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Abstract Let p be an odd prime, andm, k and d be positive integers such that 2 ≤ k ≤ m+1
2

and gcd(m, d) = 1.π is a primitive element of the finite field Fpm . The weight enumerator

of cyclic codes over Fp whose duals have 2k zeros π−(p jd+1)/2 and −π−(p jd+1)/2( j =
0, 1, . . . , k − 1) is determined in the present paper. The weight enumerator of cyclic codes
over Fp whose duals have 2k − 1 zeros π−(p(k−1)d+1)/2, π−(p jd+1)/2 and −π−(p jd+1)/2( j =
0, 1, . . . , k − 2) is also determined when 2 �

m
gcd(m,k−1) holds.

Keywords Cyclic code · Weight enumerator · Finite field

Mathematics Subject Classification 94B15 · 11T71

1 Introduction

Recall that an [n, l, d] linear code C over the finite field Fp is a linear subspace of F
n
p with

dimension l and minimum Hamming distance d , where p is a prime. Let Ai denote by the
number of codewords in C with Hamming weight i in a code C of length n, the weight
enumerator of C is defined by

1 + A1z + A2z
2 + · · · + Anz

n .

The sequence (1, A1, A2, . . . , An) is called the weight distribution of the code C, which is a
very important parameter of the code. For instance, the error correcting capability of a code
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is closely related to its weight distribution. In addition, the weight distribution of a code also
allows the computation of the error probability of error detection and correction. Thus, it is
important to study the weight distribution of a linear code, both in theory and applications.

An [n, k] linear code C is called cyclic over Fp if for any (c0, c1, . . . , cn−1) ∈ C, also
(cn−1, c0, . . . , cn−2) ∈ C. It is well-known that a linear code C in F

n
p is cyclic if and only if

C is an ideal of the polynomial residue class ring Fp[x]/(xn − 1). Since Fp[x]/(xn − 1) is a
principal ideal ring, every cyclic code corresponds to a principal ideal (g(x)) of the multiples
of a polynomial g(x) which is the monic polynomial of lowest degree in the ideal. This
polynomial g(x) is called the generator polynomial, and h(x) = (xn − 1)/g(x) is called the
parity-check polynomial of the code C. We also recall that a cyclic code is called irreducible if
its parity-check polynomial is irreducible over Fp , otherwise, it is called reducible. A cyclic
code over Fp is said to have t zeros if all the zeros of the generator polynomial of the code
form t conjugate classes, or equivalently, the generator polynomial has t irreducible factors
over Fp .

Cyclic codes have wide applications in both storage and communication systems. More-
over, cyclic codes are applied in association schemes [3] and secret schemes [4]. Therefore,
determining the weight enumerator of a cyclic code is an important research object in coding
theory. But the weight distribution is known for only a few special classes. For example, the
weight distribution of some irreducible cyclic codes has been studied in [1,2,5,6,20]. For
cyclic codes with two zeros, the weight distribution is known in special cases [7,8,10,12,18,
22,24,26]. Studies for other cyclic codes refer to [9,11,13,14,17,23,27,28,30,31].

Throughout this paper, let m, k and d be positive integers such that 2 ≤ k ≤ m+1
2

and gcd(m, d) = 1. Let p be an odd prime and π be a primitive element of the finite
field Fpm . For j = 0, 1, . . . , k − 1, let h j (x) and h− j (x) be the minimal polynomials of

π−(p jd+1)/2 and−π−(p jd+1)/2 overFp , respectively. It is easy to check that h j1(x) and h j2(x)
are polynomials of degree m and are pairwise distinct, for j1, j2 ∈ {±0,±1, . . . ,±(k − 1)}.
The cyclic codes over Fp with parity-check polynomial h0(x)h1(x) have been extensively
studied in [4,16,21,25]. Zhou and Ding [29] proved that the cyclic codes over Fp with
parity-check polynomial h−0(x)h1(x) have three nonzero weights, and determined their
weight distributions. In [15], it was proved that the cyclic codes over Fp with parity-check
polynomial h0(x)h−0(x)h1(x) have six nonzero weights and their weight distributions were
determined as well.

General cases are more interesting. Let Cm,d,2k and Cm,d,2k−1 be the cyclic codes with
parity-check polynomial

∏k−1
j=0 h j (x)h− j (x) and hk−1(x)

∏k−2
j=0 h j (x)h− j (x), respectively.

In this paper, the weight enumerator of the cyclic code Cm,d,2k is determined as following.

Theorem 1.1 Let m, d and k be positive integers such that 2 ≤ k ≤ m+1
2 and (m, d) = 1.

Then Cm,d,2k is a cyclic code over Fp with parameters [pm − 1, 2km, 1
2 (p − 1)(pm−1 −

p[m2 ]−2+k)]. Furthermore, the weight enumerator of Cm,d,2k is (αk(z
1
2 ))2, where αk(z) is

determined in Theorem 2.1 (details in Sect. 2).

If 2 �
m

gcd(m,k−1) , the weight enumerator of the cyclic code Cm,d,2k−1 is also determined as
following.

Theorem 1.2 Let m and d be positive integers such that 2 �
m

gcd(m,k−1) and (m, d) = 1,

where k is a positive integer satisfying 3 ≤ k ≤ m+1
2 . Then Cm,d,2k−1 is a cyclic code over

Fp with parameters [pm − 1, (2k − 1)m, 1
2 (p − 1)(pm−1 − p[m2 ]−3+k)]. Furthermore, the

weight enumerator of Cm,d,2k−1 is
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(
αk−1

(
z
1
2

))2 + 1

pm − 1

(
αk

(
z
1
2

)
− αk−1

(
z
1
2

))2
,

where αk(z) is determined in Theorem 2.1 (details in Sect. 2).

Remark Cm,d,2k−1 in the case of k = 2 has been studied in [15], and the minimum distance
has different expression between cases of k = 2 and 3 ≤ k ≤ m+1

2 , therefore, only the case
of 3 ≤ k ≤ m+1

2 is presented here.

2 Preliminaries

In this section, we will introduce a result by Kai-Uwe Schmidt [19]. We need the Gaussian
binomial coefficients, which are defined by

(
n

s

)

q
=

s−1∏

t=0

(qn − qt )/(qs − qt ).

For j = 0, 1, . . . , k − 1, let Hj (x) be the minimal polynomials of π−(p jd+1) over Fp ,
respectively. Let C̃m,d,k be the cyclic code overFp with parity-check polynomial

∏k−1
j=0 Hj (x).

Then it can be expressed as

C̃m,d,k =
{
c(u0,u1,...,uk−1) : (u0, u1, . . . , uk−1) ∈ F

k
pm

}
,

where

c(u0,u1,...,uk−1) =
⎛

⎝Tr

⎛

⎝
k−1∑

j=0

u jπ
(p jd+1)t

⎞

⎠

⎞

⎠

pm−2

t=0

,

and Tr(·) is the trace function from Fpm to Fp.C̃m,d,k has length pm − 1 and dimension km.
Moreover, the weight enumerator of C̃m,d,k , denoted by αk(z), is determined. We have the
following result.

Theorem 2.1 [19] We have, αk(z) = 1+∑
i,τ ai,τ z

wi,τ , where m − 2k + 2 ≤ i ≤ m, τ = 1
or −1 and

wi,τ =
{
pm−1(p − 1) f or odd i,
(
pm−1 − τη(−1)i/2 pm−i/2−1

)
(p − 1) f or even i.

η is the quadratic character of Fp. If m is odd,

a2u−1,τ = 1

2

( m−1
2

u − 1

)

p2

k+u− m+3
2∑

j=0

(−1) j p j ( j−1)
(
u

j

)

p2

(

p

(
k+u− j− m+1

2

)
m − 1

)

,

a2u,τ = 1

2

(
p2u+τη(−1)u pu

)
(m−1

2
u

)

p2

k+u−m+3
2∑

j=0

(−1) j p j ( j−1)
(
u

j

)

p2

(
p(k+u− j− m+1

2 )m − 1
)

.
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If m is even,

a2u−1,τ = 1

2
(p2u − 1)

(m
2
u

)

p2

k+u− m+4
2∑

j=0

(−1) j p j ( j−1)
(
u − 1

j

)

p2
pmk+2 j−(m+1)( m+2

2 + j−u),

a2u,τ = 1

2

(m
2
u

)

p2

k+u− m+2
2∑

j=0

(−1) j p j ( j−1)
(
u

j

)

p2

(
pmk+2 j−(m+1)( m2 + j−u) − 1

)

+ τ

2
η(−1)u pu

(m
2
u

)

p2

k+u−m+2
2∑

j=0

(−1) j p j ( j−1)
(
u

j

)

p2

(
pm(k−1)−(m−1)( m2 + j−u) − 1

)
.

3 The weight enumerator of Cm,d,2k

Theorem 1.1 can be proved as following. Obviously, Cm,d,2k has length pm−1 and dimension
2km. Also, it can be expressed as

Cm,d,2k =
{
c(a0,a1,...,ak−1,b0,b1,...,bk−1) : a0, . . . , ak−1, b0, . . . , bk−1 ∈ Fpm

}
,

where

c(a0,a1,...,ak−1,b0,b1,...,bk−1) =
⎛

⎝Tr

⎛

⎝
k−1∑

j=0

(

a j

(
π(p jd+1)/2

)t + b j

(
−π(p jd+1)/2

)t
)

⎞

⎠

⎞

⎠

pm−2

t=0

.

Let λ be a fixed nonsquare element in Fpm .
The weight of the codeword c(a0,a1,...,ak−1,b0,b1,...,bk−1) = (c0, c1, . . . , cpm−2) in Cm,d,2k

is given by

W (c(a0,a1,...,ak−1,b0,b1,...,bk−1))

= #{0 ≤ t ≤ pm − 2 : ct �= 0}

= #

⎧
⎨

⎩
0 ≤ t ≤ pm − 2, t even : Tr

⎛

⎝
k−1∑

j=0

(a j + b j )(π
t )(p

jd+1)/2

⎞

⎠ �= 0

⎫
⎬

⎭

+ #

⎧
⎨

⎩
0 ≤ t ≤ pm − 2, t odd : Tr

⎛

⎝
k−1∑

j=0

(a j − b j )(π
t )(p

jd+1)/2

⎞

⎠ �= 0

⎫
⎬

⎭

= 1

2

⎛

⎝#

⎧
⎨

⎩
0 ≤ t ≤ pm − 2 : Tr

⎛

⎝
k−1∑

j=0

(a j + b j )(π
t )p

jd+1

⎞

⎠ �= 0

⎫
⎬

⎭

+ #

⎧
⎨

⎩
0 ≤ t ≤ pm − 2 : Tr

⎛

⎝
k−1∑

j=0

(a j − b j )λ
(p jd+1)/2(π t )p

jd+1

⎞

⎠ �= 0

⎫
⎬

⎭

⎞

⎠

= 1

2

(

W

(

c(a0+b0,a1+b1,...,ak−1+bk−1)

)

+W

(

c(
(a0−b0)λ,(a1−b1)λ(pd+1)/2,...,(ak−1−bk−1)λ

(p(k−1)d+1)/2
)

))

,
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Two classes of cyclic codes and their weight enumerator 5

where c(a0+b0,a1+b1,...,ak−1+bk−1) and c
((a0−b0)λ,(a1−b1)λ(pd+1)/2,...,(ak−1−bk−1)λ

(p(k−1)d+1)/2)
are

codewords in C̃m,d,k . Notice that the map Cm,d,2k → C̃m,d,k × C̃m,d,k ,

(a0, . . . , bk−1) �→
(
(a0 + b0, . . . , ak−1 + bk−1),

(
(a0 − b0)λ, . . . , (ak−1 − bk−1)λ

(p(k−1)d+1)/2)
)

is bijective, we conclude that the weight enumerator of the code Cm,d,2k is
∑

a∈C

∑

b∈C
z(W (a)+W (b))/2,

where C = C̃m,d,k . This is easily seen to be equal to
(

∑

c∈C
zW (c)/2

)2

,

which is (αk

(
z
1
2

)
)2. Theorem 1.1 is proved.

4 The weight enumerator of Cm,d,2k−1 for odd m
gcd(m,k−1)

Let Cm,d,2k−1 be the cyclic code defined in Sect. 1.We shall prove Theorem 1.2 in this section,
assuming 2 �

m
gcd(m,k−1) . There is a partition of cyclic code C̃m,d,k

C̃m,d,k =
⋃

v∈Fpm

Ck−1,v.

For each v ∈ Fpm , Ck−1,v is a set of codewords and it can be expressed as

Ck−1,v = {c(u0,u1,...,uk−2,v) : u0, u1, . . . , uk−2 ∈ Fpm },
where

c(u0,u1,...,uk−2,v) =
⎛

⎝Tr

⎛

⎝

⎛

⎝
k−2∑

j=0

u jπ
(p jd+1)t

⎞

⎠ + vπ
(
p(k−1)d+1

)
t

⎞

⎠

⎞

⎠

pm−2

t=0

.

We denote αk−1,v(z) by the weight enumerator of Ck−1,v . Notice Ck−1,0 = C̃m,d,k−1, hence
αk−1,0(z) = αk−1(z). If v �= 0, we have the following lemma.

Lemma 4.1 For any v ∈ F
∗
pm , we have αk−1,v(z) = αk−1,1(z).

Proof Let ζp be a primitive pth root of unity. In terms of exponential sums, the weight of
the codeword c(u0,u1,...,uk−2,v) = (c0, c1, . . . , cpm−2) in Ck−1,v is given by

W (c(u0,u1,...,uk−2,v)) = #{0 ≤ t ≤ pm − 2 : ct �= 0}

= pm − 1 − 1

p

pm−2∑

t=0

∑

y∈Fp

ζ
yct
p

= pm − 1 − 1

p

pm−2∑

t=0

∑

y∈Fp

ζ
yTr

((∑k−2
j=0 u jπ

(p jd+1)t
)
+vπ

(
p(k−1)d+1

)
t
)

p

= pm − 1 − 1

p

∑

y∈Fp

∑

x∈F∗
pm

ζ
yTr

((∑k−2
j=0 u j x p jd+1

)
+vx p(k−1)d+1

)

p
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6 H. Yan, C. Liu

Since m
gcd(m,k−1) is odd, gcd(p

(k−1)d + 1, pm − 1) = 2. Let γ be an element in F
∗
pm , when γ

traverses F
∗
pm , γ p(k−1)d+1 traverses all square elements in F

∗
pm . We conclude that there exist

γ ∈ F
∗
pm and μ ∈ F

∗
p such that v = μγ p(k−1)d+1. Then we have

W (c(u0,u1,...,uk−2,v))

= pm − 1 − 1

p

∑

y∈Fp

∑

x∈F∗
pm

ζ
yTr

((∑k−2
j=0 u j x p jd+1

)
+μ(γ x)p

(k−1)d+1
)

p

= pm − 1 − 1

p

∑

y∈Fp

∑

x∈F∗
pm

ζ
μyTr

((∑k−2
j=0 μ−1u jγ

−(p jd+1)(γ x)p
jd+1

)
+(γ x)p

(k−1)d+1
)

p

= pm − 1 − 1

p

∑

y∈Fp

∑

x∈F∗
pm

ζ
yTr

((∑k−2
j=0 μ−1u jγ

−(p jd+1)x p jd+1
)
+x p(k−1)d+1

)

p

= W
(
c
(μ−1u0γ −2,μ−1u1γ −(pd+1),...,μ−1uk−2γ

−(p(k−2)d+1),1)

)
.

Notice that the map Ck−1,v → Ck−1,1,

c(u0,u1,...,uk−2,v) �→ c(
μ−1u0γ −2,μ−1u1γ −(pd+1),...,μ−1uk−2γ

−(p(k−2)d+1),1
)

is bijective, so we assert that the weight distributions of Ck−1,v and Ck−1,1 are the same, which
implies αk−1,v(z) = αk−1,1(z) for any v ∈ F

∗
pm . Lemma 4.1 now is proved. �	

From the above lemma, one immediately deduces the following.

Lemma 4.2 We have,

αk−1,v(z) =
{

αk−1(z), v = 0,
1

pm−1 (αk(z) − αk−1(z)), v ∈ F
∗
pm .

Now we prove Theorem 1.2. Obviously, Cm,d,2k−1 has length pm − 1 and dimension
(2k − 1)m. Moreover, it can be expressed as

Cm,d,2k−1 =
{
c(a0,...,ak−1,b0,...,bk−2) : a0, a1, . . . , ak−1, b0, b1, . . . , bk−2 ∈ Fpm

}
,

where

c(a0,...,ak−1,b0,...,bk−2) =
⎛

⎝Tr

⎛

⎝
k−1∑

j=0

a jπ
t (p jd+1)/2 +

k−2∑

j=0

b j

(
−π(p jd+1)/2

)t
⎞

⎠

⎞

⎠

pm−2

t=0

.
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Two classes of cyclic codes and their weight enumerator 7

The weight of the codeword c(a0,...,ak−1,b0,...,bk−2) = (c0, c1, . . . , cpm−2) in Cm,d,2k−1 is given
by

W (c(a0,...,ak−1,b0,...,bk−2))

= #{0 ≤ t ≤ pm − 2 : ct �= 0}

= #

⎧
⎨

⎩
0 ≤ t ≤ pm − 2, t even : Tr

⎛

⎝ak−1(π
t )(p

(k−1)d+1)/2 +
k−2∑

j=0

(a j + b j )(π
t )(p

jd+1)/2

⎞

⎠ �= 0

⎫
⎬

⎭

+ #

⎧
⎨

⎩
0 ≤ t ≤ pm − 2, t odd : Tr

⎛

⎝ak−1(π
t )(p

(k−1)d+1)/2 +
k−2∑

j=0

(a j − b j )(π
t )(p

jd+1)/2

⎞

⎠ �= 0

⎫
⎬

⎭

= 1

2

⎛

⎝#

⎧
⎨

⎩
t : Tr

⎛

⎝ak−1(π
t )p

(k−1)d+1 +
k−2∑

j=0

(a j + b j )(π
t )p

jd+1

⎞

⎠ �= 0

⎫
⎬

⎭

+ #

⎧
⎨

⎩
t : Tr

⎛

⎝λ(p(k−1)d+1)/2ak−1(π
t )p

(k−1)d+1 +
k−2∑

j=0

(a j − b j )λ
(p jd+1)/2(π t )p

jd+1

⎞

⎠ �= 0

⎫
⎬

⎭

⎞

⎠

= 1

2

(
W

(
c(a0+b0,...,ak−2+bk−2,ak−1)

)

+W

(

c
((a0−b0)λ,...,(ak−2−bk−2)λ

(p(k−2)d+1)/2,ak−1λ
(p(k−1)d+1)/2)

))

.

c(a0+b0,...,ak−2+bk−2,ak−1) and c((a0−b0)λ,...,(ak−2−bk−2)λ
(p(k−2)d+1)/2,ak−1λ

(p(k−1)d+1)/2)
are code-

words in Ck−1,ak−1 and Ck−1,ak−1λ
(p(k−1)d+1)/2 , respectively. By an argument similar to the proof

of Theorem 1.1, the weight enumerator of Cm,d,2k−1 is given by
∑

ak−1∈Fpm

αk−1,ak−1

(
z
1
2

)
α
k−1,ak−1λ

(p(k−1)d+1)/2

(
z
1
2

)
.

By Lemma 4.2, Theorem 1.2 now follows.

5 Concluding remarks

In this paper, the weight enumerator of cyclic code Cm,d,2k is completely determined when
(m, d) = 1. The weight enumerator of cyclic code Cm,d,2k−1 is also determined under the
condition (m, d) = 1 and 2 �

m
gcd(m,k−1) . Moreover, when (m, d) = e, the weight enumerator

of Cm,d,2k and Cm,d,2k−1 are also determined as following. Since the proof is similar to that
of Theorems 1.1 or 1.2, we omit the details.

Theorem 5.1 Let m and d be positive integers such that (m, d) = e. Let k be a positive
integer satisfying 2 ≤ k ≤ m+e

2e . Then Cm,d,2k is a cyclic code over Fp with parameters

[pm − 1, 2km
e , 1

2 (p
e − 1)(pm−e − pe([ m2e ]−2+k))]. Furthermore, the weight enumerator of

Cm,d,2k is (βk(z
1
2 ))2, where βk(z) is the weight enumerator of C̃m,d,k , which can be deduced

from [19].

Theorem 5.2 Let m and d be positive integers such that (m, d) = e and 2 �

m
e

gcd(me ,k−1) ,

where k is a positive integer satisfying 2 ≤ k ≤ m+e
2e . Then Cm,d,3 is a cyclic code over

Fpe with parameters [pm − 1, 3m
e , 1

2 (p
e − 1)pm−e] and Cm,d,2k−1 is a cyclic code over Fpe

123



8 H. Yan, C. Liu

with parameters [pm − 1, (2k−1)m
e , 1

2 (p
e − 1)(pm−e − pe([ m2e ]−3+k))] when 3 ≤ k ≤ m+e

2e .
Furthermore, the weight enumerator of Cm,d,2k−1 is

(
βk−1

(
z
1
2

))2 + 1

pm − 1

(
βk

(
z
1
2

)
− βk−1

(
z
1
2

))2
,

where βk(z) is the weight enumerator of C̃m,d,k , which can be deduced from [19].
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