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Abstract Iterated Even–Mansour (IEM) scheme consists of a small number r of fixed n-bit
permutations separated by r + 1 round-key additions. When the permutations are public,
independent and random, and a common round key derived from the master key by an
idealized non-invertible key derivation (KD) function is used, 5 rounds was proved sufficient
to obtain (full) indifferentiability from ideal ciphers by Andreeva et al. (CRYPTO 2013). The
KD can be a randomoracle, or aDavies-Meyer construction from a randompermutation. This
work considers such IEM with non-invertible KD in the sequential indifferentiability model
ofMandal et al. (TCC 2012). As results, this work shows that in both cases mentioned before,
3 rounds yields sequential indifferentiability from ideal ciphers. AsAndreeva et al. has proved
3-round IEM with idealized invertible key derivations not sequentially indifferentiable (by
exhibiting an attack), a definitive separation between IEMwith invertible key derivations and
IEMwith non-invertible key derivations is established. This is themost important implication
of the results in this work.
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1 Introduction

Even–Mansour scheme (EM) was proposed in 1991 [21] in an attempt to build the simplest
possible blockcipher, using a single permutation and twowhitening keys.GeneralizingEMby
iterating multiple rounds, the iterated Even–Mansour cipher (IEM) is obtained. More clearly,
the r -round iterated Even–Mansour IEMr consists of r fixed n-bit permutations P1, . . . , Pr
separated by round-key addition:

IEMr (K ,m) = kr ⊕ Pr (. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕ m)) . . .).

IEM is also known as key-alternating cipher, which is the basic structure of the popular
substitution-permutation network (SPN) blockciphers such as AES [15], Serpent [1], and
PRESENT [7].

The provable security of IEM is analyzed in the Random Permutation Model (RPM), in
which the underlying permutations are modeled as public random ones, and the adversary is
only given black-box oracle access to them. Such proofs are viewed as evidence for the non-
existence of generic attacks, although idealized models are actually uninstantiable: please
see Canetti, Goldreich, Halevi (CGH) [9], Maurer, Renner, and Holenstein (MRH) [30]
on random oracle model (ROM), Black [6] on ideal cipher model (ICM). In RPM, Even
and Mansour [22] proved the basic EM secure up to O(2n/2) queries when the keys are
secret, and this bound was later proved tight (Daemen [14], Biryukov and Wagner [4], and
finally Dunkelman et al. [20]). Since then, the community has witnessed a soar of studies
on IEM—especially in the recent half decade. Such studies cover minimization (Dunkelman
et al. [20] and Chen et al. [11]), pseudorandomness (Bogdanov et al. [8], Steinberger [31],
Lampe et al. [28], and finally Chen and Steinberger [10]), related-key security (Farshim and
Procter [23] and Cogliati and Seurin [12]), and attacks (for example, a series of works of
Dinur, Dunkelman, etc. [16–18,20]).

Indifferentiability of IEM Several recent works considered IEM in MRH’s indifferen-
tiability model [30] and Mandal et al.’s sequential-indifferentiability model [29] (seq-
indifferentiability; please see Sect. 2 for the formal definition) of IEM. The motivation is
to prove security against known-key attacks (due to Knudsen and Rijmen [25]) and chosen-
key attacks (due to Biryukov et al. [5]), in which the adversary knows and chooses keys
and tries to exhibit non-randomness. Briefly speaking, indifferentiability of IEM means that
IEM can be as secure as an ideal cipher. Whereas seq-indifferentiability of IEM means
that IEM is correlation intractable [9],1 so that any attack (even a chosen-key one) that
exploits relations between the inputs and outputs of IEM cannot succeed. Here the ideal
cipher IC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n is taken randomly from the set of (2n !)2κ

blockciphers with key space {0, 1}κ and plaintext and ciphertext space {0, 1}n .
In this field, Andreeva et al. [2] showed that IEM5 is indifferentiable from IC[κ, n], if a

common round key derived by a κ-to-n-bit randomoracle is used (we denote this combination
of EMwith aRandomoracle byEMR). IEM5 without randomoraclewas also considered, and
the conclusion was that instantiating the key derivation (KD) by a Davies-Meyer construction
K D(K ) = P(K ) ⊕ K (denote by EMDP such entirely Permutation-based Even–Mansour)
preserves indifferentiability. On the other hand, Lampe, Seurin [26] and Cogliati, Seurin [12]
concentratedon single-keyEven–Mansour (SEM) inwhich theuser-providedn-bitmaster key
is directly used at each round. They two respectively proved that SEM12 is indifferentiable,

1 It is hard to find an input-output pair that satisfies any evasive relation, namely any relation that is hard
to satisfy for an ideal cipher. All the relevant formal definitions are deferred to Sect. 2 to keep Introduction
simple and short.

123



Sequential indifferentiability of 3-round Even–Mansour 111

and SEM4 is seq-indifferentiable. Results on SEMcan be easily generalized to the case where
each round key is derived by an efficiently invertible permutation, so that they are closer to
most of the concrete designs.

1.1 The problem, and our motivation

With the results mentioned above, a natural question is whether IEM really benefits from
cryptographically strong assumptions about the KD. It seems like that the result on SEM [26]
is worse than the result on EMR [2] in the sense that the former worked with more rounds,
used a simulator which has a worse complexity, while achieved looser security bounds—so
that stronger KDs are really beneficial. But it should be noted that there is no evidence for the
tightness of the two results.2 The (full) indifferentiability analyses of idealized blockciphers
are usually very complicated and (possibly) not tight. Hence there is no definitive separation.

In related-key setting, Cogliati and Seurin [12] showed that for IEM with linear KDs, 3
rounds are needed to resist xor-induced related-key attacks, whereas for IEMwith non-linear
KDs, 1 round is already secure. This sheds light on the importance of KD, but this did not
address the problem in the chosen-key setting. Moreover, in the indifferentiability setting,
it seems like that IEM with non-linear KD does not deviate from IEM with no KD, if the
non-linear KD is invertible [26]. Therefore, whether KDs are important in the context of
chosen-key attacks or even indifferentiability remains unclear.

Turn to seq-indifferentiability In a departure from full indifferentiability, we note that for
IEM3, if the KD is invertible, then there is a sequential distinguisher3 exhibited by Andreeva
et al. [2] even if the KD is idealized (please see Appendix 2). [2] also exhibited a distinguisher
against a large range of simulators for EMR3—but this distinguisher is not sequential. By
this, it seems like that EMR3 is seq-indifferentiable; if this can be proved, then the knowledge
above definitively separates invertible KDs from non-invertible ones in the context of Even–
Mansour. So we have the question:

Is EMR3 seq-indifferentiable?

1.2 Our contributions

We positively answer the question, i.e. we prove that EMR3 is seq-indifferentiable from
IC[κ, n]. As a sequential distinguisher on EMR2 has been exhibited by Andreeva et al. [2],
the number of rounds is optimal. As discussed before, together with a distinguisher in [2],
this work successfully establishes the first definitive separation between invertible and non-
invertible KDs. We view this as the most important implication of this work.

We note that sequential indifferentiability is much easier to handle than the full indiffer-
entiability. Additionally, the studies on sequential indifferentiability usually lead to optimal
results (with respect to the number of rounds required; e.g. Feistel [29], SEM [12]); this helps
a lot in establishing the separation.

The problem of replacing the random oracle in EMR is attractive, for two reasons: theoret-
ically speaking, such schemes are entirely permutation-based (and are “natural”, compared

2 A similar comment can be found in [26], at the top of p. 451: it may well be that, say, the iterated Even–
Mansour cipher with four rounds is indifferentiable from an ideal cipher, independently of the cryptographic
strength of the key schedule.
3 Distinguishers that query the underlying primitives to find evasive relation on the inputs and outputs of the
construction. A formal definition is in Sect. 2.
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112 C. Guo, D. Lin

to the transition chain RP
(possibly) by Sponge [3]−−−−−−−−−−−−−→ RO

by Feistel [13]−−−−−−−−→ IC); in practice, non-
invertible primitives with good cryptographic properties are usually harder to design than
their invertible counterparts. This is why EMDP was considered by Andreeva et al. [2]. With
these in mind, we also consider EMDP in seq-indifferentiability model. Unfortunately, the
un-keyed Davies-Meyer construction K D(K ) = P(K )⊕ K is not seq-indifferentiable from
a random function. This forces us to prove from scratch. Fortunately, most part of the proof
for EMR3 can be retained, and we only have to do a few modifications. By this, we prove
the second main result of this work: EMDP3 is seq-indifferentiable from IC[n, n].
1.3 Related works

StrongKD is crucial for some kind of Feistel ciphers: due to the complementation property, in
Feistel ciphers, if each round key is xored before each round function (named key-alternating
Feistel ciphers byLampe andSeurin [27]), then the round keys have to be derived in somevery
complicatedways (which is still unknownat current time, cf. [24]) to obtain indifferentiability.
Moderately strongKD is also crucial for Even–Mansour in single-key setting: Chen et al. [11]
showed that for IEM2 from a single random permutation, if all the three round keys are
common, then it is only pseudorandom up to O(2n/2) queries; whereas if the first and third
round keys are common while the second round key is derived from the first round key
by a linear orthomorphism, then it is pseudorandom up to O(22n/3) queries. Finally, we
already mentioned the three results on (seq-)indifferentiability of IEM [2,12,26]. Cogliati
and Seurin’s presentation [12] is very simple and clean, therefore we follow [12] in our
presentation to improve the quality.

1.4 Organization

Section 2 supplies necessary preliminaries and notations. Then Sects. 3 and 4 presents the
seq-indifferentiability proofs for EMR3 (3-round Even–Mansour with a Random oracle key
schedule) and EMDP3 (3-round Even–Mansour which takes a Davies-Meyer construction
from a randomPermutation as key schedule) respectively. Finally, Sect. 5 concludes. Tomake
the main section simpler and clearer, when the proof of a lemma is obtained by standard
techniques and does not reveal the features of EMR, then it will be deferred to the Appendix.

2 Preliminaries

2.1 Notation for master/round keys

Throughout this paper, all the master keys are denoted by the capital letter K , while all the
round keys are denoted by the lower-case letter k (with superscripts or subscripts, whenever
necessary).

2.2 Ideal primitives and their interfaces

A random oracle is an ideal primitive which returns a random fixed-length string if x was
never queried, or the same answer as before if x was previously queried. The random oracles
considered in this work map κ-bit inputs to n-bit outputs, and is denoted by H. We assume
that the interface of H is H.H(K ) := {0, 1}κ → {0, 1}n .
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Sequential indifferentiability of 3-round Even–Mansour 113

An n-bit random permutation is a permutation that is uniformly selected from all (2n)!
possible choices. In this work, the notations P and � are used to denote tuple of independent
random permutations. More clearly, P = (P1, P2, P3) is to be used by EMR3, while � =
(�0,�1,�2,�3) is to be used by EMDP3. We let such tuples provide unified interfaces,
i.e. P provides P.P(i, δ, z) := {1, 2, 3} × {+,−} × {0, 1}n → {0, 1}n , and � provides
�.�(i, δ, z) := {0, 1, 2, 3} × {+,−} × {0, 1}n → {0, 1}n (i is the index, δ ∈ {+,−}
indicates direct query or inverse query, and z ∈ {0, 1}n is the queried value).

Ideal ciphers have been mentioned before. In the rest part, depending on the context, the
notation E has two different meanings: in Sect. 3, E refers to IC[κ, n], and the interface is
E.E(δ, K , z) := {+,−} × {0, 1}κ × {0, 1}n → {0, 1}n ; in Sect. 4, E refers to IC[n, n], and
the interface is E.E(δ, K , z) := {+,−} × {0, 1}n × {0, 1}n → {0, 1}n .
2.3 Sequential indifferentiability, and correlation intractability

To formally define seq-indifferentiability, we first specify a restricted distinguisher class,
namely the sequential distinguishers (seq-distinguisher) [29]. For concreteness, consider the
idealized blockcipher EMRH,P from H and P. A distinguisher DEMRH,P,(H,P) with oracle
access to the cipher and the underlying primitives is trying to distinguish EMRH,P from
IC. Then, D is sequential if it issues queries in a strict order; more clearly, D works in the
following steps: (1) queries the underlying primitive (H, P) as it wishes; (2) queries the cipher
EMRH,P as it wishes; (3) outputs, and cannot query (H, P) again in this phase. This order
is illustrated by the red numbers in Fig. 2. In this setting, if there is a simulator SIC that has
access to IC and can “mimic” (H, P) such that in the view of any sequential distinguisher D,
the system (IC, SIC) is indistinguishable from the system (EMRH,P, (H, P)), then EMRH,P

is sequentially indifferentiable (seq-indifferentiable) from IC.
To give a formal definition, we first define a notion total oracle query cost of D, which

refers to the total number of queries received by (H, P) (from D or EMRH,P)when D interacts
with (EMRH,P, (H, P)) [29]. Then, a definition of seq-indifferentiability due to Cogliati and
Seurin [12] is as follows.

Definition 1 (Seq-indifferentiability) An idealized blockcipher EMRH,P with oracle access
to ideal primitives (H, P) is said to be statistically and strongly (q, σ, t, ε)-seq-indifferentiable
from an ideal cipher IC if there exists a simulator SIC such that for any sequential distin-
guisher D of total oracle query cost at most q , SIC issues at most σ queries to IC and runs
in time at most t and it holds

∣
∣
∣PrH,P[DEMRH,P,(H,P) = 1] − PrIC[DIC,SIC = 1]

∣
∣
∣ ≤ ε

If D makes q ′ queries, then its total oracle query cost is poly(q ′). As a concrete example,
the cipher EMRH,P

3 makes c = 4 queries to (H, P) to answer any query it receives, and if D

makes qe queries to EMRH,P
3 and qp queries to (H, P), then the total oracle query cost of D

is qp + 4qe = poly(qp + qe) = poly(q ′).
Seq-indifferentiability—although weaker than indifferentiability [30]—is already suffi-

cient to imply correlation intractability in the idealized model (proved in [29] and [12]). The
notion correlation intractability was introduced by Canetti et al. [9] to capture the feature
that there is no exploitable relation between the inputs and outputs of the function ensembles
in question. It was transposed to idealized models to guarantee similar feature on idealized
constructions (e.g. EMRH,P). To formally define this notion, we first give the definition
(from [12]) of evasive relation.
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114 C. Guo, D. Lin

Definition 2 (Evasive Relation) A relation R over pairs of binary sequences is said (q, ε)-
evasive with respect to an ideal cipher IC with n-bit blocks, if for any oracle Turing machine
M issuing at most q oracle queries, it holds

Pr [(x1, . . . , xm) ← MIC(1n) : ((x1, . . . , xm), (IC(x1), . . . , IC(xm))) ∈ R] ≤ ε.

We then define correlation intractability itself.

Definition 3 (Correlation Intractability) Let R be an m-ary relation. Then, an idealized
blockcipher EMRH,P with oracle access to ideal primitives (H, P) is said to be (q, ε)-
correlation intractable with respect to R, if for any oracle Turing machine M issuing at
most q oracle queries, it holds

Pr [(x1, . . . , xm) ← MH,P(1n)

:
(

(x1, . . . , xm),
(

EMRH,P(x1), . . . ,EMRH,P(xm)
))

∈ R] ≤ ε.

Seq-indifferentiability implies correlation intractability:

Theorem 1 (Theorem 4 in [12]) For an idealized blockcipher EMRH,P which has oracle
access to ideal primitives (H, P) and makes at most c queries to H and P in total on any
input, if EMRH,P is (q + cm, σ, ε)-seq-indifferentiable from IC, then for any m-ary relation
R which is (σ + m, εR)-evasive with respect to IC, EMRH,P is (q, ε + εR)-correlation
intractable with respect to R.

When the primitive implemented by the seq-indifferentiable construction is stateless,
seq-indifferentiability implies public indifferentiability—indifferentiability from the target
primitive in the setting where all the queries to it are public (a notion due to Yoneyama et
al. [32] and Dodis et al. [19]).

3 Sequential indifferentiability of EMR3

The first main result of this work is formally stated as follows.

Theorem 2 Assuming that P = (P1, P2, P3) is a tuple of three independent random permu-
tations and H is a κ-to-n-bit random oracle, then for any integer q such that q2 ≤ 2n/4, the
3-round Even–Mansour with n-bit blocks and κ-bit keys

EMR3(K ,m) = k ⊕ P3(k ⊕ P2(k ⊕ P1(k ⊕ m)))

where k = H(K ) is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from an ideal

cipher IC[κ, n], where σ = q2, t = O(q2), and ε ≤ 18q4

2n = O(
q4

2n ).

Note that Cogliati and Seurin’s proof showed that SEM4 is (q, q2, O(q2), 68q4

2n )-seq-
indifferentiable from IC[n, n] ([12], Theorem 5). The two tuples of bounds (Cogliati and
Seurin’s and ours) are of the same order of magnitude.

To prove it, we: (1) build a simulator (Sect. 3.1); (2) introduce an intermediate system
used in the proof (Sect. 3.2); (3) bound the complexity of the simulator (Sect. 3.3); (4) prove
that the simulator simulates well (Sect. 3.4); and (5) briefly discuss the interpretation (Sect.
3.5).
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Sequential indifferentiability of 3-round Even–Mansour 115

3.1 Simulator for EMR3

Randomness and interfaces We borrow a variant of Holenstein et al.’s explicit randomness
technique [13] from [12], that is, letting the simulator S have explicit access to H and P
and query them to obtain necessary random values. We denote by SH,P the simulator for
EMR3 which accesses H and P. SE,H,P provides exactly the same interfaces as H and P,
i.e. S.H(K ), and S.P(i, δ, z). As argued [12], using such explicit randomness is actually
equivalent to lazily sampling it before the experiments.

Maintaining history Internally, S maintains three sets P1, P2 and P3 that have entries in the
form of (x, y) for x, y ∈ {0, 1}n , to keep track of previously answered permutation queries;
and another set K Set that has entries in the form of (K , k) for K ∈ {0, 1}κ and k ∈ {0, 1}n ,
to keep track of the key derivation queries. Additionally, S will ensure that for any z ∈ {0, 1}n
and i ∈ {1, 2, 3}, there is at most one z′ ∈ {0, 1}n such that (z, z′) ∈ Pi , and vice versa;
also, for any k ∈ {0, 1}n , there is at most one K ∈ {0, 1}κ such that (K , k) ∈ K Set .4 If such
consistency cannot be kept at some point, S aborts (will be further discussed). By this, the sets
{P} = {P1, P2, P3} are expected to define three partial permutations, and we denote by P+

i
(P−

i , resp.) the (time-dependent) set of all n-bit values x (y, resp.) satisfying that ∃z ∈ {0, 1}n
s.t. (x, z) ∈ Pi ((z, y) ∈ Pi , resp.); denote by P+

i (x) (P−
i (y), resp.) the corresponding value

of z. Similarly for K Set : K Set+ is the set of all κ-bit values K such that ∃k ∈ {0, 1}n s.t.
(K , k) ∈ K Set , and K Set+(K ) is the corresponding value of k; K Set− is the set of all n-bit
values k such that ∃K ∈ {0, 1}κ s.t. (K , k) ∈ K Set , and K Set−(k) the corresponding value
of K .

To simplify some arguments, we let SE,H,P maintain a set ESet that has entries in the
form of (K , x, y) for K ∈ {0, 1}κ , and x, y ∈ {0, 1}n to keep track of the queries it has
issued to E. Similarly to the 4 sets mentioned before, the notation ESet+ (ESet−, resp.)
is used to denote the sets (K , x) ∈ {0, 1}κ × {0, 1}n ((K , y) ∈ {0, 1}κ × {0, 1}n resp.)
such that ∃y ∈ {0, 1}n (∃x ∈ {0, 1}n , resp.) s.t. (K , x, y) ∈ ESet . Finally, for any set
Set ∈ {P1, P2, P3, K Set, ESet}, denote by |Set | the number of entries in Set .

For δ ∈ {+,−}, we denote δ the opposite of δ. For example, when δ = +, Pδ
i is P−

i .

Simulation strategy, and pseudocode The basic idea is Coron et al.’s simulation via chain
completion technique [13], which has achieved success in (weaker) indifferentiability proofs
of a variety of idealized blockciphers. It requires the simulator S to detect “partial” compu-
tation chains formed by the queries of the distinguisher, and completes the chains in advance
by querying the ideal cipher E, so that S is ready for answering queries in the future. To
simulate answers that are consistent with E, S has to use the answer from E to define some
simulated answers; this action is called adaptation.

It may be expected that we will reuse the tripwire paradigm introduced by Andreeva et
al. [2] for proving indifferentiability of EMR5.5 since we analyze EMR3 exactly as they did.
But this is not the case. In fact, our simulator is (surprisingly) closer to Cogliati and Seurin’s
simulator for SEM4 [12]. We actually take the round key k as if it is an additional state value
(besides the input and output of the three permutations (x1, y1), (x2, y2), (x3, y3)), and detect
partial chains formed by k ∈ K Set− and x2 ∈ P+

2 ; upon any query, S will immediately

4 If D finds H(K ) = H(K ′) then it clearly succeeds in distinguishing.
5 Tripwire paradigm is a variant of Coron et al.’s technique. Taking EMR3 as an example, if the simulator
works with the tripwire configuration (2, 1), then it will complete a chain (y1, x2) at some point, if: (i)
x2 ∈ P+

2 ; (ii) it receives a query P(1,−, y1); (iii) the round key k = y1 ⊕ x2 has already been in K Set−.
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P1x/y0 P2

y2

P3

k

y/x4

KKKK

1. query P(2,−, y2): completes backward

x2

adapt at P1

P1x/y0 P2

y2

P3 y/x4

KKKK

2. query P(2,+, x2) or H(k): completes forward

x2

adapt at P3

P1x/y0 P2

y2

P3 y/x4

KKKK

x2 k

k ∈ KSet−

k ∈ KSet−
k

k

adapt at P3

Fig. 1 The strategy of the simulator

complete all newly formed partial chains, and “adapt” by adding consistent values to P1 or
P3. More clearly, upon a new query P(2,+, z) or H (queries that have never appeared in
the history), besides querying P or H to obtain a random answer z′ or k, S considers all
pairs (k, x2) formed by this query and entries in the sets, and completes them by computing
y1 := z ⊕ k, y0 := S.P(1,−, y1) ⊕ k, querying E to obtain x4, computing x3 := z′ ⊕ k,
y3 := x4⊕k, and adding (x3, y3) to P3 if x3 /∈ P+

3 and y3 /∈ P−
3 .Upon a newqueryP(2,−, z),

S completes all such new pairs (k, x2) by a process symmetric to that upon P(2,+, z) or H,
and adapts on P1. The chain completion strategy is illustrated in Fig. 1. Queries P(1, δ, z)
and P(3, δ, z) do not form new partial chains, and are simply answered by relaying those of
P.

Smay abort, when a random answer obtained fromP or a pair of input and output obtained
during adaptation collides with the entries in {P}. For instance, during an adaptation on P3,
if x3 ∈ P+

3 or y3 ∈ P−
3 , S aborts. S also aborts if H maps two different master keys to the

same round key.
With all the thoughts above, S is formally described by code as follows.

1: Simulator SE,H,P:
2: Variables
3: Sets K Set , {P} = {P1, P2, P3}, and ESet ; all initially empty

4: public procedure H(K )

5: if K /∈ K Set+ then
6: k := H.H(K )

7: if k ∈ K Set− then
8: abort
9: K Set := K Set ∪ (K , k)
10: forall (x2, y2) ∈ P2 do
11: Complete(k, x2, y2, +)

12: return K Set+(K )

13: public procedure P(i, δ, z)
14: if z /∈ Pδ

i then
15: z′ := P.P(i, δ, z)
16: if i ∈ {1, 3} then
17: if z′ ∈ Pδ

1 then
18: abort

19: Add(Pi , δ, z, z
′)

20: else // i = 2: complete
21: Add(Pi , δ, z, z

′)
22: if δ = + then
23: forall (K , k) ∈ K Set do
24: Complete(k, z, z′,+)

25: else // δ = −
26: forall (K , k) ∈ K Set do
27: Complete(k, z′, z,−)

28: return Pδ
i (z)

29: private procedure Add(Pi , δ, z, z
′)

30: if δ = + then
31: Pi := Pi ∪ (z, z′)
32: else
33: Pi := Pi ∪ (z′, z)

34: private procedure Complete(k, x2, y2, δ)
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P H

D

S

PH

D

SE

PH

D

EMR

E

EMR

0/1 0/1 0/1

2 1 2 1 2 1

Σ1 Σ2Σ2 Σ3

3 3 3

Fig. 2 Systems used in the sequential indifferentiability proof for EMR3. The number in red illustrates the
order of the queries/actions (of the sequential distinguisher)

35: if δ = + then
36: x3 := y2 ⊕ k
37: y1 := x2 ⊕ k
38: x1 := P(1, −, y1) // Call S.P
39: y0 := x1 ⊕ k
40: K := K Set−(k)
41: x4 := E.E(+, K , y0)
42: ESet := ESet ∪ (K , y0, x4)
43: y3 := x4 ⊕ k
44: if x3 ∈ P+

3 then
45: abort
46: if y3 ∈ P−

3 then
47: abort
48: P3 := P3 ∪ (x3, y3)

49: else // δ = −
50: y1 := x2 ⊕ k
51: x3 := y2 ⊕ k
52: y3 := P(3, +, x3) // Call S.P
53: x4 := y3 ⊕ k
54: K := K Set−(k)
55: y0 := E.E(−, K , x4)
56: ESet := ESet ∪ (K , y0, x4)
57: x1 := y0 ⊕ k
58: if x1 ∈ P+

1 then
59: abort
60: if y1 ∈ P−

1 then
61: abort
62: P1 := P1 ∪ (x1, y1)

3.2 Systems involved in this proof

For any random primitives E, H, and P, denote by Σ1(E, SE,H,P) (Σ1(E, H, P), or even Σ1

for short) the simulated system, and denote by Σ3(EMRH,P
3 , (H, P)) (Σ3(H, P) and Σ3 for

short) the real system. We use an intermediate system Σ2(EMRSE,H,P

3 , SE,H,P) (Σ2(E, H, P)

and Σ2 for short), which consists of the simulator SE,H,P and the cipher EMR3, and EMR3

computes by calling the interface H and P provided by SE,H,P rather than those provided
by the random primitives. Note that this intermediate system is very close to those used
in [29] and [12].6 The systems are depicted in Fig. 2. Further note that in Σ1(E, H, P)

and Σ2(E, H, P), all the randomness is captured by the three primitives (E, H, P); while in
Σ3(H, P), the randomness is captured by (H, P).

3.3 Bounding the complexity of S

In Σ1, the complexity of S is polynomial. The idea is quite simple: the number of partial
chains (k, x2) completed by S is |K Set | · |P2|, which is at most the square of the total oracle
query cost of D.

6 By a technique introduced in the full version of [29], Σ2 can actually be eliminated. However, we think Σ2
helps improve the readability of the proof.
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Lemma 1 For any tuple of primitives (E, H, P) and any sequential distinguisher D of total
oracle query cost at most q, the following hold:

(i) At the end of the Σ2 execution DΣ2(E,H,P), with respect to the sets of SE,H,P, it holds
|K Set | ≤ q, |P2| ≤ q, |P1| ≤ 2q2, |P3| ≤ 2q2;

(ii) SE,H,P issues at most q2 queries to E during the Σ2 execution DΣ2(E,H,P);
(iii) During the Σ1 execution DΣ1(E,H,P), SE,H,P issues at most q2 queries to E, and runs

in time O(q2).

Proof Note that in DΣ2 , the total number of queries received by S (from D or EMR3) is
exactly the total oracle query cost q of D. With this in mind, we start by bounding |K Set |,
which can only be enlarged by at most 1 when S receives a query of the form H(K ). As the
number of such queries is at most q , we have |K Set | ≤ q . Since |P2| is similarly enlarged
only upon a query P(2, δ, z), we also get |P2| ≤ q .

Then, consider |P1|: |P1| canby enlargedby atmost 1whenS executesComplete(k, x2, y2,
δ), or when S receives a query of the form P(1, δ, z) (at most q times). As |K Set | ≤ q and
|P2| ≤ q , Complete is executed at most q2 times, so that |P1| ≤ q + q2 ≤ 2q2. The same
for |P3|.

For proposition (ii), note that S queries E only during an execution of Complete, so that
the bound is |K Set | · |P2| ≤ q2.

Finally, the two variables |K Set | and |P2| standing at the end of DΣ1(E,H,P) are clearly
not larger than those standing at the end of DΣ2(E,H,P). Also note that the most time-costing
procedure of S is clearly Complete. These along with proposition (ii) establish proposition
(iii). 
�
3.4 Indistinguishability of Σ1 and Σ3

To prove the indistinguishability, we will reach the following two goals:

(i) S is unlikely to abort.More precisely, duringΣ2 executions,S abortswith only negligible
probability;

(ii) the intuition that if S does not abort then it simulates the primitives well (i.e. (E, S) and
(EMR3, (H, P)) are indistinguishable) does hold.

The first goal is reached in the next paragraph, by analyzing each possibility. On the other
hand, the second goal is reached in the last paragraph of this subsection, by a variant of
Holenstein et al.’s randomness mapping argument [13], which has been a quite standard step
in indifferentiability proof. However, as the reader will see, by slightly tweaking the argument
of Cogliati and Seurin [12], we even do not explicitly define any map.

Note that when proving the non-abortion of S, we indeed focus on Σ2 executions rather
than Σ1 executions. The reason is that only if S does not abort in a Σ2 execution will we be
able to find a Σ1 execution and a Σ3 execution such that the distinguisher D gives the same
output in the three executions (and further establish the second goal as above). For a technical
illustration, the reader could see Lemma 8, which indeed considers the Σ2 executions during
which S does not abort.

3.4.1 The abort probability of S in Σ2 is negligible

We sketch the idea first. Roughly speaking, the abortion of S is due to some values unexpect-
edly colliding with entries in the sets. Such values are usually random, so that the probability
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of such collisions is negligible. For this, we have to show that the answers obtained from E
are really random in the view of S.
E’s Answers are Random This is because each query to E issued by S cannot have appeared
in the history of such queries.

Lemma 2 Assume that S does not abort up to some point in the execution DΣ2(E,H,P), and
issues a queryE.E(+, K , z) (E.E(−, K , z), resp.) right after this point. Then (K , z) /∈ ESet+
((K , z) /∈ ESet−, resp.) before this point.

Proof S queries E only during an execution of Complete(k, x2, y2, ·), and any two queries
to E in two different such executions must be different. Otherwise since the contents of the
sets are never overwritten, it can be easily deduced that the two chains corresponding to the
two queries share the same k and x2 values and they are the same chain, which is not possible
by construction. 
�

Abort probability The bound can now be obtained with the help of Lemma 2. To calculate
the bound, we prove individual upper bounds on the probability of various types of abortions,
and then apply a union bound.7 All the following abort probabilities assume that in DΣ2 , the
total oracle query cost of D is at most q .

Lemma 3 During a call to H(K ), the probability that S aborts at line 8 is at most q
2n .

Proof Directly follows from |K Set | ≤ q (Lemma 1). 
�
Lemma 4 During a call to P(1, δ, z) or P(3, δ, z), the probability that S aborts at line 18 is

at most q2

2n−2q2
.

Proof For P(1, δ, z), if the abort condition at line 17 holds, then it is necessarily due to
the random value P.P(1, δ, z) colliding with a value in Pδ

1 added by previous adaptations
(line 62). Since S completes at most q2 chains (Lemma 1), the number of values added

by adaptation is at most q2, so that the bound is at most q2

2n−|P1| ≤ q2

2n−2q2
. Similarly for

P(3, δ, z). 
�
Lemma 5 During an execution Complete(k, x2, y2,−), the probability that S aborts at line

59 or line 61 is at most 4q2

2n−q2
.

Proof Such an executionmust be triggered by a call P(2,−, y2), insidewhich x2 was assigned
a random value P.P(2,−, y2). Let y1 = x2 ⊕ k, then right after this assignment, Pr [y1 ∈
P−
1 ] ≤ |P1|

2n−|P2| ≤ 2q2

2n−q . If y1 /∈ P−
1 right after this assignment, then from the point this

assignment happens till the call Complete(k, x2, y2,−), it is not possible that y1 ∈ P−
1 :

because the chains that are completed during this period are of the form (k′, x2) where
k′ �= k, so that k′ ⊕ x2 �= y1. Therefore, the probability that the abort condition at line 60

holds is at most 2q2

2n−q . On the other hand, by Lemma 2, Pr [x1 ∈ P+
1 ] ≤ |P1|

2n−|ESet | ≤ 2q2

2n−q2
.

In total the bound is 4q2

2n−q2
. 
�

Lemma 6 During an execution Complete(k, x2, y2,+), the probability that S aborts at line

45 or line 47 is at most 4q2

2n−q2
.

7 We use multiple short lemmas because they are easier to be referred in Sect. 4.

123



120 C. Guo, D. Lin

Proof Such forward completions may be triggered by queries P(2,+, x2) or H(K ). The
analysis of the former case is similar to Lemma 5 by symmetry, and results in the same

bound 2q2

2n−q + 2q2

2n−q2
. For the latter, let x3 = y2 ⊕ k. Conditioned on that S did not abort at

line 8 in H(K ), the value assigned to k is uniformly picked from a pool of size at least 2n −q ,

so that right after the assignment inside H(K ), Pr [x3 ∈ P+
3 ] ≤ 2q2

2n−q . Then, similarly to

Lemma 5, if x3 /∈ P+
3 right after this assignment, then it won’t be added to P+

3 until the

call to Complete(k, x2, y2,+). Hence the bound is 2q2

2n−q . On the other hand, the probability

that the corresponding value y3 hits values in P−
3 is at most 2q2

2n−q2
which is similar to those

obtained before. 
�
All the above yield the overall probability.

Lemma 7 When q2 ≤ 2n
4 , PrE,H,P[S aborts during DΣ2(E,H,P)] ≤ 17q4

2n .

Proof By Lemma 1, line 7 is executed at most q times, line 18 is executed at most 2 × 2q2

times in total, while line 58, 60, 44, and 46 are executed at most q2 times in total. Therefore,

when q2 ≤ 2n
4 , the overall abort probability is atmost q · q

2n +4q2 · q2

2n−2q2
+q2 · 4q2

2n−q2
≤ 17q4

2n .

�

3.4.2 Non-abortion implies indistinguishability of answers

As mentioned, this paragraph presents the reduction from indistinguishability to non-
abortion. To this end, we focus on a fixed and deterministic seq-distinguisher D rather
than an arbitrary one, since the advantage of a probabilistic distinguisher cannot exceed
the corresponding deterministic version with the best random coins. With respect to D, we
introduce some terminology first (these notions are due to Andreeva et al. [2] and Cogliati,
Seurin [12]).

First, a tuple of primitives α = (E, H, P) is called a good Σ2-tuple if Sα does not abort
during the Σ2 execution DΣ2(α).

Second, for a goodΣ2-tuple α, consider the tuple of sets γ = {K Set, {P}} of Sα standing
at the end of DΣ2(α). Denote by T the set of all such set-tuples that can be generated by S
when running with good Σ2-tuples. For a good Σ2-tuple α = (E, H, P), if the sets of Sα

standing at the end of DΣ2(α) share exactly the same contents with γ ∈ T , then denote by
DΣ2(α) → γ .

Third, consider a set-tuple γ = {K Set, {P}} ∈ T . For a random oracle H, if for any
K ∈ K Set+, it holds H.H(K ) = K Set+(K ), then we said that H extends K Set , and
denote H ∼= K Set ; for a tuple of random permutations P, if for any z ∈ Pδ

i , it holds
P.P(i, δ, z) = Pδ

i (z), then we said that P extends {P} = {P1, P2, P3}, and denote P ∼= {P}.
Finally, a tuple of primitives β = (H, P) extends γ (denoted β ∼= γ ), if H ∼= K Set ∧ P ∼=
{P}.

Then, we have the following lemma: the Σ1, Σ2, and Σ3 executions that are “linked” by
the sets of S behave the same in the view of D, i.e. they are indistinguishable.

Lemma 8 Let α = (Eα, Hα, Pα) be a good Σ2-tuple, and denote by γ = {K Set, {P}} the
sets of Sα standing at the end of DΣ2(α). Then for any tuple β = (Hβ, Pβ) such that β ∼= γ ,
the transcripts of queries and answers of D in DΣ1(α), DΣ2(α), and DΣ3(β) are the same;
and DΣ1(α) = DΣ2(α) = DΣ3(β).
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Proof The idea is that the random values used during the three executions are consistent. See
“Proof of Lemma 8” of Appendix 1 for the formal proof, which is quite standard. 
�

For any γ ∈ T , the probabilities of the following two events are close:

(i) a Σ2 execution with a random tuple (E, H, P) generates γ ;
(ii) a random tuple (H, P) extends γ .

Lemma 9 With respect to a fixed distinguisher D of total oracle query cost at most q, for
any γ ∈ T , it holds

PrH,P[(H, P) ∼= γ ]
PrE,H,P[DΣ2(E,H,P) → γ ] ≥ 1 − q4

2n
.

Proof See Appendix “Proof of Lemma 9” of Appendix 1. 
�
Then the following lemma completes the transition from Σ1 to Σ3 (and the seq-

indifferentiability proof for EMR3). We do not transit from Σ1 to Σ3 “step by step”
(as done in many previous such proofs); instead, we make a single-step leap. This helps
achieving a slightly better hidden constant, since it allows counting Pr [S aborts] only
once.

Lemma 10 For any seq-distinguisher D of total oracle query cost at most q, when q2 ≤
2n/4, it holds

∣
∣
∣PrH,P[DΣ3(EMRH,P

3 ,(H,P)) = 1] − PrE,H,P[DΣ1(E,SE,H,P) = 1]
∣
∣
∣ ≤ 18q4

2n
.

Proof The bound q4

2n + 17q4

2n = 18q4

2n follows from the bound 1 − q4

2n in Lemma 9 (the ratio

of the probabilities of the executions linked by γ ∈ T is close to 1) and the bound 17q4

2n in
Lemma 7 (most of the Σ2 executions result in member of T ). The full proof is deferred to
Appendix “Proof of Lemma 10” of Appendix 1. 
�
3.5 Interpretation

By Theorem 1, Theorem 2 implies that for any (q2, ε)-evasive relation R, EMR3 is
(q, ε + O(q4/2n))-correlation intractable with respect to R (very similar to [12]). Whereas
as mentioned in Introduction, in our view, the most important implication of Theorem 2 is
the definitive separation between the two kinds of KD.

4 Eliminating the random oracle: the case of EMDP3

The second main result of this work is formally presented as follows.

Theorem 3 Assuming that � = (�0,�1,�2,�3) is a tuple of four independent random
permutations, then for any integer q such that q2 ≤ 2n/4, the 3-round Even–Mansour

EMDP3(K ,m) = k ⊕ �3(k ⊕ �2(k ⊕ �1(k ⊕ m)))

where k = �0(K ) ⊕ K is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from an

ideal cipher IC[n, n], where σ = q2, t = O(q2), and ε ≤ 19·q4
2n = O(

q4

2n ).
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Proof As mentioned in Introduction, the un-keyed Davies-Meyer K D(K ) = �0(K ) ⊕ K
is not seq-indifferentiable from a random function, so that we have to do from scratch; but,
fortunately, we can follow the line of the proof for EMR3 to save many pages (as done by
Andreeva et al. [2]). We first build the simulator.

4.1 Modified simulator SE,�

To make a distinction from the notations in the last section, we denote the simulator for
EMDP3 by S, and let it have access to �. The interface provided by S is exactly the same
as �. The overall strategy of S is very close to that of S – except for replacing the procedure
H by �(0, δ, z). With these in mind, the code of S is as follows.

1: Simulator SE,�:
2: Variables
3: Sets K Set , {P} = (P0, P1, P2, P3), and ESet ; all initially empty
4: public procedure �(i, δ, z)
5: if i = 0 then // The simulated permutation for the KD.
6: if z /∈ Pδ

0 then
7: z′ := �.�(0, δ, z)
8: k := z ⊕ z′
9: if k ∈ K Set− then
10: abort
11: if δ = + then
12: P0 := P0 ∪ (z, z′)
13: K Set := K Set ∪ (z, k)
14: else // δ = −
15: P0 := P0 ∪ (z′, z)
16: K Set := K Set ∪ (z′, k)
17: forall (x2, y2) ∈ P2 do
18: Complete(k, x2, y2,+)

19: return Pδ
0 (z)

20: else // The simulated permutations for the encryption.
21: // Exactly the same as SE,H,P.P(i, δ, z)
22: private procedure Add(Pi , δ, z, z′)
23: // Exactly the same as SE,H,P.Add(Pi , δ, z, z′)
24: private procedure Complete(k, x2, y2, δ)
25: // Exactly the same as SE,H,P.Complete(k, x2, y2, δ)

With SE,� at hand, the three systems are Σ ′
1(E,SE,�), Σ ′

2(EMDPS
E,�

3 ,SE,�), and
Σ ′

3(EMDP�
3 ,�). Then, consider a fixed sequential distinguisher D of total oracle query

cost at most q: the modified key points are as follows.

4.2 Complexity of SE,�

This point is very close to Lemma 1. At the end of the Σ ′
2 execution DΣ ′

2(E,�) it holds: (i)
|P0| = |K Set |, |P0| ≤ q , and |P2| ≤ q , since |P0| and |P2| can only be enlarged (by at most
1) by a query to P(0, δ, z) and P(2, δ, z) respectively; (ii) the number of calls to Complete is
at most |P0| · |P2| ≤ q2; (iii) |P1|, |P3| ≤ 2q2, since they can be enlarged when S completes
a chain besides a query to P(1, δ, z) and P(3, δ, z). Then, during the Σ ′

1 execution DΣ ′
1(E,�),
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both the number of calls to Complete and the number of queries of SE,� to E are at most q2,
so that the time complexity of SE,� is also O(q2).

4.3 Modified non-abortion Lemma: Pr[S aborts during Σ ′
2(E,�)] ≤ 18q4

2n

The types of abortions that are different from the context of EMR are the abortion actions
relevant to the simulated �0. More clearly, they are:

Sub-claim 1: during a call �(0, δ, z), the probability that S aborts at line 10 is at most
q

2n−q . Since |P0| ≤ q , the bound is |P0|
2n−|P0| ≤ q

2n−q . This is similar to Lemma 3 albeit
different.

Sub-claim 2: during an execution Complete(k, x2, y2,+), the probability that S aborts

due to adaptation is at most 4q2

2n−2q2
. The case that the execution Complete(k, x2, y2,+) is

triggered by a query of the form�(2,+, y2) is exactly the same as analyzed in Lemma 6. The
case that the execution is triggered by a call �(0, δ, z) is slightly different.Wlog assume that
it is triggered by a call �(0,+, z) and z′ = �.�(0,+, z). Conditioned on z ⊕ z′ /∈ K Set−,
z′ is picked from a pool with size at least 2n −2|P0| ≥ 2n −2q , so that for any (x2, y2) ∈ P2,

Pr [y2 ⊕ (z ⊕ z′) ∈ P+
3 ] ≤ 2q2

2n−2q . The argument on the other side (Pr [y3 ∈ P−
3 ]) is exactly

the same as Lemma 6, leading to the same bound 2q2

2n−q2
, so that in total it is 2q2

2n−2q + 2q2

2n−q2
≤

4q2

2n−2q2
.

The almost unchanged ones are Lemmas 4 and 5, as follows:
Sub-claim 3: during a call to �(1, δ, z) or �(3, δ, z), the probability that S aborts due

to the random answer colliding with previous adapted values is at most q2

2n−2q2
; during an

execution Complete(k, x2, y2,−), the probability that S aborts due to adaptation is at most
4q2

2n−q2
.

The above yield the upper bound on the overall abort probability: q · q
2n−q +4q2 · q2

2n−2q2
+

q2 · 4q2

2n−2q2
≤ 18q4

2n (when q2 ≤ 2n
4 ).

4.4 The randomness mapping argument

Let {P} = (P0, P1, P2, P3) be an arbitrary set-tuple that can be generated during a good Σ ′
2

execution. Then we have the following probability ratio:

Pr�[� ∼= {P}]
PrE,�[DΣ ′

2(E,�) → {P}] ≥ 1 − q4

2n
.

The argument is similar to the proof of Lemma 9: first, (trivially) Pr�[� ∼= {P}] =
(
∏|P0|−1

j=0
1

2n− j ) · (
∏|P1|−1

j=0
1

2n− j ) · (
∏|P2|−1

j=0
1

2n− j ) · (
∏|P3|−1

j=0
1

2n− j ); second, let the num-
ber of entries in P1 and P3 that are set to values from � be u and v respectively, and let
w = |ESet |, then

Pr [DΣ ′
2(E,�) → {P}] ≤

⎛

⎝

|P0|−1
∏

j=0

1

2n − j

⎞

⎠ ·
⎛

⎝

u−1
∏

j=0

1

2n − j

⎞

⎠

·
⎛

⎝

|P2|−1
∏

j=0

1

2n − j

⎞

⎠ ·
⎛

⎝

v−1
∏

j=0

1

2n − j

⎞

⎠ ·
(

1

2n − w

)w

,
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so that

Pr�[� ∼= {P}]
PrE,�[DΣ ′

2(E,�) → {P}] ≥ 1 − w2

2n
≥ 1 − q4

2n
.

Then, following the same line as the proof of Lemma 10, it yields

∣
∣
∣Pr�[DΣ ′

3(EMDP�
3 ,�) = 1] − PrE,�[DΣ ′

1(E,SE,�) = 1]
∣
∣
∣ ≤ 18q4

2n
+ q4

2n
≤ 19q4

2n
.

These completes the key points of the proof of Theorem 3. 
�

5 Conclusion

This work proves that EMR3 and EMDP3, two types of 3-round Even–Mansour with non-
invertible KD, are seq-indifferentiable. Besides complementing existing indifferentiability
results, it establishes a definitive separation between invertible KDs and non-invertible ones
in the context of Even–Mansour.

At the end of this paper, recall the comparison between EMR and SEM (single-key Even–
Mansour). To achieve seq-indifferentiability, SEM requires exactly 4 rounds [12], which is
one roundmore than EMR.However, the proved security bounds on the two constructions are

the same: this work proves EMR3 (q, q2, O(q2), O(
q4

2n ))-seq-indifferentiable, while Cogliati

and Seurin proved SEM4 (q, q2, O(q2), O(
q4

2n ))-seq-indifferentiable.

A problem left open in [12] is whether the bound (q, q2, O(q2), O(
q4

2n )) on SEM4 is tight.
This work does not consider this problem (as the main goal is to seek for the separation),

while raises a new problem: whether the bound (q, q2, O(q2), O(
q4

2n )) on EMR3 is tight?
These are left as future work.
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Appendix 1: Deferred proofs for EMR3

Two other helper lemmas

The first helper lemma claims that the simulator really gives answers consistent with E.

Lemma 11 For any goodΣ2-tuple α = (E, H, P), D obtains the same answer for any query
to E/EMRSα

3 in the two executions DΣ1(α) and DΣ2(α).

Proof In DΣ2(α), each time D issues a query (K , y0) to EMR3, EMR3 will query Sα.H(K )

and Sα.P(2,+, x2) (for the corresponding x2), so that after EMR3 answers this query, it holds
(K , k) ∈ K Set and (x2, y2) ∈ P2. By this, the queryS.H(K ) and the queryS.P(2, δ, x2)must
have appeared during DΣ2(α), and the one appeared later would trigger a call to S.Complete,
after which the answer of EMR3 (computed from the tables {P} of S) would have been
consistent with E. This establishes the claim, since the answer in DΣ1(α) is directly given by
E. 
�
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The second one is an inequality. It uses a new notation Θ1, which is based on a corollary
of Lemma 8. For this, consider a tuple of sets γ ∈ T , and assume that the following hold for
a tuple of primitives α = (E, H, P):

– DΣ2(α) → γ ;
– D outputs 1 in DΣ2(α), say, DΣ2(α) = 1.

Then by Lemma 8, for any tuple α′ = (E′, H′, P′), once DΣ2(α
′) → γ , DΣ2(α

′) = 1 – to
this end, consider a tuple β = (H, P) ∼= γ , then 1 = DΣ2(α) = DΣ3(β) = DΣ2(α

′). With
this in mind, the notation Θ1 is used to denote the subset of T such that for any α such that
DΣ2(α) → γ ∈ Θ1 it holds DΣ2(α) = 1.

Lemma 12 PrH,P[DΣ3(H,P) = 1] ≥ ∑

γ∈Θ1
PrH,P[(H, P) ∼= γ ].

Proof We show that for any tuple (H∗, P∗), there exists at most one γ ∈ T s.t. (H∗, P∗) ∼= γ .
Assume otherwise, i.e. ∃γ ′ ∈ T s.t. γ �= γ ′ ∧ (H∗, P∗) ∼= γ ∧ (H∗, P∗) ∼= γ ′. Assume
that for two good tuples α = (E, H, P) and α′ = (E′, H′, P′), it holds DΣ2(α) → γ and
DΣ2(α

′) → γ ′. Then, consider any query of the combination (D, S) in the two executions
DΣ2(α) and DΣ2(α

′): (i) the answers to the query to H/H′ are the same, since H.H(K ) =
H∗.H(K ) = H′.H(K ); (ii) similarly, the answers to the query to P/P′ are the same; (iii) the
answers to the query to E/E′ are also the same. For this, first, by Lemma 11, the answers of
E/E′ equal the answers of EMR3 in the two Σ2 executions; second, the answers of EMR3

are computed from the sets γ and γ ′ respectively; third, the corresponding entries in γ

and γ ′ have the same contents, since both of them coincide with the contents of (H∗, P∗).
Then, following the same line as the proof of Lemma 8, we have that the transcripts of the
combination (D, S) in the two executions DΣ2(α) and DΣ2(α

′) are the same, so that the two
set-tuples γ and γ ′ should be the same, a contradiction. After this, we have

PrH,P[DΣ3(H,P) = 1] ≥ PrH,P[DΣ3(H,P) = 1 ∧ ∃γ ∈ T s.t. (H, P) ∼= γ ]
=

∑

γ∈Θ1

PrH,P[(H, P) ∼= γ ] (by Lemma 8).

as claimed. 
�
The (analogues of) the two helper lemmas also hold in the context of EMDP3. The proofs

can be obtained by make very little modifications on the two proofs above, thus omitted.

Proof of Lemma 8

By an induction, assume that the transcripts obtained by D are the same up to some point
in the three executions, and consider the next query of D. Since D is deterministic, the next
query in the three executions are the same. We argue that the answers obtained in the three
executions are the same. Depending on the type of this query, we distinguish three cases:

(i) the query is to H: then since S only relays the answers of Hα , the answers obtained in
DΣ1(Eα,Hα,Pα) and DΣ2(Eα,Hα,Pα) are the same; and since Hβ extends the set K Set of
Sα , the answers obtained in DΣ2(Eα,Hα,Pα) and DΣ3(Hβ ,Pβ ) are also the same;

(ii) the query is to P: then in DΣ1(α) and DΣ2(α), the query must be made during the first
phase (in which D only queries H and P). It can be easily seen that this part of DΣ1(α)

is exactly the same as that of DΣ2(α), so that the answers obtained are the same. On the
other hand, the answers obtained in DΣ2(Eα,Hα,Pα) and DΣ3(Hβ ,Pβ ) are also the same
since Pβ extends the set {P} of Sα;
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(iii) the query is to E: then due to Lemma 11, the answers obtained in DΣ1(α) and DΣ2(α)

are the same. Also, the answers obtained in DΣ2(α) and DΣ3(β) are the same, since the
function/permutation values used by EMR3 to compute the answers are the same.

Therefore, the three transcripts of D are the same. Since D is deterministic, the three outputs
of D are also the same.

Proof of Lemma 9

Let γ = {K Set, {P}} and {P} = {P1, P2, P3}. Then clearly PrH,P[(H, P) ∼= γ ] =
( 1
2n )|K Set | · (

∏|P1|−1
j=0

1
2n− j ) · (

∏|P2|−1
j=0

1
2n− j ) · (

∏|P3|−1
j=0

1
2n− j ).

As to Pr [DΣ2(E,H,P) → γ ], consider a good tuple α = (E′, H′, P′) which satisfies
DΣ2(α) → γ . It can be easily checked that DΣ2(E,H,P) → γ if and only if the transcripts
of the combination (D, S) in DΣ2(E,H,P) and DΣ2(α) are the same,8 i.e. the random values
accessed during DΣ2(E,H,P) are exactly the same as those accessed during DΣ2(α). Assume
that during DΣ2(α), there are u (v, resp.) entries in P1 (P3, resp.) that are defined by calling
P′, and let w = |ESet |. Then we have

Pr [DΣ2(E,H,P) → γ ]

≤ (
1

2n
)|K Set | ·

⎛

⎝

u−1
∏

j=0

1

2n − j

⎞

⎠ ·
⎛

⎝

|P2|−1
∏

j=0

1

2n − j

⎞

⎠ ·
⎛

⎝

v−1
∏

j=0

1

2n − j

⎞

⎠ ·
(

1

2n − w

)w

.

Since each adaptation (either in P1 or in P3) uniquely corresponds to an execution ofComplete
(by construction) and the latter uniquely corresponds to an entry in ESet (by Lemma 2), we
have u+v+w = |P1|+|P3|. Moreover we have |P1| ≥ u, |P3| ≥ v, andw ≤ q2 (Lemma 1),
hence

PrH,P[(H, P) ∼= γ ]
PrE,H,P[DΣ2(E,H,P) → γ ] ≥

(
∏|P1|−1

j=0
1

2n− j

)

·
(
∏|P3|−1

j=0
1

2n− j

)

(
∏u−1

j=0
1

2n− j

)

·
(
∏v−1

j=0
1

2n− j

)

·
(

1
2n−w

)w

≥
( 1
2n

)w

(
1

2n−w

)w ≥ 1 − w2

2n
≥ 1 − q4

2n
.

as claimed.

Proof of Lemma 10

Let α = (E, H, P) and β = (H, P). Recall from Sect. 3.4.2 that the event “α bad” means that
Sα aborts during the Σ2 execution DΣ2(α), while “α good” means otherwise. Furthermore,
letΘ1 be the subset of T such that for any α such that DΣ2(α) → γ ∈ Θ1 it holds DΣ2(α) = 1
(same as Appendix 1). Then, wlog assume that Prα[DΣ1(α) = 1] ≥ Prβ [DΣ3(β) = 1], it
holds
∣
∣
∣Prβ [DΣ3(β) = 1] − Prα[DΣ1(α) = 1]

∣
∣
∣

= Prα[α bad ∧ DΣ1(α) = 1]
︸ ︷︷ ︸

≤Pr [α bad]≤ 17q4

2n (Lemma 7)

+Prα[α good ∧ DΣ1(α) = 1] − Prβ [DΣ3(β) = 1].
︸ ︷︷ ︸

≥∑

γ∈Θ1
Prβ [β∼=γ ] (Lemma 12)

8 This can be shown by an induction similar to that of Lemma 8, Appendix 1.
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By Lemma 8, when α is good, DΣ1(α) = DΣ2(α). Hence we have

Prα[α good ∧ DΣ1(α) = 1] = Prα[α good ∧ DΣ2(α) = 1] =
∑

γ∈Θ1

Prα[DΣ2(α) → γ ],

and
∣
∣
∣Prβ [DΣ3(β) = 1] − Prα[DΣ1(α) = 1]

∣
∣
∣

≤ 17q4

2n
+

∑

γ∈Θ1

⎛

⎜
⎜
⎜
⎝
Prα[DΣ2(α) → γ ] − Prβ [β ∼= γ ]

︸ ︷︷ ︸

≥(1− q4

2n )Prα [DΣ2(α)→γ ] (Lemma 9)

⎞

⎟
⎟
⎟
⎠

≤ 17q4

2n
+

∑

γ∈Θ1

q4

2n
· Prα[DΣ2(α) → γ ] ≤ 18q4

2n

as claimed.

Appendix 2: Andreeva et al.’s seq-distinguisher on 3-round Even–Mansour
with invertible KD [2]

Consider the 3-round Even–Mansour with an invertible KD function IKD:

EMIKD3(K ,m) = IKD(K ) ⊕ P3(IKD(K ) ⊕ P2(IKD(K ) ⊕ P1(IKD(K ) ⊕ m))),

the (seq-)distinguisher Dworks as follows (the notations have been adapted to the convention
used in this paper):

(1) D queries P1 on some arbitrary x1: y1 := P1(x1).
(2) For two distinct, arbitrarily chosen keys K1 and K2, D queries k1 := IKD(K1) and

k2 := IKD(K2).
(3) D queries P2: x2 := y1⊕k1, y2 := P2(x2), and x ′

2 := y1⊕k2, y′
2 := P2(x ′

2); queriesP3:
x3 := y2 ⊕k1, y3 := P3(x3), and x ′

3 := y′
2 ⊕k2, y′

3 := P3(x ′
3) (notice that D’s objective

is to compute two distinct values y3 and y′
3, namely two diverging paths connected only

under the P1 evaluation).
(4) D sets k3 := y2 ⊕ x ′

3 and k4 := y′
2 ⊕ x3, and queries IKD: K3 := IKD−1(k3) and

K4 := IKD−1(k4).
(5) D computes using inverse queries to E(−, ·, ·): x ′

1 := E(−, K3, y′
3 ⊕ k3) ⊕ k3 and

x ′′
1 := E(−, K4, y3 ⊕ k4) ⊕ k4.

(6) If x ′
1 = x ′′

1 , then D guesses the real world and otherwise the simulated.

A (seq-)distinguisher based on the same principle was exhibited by Lampe and Seurin [26],
which finds an evasive relation between the inputs and outputs of SEM3.
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