−1)m−1(

√−1)m
√
q, if p ≡ 3 (mod 4),

where p∗ = (−1
p

)
p = (−1)

p−1
2 p.

A polynomial f over Fq is called a quadratic form if

f (x) =
∑

i∈I

∑

j∈J

ai j x
pi+p j

,

where ai j ∈ Fq and I, J ⊂ {0, 1, 2, . . . ,m − 1}. The rank of the quadratic form f (x) over
Fq is defined to be the codimension of the Fp-vector space

V = {
x ∈ Fq : f (x + z) − f (x) − f (z) = 0 for all z ∈ Fq

}
.

That is, |V | = pm−r , where r is the rank of f (x).

Lemma 2.2 [23,33] Let f (x) be a quadratic form of rank r over Fq . Then we have

∑

x∈Fq
ψ( f (x)) =

{±pm− r
2 , if p ≡ 1 (mod 4);

±(
√−1)r pm− r

2 , if p ≡ 3 (mod 4).

The following exponential sums will be employed later.

Lemma 2.3 [7] Let m = 2s be an even integer. Assume that a ∈ Fps and b ∈ Fpm . Then

∑

x∈Fq
ζTrs (ax ps+1)+Trm (bx)
p = −psζ

−Trs ( b
ps+1
a )

p .

Wewill also use somewell-known results on theGalois groupof the cyclotomicfieldQ(ζp)

[28]. The Galois group of Q(ζp) over Q is {σ j : 1 ≤ j ≤ p − 1}, where the automorphism
σ j of Q(ζp) is defined by

σ j (ζp) = ζ
j
p .

Moreover, the unique quadratic subfield ofQ(ζp) isQ(
√
p∗), where p∗ = (−1

p

)
p. ByLemma

2.1, we have

√
p∗ =

p−1∑

i=1

(
i

p

)
ζ ip.

Then

σ j (
√
p∗) =

p−1∑

i=1

(
i

p

)
ζ
i j
p =

(
j

p

) p−1∑

i=1

(
i j

p

)
ζ
i j
p =

(
j

p

)√
p∗. (2.1)
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3 The first case

In this section, we present the complete weight enumerator of the linear code CD when D is
a skew Hadamard difference set or Paley type partial difference set in Fq .

We assume that the reader is familiar with the basic theory of difference sets. A difference
set D in Fq is called skew Hadamard if Fq is the disjoint union of D, −D, and {0}, where
−D = {−d : d ∈ D}. A classical example of skew Hadamard difference sets is the Paley
difference set consisting of the nonzero squares of Fq when q ≡ 3 (mod 4). In fact, if D is
a skew Hadamard difference set in Fq , then we must have q ≡ 3 (mod 4). A subset D of

Fq , 0 /∈ D, is called a Paley type partial difference sets if D is a (q,
q−1
2 ,

q−5
4 ,

q−1
4 ) partial

difference sets. It is clear that q ≡ 1 (mod 4) if D is a Paley type partial difference sets in Fq .
For more details on the skew Hadamard difference sets and the Paley type partial difference
sets, we refer the readers to [11,37,43].

There is a well-known lemma in the theory of difference sets [24]. Below we denote∑
d∈D

ψ(d) by ψ(D) and {xd : d ∈ D} by xD for simplicity.

Lemma 3.1 [24] Let D be a subset of Fq with |D| = q−1
2 .

(1) If D
⋂ −D = ∅ and 0 /∈ D, then D is a skew Hadamard difference set in Fq if and only

if

ψa(D) = −1 ± √−q

2
for all a ∈ F

∗
q .

(2) If D = −D and 0 /∈ D, then D is a Paley type partial difference set in Fq if and only if

ψa(D) = −1 ± √
q

2
for all a ∈ F

∗
q .

Let D = {d0, d1, . . . , dn−1}, where n = q−1
2 . For a codeword c(x) of CD, x ∈ F

∗
q , and

c ∈ Fp , let Nx (c) denote the number of components Trm(xdi ) of c(x) which are equal to c,
i.e.,

Nx (c) = |{0 ≤ i ≤ n − 1 : Trm(xdi ) = c}|
= |{0 ≤ i ≤ n − 1 : Trm(xdi ) − c = 0}|.

By the orthogonal property of additive characters we have

Nx (c) =
n−1∑

i=0

1

p

∑

y∈Fp

ζ
y(Trm (xdi )−c)
p

= n

p
+ 1

p

n−1∑

i=0

p−1∑

j=1

σ j (ζ
Trm (xdi )−c
p )

= n

p
+ 1

p

p−1∑

j=1

σ j (ζ
−c
p )

n−1∑

i=0

σ j (ζ
Trm (xdi )
p )
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= n

p
+ 1

p

p−1∑

j=1

σ j (ζ
−c
p )σ j

(
n−1∑

i=0

ζTrm (xdi )
p

)

= n

p
+ 1

p

p−1∑

j=1

σ j (ζ
−c
p )σ j (ψ(xD)), (3.1)

where σ j (1 ≤ j ≤ p − 1) is the automorphism of Q(ζp) defined by σ j (ζp) = ζ
j
p .

Theorem 3.2 Let CD be the linear code defined by (1.1).

(1) Suppose that D is a skew Hadamard difference set in Fq . Then CD is a [ pm−1
2 ,m] linear

code and its complete weight enumerator is

z
pm−1

2
0 + pm − 1

2
z

pm−1−1
2

0

∏

c∈F∗
p

( c
p )=1

z
pm−1+p

m−1
2

2
c

∏

c∈F∗
p

( c
p )=−1

z
pm−1−p

m−1
2

2
c

+ pm − 1

2
z

pm−1−1
2

0

∏

c∈F∗
p

( c
p )=1

z
pm−1−p

m−1
2

2
c

∏

c∈F∗
p

( c
p )=−1

z
pm−1+p

m−1
2

2
c . (3.2)

(2) Suppose that D is a Paley type partial difference set in Fq . Then CD is also a [ pm−1
2 ,m]

linear code. If m is odd, then the complete weight enumerator of CD is given by (3.2). If
m is even, then the complete weight enumerator of CD is

z
pm−1

2
0 + pm − 1

2
z

(p
m
2 −1)(p

m
2 −1+1)

2
0 (z1z2 . . . z p−1)

pm−1−p
m
2 −1

2

+ pm − 1

2
z

(p
m
2 +1)(p

m
2 −1−1)

2
0 (z1z2 . . . z p−1)

pm−1+p
m
2 −1

2 .

Proof (1) If D is a skew Hadamard difference set in Fq , then q ≡ 3 (mod 4). Thus p ≡ 3
(mod 4) and m is odd. By Lemma 3.1, we have

ψ(xD) = −1 ± (
√
p∗)m

2
for all x ∈ F

∗
q ,

where p∗ = (−1
p

)
p = −p. If c ∈ F

∗
p , then

Nx (c) = n

p
+ 1

p

p−1∑

j=1

σ j (ζ
−c
p )σ j

(−1 ± (
√
p∗)m

2

)

= n

p
+ 1

p

p−1∑

j=1

ζ
− jc
p

−1 ± (
j
p )(

√
p∗)m

2
(by (2.1))

= n

p
+ 1

2p

⎛

⎝−
p−1∑

j=1

ζ
− jc
p ±

p−1∑

j=1

ζ
− jc
p

(
j

p

)
(
√
p∗)m

⎞

⎠
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= n

p
+ 1

2p

(
1 ± (

√
p∗)m

(−c

p

)√
p∗

)
(by Lemma 2.1)

= pm−1 ± ( c
p )(−p)

m−1
2

2
.

Now we are going to determine the frequency of each composition. Denote

n+ =
∣∣∣
{
x ∈ F

∗
q : ψ(xD) = −1 + √−q

2

} ∣∣∣,

n− =
∣∣∣
{
x ∈ F

∗
q : ψ(xD) = −1 − √−q

2

} ∣∣∣.

It is easy to check that
∑

x∈F∗
q

ψ(xD) =
∑

d∈D

∑

x∈F∗
q

ψ(xd) = −|D|.

Thus we have

n+ · −1 + √−q

2
+ n− · −1 − √−q

2
= −|D|.

Note that n+ + n− = q − 1 and Nx (0) = n − ∑
c∈F∗

p
Nx (c). Then n+ = n− = q−1

2 and we
get the complete weight enumerator of CD .

(2) The proof of (2) is very similar to that of (1) and we omit the details. ��
It should be remarked that the code CD and its weight enumerator had been presented

in [12] when D is a skew Hadamard difference set or Paley type partial difference set. By
Theorem 3.2, we can also obtain the weight enumerator of the code CD , which conforms to
the results presented in [12].

The complete weight enumerator of the linear code CD has been presented if D is a skew
Hadamard difference set or Paley type partial difference set. Let α be a primitive element of
Fq and let C be an irreducible cyclic code with check polynomial h(x), where h(x) is the
minimal polynomial of α−2 over Fp . In particular, if D = 〈α2〉, then D is a skew Hadamard
difference set or Paley type partial difference set. The complete weight enumerators of the
linear codes CD are the same as those of the irreducible cyclic codes C which were presented
in [2,32]. Thus Theorem 3.2 generalizes the results of [2,32] to some extent.

If D is amultiplicative subgroup in F∗
q , then determining the complete weight enumerators

of the linear codes CD is equivalent to determining the complete weight enumerators of
irreducible cyclic codes which were given in [32], so we will not consider them here. The
weight enumerators of the linear codes CD were investigated in [10,15,21] for more general
D which may not be a multiplicative subgroup of F∗

q .

4 The second case

In this section, we present the complete weight enumerator of the linear code CD when
D = { f (x) : x ∈ Fq} \ {0}, where f (x) is a quadratic form over Fq . We always assume that
the quadratic form f satisfies the following two conditions:

(I) f (0) = 0 and f (x) �= 0 for all x ∈ F
∗
q ;
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(II) f is e-to-1 on x ∈ F
∗
q , i.e., f (x) = u has either e solutions x ∈ F

∗
q or no solution for

each u ∈ F
∗
q , where e is a positive integer.

There are some quadratic forms f (x) over Fpm satisfying Conditions (I) and (II).

Example 4.1 (1) f (x) = x pl+1 is a quadratic form over Fpm , where l ≥ 0 is an integer. In
this case, e = gcd(pl + 1, pm − 1).

(2) f (x) = x10 − ux6 − u2x2 is a quadratic form over F3m , where u ∈ F3m and m is odd.
In this case, e = 2.

Let D = {d0, d1, . . . , dn−1}, where n = q−1
e . For a codeword c(x) of CD, x ∈ F

∗
q , and

c ∈ F
∗
p , let Nx (c) denote the number of components Trm(xdi ) of c(x) which are equal to c.

By (3.1) we similarly have

Nx (c) = n

p
+ 1

p

p−1∑

j=1

σ j (ζ
−c
p )σ j (ψ(xD))

= n

p
+ 1

p

p−1∑

j=1

σ j (ζ
−c
p )σ j

⎛

⎝1

e

∑

z∈F∗
q

ψ(x f (z))

⎞

⎠

= n

p
+ 1

ep

p−1∑

j=1

σ j (ζ
−c
p )σ j

⎛

⎝−1 +
∑

z∈Fq
ψ(x f (z))

⎞

⎠ ,

where σ j (1 ≤ j ≤ p − 1) is the automorphism of Q(ζp) defined by σ j (ζp) = ζ
j
p .

In general, the dimension k of CD is equal to m. When e ≥ √
q + 1, k may be less than

m. For example, if m is an even integer and f (x) = x p
m
2 +1, then we have e = √

q + 1 and
the dimension of the linear code CD is m

2 . However, the complete weight enumerator of CD
can be similarly given by replacing the frequencies. Without loss of generality, we assume
that the dimension of CD is m in this section.

Theorem 4.2 Let CD be the linear code defined by (1.1) and D = { f (x) : x ∈ Fq} \ {0},
where f (x) is a quadratic form over Fq of rank r satisfying Conditions (I) and (II).

(1) If r is odd, then the complete weight enumerator of CD is

z
pm−1

e
0 + pm − 1

2
z

pm−1−1
e

0

∏

c∈F∗
p

( c
p )=1

z
pm−1+p

m− r+1
2

e
c

∏

c∈F∗
p

( c
p )=−1

z
pm−1−p

m− r+1
2

e
c

+ pm − 1

2
z

pm−1−1
e

0

∏

c∈F∗
p

( c
p )=1

z
pm−1−p

m− r+1
2

e
c

∏

c∈F∗
p

( c
p )=−1

z
pm−1+p

m− r+1
2

e
c .

(2) If r is even, then the complete weight enumerator of CD is

z
pm−1

e
0 + pm − 1

2
z

pm−1+p
m− r

2 −p
m−1− r

2 −1
e

0 (z1z2 . . . z p−1)
pm−1−p

m−1− r
2

e

+ pm − 1

2
z

pm−1−p
m− r

2 +p
m−1− r

2 −1
e

0 (z1z2 . . . z p−1)
pm−1+p

m−1− r
2

e .
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Proof (1) If r is odd, then by Lemma 2.2 we have

∑

z∈Fq
ψ(x f (z)) = ±pm− r+1

2
√
p∗ for all x ∈ F

∗
q ,

where p∗ = (−1
p

)
p. If c ∈ F

∗
p , then

Nx (c) = n

p
+ 1

ep

p−1∑

j=1

σ j (ζ
−c
p )σ j (−1 ± pm− r+1

2
√
p∗)

= n

p
+ 1

ep

p−1∑

j=1

ζ
− jc
p

(
−1 ± pm− r+1

2

(
j

p

)√
p∗

)
(by (2.1))

= n

p
+ 1

ep

⎛

⎝−
p−1∑

j=1

ζ
− jc
p ± pm− r+1

2
√
p∗

p−1∑

j=1

ζ
− jc
p

(
j

p

)⎞

⎠

= n

p
+ 1

ep

(
1 ± pm− r+1

2
√
p∗

(−c

p

)√
p∗

)
(by Lemma 2.1)

= pm−1 ± ( c
p )pm− r+1

2

e
.

Now we are going to determine the frequency of each composition. Denote

n+ =
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ F
∗
q :

∑

z∈Fq
ψ(x f (z)) = pm− r+1

2
√
p∗

⎫
⎬

⎭

∣∣∣∣∣∣
,

n− =
∣∣∣∣∣∣

⎧
⎨

⎩x ∈ F
∗
q :

∑

z∈Fq
ψ(x f (z)) = −pm− r+1

2
√
p∗

⎫
⎬

⎭

∣∣∣∣∣∣
.

By Condition (I) we have
∑

x∈F∗
q

∑

z∈Fq
ψ(x f (z)) = q − 1 + (q − 1) · (−1) = 0.

Thus

n+ · pm− r+1
2 − n− · pm− r+1

2 = 0.

Note that n+ + n− = q − 1 and Nx (0) = n − ∑
c∈F∗

p

Nx (c). Then n+ = n− = q−1
2 and we

get the complete weight enumerator of CD .
(2) If r is even, then by Lemma 2.2 we have

∑

z∈Fq
ψ(x f (z)) = ±pm− r

2 ∈ Q for all x ∈ F
∗
q .

Thus σ j (
∑
z∈Fq

ψ(x f (z))) = ±pm− r
2 for all j = 1, 2, . . . , p − 1. The remainder of the proof

is very similar to that of (1) and we omit it here. ��
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162 C. Li et al.

We remark that the weight enumerator of CD has been presented in [12]. By Theorem
4.2, we can also obtain the weight enumerator of the code CD , which conforms to the results
presented in [12].

5 The third case

In this section, we present the complete weight enumerator of the linear code CD when
D = {z ∈ F

∗
pm : Trs(z ps+1) = 0}, where m is even and m = 2s.

We begin to determine the length of the linear code CD . By the orthogonal property of
additive characters we have

n = |{z ∈ F
∗
q : Trs(z ps+1) = 0}|

=
∑

z∈F∗
q

1

p

∑

y∈Fp

ζ
yTrs (z p

s+1)
p

= q − 1

p
− p − 1

p
+ 1

p

∑

y∈F∗
p

∑

z∈Fq
ζ
yTrs (z p

s+1)
p

= q − p

p
+ 1

p

p−1∑

j=1

σ j

⎛

⎝
∑

z∈Fq
ζTrs (z

ps+1)
p

⎞

⎠

= q − p

p
+ 1

p

p−1∑

j=1

σ j (−ps) (by Lemma 2.3)

= (ps + 1)(ps−1 − 1), (5.1)

where σ j (1 ≤ j ≤ p − 1) is the automorphism of Q(ζp) defined by σ j (ζp) = ζ
j
p .

For a codeword c(x) of CD, x ∈ F
∗
q , and c ∈ F

∗
p , let Nx (c) denote the number of

components Trm(xd) of c(x) which are equal to c when d runs over D. Then

Nx (c) = |{z ∈ F
∗
q : Trs(z ps+1) = 0 and Trm(xz) = c}|

=
∑

z∈F∗
q

⎛

⎝ 1

p

∑

y1∈Fp

ζ
y1 Trs (z p

s+1)
p

⎞

⎠

⎛

⎝ 1

p

∑

y2∈Fp

ζ
y2(Trm (xz)−c)
p

⎞

⎠

= q − 1

p2
+ 1

p2
∑

y1∈F∗
p

∑

z∈F∗
q

ζ
y1Trs (z p

s+1)
p + 1

p2
∑

y2∈F∗
p

∑

z∈F∗
q

ζ
y2(Trm (xz)−c)
p

+ 1

p2
∑

y1∈F∗
p

∑

y2∈F∗
p

∑

z∈F∗
q

ζ
y1Trs (z p

s+1)+y2(Trm (xz)−c)
p . (5.2)

Theorem 5.1 Let CD be the linear code defined by (1.1) and D = {z ∈ F
∗
pm : Trs(z ps+1) =

0}, where m is even and m = 2s for an integer s > 1. Then CD is a [(ps + 1)(ps−1 − 1),m]
linear code and its complete weight enumerator is

z(p
s+1)(ps−1−1)

0 + (ps + 1)(ps−1 − 1)z p
m−2−ps+ps−1−1

0 (z1z2 . . . z p−1)
pm−2

+ (ps + 1)(ps − ps−1)z p
m−2−1

0 (z1z2 . . . z p−1)
pm−2−ps−1

.
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Proof Note that n = (ps +1)(ps−1 −1) > ps +1. Then the dimension of CD ism. By (5.1)
we have

∑

y1∈F∗
p

∑

z∈F∗
q

ζ
y1Trs (z p

s+1)
p = −(p − 1)(ps + 1).

It is easily checked that

∑

y2∈F∗
p

∑

z∈F∗
q

ζ
y2(Trm (xz)−c)
p =

p−1∑

j=1

ζ
− jc
p σ j

⎛

⎝
∑

z∈F∗
q

ζTrm (xz)
p

⎞

⎠ = 1.

We are now ready to compute the third sum of (5.2).

∑

y1∈F∗
p

∑

y2∈F∗
p

∑

z∈F∗
q

ζ
y1Trs (z p

s+1)+y2(Trm (xz)−c)
p

=
∑

y2∈F∗
p

ζ
−y2c
p

∑

y1∈F∗
p

∑

z∈F∗
q

ζ
Trs (y1z p

s+1)+Trm (y2xz)
p

=
∑

y2∈F∗
p

ζ
−y2c
p

∑

y1∈F∗
p

⎛

⎝−1 +
∑

z∈Fq
ζ
Trs (y1z p

s+1)+Trm (y2xz)
p

⎞

⎠

=
∑

y2∈F∗
p

ζ
−y2c
p

⎛

⎝−(p − 1) − ps
∑

y1∈F∗
p

ζ
−Trs (

(y2x)
ps+1

y1
)

p

⎞

⎠ (by Lemma 2.3)

= −(p − 1)
∑

y2∈F∗
p

ζ
−y2c
p − ps

∑

y2∈F∗
p

ζ
−y2c
p

∑

y1∈F∗
p

ζ
−y1 y22 Trs (x

ps+1)
p

=

⎧
⎪⎪⎨

⎪⎪⎩

p − 1 − ps(p − 1)
∑

y2∈F∗
p

ζ
−y2c
p = (p − 1)(ps + 1), if Trs(x ps+1) = 0;

p − 1 + ps
∑

y2∈F∗
p

ζ
−y2c
p = p − 1 − ps, if Trs(x ps+1) �= 0.

Then, for c ∈ F
∗
p , by (5.2) we have

Nx (c) =
{
pm−2, if Trs(x ps+1) = 0;
pm−2 − ps−1, if Trs(x ps+1) �= 0.

Now we are going to determine the frequency of each composition. It is well-known that
the norm function N : Fp2s → Fps defined by N (x) = x ps+1 is (ps + 1)-to-1 except for
N (0) = 0 and Trs : Fps → Fp is ps−1-to-1. Then

|{x ∈ F
∗
pm : Trs(x ps+1) = 0}| = (ps + 1)|{x ∈ F

∗
ps : Trs(x) = 0}| = (ps + 1)(ps−1 − 1)

and
∣∣{x ∈ F

∗
pm : Trs(x ps+1) �= 0

}∣∣ = (ps + 1)(ps − ps−1).

Therefore, we can get the complete weight enumerator of CD and this completes the proof. ��
From Theorem 5.1, we can see that the values of Nx (c) are independent of c ∈ F

∗
p . In

addition, the weight enumerator of CD can be determined and CD is a two-weight linear code.
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It is clear that Lemma 2.3 plays a key role in the proof of Theorem 5.1. In fact, the
exponential sums determined by Coulter [7] are more general. It will be nice if the complete
weight enumerators of more linear codes CD can be given by using the general exponential
sums.

6 Applications

In this section,we employ the completeweight enumerators of the linear codesCD to construct
constant composition codes and systematic authentication codes.

6.1 Constant composition codes

Let S = {s0, s1, . . . , sp−1} be an alphabet of size p, where p is a positive integer (not
necessarily a prime). An (n, M, d, (t0, t1, . . . , tp−1), p) constant composition code over S
is a subset C ⊂ Sn of size M and minimum Hamming distance d such that each codeword
has the same composition (t0, t1, . . . , tp−1). Thus the complete weight enumerator of the
constant composition code has only one term.

The constant composition codes have many applications in communications engineer-
ing [6,40]. Many elegant methods are proposed to construct constant composition codes
with excellent parameters in recent years [5,6,8,9,16,18,19,22,25,26,34–36,44]. The LFVC
bound of constant composition codes is described in the following lemma.

Lemma 6.1 [36] If nd − n2 + (t20 + t21 + · · · + t2p−1) > 0, then

M ≤ nd

nd − n2 + (t20 + t21 + · · · + t2p−1)
.

Now we begin to construct several constant composition codes which are subcodes of
the linear codes CD . A new class of optimal constant composition codes with respect to the
LFVC bound are presented. In fact, every term of the complete weight enumerators gives a
constant composition code.

Let CD be a linear code defined by (1.1) and D = { f (x) : x ∈ Fq} \ {0}, where f (x) is
a quadratic form of rank r over Fq satisfying Conditions (I) and (II). By Theorem 4.2, we
can get the following constant composition codes C over Fp which contain a new class of
optimal constant composition codes with respect to the LFVC bound.

Theorem 6.2 Let p be an odd prime and m a positive integer. There exist the following
(n, M, d, (t0, t1, . . . , tp−1), p) constant composition codes C.

(1) n = pm−1
e , M = pm−1

2 , d = (p−1)pm−1

e , t0 = pm−1−1
e , tc = pm−1+p

m−1
2

e for
( c
p

) = 1,

and tc = pm−1−p
m−1
2

e for
( c
p

) = −1, where m is odd. This is an optimal constant
composition code with respect to the LFVC bound.

(2) n = pm−1
e , M = pm−1

2 , d = (p−1)(pm−1−pm−1− r
2 )

e , t0 = pm−1+pm− r
2 −pm−1− r

2 −1
e , and

tc = pm−1−pm−1− r
2

e for c �= 0, where r is even.

(3) n = pm−1
e , M = pm−1

2 , d = (p−1)(pm−1−pm−1− r
2 )

e , t0 = pm−1−pm− r
2 +pm−1− r

2 −1
e , and

tc = pm−1+pm−1− r
2

e for c �= 0, where r is even.
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Proof We can immediately get (2) and (3), so we only need to prove (1). If r is odd, by
Theorem 4.2, an (n, M, d, (t0, t1, . . . , tp−1), p) constant composition code C over Fp can be

given, where n = pm−1
e , M = pm−1

2 , d = (p−1)pm−1

e , t0 = pm−1−1
e , tc = pm−1+pm− r+1

2

e for
( c
p

) = 1, and tc = pm−1−pm− r+1
2

e for
( c
p

) = −1. In this case, we have nd − n2 + (t20 + t21 +
· · · + t2p−1) > 0 and

nd

nd − n2 + (t20 + t21 + · · · + t2p−1)
= pm − 1

pm−r + 1
.

Then

M = pm − 1

2
≤ pm − 1

pm−r + 1

by Lemma 6.1, so pm−r + 1 ≤ 2 and this leads to m = r . Thus we can get the desired
conclusions and this completes the proof. ��

By the proof of Theorem 6.2, if r is odd, thenm = r and the complete weight enumerator
of the linear code CD presented in Theorem 4.2 is

z
pm−1

e
0 + pm − 1

2
z

pm−1−1
e

0

∏

c∈F∗
p

( c
p )=1

z
pm−1+p

m−1
2

e
c

∏

c∈F∗
p

( c
p )=−1

z
pm−1−p

m−1
2

e
c

+ pm − 1

2
z

pm−1−1
e

0

∏

c∈F∗
p

( c
p )=1

z
pm−1−p

m−1
2

e
c

∏

c∈F∗
p

( c
p )=−1

z
pm−1+p

m−1
2

e
c .

Ding and Yin [17] presented a class of optimal constant composition codes with following

parameters: n = pm−1
2 , M = pm−1

2 , d = (p−1)pm−1

2 , t0 = pm−1−1
2 , tc = pm−1+p

m−1
2

2 for
( c
p

) = 1, and tc = pm−1−p
m−1
2

2 for
( c
p

) = −1, wherem is odd. In addition, the known optimal
constant composition codes were shown in a table [22]. Therefore, Theorem 6.2 generalizes
the results of [17] and gives a new class of optimal constant composition codes.

If D is a skew Hadamard difference set or Paley type partial difference set in Fq and CD
is a linear code defined by (1.1), then the constant composition codes C over Fp which are
subcodes of CD can also be given by Theorem 3.2. In fact, the parameters of these codes are
contained in Theorem 6.2 and we omit them here.

6.2 Systematic authentication codes

A systematic authentication code is a four-tuple (S, T ,K, {Eκ : κ ∈ K}), where S is the
source state space associated with a probability distribution, T is the tag space, K is the key
space, and Eκ : S → T is called an encoding rule. For more details on the authentication
codes, we refer the readers to [16,20,42]. Belowwe denote the maximum success probability
of the impersonation attack and the substitution attack by PI and PS , respectively. For the
systematic authentication codes, there are two lower bonds on PI and PS [16,41]:

PI ≥ 1

|T | and PS ≥ 1

|T | .
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It is desired that PI and PS must be as small as possible.
Let C be an [n, k, d] linear code over Fp and let ci = (ci,0, ci,1, . . . , ci,n−1) be a codeword

of C, 0 ≤ i ≤ pk − 1. Define a systematic authentication code as follows:

(S, T ,K, {Eκ : κ ∈ K}) = (Zpk ,Fp,Zn × Fp, {Eκ : κ ∈ K}), (6.1)

where Eκ (s) = cs,κ1 + κ2 for any s ∈ S and κ = (κ1, κ2) ∈ K.

Lemma 6.3 [20] For the authentication code of (6.1), we have

PI = 1

p
and PS = max

0 �=c∈C max
u∈Fp

Nc(u)

n
,

where Nc(u) denotes the number of components of c that are equal to u.

It is clear that the values of PI and PS are closely related to the complete weight enumera-
tors of linear codes. There are three classes of authentication codes which are obtained from
Theorems 3.2, 4.2, and 5.1 directly. By Lemma 6.3, we easily get the following result.

Theorem 6.4 If pm is large enough, thenwe have PI = 1
p and PS ≈ 1

p for all authentication
codes obtained from Theorems 3.2, 4.2, and 5.1. Therefore, these authentication codes are
asymptotically optimal.

7 Concluding remarks

In this paper, we used exponential sums and Galois theory to investigate the complete weight
enumerators of the linear codes constructed from the defining sets D in the three cases.
Furthermore, the explicit complete weight enumerators of the linear codes were employed
to construct constant composition codes and systematic authentication codes. We obtained a
new class of optimal constant composition codes and three classes of asymptotically optimal
systematic authentication codes.
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