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Abstract The performances of threemajor timememory tradeoff algorithmswere compared
in a recent paper. The algorithms considered there were the classical Hellman tradeoff and the
non-perfect table versions of the distinguished point method and the rainbow table method.
This paper adds the perfect table versions of the distinguished point method and the rainbow
table method to the list, so that all the major tradeoff algorithms may now be compared
against each other. Even though there are existing claims as to the superiority of one tradeoff
algorithm over another algorithm, the algorithm performance comparisons provided by the
current work and the recent paper mentioned above are of higher practical value. We provide
comparisons of algorithms at parameters that achieve a common success rate of inversion
and which take both the cost of pre-computation and the efficiency of the online phase into
account. The comparisons are based on the average case execution behaviors rather than
the worst case situations, and non-negligible details such as the effects of false alarms and
various storage optimization techniques are no longer ignored. A large portion of this paper is
allocated to analyzing the execution behavior of the perfect table distinguished point method.
In particular, we obtain a closed-form formula for the average length of chains associated
with a perfect distinguished point table.
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1 Introduction

A cryptanalytic time memory tradeoff algorithm is a method for inverting one-way functions
with the help of pre-computed data. It is widely used by hackers and law enforcement author-
ities to recover passwords from the knowledge of password hashes. In the pre-computation
phase, a massive amount of computation specific to the one-way function of interest is per-
formed and a compact digest of the obtained information is stored as tables. When the target
image for inversion is given, further computations that utilize the pre-computed tables are
performed to recover the input used to create the target with a reasonable probability, and
this part is referred to as the online phase.

The execution behavior of any tradeoff algorithm can be controlled through its many
parameters. Existing analyses [2,4,10,11] show that many tradeoff algorithms satisfy the
tradeoff curve

T M2 = cN2, (1)

for some numeric value c, which is neither very large nor close to zero. Here, T is the online
execution time, M is the size of the memory space required to store the pre-computation
tables, and N is the size of the space the one-way function is acting on. In particular, if the
online phase of a tradeoff method executes in time T using tables of combined size M under
some set of its parameters, then given any other T ′ and M ′ such that T M2 = T ′M ′2, there
exists another set of parameters under which the algorithm will execute in time T ′ using
storage M ′, thus allowing for tradeoffs to be made between the online execution time and
the storage requirement.

There are many time memory tradeoff methods available today, with most of them having
roots in the classical method by Hellman [11]. The most widely known methods are the
distinguished point (DP) variant of the Hellman’s original algorithm [7,8] and the rainbow
table method [21], which we shall refer to in this paper as the DP tradeoff and the rainbow
tradeoff, respectively. Both of these algorithms have two subversions that work with the
non-perfect tables and the perfect tables.

Comparison of tradeoff algorithm performances has been a controversial subject, with
every newly announced algorithm claiming superiority over existing algorithms. The diffi-
culty in accurately analyzing the execution behavior of these algorithms is clearly one reason
for this confusion, but another source has been the absence of an acceptable method for
numerically presenting the performances of tradeoff algorithms in a manner that closely
reflects our intuition concerning their relative usefulness or practicality.

Let us take a moment to explain a reasonable method of tradeoff algorithm comparison
that was recently suggested by [14]. Notice that the tradeoff curve (1) corresponding to any
specific tradeoff algorithm presents the complete list of (T, M)-pair options that are made
available by the algorithm. Thus the tradeoff curve expresses the required online resources
or the online execution behavior of an algorithm completely, and one may accept the tradeoff

coefficient c = T M2

N2 as a good measure of how efficient an algorithm is, with a smaller
coefficient indicating a more efficient algorithm. Indeed, many previous claims as to the
superiority of one algorithm over another have focused on this value.

However, the tradeoff coefficient alone cannot fully capture our intuition as to how good
an algorithm is. Since it is obvious that the online time can always be reduced if one is willing
to accept a lower success rate of inversion, the tradeoff coefficient is sure to change with the
requirement on the inversion success rate. Furthermore, even when one is aiming for a fixed
success rate, it is only reasonable to anticipate a more efficient online phase, or, equivalently,
a smaller tradeoff coefficient, after a larger investment in the pre-computation phase.
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In short, the online efficiency of each algorithm can be expressed succinctly through the
tradeoff coefficient, but each algorithm allows further tradeoffs to be performed between the
online efficiency, pre-computation effort, and success rate, while what we intuitively feel as
the practicality or usefulness of an algorithm is directly connected to the overall behavior of
the algorithm concerning these upper level tradeoffs. The difficulty of algorithm comparison
lies in that, unlike the tradeoffs between time and storage that may commonly be expressed
in the form (1) for most tradeoff algorithms, the equations that express the tradeoffs between
the three aforementioned factors are very different among the major tradeoff algorithms.
Hence, no single numeric value that can be computed for all algorithms in a common manner
is likely to capture the performances of the algorithms concerning the upper level tradeoffs.

The solution suggested by [14] was to let the algorithm implementersmake the final judge-
ment and choice based on their requirements, available pre-computation and online resources,
and personal taste, and to only present the information necessary for this decision in a coherent
manner. Parameters for different algorithms are first restricted to those that achieve the same
success rate. Then the tradeoffs between pre-computation cost and tradeoff coefficient are
presented as curves for each algorithm. Each curve represents the complete array of options
provided by one algorithm as to what degree of online efficiency can be obtained after a
certain amount of pre-computation investment, at the specified success rate. Implementers
that place different relative values on the online efficiency and the pre-computation cost will
choose to use different algorithms. In fact, comparisons of the algorithms themselves are no
longer meaningful, and each implementer will choose an algorithm together with the online
efficiency and pre-computation cost pair made available by that algorithm, based on his or
her favored balance between the two factors, from among all the options made available by
all the algorithms.

The work [14] first computed the success rates, pre-computation costs, and accurate trade-
off coefficients for the classical Hellman, non-perfect DP, and non-perfect rainbow tradeoffs.
These complexities and properties were presented as functions of the algorithm parame-
ters. Then, after fixing a small number of specific success rates of interest, parameters were
restricted to those achieving these success rates, and the upper level tradeoffs between the
pre-computation cost and tradeoff coefficient were presented as curves, separately for each
algorithm. After carefully adjusting the units expressing the tradeoff coefficients for the three
algorithms into one directly comparable unit, the three curves were gathered together in one
figure. This comprehensive and coherent display of information can allow someone consid-
ering the use of the tradeoff algorithms to decide on the most desirable balance between
pre-computation investment and online efficiency from among the numerous options made
available by the three tradeoff algorithms, at any required success rate.

The current paper completes the task started in [14] by dealing with the two remaining
major tradeoff algorithms, namely, the perfect DP and perfect rainbow tradeoffs.We compute
the tradeoff coefficients for these two algorithms and present the upper level tradeoffs between
pre-computation cost and online efficiency as graphs at a small number of fixed success rates.
Similar graphs for any other success rate may easily be obtained from our formulas. An
overly simplified conclusion that may be drawn from the graphs is that, under most practical
situations, the perfect rainbow tradeoff is likely to be preferred over the other four algorithms
that have been mentioned. However, as we have discussed, the final judgment is not ours to
make, and may be different under each specific situation.

Since thiswork is a direct extensionof thework [14],we shall not repeat the contents of [14]
that advocate the subject of our study. Although not strictly necessary, a good understanding
of [14] will be very helpful in reading this paper. In fact, it should be possible for the impatient
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reader with a full understanding of [14] to jump straight to Fig. 4 and collect the core findings
of this paper.

We clarify that we will not be dealing with the time memory data tradeoffs [5,6] in this
paper. Also note that even though one could conceive of a perfect table version of the classical
Hellman tradeoff [2,29], it is never used in practice due to its impractical pre-computation
phase and will not be treated in this work.

The rest of this paper is organized as follows. In the next section, we fix the terminology,
clarify the exact versions of the algorithms we are analyzing, and review existing analyses of
the perfectDP and perfect rainbow tradeoffs. Section 3,which is themost technical part of this
paper, is devoted to analyzing the execution behavior of the perfect DP tradeoff. Analysis
of the expected online time complexity that does not ignore false alarms is given and the
tradeoff coefficient is computed. The issue of storage optimization is also discussed and tests
that give strength to the correctness of our theoretical developments are presented. Since
some readers may be under the impression that existing works already provide a full analysis
of the perfect DP tradeoff, we also discuss why these previous results were insufficient for
the purpose of algorithm comparisons. The perfect rainbow tradeoff is treated in Sect. 4.
There were previous results we could utilize and obtaining the tradeoff coefficient for the
perfect rainbow tradeoff was much easier than for the perfect DP tradeoff. The information
we have prepared concerning the perfect DP and perfect rainbow tradeoffs is presented in
Sect. 5 as graphs that allow direct comparisons between different algorithms and also between
different parameter sets for the same algorithm. Finally, the paper is summarized in Sect. 6.
The appendices contain further material that could be of interest.

2 Preliminaries

In this section, after recalling the various notions required for our discussion, we review some
of the existing related works. Only the theoretical developments concerning the accurate time
and storage analyses of the perfect DP and the perfect rainbow tradeoffs are explained. Some
of the contents we do not present would include other tradeoff algorithms and implementation
issues. There are also theories concerning asymptotic complexity bounds [4] on a general
class of tradeoff algorithms and analyses of the full costs [32] of many cryptographic attack
algorithms. We acknowledge that even the papers we introduce contain much more content
than what is explained here.

2.1 Algorithm clarification, terminology, and notation

This section aims to make this paper self-contained, but the reader may still find it helpful
to refer to [14] for more detail. The work [14] also clarifies many obscure technical details1

that are not discussed elsewhere in the related literature, which should be of interest to the
mathematically oriented cryptographers.

Throughout this paper, the function F : N → N will always act on a search space
N of size N. In practical applications, the function F is the specific one-way function to be
inverted,which has a co-domain that ismuch larger than the domain.However, any theoretical

1 Let us mention just one example. The objective of any tradeoff algorithm discussed in this work will be to
recover the randomly chosen specific input that was used to create the given inversion target, rather than to
recover any pre-image corresponding to the inversion target. This detail, which the previous sentence has not
explained in full, is important when attempting an analysis of the accuracy aimed for in this work. However,
even this most basic definition of a successful inversion is seldom made clear in the tradeoff literature.
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analysis of the tradeoff algorithms will treated it as a random function with matching domain
and co-domain, and we will do the same throughout this work. The symbol p will be used
in this section to denote the unknown answer that is to be recovered by a tradeoff algorithm,
and the inversion target will be denoted by h = F(p). The reader could think of these two
as the password to be recovered and the password hash given as the inversion target. As is
customary with cryptology papers, the symbol log n will denote log2 n.

2.1.1 Perfect DP tradeoff

As there are many small tweaks that can be applied to the DP tradeoff, we must clarify the
exact version of the DP tradeoff that will be analyzed in this work. In short, wewill be treating
the perfect table variant that uses a sufficiently large chain length bound, utilizes the online
chain recording technique to reduce the effort of resolving alarms, and employs the ending
point truncation technique for storage reduction.

To setup the perfect table version of the DP tradeoff, one first fixes positive integer para-
meters m, t , and �. In time, we will see that these correspond to the number of entries per
table, the average length of a random DP chain, and the number of tables, respectively. The
integers must be chosen to satisfy the matrix stopping rule mt2 ≈ N and the relation � ≈ t .

Theoretical analyses of the DP tradeoff often focus on the choice of m ≈ t ≈ � ≈ N
1
3 ,

because this choice minimizes the overall complexity, defined as the sum of the online time
and storage complexities. This set of parameters, with a lot of flexibility allowed for the
approximate conditions, is being assumed when we refer to the DP tradeoff executed in a
typical environment.

Once the parameters are fixed, one chooses a certain characteristic that is satisfied by a
random element of N with probability 1

t . This distinguishing property must be extremely
easy to check for elements of N . Any element of N satisfying the distinguishing property
is called a distinguished point (DP). A typical approach is to set t to a power of 2 and to
define all points of N with log t leading zeros as DPs. Next, bijections rdi : N → N
(i = 1, . . . , �) are fixed to define the i-th colored one-way functions Fi = rdi ◦ F . The
reduction functions rdi are chosen so that they require negligible resources to compute. A
typical approach is to have each reduction function XOR a fixed constant to its input, with
the constants chosen to be distinct for each i . Finally, another positive integer

→
m0, that is

correlated to m (and t) in a manner to be explained below, is fixed.
The pre-computation and online phases of the perfect DP tradeoff, in their rudimentary

forms, are given by Algorithms 1 and 2, respectively. Further details and certain tweaks to
the algorithms that should be assumedwill be explained below, together with the terminology
and notation to be used in this paper.

The integer
→
m0 of Algorithm 1 must be set so that each table D̄Ti is expected to containm

entries. The appropriate value for
→
m0 is given later in this paper by Lemma 2, as a function

of m and t . An alternative method is to modify the algorithm to incrementally add more
starting points until the number of distinct ending points reaches m, but we will not treat this
approach.

The table D̄Ti produced by Algorithm 1 is called the i-th perfect DP table and the larger

auxiliary table DTi = {(spij ,epij )}
→
m0
j=1 is referred to as the non-perfect DP table, corre-

sponding to the perfect table D̄Ti . Note that, even though any collection of starting point
and ending point pairs that contains no duplicates among its ending points could be called
a perfect table and any similar collection that is not necessarily free of duplicates could be
called a non-perfect table, our reference to perfect and non-perfect DP tables in this paper
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Algorithm 1: Pre-computation phase of the perfect DP tradeoff

for i = 1, . . . , � do
TDTi ← ∅; // temporary DP table

for j = 1, . . . ,
→
m0 do

Choose spij ∈ N ; // starting point

tp ← Fi (sp
i
j ); len j ← 1;

while tp is not a DP do // generate pre-computation chain
tp ← Fi (tp); len j ← len j + 1;

end
epij ← tp; // ending point

Append (spij ,ep
i
j , len j ) to TDTi ;

end
Sort TDTi according to the ep’s;
for each group of (sp,ep, len)’s in TDTi with a common ep do // remove ep collisions

Discard all triples except for the one with the largest len;
end
Remove all len information from TDTi and record result to disk as D̄Ti ;

end

Algorithm 2: Online phase of the perfect DP tradeoff

for i = 1, . . . , � do
op ← rdi (h) = Fi (p);
while op is not a DP do // generate online chain

op ← Fi (op);
end
Search for op among the ep’s of D̄Ti ;

if op == epij then

tpnew ← Fi (sp
i
j );

while [tpnew != rdi (h)] and [tpnew is not a DP] do // regenerate pre-comp chain
tpold ← tpnew;
tpnew ← Fi (tpold);

end
if F(tpold) == h then // answer found

return tpold as answer and terminate;
end

end
end

will almost always be to the tables D̄Ti and DTi that result from an execution of Algorithm 1.
We will not be discussing properties of perfect DP tables created in any other manner.

A series of elements from N , obtained through iterated applications of F , or some Fi ,
that ends at its first occurrence of a DP is a DP chain. Since a DP occurs with probability 1

t ,
the expected length of a randomly generated DP chain is t . Each series of points spanning
from a spij to the corresponding epij is a pre-computation DP chain, and the first part of
Algorithm 2 generates an online DP chain. We take the convention that an online chain starts
from the unknown answer p, rather than from the inversion target h or rdi (h).

The collection of all pre-computation DP chains corresponding to a pre-computation DP
table is aDPmatrix. The use of the terms table andmatrix in this paper are not interchangeable,
and the reader should exercise care to distinguishing the two. The matrices corresponding to
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D̄Ti and DTi will be referred to as the perfect DP matrix D̄Mi and the non-perfect DP matrix
DMi , respectively. Once again, our use of these terms will almost always be to DP matrices
resulting from an execution of Algorithm 1, rather than to matrices of perfect or non-perfect
properties obtained in some other manner.

It is helpful to visualize a DP matrix as a directed graph with arrows representing the
actions of the one-way function. With this view, one may state that a non-perfect DP matrix
contains many chains that merge into each other and that a perfect DP matrix is free of chain
merges. The chains are usually visualized as having been laid out in the horizontal direction
with arrows point from left to right, so that a perfect DP matrix contains m rows of various
lengths that do not merge into each other with the starting points on the left and the ending
points on the right.

As the online chain corresponding to a pre-computation table is generated, the chain will
either reach a DP that does not reside in D̄Ti or merge into one of the pre-computation chains
of D̄Mi . Because the function Fi that is being iterated is not injective, the discovery of op ==
epij does not guarantee that the answer p to the inversion problem will be recovered through

the regeneration of the corresponding pre-computation chain that starts from spij , and these

instances are called false alarms. Any ending point match op == epij is an alarm, and the
bottom half of Algorithm 2 works to resolve this alarm.

The collision removal process of Algorithm 1 discards all chains except for the longest
one from each group of merging chains found in a non-perfect DP matrix. Retaining the
longest chain [7,8] is the standard approach, as this is expected to be beneficial to the success
rate of the online phase. A merge of chains of equal length is a rare event that need not be
considered during our analysis.

The starting points {spij }
→
m0
j=1 for a pre-computation matrix must be chosen to be distinct.

We specify more concretely that, within each table, sequential starting points [2,6,7] are to
be used. Then, each starting point can be recorded in log

→
m0 bits, which should be much

smaller than the logN bits required to record a random element of N .
Any implementation of the DP tradeoff will introduce an upper bound t̂ on the lengths

of pre-computation and online chains to deal with chains falling into loops [7,8]. That is,
the while-loop of Algorithm 1 and the first while-loop of Algorithm 2 need to be augmented
with another condition to prevent occurrences of infinite loops. A lower bound ť can also
be used [22,25] to discard short pre-computation chains that contribute little to the search
space coverage. In this work, no lower bound and a sufficiently large upper bound, such as
t̂ = 15t , on the chain lengths are assumed. This simplifies our theoretical developments by
ensuring that the possibility of an online chain not meeting the chain length bound conditions
will be negligible, and also by allowing us to ignore the effects of discarding long or short
pre-computation chains. A brief justification as to why treating just this case is sufficient is
given in Appendix 1, and a detailed explanation of what is meant by a sufficiently large upper
bound on the chain length is given in Appendix 2.

The work [7,8] suggested that the length of each pre-computation chain and the maxi-
mum pre-computation chain length for each table be recorded in the DP table. However, the
recording of individual chain lengths has a negative effect on the physical amount of required
storage, and we can argue heuristically that the positive effect of the maximal chain length
information is very limited. The DP tradeoff considered in this work incorporates neither of
the two suggestions.

The fact that every ending point satisfies the distinguishing property implies that certain
parts of the ending points are redundant. These parts are not recorded to the pre-computation
table to save log t bits of storage per ending point [6]. In addition, the ending points are
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further truncated to a certain length before being written to storage [4,6]. Since some ending
point information is lost by the truncation, only probable matches can then be announced
during the online phase, and this will increase the frequency of false alarms. However, this
side effect of truncation can be maintained at a manageable level by controlling the degree
of truncation. Details are discussed later in this paper.

Note that, since the pre-computation table is sorted on the ending points, some of the most
significant bits of the ending points will be increasing almost predictably throughout the
table. This observation is the basis of the index file technique [6], which allows the removal
of close to logm further bits of storage per truncated ending point without any loss of ending
point information. We assume that this storage reduction technique is also used in recording
the pre-computation tables.

Weassume thatAlgorithm2 is slightlymodified so as to incorporate the online chain record
[12,24] technique. While generating an online chain, one keeps track of not just the current
foremost point tpnew of the chain, but keeps a record of all the generated intermediate points.
When resolving an alarm, one compares the current end of the regenerated pre-computation
chain against the complete online chain, rather than just the reduced inversion target point
rdi (h), so that one may stop the pre-computation chain regeneration at the exact position of
chain merge, rather than at the ending point DP.

The work [12,24] suggested that all the pre-computation tables be processed in parallel,
rather than sequentially, during the online phase. For the case of the non-perfect DP tradeoff,
this idea was shown to have a small positive effect [16]. However, the parallel version of
the perfect DP tradeoff will not be analyzed in this work. Treatment of parallelization is
quite outside the scope of this work, but our work will be an important stepping stone for
anyone interested in analyzing the parallel version. Some comments on this issue are given
in Appendix 1.

In the rest of this paper, we will mostly be focusing on a single DP matrix or table. This
is only natural, as no argument can be specific to a reduction function rdi . Hence, the table
index i will be dropped from all notation and the simplified symbols D̄T, DT, D̄M, and DMwill
be used. Likewise, the iteration function Fi will be written simply as F . The k-times iterated
composition F ◦ · · · ◦ F of function F (or Fi ) will be written as Fk .

The coverage rate D̄cr of a perfect DP matrix D̄M is defined to be the expected number of
distinct nodes |D̄M| in the matrix, divided bymt . More precisely, only the points that are used
as inputs to the one-way function are counted, so that the ending point DPs are excluded in
the count |D̄M| and D̄cr mt

N is the success probability associated with a single perfect DP table.

We will use the notation D̄msc = mt2
N for the perfect DP tradeoff and refer to this as the

matrix stopping constant. The non-perfect DP tradeoff equivalent of Dmsc = →
m0t2

N will also
be used.

Note thatHellman’s originalmatrix stopping rulewas mt2

N = 1 and that thematrix stopping
rule used in this paper is equivalent to requiring D̄msc ≈ 1. This condition is a rough bound on
how large a pre-computation matrix can become before additional pre-computation quickly
becomes inefficient in covering more answers and can be understood as a rule for when to
stop the creation of a pre-computation matrix.

2.1.2 Perfect rainbow tradeoff

Let us now make the exact variant of the rainbow tradeoff that is treated in this paper more
explicit. One starts by fixing positive integers m and t , satisfying the matrix stopping rule
mt ≈ N, and a small positive integer �. The parametersm, t , and � correspond to the expected
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number of entries to be stored in each perfect rainbow table, the length of a rainbow pre-
computation chain, and the number of tables, respectively. One should note that the matrix
stopping rules for the rainbow and DP tradeoffs are different from each other. Unlike the
classical Hellman or DP matrices, the rainbow matrix structure quickly becomes inefficient
in coveringmore answers as its dimensions approach something satisfyingmt ≈ N. A typical

environment for the rainbow tradeoff would call for parameters m ≈ N
2
3 , t ≈ N

1
3 , and a

small �, such as 2, or 3, where we allow for a lot of flexibility with the approximations.
The rainbow tradeoff requires t reduction functions for each table, so that they are written
as rdi,k : N → N (i = 1, . . . , �, k = 0, . . . , t − 1). The reduction function rdi,k defines
the k-th colored one-way function Fi,k = rdi,k ◦ F for the i-th rainbow table. To complete
the parameter setup, another positive integer m0, that needs to be chosen in a manner to be
described below, is fixed.

Algorithm 3: Pre-computation phase of the perfect rainbow tradeoff

for i = 1, . . . , � do
RTi ← ∅;
for j = 1, . . . ,m0 do

Choose spij ∈ N ; // starting point

tp ← spij ;

for k = 0, . . . , t − 1 do // generate pre-computation chain
tp ← Fi,k (tp);

end
epij ← tp; // ending point

Append (spij ,ep
i
j ) to RTi ;

end
Sort RTi according to the ep’s; // non-perfect rainbow table
R̄Ti ← ∅;
for each group of (sp,ep)’s in RTi with a common ep do // remove ep collisions

Append any one pair to R̄Ti ;
end
Record R̄Ti to disk; // perfect rainbow table

end

The rudimentary forms of the pre-computation and online phases of the perfect rainbow
tradeoff [21] are given by Algorithms 3 and 4, respectively. Further details of the algorithms
will be explained below.

The integerm0 of Algorithm 3 must be set so that each table R̄Ti is expected to containm
entries. The appropriate value for m0 is revealed later in this paper by Lemma 9. As with the
DP tradeoff, one could modify the algorithm to incrementally add more starting points until
the number of distinct ending points reaches m, but we will not consider such an approach.

The tables R̄Ti and RTi produced by Algorithm 3 are called the i-th perfect and non-
perfect rainbow tables, respectively. As with the DP tradeoff, although the usual definitions
of perfect and non-perfect tables cover more general tables, we will deal exclusively with
rainbow tables produced by Algorithm 3 in this paper.

Each series of t + 1 elements spanning from a spij to the corresponding epij is a pre-
computation rainbow chain, and the first part of Algorithm 4 generates a length-(t−s) online
rainbow chain. Note that, as with the DP tradeoff, we are following the convention that an
online chain starts from the unknown answer p, rather than from h or rdi,s(h). An online
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Algorithm 4: Online phase of the perfect rainbow tradeoff

for s = t − 1, . . . , 0 do
for i = 1, . . . , � do

op ← rdi,s (h) = Fi,s (p);
for k = s + 1, . . . , t − 1 do // generate length-(t − s) online chain

op ← Fi,k (op);
end
Search for op among the ep’s of R̄Ti ;

if op == epij then

tp ← spij ;

for k = 0, . . . , s − 1 do // regenerate pre-comp chain
tp ← Fi,k (tp);

end
if F(tp) == h then // answer found

return tp as answer and terminate;
end

end
end

end

rainbow chain of length (t−s) for the i-th perfect rainbow tablemust start with an application
of Fi,s and end with the application of Fi,t−1.

The collection of all pre-computation chains corresponding to R̄Ti is the perfect rainbow
matrix R̄Mi . This is expected to containm chains, each of length t , with none of these merging
into each other. Likewise, the collection ofm0 chains corresponding to RTi is the non-perfect
rainbow matrix RMi . As with the DP tradeoff, the reader should be careful to distinguish a
rainbow table from a rainbow matrix in reading this paper.

Unlike the DP tradeoff case, pre-computation chains of the rainbow tradeoff are identical
in their lengths, and the method of choosing which chain to retain during the ending point
collision removal process is irrelevant to our analysis and algorithm performance. Thus, the
collision removal [21] process of Algorithm 3 does not specify for any specific method to be
used in selecting the chain to be retained in the perfect matrix.

Techniques for reducing the number of bits allocated to each table entry of the rainbow
tradeoff that will be considered in this paper are all of those that were previously explained
for the DP tradeoff, except for the one involving the definition of a DP. Sequential starting
points [2,6,7] are used, so that only logm0 bits are needed to record each starting point.
Each ending point is truncated to a certain length [4,6] to be discussed later in this paper.
Finally, the index file technique [4,6] is also applied, so that about logm further bits per each
truncated ending point can be removed with no loss of information.

Those not familiar with the DP and rainbow tradeoffs should note that there are big
differences between Algorithms 2 and 4. First of all, each iteration of the outermost loop
appearing in the rainbow tradeoff online phase creates a new online chain for each table,
so that t online chains could be created for each table in the worst case. This is in contrast
with the DP online phase which creates just one online chain for each pre-computation
table. The second significant difference is in the order of table treatment. The DP online
phase treats the pre-computation tables in a serial manner, but the rainbow online phase
treats the small number of tables in a round-robin fashion. During our analysis, we make
the further simplification that all � tables are processed in parallel [21], during each iteration
of the outermost loop. The final large difference concerns the length of the regenerated pre-
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computation chain. As with the DP tradeoff, chain merges lead to false alarms during the
online phase of the rainbow tradeoff. To resolve an alarm, the DP tradeoff treated in this
paper, which uses the online chain record technique, regenerates the pre-computation chain
up to the point of chain merge. On the other hand, the rainbow tradeoff regenerates the
pre-computation chain to a a length that is pre-determined by the length of the online chain.

The notation R̄msc = mt
N will be used for the perfect rainbow tradeoff and this will be refer

to as matrix stopping constant. The non-perfect rainbow tradeoff analog of Rmsc = m0t
N will

also be used.

2.1.3 Checkpoints

The checkpoint technique, introduced in [2] for applications to the rainbow tradeoff, allows
for some of the false alarms to be filtered out before the regeneration of the pre-computation
chain. This reduces the time complexity of the online phase in exchange for a small increase
in storage size. A detailed analysis of the effect a single checkpoint has on the online time
complexity was given by [13] and the case of multiple checkpoints was similarly discussed
by [19,30].

The checkpoint technique can trivially be extended to the classical Hellman tradeoff and
thiswas analyzed in [13].On the other hand, for now, there seems to be no literature discussing
the application of the checkpoint technique on the DP tradeoff. There are multiple difficulties
arising from the variable chain lengths, but we believe it should still be possible to achieve
at least some reduction in online time through an application of the checkpoint technique on
the DP tradeoff.

Although the checkpoint technique is a meaningful addition to the tradeoff methods, we
will not be treating the checkpoint technique in this paper. The practical reason is that its
consideration is bound tomake our analysis and comparison that are already complicated even
more complicated, but there are several other reasons. First of all, the use of checkpoints is
tightly linked to the practical requirement for each table entry to be placed at byte-boundaries,
and this often makes the theoretical treatment of the associated increase in storage size
meaningless. Second, existing analysis [13] has shown that the positive effect of checkpoints
is somewhat limited, and we can expect the differences in their effects on different tradeoff
methods to be even smaller. Third, while we can expect the checkpoints to be more effective
on the rainbow tradeoff than on the DP tradeoff, our later conclusions will roughly be that
the rainbow tradeoff is better than the DP tradeoff, even without the use of checkpoints.

In summary, consideration of checkpoints adds much more complexity to the analysis and
comparison of the tradeoff algorithms, but the effects of checkpoints are extremely unlikely
to change our conclusions, while the practical use of checkpoints will be detached from its
theoretical analysis.

2.1.4 Other conventions and comments

The reader is probably aware by now that we are using the symbols D̄, D, R̄, and R, when we
wish to denote some value that relates to the perfect DP, non-perfect DP, perfect rainbow,
and non-perfect rainbow tradeoffs, respectively.

To reduce confusion, in this work, the word efficiency is always associated with an algo-
rithm’s competitiveness in the use of the online resources, whereas the ability to balance the
online efficiency, the pre-computation cost, and sometimes also the success rate, against each
other, is referred to with the word performance.

123



484 G. W. Lee, J. Hong

The approximation (1 − 1
b )a ≈ e− a

b , which is valid when a = O(b), is used frequently
throughout this paper without any explanation. A more precise statement of this approxima-
tion may be found in [14, Appendix A]. Infinite sums are also frequently approximated by
appropriate definite integrals throughout this paper. Both kinds of approximations will be
very accurate whenever we use them, as long as a reasonable set of parameters is used with
the tradeoff algorithm, and they will be written as equalities rather than as approximations.

For both the DP and rainbow tradeoffs, the parameter t is very roughly of N
1
3 order in

any practical situation, and we will often ignore approximations that are of 1 + O
( 1
t

)
order

multiplicative factors and write these as equalities.
Applications of the perfect table technique to the DP and rainbow tradeoffs are expected

to increase both the online efficiency and the pre-computation cost. Hence, it is not clear if
the benefit of using perfect tables outweighs its drawback. Providing information that can
be used to settle this question is one of the objectives of this paper. Truncation of ending
points must also be used carefully, since the storage reduction is associated with an increase
in online time. However, all other techniques we are employing are only advantageous, when
used appropriately in any practical situation.

2.2 Existing analyses of the perfect DP tradeoff

The book [9, p. 100] gives credit to Rivest for first suggesting to apply the DP technique to
the classical Hellman tradeoff, but no corresponding formal article was published. The first
analysis of the DP tradeoff that attempts to take the non-uniform chain lengths of the DP
matrix into account was given by [7,8]. There, credit is given to the unpublished work [22]
for also having studied the DP tradeoff independently.

Many interesting variables were introduced by [7,8] while analyzing the perfect DP trade-
off. The first of these is the expected number of chains α after removal of chain merges. The
average of DP chain lengths β0 and β̄, before and after removal of chain merges, respectively,
were also introduced ([7,8] writes β̄ as β). Note that the variable α is equal to the parameter
m used in this paper, but the work [7,8] treated the number of pre-computation chains to be
computed before collision removal as a given preset parameter and treated α as a function
of the initial chain count. The success probability and online time estimates for the perfect
DP tradeoff were given as equations involving α and β̄. They also stated certain relations
satisfied by α, β0, β̄, and some other variables. However, they were unable to derive for-
mulas for computing α and β̄ from the externally provided parameters. Furthermore, as was
pointed out by [25], some of their arguments treated the merges of pre-computation chains
inadequately and were problematic.

The subsequent work [25] gave a more advanced analysis of the perfect DP tradeoff.
They started by computing β0 for the case when the chain length bounds ť and t̂ are both
non-trivially enforced ([25] writes β0 as β). Then the number of distinct nodes expected in
a perfect DP matrix was expressed using the variable β0. Because ť and t̂ were taken into
consideration while computing the node count, the number of DP chains of any specified
length range appearing in a perfect DP matrix could be extracted from the node counts by
focusing on sub-matrices of the total DPmatrix. The obtained information on the chain length
distribution was then used in an ad hoc manner to compute β̄ ([25] writes β̄ as βmod ). Finally,
the distinct ending point count α was easily expressed as a function of the perfect matrix
node count and β̄.

Note that α and the node count for a perfect DP matrix are directly connected to the
storage complexity and the success rate of the tradeoff algorithm, respectively. The paper
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also provides a simple argument concerning the pre-computation cost and an upper bound
on the time complexity of the online phase.

The analysis of the perfect DP tradeoff given by [25] may seem rather complete, except
that the effects of false alarms were disregarded during the time complexity analysis. Since
we are also claiming to have done the same analysis, a comparison of results is given in
Sect. 3.4. Our observation is that the results of [25] are only valid as first approximations,
and that these are too rough for the purpose of this paper.

The later work [2] also discussed the perfect DP tradeoff, but they only considered the
special case when the DP matrix consists of the maximum number of DP chains that may be
collected for a specified DP probability. However, during their analysis, they oddly assumed
that the starting points for these chains areDPs. In any case, their result concerning the success
probability requires knowledge of the average chain length associated with the maximal
perfect DP matrix, but they were unable to provide this value except through experiments.
Furthermore, since increasing the number of non-merging rows reduces the average chain
length and possibly even the search space coverage, it is unclear if maximal perfect DP tables
can be associated with being optimal in any sense.

The final work we mention is [23]. There, a lot of effort was placed in deriving a formula
for β0, but their end result is almost identical to what may be found in [25] ([23] writes β0

as β). The formulas of [23] and [25] for β0 will exhibit noticeable differences only when t̂ is
close to N, which is unrealistically large. After reobtaining β0, they derived a formula for α

that depends on β0, but the argument was very terse and their logics were not clear. Finally,
the two variables α and β0 were combined to give the success probability of the tradeoff
algorithm, but they seem to have confused the concepts of β0 and β̄ at this point.

2.3 Existing analyses of the perfect rainbow tradeoff

The introduction of the rainbow tradeoff [21] was accompanied with a rudimentary analysis,
which included theworst case online time complexity. Theworst case refers towhen the online
phase algorithmprocesses all the pre-computation tableswithout returning the correct answer.
However, the effects of false alarms were not accounted for in this worst case complexity
claim. They compared the worst case complexity against the similarly rough worst case
complexity of the DP tradeoff and claimed that the rainbow tradeoff was more efficient by
a factor of two. This was then combined with heuristic arguments, mainly concerning false
alarms, to support the claim of even greater advantage. Most of their arguments referred to
the non-perfect rainbow tradeoff and the perfect table version made an appearance only at the
end of the paper, but the complexity analyses provided were rough enough to be applicable
to both versions.

A more refined analysis of the perfect rainbow tradeoff appeared in [2]. It treated the
expected online time complexity, rather than the worst case complexity, and took the effects
of false alarms into account. Their stated complexity results hold true only in the case of
perfect rainbow tables that contain the maximum number of entries possible, but a large part
of these results and their proofs can be adjusted to hold true for more general perfect rainbow
tables.

The expected online time complexity of the perfect rainbow tradeoff that does not ignore
false alarms was also given by [13]. There the complexity results for the general perfect
rainbow tables were stated as closed-form formulas. These are easier to use and manipulate
than the formulas of [2], whichwere given as certain double summations that further involved
iterative computations if the general perfect rainbow tables were to be considered. However,
the results of [2] and [13] should agree accurately when numerically evaluated on any specific
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set of reasonable parameters.2 Our theoretical developments concerning the perfect rainbow
tradeoff will rely heavily on these results.

Concerning the success rate of the rainbow tradeoff, note that this is trivial to write down
for the perfect table version [21]. A formula for the success rate of even the non-perfect
rainbow tradeoff already appeared in [21]. However, iterative computations were required to
evaluate the formula on any specific parameter set. A simple closed-form formula that can
replace this iterative part, for the special case ofN starting points, was presented in [2], while
studying the success rate of the maximal perfect rainbow tradeoff. The closed-form formula
was slightly modified in [13] to work for any non-perfect rainbow table and was used to study
the online complexities of the rainbow tradeoff. The success rate of the non-perfect rainbow
tradeoff is not used directly in this work, but plays a crucial role in studying the behavior of
false alarms in the perfect rainbow tradeoff, and the current work relies on previous results
[2,13] that have worked out these details.

Let us mention one more issue that is not necessarily specific to the perfect rainbow
tradeoff, but is closely related to this work. The work [4] claimed that each entry in the pre-
computation table for the DP tradeoff can be represented by half the number of bits required
for the rainbow tradeoff, but their explanation was rather brief. They followed this claim
with a short argument stating that, if the effects of false alarms were to be ignored, one must
conclude that the DP tradeoff is twice as efficient as the rainbow tradeoff. An attempt to refute
this was made by [2], which maintained that the claim of [4] concerning the required storage
bits per table entry was incorrect. With neither [4] nor [2] providing any details, the work
[14] clarified that, in the case of non-perfect tradeoffs, the storage requirement comparison
of [4] was correct, but that the rainbow tradeoff may still be seen as being advantageous over
the DP tradeoff in typical environments. However, the case of the perfect tradeoffs was left
untreated.

3 Perfect DP tradeoff

In this section, we provide a full analysis of the perfect DP tradeoff that uses a sufficiently
large upper bound on the chain length. A more accurate description of the DP tradeoff that
is being treated in this work was given in Sect. 2.1.1. As will be explained in Sect. 3.4, the
results obtained here differ from those that were presented by existing works.

3.1 Online efficiency

This is the most complicated part of this paper. We will present formulas describing the
success probability, pre-computation cost, and tradeoff coefficient of the perfect DP tradeoff.
The discussion will require previous results concerning the non-perfect DP tradeoff.

Let us visualize a non-perfect DPmatrix with the ending points aligned in a single column.
Some of the rows (pre-computation chains) will be merging into each other and forming
trees. Let us use

←
mk to denote the number of distinct points expected in its column that is

k iterations away from the ending points. In particular,
←
m0 denotes the number of distinct

ending points and this is also the number of independent or non-overlapping rows and trees
of the non-perfect DP matrix.

2 The analyses of [2] and [13] both extend further to the use of the checkpoint technique [2] on the perfect
rainbow tradeoff, where the two are not in agreement.
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Lemma 1 The number of distinct ending points in a non-perfect DP matrix may be approx-
imated by the number of its distinct points that are a single iteration away from the ending
point DPs. More precisely, we have

←
m0 = ←

m1
{
1 + O

( 1
t

)}
.

Proof Let us be given a set of
←
m1 points, which are known to be a single F-iteration away

from the DPs. We wish to compute the expected size of its F-image. Recall that we are
treating F as a random function and note that the set of DPs is of size N/t . Viewing this
situation as that of making

←
m1 independent random choices from the set of all DPs, the

fraction of the DP space that is not hit by any of the
←
m1 choices becomes

(
1 − 1

N/t

)←
m1 , and

the expected size of the image set can be written as

←
m0 = (N/t)

{

1 −
(
1 − 1

N/t

)←
m1

}

.

After expanding the
←
m1-th power to write

←
m0 = N

t

{

1 − 1 +
←
m1 t

N
−

(←
m1

2

)(
t

N

)2

+
(←
m1

3

) (
t

N

)3

− · · ·
}

= ←
m1 −

(←
m1

2

) (
t

N

)
+

(←
m1

3

) (
t

N

)2

− · · · ,

we can recall the condition mt2 ≈ N and note
←
m1 = Θ(m) to observe

←
m1t
N 	 1 and claim

←
m0 = ←

m1 + ←
m1 O

( ←
m1 t

N

)
= ←

m1

{
1 + O

(
1

t

)}
.

Thus, we may approximate
←
m0 with

←
m1, for any realistic value of t . In fact, we had explicitly

stated in Sect. 2.1.4 that any approximation of 1 + O
( 1
t

)
order multiplicative factor would

be ignored and written as an equality. 
�
More generally, it is possible to show

←
mi+1 ≈ ←

mi , but it would be unwise to iteratively
combine these approximations too many times to conclude

←
m j ≈ ←

mi , for every j and i . In
fact, it is easy to argue as in [16] that

←
mk = |DM|

(
1 − 1

t

)k−1 1

t
, (2)

for k ≥ 1, so that
←
m j = (

1 − 1
t

) j−i ←
mi . Here, the |DM| denotes the number of distinct points

expected in a non-perfect DPmatrix. To be more precise, the |DM| used here counts the points
that were used as inputs to the iterating function during the non-perfect DP table creation, so
that the starting points are included and the ending points are excluded.

In passing, we caution the reader that one must be aware of the possibility of erring when
extending (2) to the k = 0 case and writing

←
m0 = |DM|

(
1 − 1

t

)−1 1

t
≈ |DM|1

t

(
1 + 1

t

)
, (problematic!) (3)

since one can infer from the proof of Lemma 1 that

←
m0 ≈ ←

m1

{
1 − (

←
m1 − 1) t

2N

}
≈ |DM|1

t

(
1 − D̄msc

2t

)
, (4)
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with the opposite sign in the second term, is a much more reasonable and accurate approxi-
mation. These two expressions for

←
m0 are certainly close to each other and also to

←
m1, so that

the use of (3) could be acceptable under many circumstances, but it would be inappropriate
to claim (3) by itself.

The core information missing from (2) is also already available. It is known [14] that a
single non-perfect DP matrix created with

→
m0 starting points is expected to contain

|DM| = 2
→
m0 t

1 + √
1 + 2Dmsc

(5)

distinct points, where Dmsc = →
m0t2

N is the matrix stopping constant for the non-perfect DP
matrix. The reader should be careful to distinguish the symbol

→
m0 from the previously used

symbol
←
m0. The information we have gathered so far can be used to relate the number of

starting points to the number of distinct ending points.

Lemma 2 A non-perfect DP matrix created with
→
m0 starting points is expected to contain

2
→
m0

1+√
1+2Dmsc

distinct ending points, where Dmsc = →
m0t2

N . Conversely, given m, one must

generate
→
m0 =

(
1 + D̄msc

2

)
m chains, where D̄msc = mt2

N , in order for m to be the expected

number of chains contained in the corresponding perfect DP matrix.

Proof Lemma 1 states that the number of distinct ending points
←
m0 may be approximated by

←
m1. In fact, since we are ignoring approximations of 1 + O

( 1
t

)
order multiplicative factors,

we may even write
←
m0 = ←

m1. Recalling from (2) that
←
m1 = |DM| 1t and combining this with

(5), we arrive at

←
m0 = ←

m1 = |DM|
t

= 2
→
m0

1 + √
1 + 2

→
m0t2/N

,

which is the first claim.
As for the second claim, it suffices to solve for

→
m0 from the relation

m = 2
→
m0

1 + √
1 + 2

→
m0t2/N

.

Recalling the notation D̄msc = mt2

N , we can rewrite this in the form

1 +
√

1 + 2D̄msc

→
m0

m
= 2

→
m0

m

and again into the form

1 + 2D̄msc

→
m0

m
=

(
2

→
m0

m
− 1

)2
.

Solving this quadratic equation in
←
m0
m and discarding the meaningless solution

←
m0
m = 0, we

find
→
m0

m
= 1 + D̄msc

2
,

which is the second claim. 
�
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Note that the first sentence of this lemma gives a simple formula for α, the number of
chains remaining after the removal of merges, discussed in Sect. 2.2, which many previous
works had attempted to find.

For the remainder of this section,

→
m0 =

(
1 + D̄msc

2

)
m (6)

will always denote the number of starting points that are required to create a perfect DP table
that is expected to contain m ending points. This is the value of

→
m0 that should be used by

Algorithm 1, given the algorithm parameters m and t .

Bymultiplying t2
N to both sides and recalling the definitions Dmsc = →

m0t2

N and D̄msc = mt2
N ,

we can rewrite the above as

Dmsc =
(
1 + D̄msc

2

)
D̄msc. (7)

Viewing this as a quadratic equation concerning the indeterminate D̄msc, we can solve for
D̄msc to obtain

D̄msc = √
1 + 2Dmsc − 1. (8)

This can be used to convert any formula given in terms of D̄msc into one given in terms of
Dmsc.

One consequence of creating a DP matrix from
→
m0 starting points, where

→
m0 is as given

by (6), is the interesting formula

|DM| = mt, (9)

which is evident from the first equation in the proof to Lemma 2. That is, given the perfect
table parameters m and t , the corresponding non-perfect DP matrix, which must be created
from

→
m0 starting points with

→
m0 as given by (6), is expected to cover mt distinct points.

The pre-computation phase of a perfect DP tradeoff requires
→
m0t� iterations of the one-

way function. We define the pre-computation coefficient for the perfect DP tradeoff to be

D̄pc = →
m0t�
N , so that the cost of pre-computation becomes D̄pcN. The following statement is

a direct consequence of Lemma 2 or (6).

Proposition 1 The pre-computation coefficient of the perfect DP tradeoff is

D̄pc =
(
1 + D̄msc

2

)
mt�

N
.

By the definition of the coverage rate, which was given at the end of Sect. 2.1.1, a single
perfectDPmatrix has probability mt D̄cr

N of containing the correct answer to the given inversion
problem. Thus, the success probability of the complete perfect DP tradeoff may be stated as

D̄ps = 1 −
(
1 − mt D̄cr

N

)�

= 1 − exp

(
−mt�

N
D̄cr

)
, (10)

where we are relying on the approximation stated in Sect. 2.1.4 for the second equality, and
we can combine this with Proposition 1 to claim the following.

Proposition 2 The success probability of the perfect DP tradeoff is

D̄ps = 1 − exp

(
− 2 D̄pc D̄cr

2 + D̄msc

)
.
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We have succeeded in obtaining expressions for D̄pc and D̄ps that do not involve
→
m0. Our

next short term objective is to obtain such an expression for D̄cr. Some technical lemmas
need to be prepared first.

Given a function F : N → N and a nonnegative integer k, we define Dk(F) or Dk to
be the set of elements of N that are k-many F-iterations away from their closest DPs. In
particular, D0 is the set of DPs. It is clear that {Dk(F)}∞k=0 is a partition of N , and that we
can expect the sizes of these subsets to be

|Dk | = N
(
1 − 1

t

)k 1

t
, (11)

for a random function. Note that the above argument ignores the possibility of encountering
loops, but this can be justified since mt2 ≈ N implies t 	 √

N and the rho length of a
random walk initiated from a random point is expected to be of

√
N order.

Lemma 3 Let F : N → N be chosen uniformly at random from the set of all functions
acting on N and let us fix a set D ⊂ Dk(F) for some k ≥ 1. Then the expect sizes of its
iterated images under F will satisfy

|Fi (D)|
N

(
1 − 1

t

)k−i 1
t

= 1 − exp

(

− |Fi−1(D)|
N

(
1 − 1

t

)k−i 1
t

)

,

for each i = 1, . . . , k.

Proof A trivial generalizing of the argument we saw in the proof of Lemma 1 shows that,
for a random function F : A → B defined on finite sets and a subset C of the domain A ,
the image size is expected to be

|F(C )| = |B|
{

1 −
(
1 − 1

|B|
)|C |}

= |B|
{
1 − exp

(
− |C |

|B|
)}

,

assuming |C | = O(|B|). The claim is now a direct consequence of the set sizes given by
(11). Note that, since |D j | ≤ |D j−1|, we need not worry about the |C | = O(|B|) condition.
A more detailed proof is provided in Appendix 3, for those interested in the subtleties hidden
behind this short argument. 
�

It is possible to work out the iterations expressed by this lemma and write down each
iterated image size as a closed-form formula.

Lemma 4 Let F : N → N be a random function and let D ⊂ Dk(F), for some k ≥ 0.
When |D| = O(m), the size of the i-th iterated image of D under F is expected to be

|Fi (D)| = 2|D|
2 + D̄msc

|D|
m e

k
t

(
1 − e− i

t

) ,

for each 0 ≤ i ≤ k.

Proof Let us temporarily introduce the notation fi = |Fi (D)|
N(1− 1

t )
k−i 1

t
, and rewrite Lemma 3 as

fi = 1 − exp

{
−

(
1 − 1

t

)
fi−1

}
=

(
1 − 1

t

)
fi−1 − 1

2

(
1 − 1

t

)2

f 2i−1 + · · · .
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The condition |D| = O(m) implies |Fi (D)| = O(m), so that fi = O
(

m
N/t

)
= O

( 1
t

)
, and

we can state

fi − fi−1 = −1

t
fi−1 − 1

2
f 2i−1 + O

(
f 2i−1

t

)

.

Noting that
f 2i−1
t is of strictly smaller order than fi−1

t + f 2i−1
2 , we can ignore the final term.

Recall that the Euler method allows for the solution of a ordinary differential equation with
a given initial value to be approximately expressed as an iterative sequence. Applying this in
the reverse direction, we can solve the differential equation

f ′(x) = −1

t
f (x) − 1

2
f (x)2

associated with the above difference equation, with the initial condition f (0) = f0 = |D| t
Ne− k

t
,

to obtain

fi = 2|D| t
2Ne

i−k
t + (e

i
t − 1)|D| t2

.

Recalling the definition of fi , we can state

|Fi (D)| = 2N
(
1 − 1

t

)k−i |D|
2Ne

i−k
t +

(
e
i
t − 1

)
|D| t2

= 2Ne
i−k
t |D|

2Ne
i−k
t +

(
e
i
t − 1

)
|D| t2

,

and a direct simplification of this equation, using the notation D̄msc = mt2
N , results in our

claim. 
�

The previous two lemmas were prepared to support the next lemma, which gives the
probability for a single chain to merge into a set of chains. This information will be used to
study the inner workings of how a perfect DP table is formed from a non-perfect DP table.

Lemma 5 Let F : N → N be a random function and let D ⊂ Dk(F), for some k. When
|D| = O(m), the probability for a random point x ∈ Dk(F) to satisfy Fk(x) /∈ Fk(D) is

{
1 + D̄msc

2

|D|
m

(
e
k
t − 1

)}−2

.

Proof Since the starting point itself and each subsequent iterations of the random function
must land outside the iterated image sets, the probability in question is

k∏

i=0

(
1 − |Fi (D)|

|Dk−i |
)

=
k∏

i=0

(

1 − |Fi (D)|
N

(
1 − 1

t

)k−i 1
t

)

=
(
1 − |D| t

Ne− k
t

) k∏

i=1

(

1 − |Fi (D)|
N

(
1 − 1

t

)k−i 1
t

)

.

Here, the first equality is based on (11). By applying Lemma 3 to the product of k terms, we
can write
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k∏

i=1

(

1 − |Fi (D)|
N

(
1 − 1

t

)k−i 1
t

)

=
k∏

i=1

exp

(

− |Fi−1(D)|
N

(
1 − 1

t

)k−i 1
t

)

= exp

(

−
(
1 − 1

t

) k−1∑

i=0

|Fi (D)|
N

(
1 − 1

t

)k−i 1
t

)

.

Since we are given the condition |D| = O(m), we can apply Lemma 4, or the last equation
in its proof, and compute the sum inside the exponential function as

k−1∑

i=0

|Fi (D)|
N

(
1 − 1

t

)k−i 1
t

=
k−1∑

i=0

2|D| t
2Ne

i−k
t + (e

i
t − 1)|D| t2

=
k−1∑

i=0

2|D| t
2N
t e

i−k
t + (e

i
t − 1)|D| t

1

t
.

Viewing this as the left Riemann sum of the function Φ(u) := 2|D| t
2N
t eu− k

t +(eu−1)|D| t
on the

interval [0, k
t ], we can approximate this with the definite integral

∫ k/t

0

2|D| t
2N
t e− k

t eu + (eu − 1)|D| t
du = 2 ln

{
1 + |D| t2

2N

(
e
k
t − 1

)}
.

By substituting the sum back into the exponential function, we get

k∏

i=0

(
1 − |Fi (D)|

|Dk−i |
)

=
(
1 − |D| t

Ne− k
t

)
exp

(
−

(
1 − 1

t

)
2 ln

{
1 + |D| t2

2N

(
e
k
t − 1

)})

=
(
1 − |D| t

Ne− k
t

) {
1 + D̄msc

2

|D|
m

(
e
k
t − 1

)}−2(1− 1
t )

.

The
(
1 − 1

t

)
term appearing in the exponent is insignificant and the condition |D| = O(m)

allows us to ignore the first product term, which is of 1− O
( 1
t

)
order. We have arrived at the

claimed formula. 
�

With the help of the technical lemmas that have been prepared, we can finally present
something of more direct practical value.

Proposition 3 The coverage rate of a perfect DP matrix is

D̄cr = 2

D̄msc
ln

(
1 + D̄msc

2

)
.

Proof Consider a pre-computed non-perfect DP matrix and the process of removing chains
from it to obtain a perfect DP matrix. A chain survives through the collision removal process
if and only if it does not merge into another chain that is longer than (or equal to) its length.
Hence, according to Lemma 5, the probability for a chain of length k in a non-perfect DP
table to remain in the perfect table is

{
1 + D̄msc

2

←
mk

m

(
e
k
t − 1

)}−2

.

This figure is a slight underestimate since the merges among chains of the same length were
reflected too many times, but such merges are rare and will not cause noticeable inaccuracy.

123



Comparison of perfect table cryptanalytic tradeoff algorithms 493

Since the number of chains that are of length k is
→
m0

(
1 − 1

t

)k−1 1
t , before the removal of

merges, and the perfect table contains no overlapping of points, the number of distinct points
in the perfect DP table is

∞∑

k=1

k · →
m0

(
1 − 1

t

)k−1 1

t
·
{
1 + D̄msc

2

←
mk

m

(
e
k
t − 1

)}−2

.

This formula does not count the ending points and only includes the points that were used as
inputs to the iterating function during the DP table computation.

The coverage rate of the perfect DP matrix can thus be given by

D̄cr = 1

mt
→
m0

(
1 − 1

t

)−1 ∞∑

k=1

k

t
· e− k

t ·
{

1 + D̄msc

2
e− k

t

(
1 − 1

t

)−1 (
e
k
t − 1

)
}−2

,

where we have used (2) and (9) to remove the
←
mk term. After ignoring the insignificant

(1 − 1
t )

−1 terms, we rewrite the above as

D̄cr =
→
m0

m

∞∑

k=1

k

t
· e− k

t ·
{
1 + D̄msc

2

(
1 − e− k

t

)}−2 1

t

and interpret this as a definite integral to compute the coverage rate as

D̄cr =
→
m0

m

∫ ∞

0
u e−u

{
1 + D̄msc

2

(
1 − e−u)

}−2

du =
→
m0

m

ln
(
1 + D̄msc

2

)

D̄msc
2

(
1 + D̄msc

2

) .

It now suffices to recall Lemma 2 or (6) to arrive at the claimed formula. 
�

Let us briefly digress and discuss the average chain length β̄ of a perfect DP matrix that
was introduced in Sect. 2.2. By definition, it is the number of points in a perfect DP matrix
divided by the number of its ending points, and the above lemma allows us to write it as

β̄ = |D̄M|
m

= mtD̄cr
m

= t
2

D̄msc
ln

(
1 + D̄msc

2

)
. (12)

Should it be required, we can use (8) to rewrite this in terms of the parameters
→
m0 and t as

β̄ = t
1 + √

1 + 2Dmsc

Dmsc
ln

(
1 + √

1 + 2Dmsc

2

)
, (13)

where Dmsc = →
m0t2

N . It is easy to check that this β̄ value is always smaller than the average
chain length β0 = t before the removal of chain merges. Even though we are keeping the
longest chain from among any set of merging chains, the longer chains are more likely to
merge into one another and be discarded.

Unlike other results of thiswork, our next claim ismostly based on experimental evidences,
rather than on purely theoretical arguments. Note that the processing of a perfect DP table
can bring about at most one alarm, which requires the partial regeneration of a single pre-
computation chain. We will later show in Sect. 3.3 that, for a wide range of parameters m
and t , which covers all parameter combinations of interest, the value computed through the
formula
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t × 1 + 0.577 D̄msc

1 + 0.451 D̄msc
(14)

agrees accurately with the experimentally obtained average number of one-way function
iterations required for this partial pre-computation chain regeneration.

Let us clarify that we are not claiming formula (14) to be correct in any theoretical sense.
In fact, we know that the seemingly very different formula

t

(
1 + 0.340468

{
1 − 1.32798

D̄msc
ln

(
1 + D̄msc

1.32798

)})
(15)

works equallywell for parameters of interest. Our only claim here is that formula (14) predicts
the average cost of resolving each alarm with accuracy that is more than sufficient for most
practical purposes.

Proposition 4 The online processing of a single perfect DP table is expected to require

t × 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc
.

invocations of the one-way function in relation to the resolving of a possible alarm.

Proof As the work factor (14) is already available, it only remains to find the probability of
encountering an alarm.

An online chain will merge into a perfect pre-computation matrix D̄M if and only if it
merges into the corresponding non-perfect pre-computation matrix DM. Since (9) states the
number of elements contained in DM as mt , the probability of merge can be stated as

∞∑

i=0

(
1 − 1

t
− mt

N

)i mt

N
=

mt
N

1
t + mt

N

= D̄msc

1 + D̄msc
.

The claimed expected cost of dealing with a possible alarm is the product of this probability
and the work factor (14). 
�

Having obtained the cost of dealing with alarms, the online complexities of the perfect
DP tradeoff can be gathered in a single tradeoff curve.

Theorem 1 The time memory tradeoff curve for the perfect DP tradeoff is T M2 = D̄tcN2,
where the tradeoff coefficient is given by

D̄tc =
(
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

)
D̄ps

{
ln(1 − D̄ps)

}2

D̄msc D̄ 3
cr

.

Proof Since a single perfect DPmatrix has probability mt D̄cr
N of containing the correct answer

to a given inversion problem, the probability for the i-th DP table to be processed during the
online phase executed for a single inversion target is

(
1 − mtD̄cr

N

)i−1. The online processing
of each table is expected to require t iterations of the one-way function for the online chain
generation and the expected number of iterations required to deal with the alarm that could
occur is given by Proposition 4. Hence, the number of one-way function iterations expected
during the online phase is
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T =
�∑

i=1

(
1 − mtD̄cr

N

)i−1 (
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

)
t

= 1 − (
1 − mtD̄cr

N

)�

mtD̄cr
N

(
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

)
t

= D̄ps

D̄mscD̄cr

(
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

)
t2,

where the final equality relies on (10) or Proposition 2.
On the other hand, since each pre-computation table contains m entries and there are �

tables, the storage complexity of the perfect DP tradeoff is M = m�.
The time memory tradeoff curve for the perfect DP tradeoff is obtained by combining the

complexities T and M as follows:

T M2 = D̄ps

D̄mscD̄cr

(
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

)
(mt�)2

= D̄ps

D̄mscD̄cr

(
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

) {
ln(1 − D̄ps)

D̄cr

}2

N2.

The second equality here is obtained through another application of (10). 
�

Let us clarify that both Proposition 4 and Theorem 1 depend on the empirical result (14).
Both claims should be understood as providing practical formulas that can be used in practice
to predict the behavior of the perfect DP tradeoff. They should not be taken as results that
are theoretically correct in any sense.

3.2 Storage optimization

An analysis of the perfect DP tradeoff would not be complete without a discussion of the
storage optimization techniques.

Dealing with the storage size of the starting points is quite straightforward. One requires
log

→
m0 bits of space for every starting point, and (6) implies that this will be one or two bits

more than logm for parameters of interest. Hence, one may safely claim that the number of
bits required to store a single starting point for a perfect DP tradeoff is very close to that
required for the non-perfect DP tradeoff, when comparable parameters are used by the two
algorithms.

To deal with the ending point storage, the effects of truncating ending points before
recording them to the pre-computation tables need to be discussed, and this will require us
to take a brief digression. Let us state that a function ϕ : A → B is pre-image uniform, if
the pre-image set ϕ−1(b) ⊂ A contains the same number of elements for every b ∈ B. A
pre-image uniform function must clearly be surjective.

Lemma 6 Let ϕ : A → B be a pre-image uniform function and let |A | � |B|. When
x = O(|B|) distinct elements ofA are chosen at random, the expected size of the set formed
by their ϕ-images is |B|{1 − exp

( − x
|B|

)}
. Conversely, given y ≤ (1 − e−5)|B|, one must

choose |B| ln ( |B|
|B|−y

)
distinct elements of A at random in order for y to be the expected

size of the set formed by their ϕ-images.
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Proof It is clear that if one makes x independent random selections from the co-domainB,
then the number of distinct elements observed is expected to be

|B|
{
1 −

(
1 − 1

|B|
)x}

.

Furthermore, as was stated in Sect. 2.1.4, this can be approximated by the value given in the
first claim, under the condition x = O(|B|). Hence, to arrive at the first claim, it suffices to
show that selecting elements of B by first randomly selecting x distinct elements of A and
then applying ϕ to them is very close to making x independent random selections from B.

To this end, it should first be noted that the pre-image uniform property of ϕ ensures that
the random selection of a single element fromA will be translated through an application of
ϕ to the random selection of an element fromB. Thus, our focus will be on how much effect
the condition of x inputs to ϕ being distinct, rather than each being selected independently,
has on this translation of the uniform random distribution on A to the uniform random
distribution on B.

Let us consider the partition on A into |B|-many equally sized cells that is naturally
given by ϕ. In other words, we define two element of A to be equivalent if ϕ maps them to
the same element of B. Then, the selection of a B-element carried out by applying ϕ to a
selected A -element could be seen as selecting an A -element and simply taking note of the
cell it belongs to. Next, let us view the selection of x distinct A -elements as a series of x
incremental selections, randomly made each time among thoseA -elements that have not yet
been selected.

Now, the condition |A | � |B| implies that the (uniform) cell size |A |
|B| for the partition

on A will be large. Hence, the previous selection(s) of a cell through one or two of its
elements will have very little effect on the possibility of that cell being selected again.
Furthermore, since x = O(|B|), cells that have been chosen more than a few times will be
rare, even towards the end of all x selections, if the selections are made randomly. Thus, the
x incremental exclusive random selections on A and applications of ϕ to them is very close
to a series of x independent random selections from B.

To arrive at the second claim, it now suffices to solve for x in the relation

y = |B|
{
1 − exp

(
− x

|B|
)}

.

The somewhat arbitrarily chosen condition y ≤ (1− e−5)|B| is equivalent to x ≤ 5|B| and
ensures that the condition x = O(|B|), required by the first claim, is satisfied. 
�

We now return to the subject of ending point truncation. Since every ending point is a DP,
it suffices to consider truncations of just the DPs, rather than the general points of the search
spaceN . We will refer to the set of all possible truncated points as the truncated space and
refer to the surjective map which sends each DP to its truncated form as the truncation map.
A typical truncation map with a truncated space of size r simply retains log r bits of the
ending point that are unrelated to the DP definition.

The effects of ending point truncation on the perfect DP tradeoff are slightly different from
those on the non-perfect DP tradeoff, which were treated in [14]. The truncation may cause
two pre-computation chains that do not merge into each other to become indistinguishable
at the ending points and cause more chains to be discarded. However, our next lemma shows
that these pseudo-collisions can mostly be avoided by recording slightly more than logm
bits.
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Note that any natural truncation map will be, or will be very close to being, pre-image
uniform. In fact, truncationmaps that are far frombeing pre-image uniform should be avoided,
as they will lead to more collisions among truncated ending points.

Lemma 7 Consider a (pre-image uniform) truncation map with a truncated space of size
r that is much smaller than the DP space. When m = O(r) distinct ending point DPs are
truncated, we can expect to obtain r

{
1 − exp(−m

r )
}
distinct truncated points. Conversely,

given m ≤ (1 − e−5)r , one must truncate r ln
( r
r−m

)
distinct ending point DPs in order for

m to be the expected number of distinct truncated points.

No proof of this lemma will be provided, since this is a direct translation of Lemma 6 into
the language of the DP tradeoff.

Let us consider a specific example.When the truncated space is of size r = 25m, it suffices
to truncate 32m ln

( 32
31

) = 1.01596m DPs in order to obtain m distinct truncated ending
points. Combining this information with Proposition 1, one can state that, by recording just
5 + logm bits of each ending point, one can control the extra pre-computation necessitated
by the ending point truncation to within approximately 2 %. Note that this is not 1.596 %
and only claimed approximately, because the variable m appears not only in the mt�

N term of

Proposition 1, but also inside the D̄msc
2 term. In any case, the effects of ending point truncation

on the collision of ending points can be maintained at an ignorable level by retaining a little
more than logm bits of information through the truncation process. Note that by ignoring
the ending point collisions induced by truncations, we are also ignoring their effects on the
pre-computation time and also on the coverage rate, or, equivalently, the success probability.

We now need to discuss the effects of truncation on the online time. The terminating DP
of the online chain must be searched for among the truncated ending points, so we have the
possibility of falsely announcing a match and then regenerating the pre-computation chain
to resolve this alarm.

Lemma 8 Consider a (pre-image uniform) truncation map with a truncated space of size
r . Assume that the truncated space is much smaller than the DP space and that r has been
chosen to be large enough for the occurrences of indistinguishable ending points caused by
truncations to be sufficiently limited. Then the number of extra one-way function invocations
induced by truncation-related alarms is expected to be

t
m

r

2

D̄msc(1 + D̄msc)
ln

(
1 + D̄msc

2

)
,

for each fully processed perfect DP table.

Proof Let us compute the probability for an online chain to become aDP chain of length i and
not merge into the perfect DP matrix, but have a truncated ending point that coincides with a
truncated ending point in the perfect DP table. For this event to occur, the online chain must
be created through iterations of the random function in the following manner: (1) Random
choices for the first i nodes of the online chain, starting from the correct pre-image of the
inversion target, must be made among the non-DPs that do not belonging to the non-perfect
DP matrix DM; (2) The final point must be chosen among DPs that are different from the m
ending points; (3) Furthermore, the final point must be chosen so that its truncation matches
one of the m truncated ending points. The processes (2) and (3) are not quite independent,
but since the number of DPs is much greater than the number of points we know the final
point not to be, i.e., N

t � m, the dependence can be ignored. Thus, the probability we seek
is
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(
1 − 1

t
− |DM|

N

)i (1

t
− m

N

)
m

r
≈

(
1 − 1

t
− |DM|

N

)i 1

t

m

r
=

(
1 − 1 + D̄msc

t

)i 1

t

m

r
,

where we have used m
N = O( 1

mt ) = o( 1t ) for the approximation and (9) for the final equality.
Thus, the probability for the online processing of a perfect DP table to cause a truncation-
related alarm, i.e., an alarm that does not involve the online chain merging into the pre-
computation matrix, is given by

∞∑

i=1

(
1 − 1 + D̄msc

t

)i 1

t

m

r
= 1 − 1+D̄msc

t
1+D̄msc

t

1

t

m

r
≈ 1

1 + D̄msc

m

r
.

Notice that how likely a pre-computation chain is to be involved in a truncation-related
alarm is independent of its length. Hence, the number of iterations required to regenerate the
pre-computation chain involved with such a pseudo-collision is expected to be the average
chain length of the perfect DP matrix, which is given by (12). The cost of resolving alarms
that are induced by truncation is

1

1 + D̄msc

m

r
t

2

D̄msc
ln

(
1 + D̄msc

2

)
,

for the full processing of a single perfect DP table. 
�
The normal one-way function iterations required to generate the online chain and deal

with a possible alarm while processing a single perfect DP table was stated during the proof
of Theorem 1 to be

(
1 + 1 + 0.577 D̄msc

1 + 0.451 D̄msc

D̄msc

1 + D̄msc

)
t. (16)

If we assume that sufficient information is left after the ending point truncation so that the
number of indistinguishable ending points are kept small enough to be ignored, then, with
parameters satisfying D̄msc = 1, the expected numbers of normal iterations and truncation-

related iterations become
(
1 + 1.577

1.451
1
2

)
t = 1.54342t and ln( 32 )

m
r t = 0.405465m

r t ,

respectively. For example, with r = 25m, the ending point truncation increases the num-

ber of one-way function iterations by a mere
0.405465 1

32 t
1.54342 t ≈ 0.82 %. The following can be

stated for the general situation.

Proposition 5 Suppose that the online phase of a perfect DP tradeoff implementation that
stores each ending point in full requires T iterations of the one-way function to complete.
Consider a truncation map for which the truncated space is of size r = 2εm. If ε is large
enough for the occurrences of indistinguishable ending points caused by truncations to be
ignored, then the implementation with the ending point truncation requires

2 ln
(
1 + D̄msc

2

)

D̄msc(1 + D̄msc)
(
1 + 1+0.577 D̄msc

1+0.451 D̄msc

D̄msc
1+D̄msc

)
T

2ε

additional iterations of the one-way function to complete.

For parameters satisfying D̄msc = 1, the above is 0.405465
1.54342

T
2ε = 0.262706 T

2ε . This implies
that, for parameters of interest, a small ε is enough to keep the negative effects of ending
point truncation on the online time to a reasonably small level.
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Let us summarize the situation concerning the storage of each perfect DP table entry.
The starting point can be stored using slightly more than logm bits. Ending point DPs can
be truncated so that a little more than logm bits of information is retained with very little
negative effect on the success probability, pre-computation cost, and online time. The index
file technique can be used to remove almost logm further bits per ending point without any
loss of information. In conclusion, storage of each starting point and ending point pair requires
a little more than logm bits. This was also the conclusion obtained for the non-perfect DP
tradeoff in [14].

3.3 Experimental results

We have verified the correctness of major parts of our complexity analysis with experiments.
For the first two sets of our experiments, the one-way function was instantiated with the
key to ciphertext mapping, under a randomly fixed plaintext, of the blockcipher AES-128.
Freshly generated random plaintexts were used to create different one-way functions that
were required for repetitions of the same test. Bit-masking of ciphertexts to 40 bits and its
zero-extension to 128-bit keys were used to restrict the search space to a manageable size of
N = 240.

The first experiment was designed to verify Lemma 2 and Proposition 3 simultaneously.
Recall that Lemma 2 related the number of starting points to the number of distinct ending
points in a non-perfect DP matrix and that Proposition 3 presented the coverage rate of the
perfect DP matrix.

After fixing suitable parameters m and t , we first computed the
→
m0 value, as specified

by (6). We generated chains from
→
m0 distinct starting points and recorded their terminating

DPs, together with their respective chain lengths. A small number of chains that extended
beyond the moderately large chain length bound of t̂ = 15 t were discarded during this
process. After dealing with chain merges by retaining only the information corresponding
to the longest chain among any set of merging chains, the number of remaining DPs was
counted. Next, the lengths of the surviving chains were added together and taken as the
number of distinct entries in the perfect DP matrix. The obtained count of matrix entries,
divided by mt , is our test D̄cr value. The whole process was repeated 200 times for each
choice of parameter set and the obtained values were averaged.

The test results are summarized in Table 1, together with the integer
→
m0 values we have

used and the theoretically computed coverage rates. In each row, the reported number of
distinct ending points that resulted from our theoretically computed

→
m0 starting points is

Table 1 The number of DP chains before and after removal of chain merges and the coverage rate of the
perfect DP matrix (N = 240; t̂ = 15 t)

m t D̄msc
→
m0 used Test m Theoretical D̄cr Test D̄cr

2000 214 0.48828 2488 2000.88 0.89475 0.89302

4000 214 0.97656 5953 3996.01 0.81433 0.81412

6000 214 1.46484 10394 5996.79 0.75028 0.74934

10000 213 0.61035 13051 10005.45 0.87274 0.87319

20000 213 1.22070 32207 20001.52 0.78062 0.78079

30000 213 1.83105 57465 30003.72 0.70997 0.71020
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Fig. 1 The probability for DP chains of each length to survive through the treatment of merging chains in a
DP matrix. (test: dots; theory: line; N = 240; t̂ = 15 t)

very close to the targeted m value, in spite of the small number of test repetitions. It can also
be seen that our theory was able to predict the coverage rates accurately.

Even though this test gives some confidence as to the correctness of our theory, let us
present another test that makes sure that our accurate predictions of the coverage rate did
not result from some lucky averaging effect that conveniently hid logical errors in our lower
level arguments.

Recall that the proof of Proposition 3 relied heavily on our ability to write the probability
for a random chain of length k not to merge into any of the chains in a non-perfect DP matrix
that are longer than k. More specifically, this probability was taken to be

{
1 + D̄msc

2

(
1 − e− k

t

)}−2

(17)

and was interpreted as the probability for a chain in a non-perfect DP matrix to survive
through the process of removing chain merges.

To test this core logic, we first generated multiple non-perfect DP matrices, discarding the
small number of chains reaching the length bound of t̂ = 15 t . Then, for each 1 ≤ k < t̂ ,
we counted and recorded the total number of chains of length k found among these matrices.
Next, we removedmerges from each of theDPmatrices to createmultiple perfectDPmatrices
and, once again, recorded the number of chains of each length. We took the ratio of the two
chain counts, for each length k, as our test value of the probability for chains of length k to
survive through the chain merge removal process. Note that this ratio of counts cannot be
computed separately for each DP matrix and then later averaged over multiple DP matrices,
since the number of chains of any given length is likely to be very small and often zero for
any single DP matrix.

The test results are provided by Fig. 1. The probability (y-axis) for chain survival through
the chain merge removal process is given for each chain length (x-axis). The lines correspond
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to our theory, as given by (17), and the dots represent the count ratios obtained through tests.
Even though our chain length bound was t̂ = 15 t , we have displayed the data only for chain
lengths less than approximately 5t . Furthermore, in each box, we only plotted approximately
500 dots that are equally spaced in terms of chain length values, since densely packing all 5t
dots into each box made the graphs harder to comprehend.

The experimental data agrees well with our theory in all the boxes. Notice that the test
results are less reliable at the large chain lengths. This is because longer DP chains appear less
frequently and these large chain length data were obtained from a smaller number of chains.
A much larger number of DP matrices would need to be generated to obtain meaningful test
values at lengths much larger than 5t .

Our final experiment measured the cost of regenerating the pre-computation chain for
each online chain that produces an alarm. For this purpose, a slightly modified version of
the MD5 hash function that accepts inputs of fixed 48-bit length was used as the one-way
function. Recall that MD5 operates iteratively on 512-bit segments of its input. Since the
length of our inputs was fixed, rather than conforming precisely to the length-related padding
scheme specified for MD5, we placed the 48-bit input at the least significant end of a 512-bit
block and filled the remaining 464 bits with zeros, before applying the usual 4-round/64-step
operations of theMD5. Likewise, the least significant 48 bits of the 128-bit MD5 output were
taken as the output of our one-way function.

For each choice of
→
m0 and t , we created multiple perfect DP tables from

→
m0 starting

points. For each pre-computation table,we generated asmany online chains aswas required to
observe a sufficiently large number of alarms. For eachmerge, the associated pre-computation
chain was generated, up to the point of merge, and the length of this chain segment was
recorded. That is, the online chain record technique, previously explained in Sect. 2.1.1, was
used to terminate the chain regeneration at the point of chain merge, rather than at the ending
point DP.

The results of our experiments, together with the predictions given by formula (14),
are summarized in Table 2. We have also plotted the experiment data of Table 2 and the
curve given by formula (14) in Fig. 2. The test value given in each row of the table is an
average obtained after creating “#(tbl)”-many tables and generating, for each table, as many
online chains as were required to obtain “#(alarm)/tbl”-many alarms. Each value computed
through formula (14) is very close to the average number of one-way function iterations
required per alarm that was obtained experimentally. Also, after viewing Fig. 2, one can be
confident that formula (14) will be quite accurate, at least for all parameter choices satisfying
0 < D̄msc < 2.3.

3.4 Comments on a previous analysis of the perfect DP tradeoff

Since there is a large overlap between what the previous work [25] and the current work
claim to have obtained, let us compare some of the results from the two works.

The paper [25] provided a method for computing the number of distinct ending DPs
expected from a given number of starting points. This value, which is the number of chains
remaining after removal of merging chains, was referred to as α in Sect. 2.2. In Table 3,
we have copied some of the related data appearing in [25, Table 2] and have appended our
corresponding theoretical values, computed with Lemma 2. The parameters associated with
this table areN = 256 and t = 218, and all figures in the table are given as log2 values. Recall
that Lemma 2 is valid for the case when no chain length bounds are set. The data from [25]
are for when there is no lower bound on the chain length and the chain length upper bound
is set to 230, which is more than sufficiently large for the t = 218 being used.
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Table 2 The number one-way function iterations required to resolve each alarm for various parameters
(N = 248; t̂ = 15 t)

One can verify, in every row of the table, that our theory provides estimates that are
closer to the test results of [25] than their own theory. Some might dismiss the differences
between the two theoretical values as being too small to be of any significance, but one must
consider the fact that these are log2 values. For example, referencing the last row of the table,
we can see that the (in)accuracy of Lemma 2 in predicting the test value is by a factor of
221.6425

221.6430
≈ 0.999653, but that the theoretical prediction of [25] is further away at a factor of
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Fig. 2 The number of one-way function iterations required to resolve each alarm, plotted in relation to the
D̄msc value for the parameters that were used (test: dots; theory: line; N = 248; t̂ = 15 t)

Table 3 Number of DP chains before and after removal of chain merges (N = 256, t = 218). All values are
given in log2 scale

# of starting points # of ending points

Test of [25] Theory of [25] Lemma 2

20 19.5497 19.4712 19.5500

21 20.3048 20.1357 20.3058

22 20.9990 20.6866 21.0000

23 21.6425 21.1357 21.6430

221.6425

221.1357
≈ 1.42. The error factor of 1.42 in the estimated number of ending points is directly

reflected in the pre-computation table size estimate and presents itself as a 1.422 ≈ 2.02 error
factor in the estimate for the tradeoff coefficient. Hence, for the purpose of comparing the
online efficiencies of tradeoff algorithms, which usually differ only by factors of such small
(but still practically significant) magnitude, the theory of [25] was not accurate enough.

Recall from Sect. 2.2 that the expression for α given in [25] involved the average chain
length β̄ and that their derivation of β̄ involved an ad hoc procedure. So, let us consider the
possibility that this ad hoc procedure was the cause of the inaccuracy we have witnessed in
Table 3 and that their arguments were correct up to that point. For this purpose, we focus on
one major intermediate result of [25] which they referred to as the storage function s( j).

The exact definition of s( j) is slightly complicated and will not be explained here in full,
but when no bounds are placed on the chain lengths, function s( j) is suppose to give the
expected number of distinct nodes in a perfect DP matrix that was created with j starting
points. The formula they gave was

s( j) = 2k

⎧
⎨

⎩
1 −

(
2k

−β j + β2 j + K

) 1
β−1

⎫
⎬

⎭
with K = 2k

(
1 − s(0)

2k

)1−β

, (18)

where the β they used was the average chain length before the removal of chain merges and
2k was the size of the search space. The presence of s(0)may seem strange, but this is because
we have not explained the meaning of s( j) in full, and we may simply take s(0) = 0 for this
discussion. In the absence of chain length bounds, we may take β = t and approximate their
formula into

123



504 G. W. Lee, J. Hong

Fig. 3 The value t
N |D̄M| = D̄mscD̄cr as predicted by [25] (solid) and the current work (dashed)

s( j) = N

{

1 −
(

N
t2 j + N

) 1
t
}

, (19)

written in the notation of this paper. Hence, according to the theory of [25], if one creates a
perfect DP matrix using

→
m0 starting points, there will be

|D̄M| = s(
→
m0) = N

{

1 −
(

1

1 + Dmsc

) 1
t
}

(20)

distinct points in the matrix, where Dmsc = →
m0t2

N . To allow for direct comparison with our
result, we rewrite this in the form

t

N
|D̄M| = t

{

1 −
(

1

1 + Dmsc

) 1
t
}

≈ ln(1 + Dmsc). (21)

The approximation here is accurate for all sufficiently large t . For example, at Dmsc = 1 the
right-hand value is ln(1 + Dmsc) = 1.09861, and even at the moderately sized t = 210, the
formula in the middle involving t evaluates to 1.09802.

Our corresponding result is contained in Proposition 3. Using (8), we can claim

t

N
|D̄M| = D̄mscD̄cr = 2 ln

(
1 + D̄msc

2

)
= 2 ln

(
1 + √

1 + 2Dmsc

2

)
, (22)

which is clearly different from (21).
The numeric values given by the two formulas (21) and (22) are compared in Fig. 3. The

two are visibly different, except when Dmsc is very small, in which case chain merges are
rare and both theories reduce to something trivial. For example, even at Dmsc = 1, the two
theories give clearly different values of 0.69315 and 0.62381. Since the testing of Sect. 3.3
has shown our estimate of coverage rate to be much more accurate than the general order of
these differences, the storage function s( j), as given by (19), must not be as accurate.

Let us explain the source of their inaccuracy. The core logic of [25] rests in their Eq. (22),
which we approximate and state as

s( j + 1) = s( j) + t

(
1 − s( j)

N

)t

, (23)
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for the case when there are no chain length bounds. This equation can be interpreted as
follows. One expects to add t new points to the perfect matrix by considering one more
pre-computation chain, but this addition should only be done when the chain of t points do
not merge with the points within the existing matrix. The t-th powered term on the right is
the probability for none of the t additionally generated points to be in the existing matrix of
s( j) points. This high-level view of (23) may seem plausible.

The first source of inaccuracy hiding in (23) is the assumption that the new chain added
is always of length t . In reality, chains of varying lengths will be created and these all have
different probabilities of merging with the existing matrix. The simplified view of [25] could
have been justified to a certain degree if the chain lengths were mostly close to t , but the
actual distribution of chain lengths is not even centered at the average value t . The authors
of [25] seem to have been aware of this problem. In later parts of their paper, they divide the
range of possible chain lengths into a small number of segments and treat each length range
separately, using different average chain lengths within each segment.

The second source of inaccuracy is in the t-th powered term that was suppose to give
the probability for the additional chain not to merge with the existing matrix. Since we are
dealing with a DP chain of a predetermined length at this point, a more accurate expression
would somehow involve the set sizes |Dk |, that appeared in the main body of this work, in the
denominator, rather than N. Furthermore, the numerator s( j) should be replaced with values
that are associated in some way with the non-perfect matrix created up to that point. This
is because the newly created chain is destined to merge with the perfect matrix whenever it
merges with a previously generated chain, regardless of whether the chain has been discarded
due to merging.

We conclude that while the analyses of [25] were based on plausible arguments, their
results are valuable only as first approximations and are not accurate enough for the purpose
of this paper, which is to compare the performances of different tradeoff algorithms.

4 Perfect rainbow tradeoff

This section gathers facts concerning the perfect rainbow tradeoff that are required for our
later comparison of tradeoff algorithms. Even though much of the material given here have
not appeared before in the form presented here, the technical core of our complexity analyses
were developed by previous works, and the arguments and proofs of this section contain no
new ideas. These certainly require some work to obtain, but, given enough time, anyone with
a full understanding of the papers [13,21], and [14] should be able to reproduce the claims
of this section.

4.1 Online efficiency

Unlike the perfect DP tradeoff case, the difficult parts of the complexity analysis for the
perfect rainbow tradeoff have already been done by previous works, and it only remains to
combine these in an appropriate manner.

Lemma 9 A non-perfect rainbow matrix created with m0 starting points is expected to
contain 2m0

2+Rmsc
distinct ending points, where Rmsc = m0t

N . Conversely, given m, one must

generate m0 = 2
2−R̄msc

m chains, where R̄msc = mt
N , in order for m to be the expected number

of chains contained in the corresponding perfect rainbow matrix.
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Proof Consider a non-perfect rainbow matrix created with m0 starting points. It is known
[2,13] that the number of distinct points mi expected in the i-th column of this matrix,
satisfies

mi

N
= 1

N
m0

+ i
2

,

for each 0 ≤ i ≤ t . Setting i = t gives the number of distinct ending points

mt = N
N
m0

+ t
2

= 2m0

2 + m0t
N

,

which is the first claim of this lemma.
To obtain the second claim, it suffices to solve for m0 from the relation

m = mt = 2m0

2 + m0t
N

.

This is equivalent to

m0 = 2m

2 − mt
N

,

which is the second claim. 
�
For the remainder of this section,

m0 = 2

2 − R̄msc
m (24)

will always denote the number of starting points that are required to create a perfect rainbow
table that is expected to contain m ending points. This is the value of m0 that should be used
by Algorithm 3, given the algorithm parameters m and t .

An interesting situation, which we will refer to as the maximal perfect rainbow tradeoff, is
when m0 = N. Since a larger number of starting points bring about a larger number distinct
ending points, this is when a perfect rainbow table is of maximum size [2,21], assuming a
fixed t . Substituting m0 = N into the second equation appearing in the proof of Lemma 9,
we see that m = mt = 2N

2+t . This implies an upper bound

R̄msc ≤ 2t

t + 2
< 2 (25)

on the possible range of R̄msc, with the possibility of R̄msc reaching very close to 2, for any
practical t .

The pre-computation phase of a perfect rainbow tradeoff requires m0t� iterations of the
one-way function. As with the DP case, we define the pre-computation coefficient for the
perfect rainbow tradeoff to be R̄pc = m0t�

N , so that the number of one-way function iterations
required for the pre-computation phase becomes R̄pcN. The following statement is a direct
consequence of Lemma 9.

Proposition 6 The pre-computation coefficient of the perfect rainbow tradeoff is

R̄pc = 2

2 − R̄msc

mt�

N
= 2 R̄msc

2 − R̄msc
�.
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The success probability of a perfect rainbow tradeoff may easily be stated [2] as

R̄ps = 1 −
(
1 − m

N

)t� = 1 − exp

(
−mt�

N

)
= 1 − exp

(−R̄msc�
)
, (26)

and this shows that the choice of � determines the matrix stopping constant

R̄msc = − ln
(
1 − R̄ps

)

�
(27)

one must adhere to, when selecting parameters that achieve a prescribed probability of suc-
cess. However, one must keep in mind that (25) requires for the number of tables to satisfy

� > −1

2
ln

(
1 − R̄ps

)
. (28)

That is, to achieve a given success probability R̄ps, the number of tables one must use is lower
bound by (28). No set of parameters that uses a smaller number of tables can achieve the
desired success probability.

Using Proposition 6, we can restate the probability of success (26) as follows.

Proposition 7 The success probability of the perfect rainbow tradeoff is

R̄ps = 1 − exp

(
−2 − R̄msc

2
R̄pc

)
.

Acquiring the online efficiency of the perfect rainbow tradeoff from existing works is also
straightforward.

Theorem 2 The time memory tradeoff curve for the perfect rainbow tradeoff is T M2 =
R̄tcN2, where the tradeoff coefficient is

R̄tc =
(
R̄msc� − R̄msc

2
+ � − 2 + 3

2�

)

−
(
R̄2
msc�

4
+ R̄msc�

2 − R̄msc� + R̄msc + � − 2 + 3

2�

)
e−R̄msc�.

Proof According to [13], the expected number of one-way function iterations required to
generate the online chain is

�
{
1 − (1 + R̄msc�)e

−R̄msc�
} (

t

R̄msc�

)2

,

and that required to resolve alarms is3

⎧
⎪⎪⎩

{
R̄msc

(
� − 1

2

)
−

(
2 − 3

2�

)}
+

{(
2 − 3

2�

)
+ R̄msc(� − 1) − R̄2msc�

4

}
e−R̄msc�

⎫
⎪⎪⎭

(
t

R̄msc�

)2

.

These expected values take the possibility of premature exit from the online phase after dis-
covery of the correct answer into account. The sum of these two terms is the time complexity
T .

As with the DP tradeoff, the storage complexity associated with � tables, each containing
m entries is M = m�. The complexities T and M can be combined and easily simplified to
arrive at the claimed statement. 
�
3 The single ecR appearing in [13, p.312] should be corrected to ecR�.

123



508 G. W. Lee, J. Hong

4.2 Storage optimization

As was with the perfect DP tradeoff, storage of a single starting point for the perfect rainbow
tradeoff requires logm0 bits, and (24) shows how this compares with logm. However, unlike
the DP case, since R̄msc may take values that are very close to 2, there remains the possibility
of logm0 being much larger than logm.

A hint for resolving this problem comes from the derivation process of (25), which
shows that R̄msc being close to 2 is associated with an unrealistically large amount of pre-
computation. In any real-world situation, there will be a bound on the pre-computation cost
one is willing to accept. So, let us combine Proposition 6 and (27), and consider a somewhat
arbitrary bound of

R̄pc = 2

2 − R̄msc

{− ln(1 − R̄ps)
} ≤ 20, (29)

on the pre-computation coefficient. Unless the requirement on the success rate is unrealis-
tically small, this will place a reasonably small bound on the coefficient 2

2−R̄msc
of (24), so

that logm will be similar to logm0. This shows that, for any practical situation, it suffices to
allocate slightly more than logm bits of storage to each starting point.

One side effect of (29) is that it implies the bound R̄ps ≤ 1− 1
e20

on the success probability
one can consider. However, the appearance of a success probability bound is only natural,
since a success probability that is arbitrarily close to 1 cannot be achieved without enormous
amount of pre-computation. Furthermore, since 99.999999% < 1 − 1

e20
, the implied bound

on the success probability is essentially meaningless for even a moderately large bound on
the pre-computation cost.

The ending point truncation technique is the subject of our next discussion. In the case of
the perfect DP tradeoff, truncation was defined only for the DPs, but ending points may take
any form with the rainbow tradeoff, so we now consider the truncation of any point fromN .
We will reuse the terms truncation map and truncated space that were previously introduced
in Sect. 3.2. As was with the DP case, truncation may cause two ending points of a perfect
rainbow table to become indistinguishable, and the following translation of Lemma 6 into
the language of the rainbow tradeoff solves this problem.

Lemma 10 Consider a (pre-image uniform) truncation map with a truncated space of size
r 	 N. When m = O(r) distinct ending points are truncated, we can expect to obtain
r
{
1 − exp(−m

r )
}
distinct truncated points. Conversely, given m ≤ (1 − e−5)r , one must

truncate r ln
( r
r−m

)
distinct ending points in order for m to be the expected number of distinct

truncated points.

The example values that were given below Lemma 7 remain valid for the perfect rainbow
tradeoff. That is, truncation of 1.01596m ending points will givem distinct truncated points,
when r = 25m. Hence, the effects of ending point truncation on pre-computation cost and
success probability can be suppressed to an ignorable degree by the use of an r such that
log r = ε + logm for some small positive integer ε.

Analogous to the DP case, if required, one can work with (24) to find the correctm0 value
one must use in order to collect the slightly larger number of pre-computation chains that
do not merge into each other. Note that our previous discussion of how R̄msc is sufficiently
bounded away from 2, in practice, implies that the non-linearity hidden within R̄msc will
not cause too much disturbance. In particular, our claim of each starting point requiring
logm0 ≈ logm bits of storage remains valid even if one wants to account for the small loss
of pre-computation chains experienced through the truncation of ending points.
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The effect of truncation on the online time is considered next.

Lemma 11 Consider a (pre-image uniform) truncation map with a truncated space of size
r . Assume that r 	 N and that r has been chosen to be large enough for the occurrences of
indistinguishable ending points caused by truncations to be sufficiently limited. Then, during
the online phase of the perfect rainbow tradeoff, one can expected to observe

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
R̄msc�

2 − R̄msc� + R̄msc

2
− � + 2 − 3

2�

)

+
( R̄2

msc�

4
− R̄msc� + R̄msc + � − 2 + 3

2�

)
e−R̄msc�

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

m

r

( t

R̄msc�

)2

extra one-way function invocations induced by truncation-related alarms.

Proof Consider the non-perfect rainbow matrix created with m0 = 2m
2−R̄msc

starting points
and let mi (0 ≤ i ≤ t) denote the number of distinct points expected in the i-th column of
this matrix. Next, consider the online chain created at the i-th iteration for the corresponding
pre-computation table, i.e., the online chain of length i , starting from the correct inversion
target pre-image. Note that this online chain will merge into the perfect rainbow matrix if
and only if it merges into the non-perfect rainbow matrix. Treating the online chain as a
random walk, the probability for this chain not to merge into the perfect rainbow matrix may
be written as

∏i
j=0

(
1 − mt− j

N

)
.

On the other hand, assuming that r is large enough for the m truncated ending points to
be distinct, the probability for the truncation of the ending point for the online chain that did
not merge into the perfect matrix to match one of the m truncated matrix ending points is m

r .
Hence, the probability for an online chain of length i to bring about a false alarm associated
with the truncation of ending points is

m

r

i∏

j=0

(
1 − mt− j

N

)
= m

r

N
m0

+ t−i−1
2

N
m0

+ t
2

N
m0

+ t−i−2
2

N
m0

+ t−1
2

Here, one must substitute mi
N = ( N

m0
+ i

2

)−1, which may be found in [2,13], to obtain the
equality. This may be approximated and further simplified to

m

r

( N
m0

+ t−i
2

N
m0

+ t
2

)2

= m

r

(

1 −
i
2

N
m0

+ t
2

)2

= m

r

(

1 − 1
2N
m0t

+ 1

i

t

)2

= m

r

(
1 − R̄msc

2

i

t

)2

,

where the final equality results from the substitution of m0, as given by (24).
Now, the � online chains of length i are generated if and only if all � chains of length

strictly smaller than i did not return the correct answer to the inversion problem, and this

happens with probability
(
1 − m

N

)�(i−1). Since each alarm from and online chain of length i
requires (t − i) iterations of the one-way function to resolve, the expected number of extra
one-way function iterations induced by truncation-related alarms may be written as

�

t∑

i=0

(t − i)
m

r

(
1 − R̄msc

2

i

t

)2 (
1 − m

N

)�(i−1)
,

when the processing of the � rainbow tables are taken into account. Rewriting this in the
form

t2�
m

r

t∑

i=0

(
1 − i

t

)(
1 − R̄msc

2

i

t

)2

exp

(
−mt�

N
i − 1

t

)
1

t
,
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we can see that, unless t is very small, the expected extra cost can be approximated by the
definite integral

t2�
m

r

∫ 1

0
(1 − u)

(
1 − R̄msc

2
u

)2

exp
( − R̄msc� u

)
du.

Explicit computation of this definite integral results in our claim. 
�
Recall that the total online time, without ending point truncation, was given during the

proof of Theorem 2. Comparing the complexity with what is given by Lemma 11, it is
straightforward to express the effects of ending point truncation on the total online time.

Proposition 8 Suppose that the online phase of a perfect rainbow tradeoff implementation
that stores each ending point in full requires T iterations of the one-way function to complete.
Consider a truncation map for which the truncated space is of size r = 2εm 	 N. If ε is
large enough for the occurrences of indistinguishable ending points caused by truncations
to be ignored, then the implementation with the ending point truncation requires

−
(

3
2� − 2 − R̄msc

2 + � + R̄msc� − R̄msc�
2
)

+
(

3
2� − 2 + R̄msc + � − R̄msc� + R̄2msc�

4

)
e−R̄msc�

(
3
2� − 2 − R̄msc

2 + � + R̄msc�
)

−
(

3
2� − 2 + R̄msc + � − R̄msc� + R̄2msc�

4 + R̄msc�2
)
e−R̄msc�

T

2ε

additional iterations of the one-way function to complete.

For parameters satisfying R̄msc = 1 and � = 1, the claim is that 0.774568 T
2ε additional

one-way function iterations are expected due to truncation-related alarms. At ε = 5, this is
0.0242052 T , which implies a 2.42 % increase in online time due to ending point truncation.

Let us summarize the issue of storage optimization for the perfect rainbow tradeoff. Each
starting point can be stored in slightlymore than logm bits. Each ending point can be truncated
to slightly more than logm bits with little effect on the success probability, pre-computation
cost, and online time. The index file technique can be used to remove almost logm further
bits per ending point without any loss of information. In all, storage of each starting point
and ending point pair requires a little more than logm bits. Even though this is identical to
the conclusion obtained in [14] for the non-perfect rainbow tradeoff, the analysis had to be
repeated here for the perfect rainbow tradeoff.

5 Tradeoff algorithm performance comparison

Formulas for the perfect DP and perfect rainbow tradeoffs that give the success rates, online
efficiencies, and pre-computation costs in terms of the algorithm parameters were obtained
in the previous two sections. Similar formulas for the non-perfect DP and non-perfect rain-
bow tradeoffs were provided in an earlier work [14]. In this section, we gather all of these
information to compare the performances of the four mentioned tradeoff methods.

Our choice to exclude the classical Hellman tradeoff from our comparisons was mainly
due to its performance being very similar to that of the non-perfect DP tradeoff. At the scale
of the graphs to be given later in this section, curves for the classical Hellman and non-perfect
DP tradeoffs would not be clearly distinguishable. One must also be aware of the fact that the
classical Hellman tradeoff has a much higher table access frequency than the DP or rainbow
tradeoffs, which is an issue that cannot be reflected by the complexities being used in our
comparisons.
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Below, we will use the symbols Dtc and Rtc to denote the tradeoff coefficients, i.e., the
T M2

N2 values, for the non-perfect DP and non-perfect rainbow tradeoffs, respectively. Also, the
symbols Dpc and Rpc will denote the number of one-way function iterations expected of the
pre-computation phases, counted in multiples of N, for the non-perfect DP and non-perfect
rainbow tradeoffs.

5.1 Method of comparison

Let us describe the method to be used in comparing the performances of different tradeoffs.
The approach we will use was first set forth by [14].

Note that a time memory tradeoff method can fail to return the correct answer to the
given inversion problem and that any tradeoff method is sure to require less resources if it
is allowed to operate at a lower success rate. Hence, a fair performance comparison of the
tradeoff methods must compare their various execution complexities under parameters for
each tradeoff that correspond to a common success rate. Our comparisons will be made at
the four specific success rate requirements 90, 95, 99, and 99.9 %.

One can accept the tradeoff coefficient T M2

N2 as providing a good measure of how efficient
a tradeoff method is during the online phase, with a smaller value indicating a better method.
Indeed, if Method-A has a smaller tradeoff coefficient than Method-B, then Method-A is
expected to require a smaller online time T in solving an inversion problem than Method-
B, when the two are provided with pre-computation tables of equal storage complexity M .
Furthermore, since each of the four tradeoff methods we are comparing allows for tradeoffs
between time and memory of the same T M2 = const ·N2 form, comparison of their tradeoff
coefficients can be understood to be a simultaneous comparison of the online time T at all
possible choices of the storage complexity M .

Although we have stated that the tradeoff coefficient is an accurate measure of the online
efficiency of a tradeoff method, certain adjustments must be made before we can make
comparisons of different tradeoff methods based on their tradeoff coefficients. Recall that the
storage complexityM that was used in computing our tradeoff coefficients was the total num-
ber of entries written to the pre-computation tables, but that the physical number bits required
to store each table entry actually depended on the tradeoff method and its parameters. As an
example, suppose that wewere given parameters forMethod-A andMethod-Bwithwhich the
two methods would call for roughly comparable online resources, but which would required
Method-A and Method-B to allocate 10 and 20 bits, respectively, to each pre-computation

table entry. Then, to be fair, one must compare the 100 T M2

N2 value computed for Method-A

against the 400 T M2

N2 value computed for Method-B, or, equivalently, compare Method-A’s
1
4
T M2

N2 against Method-B’s T M2

N2 . In other words, the comparison of online efficiencies must
be made between adjusted tradeoff coefficients that account for relative differences in the
number of bits allocated to each table entry by the different tradeoff methods.

The set of relative adjustments to the tradeoff coefficients that is most appropriate will
be different for every situation, and the precise adjustment factors become available only
after one fixes the parameters and decides on how aggressively to apply the many storage
reduction techniques. The previous work [14] provided a careful discussion with examples
as to how the relative adjustments of the tradeoff coefficients are to be carried out in practice.

Although no single set of adjustment factors can be appropriate for all situations, we still
need to fix them to something specific in order to proceed with the comparison in this work.
Our choice, which will soon be justified, is to compare the adjusted tradeoff coefficients 1

4 D̄tc,
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R̄tc, 14Dtc, and Rtc against each other. At the ends of Sects. 3.2 and 4.2, we had stated that both
the perfect DP and perfect rainbow tradeoffs need to allocate “slightly more than logm bits”
to each table entry. We also remarked there that the same was previously shown to be true of
the two non-perfect tradeoffs. Now, for both the perfect and non-perfect DP tradeoffs, the total

complexity, defined as the sum T +M , is minimized by the parametersm ≈ t ≈ � ≈ N
1
3 , and

the same for the perfect and non-perfect rainbow tradeoffs is minimized by the parameters

m ≈ N
2
3 , t ≈ N

1
3 , and a small �. In fact, we could state that these same parameters are used

in practical implementations, as long as the approximations are understood to be extremely
crude. Hence, the “slightly more than logm bits” would often be not too far from 1

3 logN
bits and 2

3 logN bits for the two DP tradeoffs and two rainbow tradeoffs, respectively. In
this sense, the two DP tradeoffs require only half as many bits as the two rainbow tradeoffs
in storing each table entry, and our choice of the adjusted tradeoff coefficients is somewhat
justified.

Let us emphasize once more that the accurate adjustment factors can only be fixed by the
tradeoff implementer for each specific situation based on the number of bits to be allocated
to each table entry and that our performance comparisons to be given below is based on an
extreme simplification. We acknowledge that, mainly due to the “slightly more than” part,
our choice of the adjustments is slightly in favor of the two DP tradeoffs than what would be
seen in practice. For example, it could be that taking 0.3D̄tc, R̄tc, 0.3Dtc, andRtc as the adjusted
tradeoff coefficients is more appropriate. However, our later comparisons will indicated that
the rainbow tradeoffs are advantageous over the DP tradeoffs, in spite of the undue advantage
we are giving to the DP tradeoffs.

So far, we have explained that the tradeoff methods need to be compared under parameters
achieving a common success rate and that the adjusted tradeoff coefficients allow for direct
comparisons of the online efficiencies of different tradeoff methods. Now, note that if two
tradeoff methods present the same online efficiency at the same success rate, one would
prefer to use the one with a smaller pre-computation cost. That is, a fair comparison of
tradeoff performances must also account for the cost of pre-computation. It is clear that the
pre-computation coefficient can be used to presents this cost directly.

One can expect a tradeoffmethod to behavemore efficiently after a larger investment in pre-
computation. In other words, one can expect an upper level tradeoff between pre-computation
effort and online efficiency. However, unlike the time memory tradeoffs, the upper level
tradeoffs exhibited by the four tradeoff methods cannot be expressed with equations having
a common form, making it difficult to capture the upper level tradeoff in a certain new
coefficient. The solution is to draw a pre-computation coefficient versus adjusted tradeoff
coefficient curve for each tradeoff method. Each curve will be a concise visual display of
what level of online efficiency is reachable by a tradeoff method after a certain amount of
pre-computation effort. The implementer can decide which tradeoff is better for the specific
situation he or she is faced with after viewing the whole range of options made available by
the different tradeoff methods.

5.2 Performance comparison

Since we are going to compare the tradeoff methods at a few common fixed probabilities of
success, the symbols D̄ps and R̄ps will now be treated as fixed constants.

Let us explain how onemay plot the pre-computation coefficient versus (adjusted) tradeoff
coefficient curves for the two perfect tradeoff algorithms. Below, we will refer to this curve
simply as the pc-tc curve.
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The perfect DP tradeoff will be treated first. It is easy to derive

D̄pc = 2 + D̄msc

2 D̄cr

{ − ln(1 − D̄ps)
}

(30)

from Proposition 2, and since Proposition 3 expresses D̄cr as a function of D̄msc, the pre-
computation coefficient can be seen as a function of the single parameter D̄msc, when D̄ps is
treated as a constant. Similarly, the combination of Theorem 1 and Proposition 3 expresses
the tradeoff coefficient D̄tc as a function of the single parameter D̄msc. Thus the pc-tc curve
for the perfect DP tradeoff may be drawn as a curve parameterized by D̄msc.

It is important to understand that, even when the success rate D̄ps and curve parameter
D̄msc are fixed to specific values, there still remains a single degree of freedom concerning the
tradeoff algorithm parametersm, t , and �, with which one can realize the tradeoff between the
online time T and the storage requirement M . That is, the ability of the DPmethod to provide
tradeoffs between online time and storage requirement is unimpaired by restrictions on the
success rate and the matrix stopping constant. The D̄tc value appearing with each (D̄pc, D̄tc)-
pair contained in the pc-tc curve represents an online efficiency with a fully operational time
memory tradeoff opportunity.

To be more concrete, suppose that one is given specific D̄ps and D̄msc values, together with
any T and M that satisfy the tradeoff curve of Theorem 1, where the tradeoff coefficient D̄tc

has been computed from the given D̄ps and D̄msc values. Then it is easy to check that the
sequentially defined parameter set

t =
{
D̄mscD̄cr

D̄ps

(
1 + 1 + 0.577D̄msc

1 + 0.451D̄msc

D̄msc

1 + D̄msc

)−1

T

} 1
2

, (31)

m = D̄mscN
t2

, (32)

� = N
mtD̄cr

{− ln(1 − D̄ps)
}

(33)

satisfies the four requests or restrictions on D̄ps, D̄msc, T , and M . The equivalence of (33)
and (10) implies that the success rate D̄ps will be achieved with these parameters, while (32)
ensures that the given D̄msc value is adhered to. Furthermore, since (31) and the first equation
in the proof of Theorem 1 are equivalent, the online phase is expected to terminate in the
requested time T . Finally, since both the storage requirement under the above parameter set
and the requested M value satisfy the same tradeoff curve, i.e., with common values of the
online time and tradeoff coefficient, adherence to M is guaranteed.

Let us now explain how the pc-tc curve for the the perfect rainbow tradeoff may be plotted.
One can combine (27) and Proposition 6 to express the pre-computation coefficient

R̄pc = 2

2 − R̄msc

{ − ln(1 − R̄ps)
} = − 2� ln(1 − R̄ps)

2� + ln(1 − R̄ps)
(34)

as a function of the single variable �, when R̄ps is treated as a fixed constant. Similarly, the
substitution of (27) into the formula of Theorem 2 results in an expression for R̄tc that is given
in terms of the single variable �. Thus, the pc-tc curve for the perfect rainbow tradeoff may
be drawn as a curve parameterized by �. As with the DP tradeoff, the possibility of tradeoffs
between online time and storage requirement remains unaffected by the restrictions on R̄ps
and �.
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The pc–tc curves for the perfect and non-perfect DP and rainbow tradeoffs are given in
Fig. 4 for some specific success rates. Results from the previous work [14] were used to plot
the curves for the two non-perfect tradeoffs. Within each box, being lower corresponds to
having better online efficiency and being closer to the left edge corresponds to requiring less
pre-computation. Hence, one may roughly interpret being situated closer to the lower left
corner as displaying better performance.

In each box, the (red) empty circles represent the choice of (R̄pc, R̄tc)-pairs made available
by the perfect rainbow tradeoff, and the (blue) filled dots represent data for the non-perfect
rainbow tradeoff. Each circle for the perfect rainbow tradeoff corresponds to an integer �

value, with the rightmost circle of each box corresponding to � = �− 1
2 ln(1− R̄ps)�, as deter-

mined by the bound (28). Since the table count � must be an integer, the available choices
appear as a discrete set of circles. Similar statements may be made for the dots that represent
data for the non-perfect rainbow tradeoff. The (red) dashed line in each box represents data for

the perfect DP tradeoffs. UnlessN is small, it is reasonable to treat the parameter D̄msc = mt2
N

that was used to draw these graphs as a continuous variable, even though it originates from
integers. One can numerically verify that the tradeoff coefficient D̄tc attains its minimum at
D̄msc = 1.97255, regardless of the D̄ps value. The lowest point, or the right end, of the dashed
curve in each box corresponds to D̄msc = 1.97255 and the curve is drawn only for the parame-
ter in the range D̄msc ≤ 1.97255. Curve points corresponding to larger D̄msc values would be
associatedwithworse online efficiencies at higher pre-computation costs, whichwould not be
used. The (blue) continuous curve in each box represents data for the non-perfect DP tradeoff.

It is quite clear from Fig. 4 that the perfect DP tradeoff (dash) is less desirable than the
perfect rainbow tradeoff (circle), regardless of how one wants to balance online efficiency
against pre-computation cost. When these normal to high success rates are required, the
perfect DP tradeoff is no match for the perfect rainbow tradeoff. It also seems fair to claim
that the perfect rainbow tradeoff (circle) is at an advantage over the non-perfect rainbow
tradeoff (dot), since it can approximately provide every option made available by the non-
perfect rainbow, while providingmanymore options that cannot be approximated by the non-
perfect rainbow tradeoff. Furthermore, the perfect rainbow tradeoff presents the possibility
of obtaining much better online efficiencies, although these must be paid for with higher
pre-computation costs. One interesting fact is that at the 90 % success rate, and possibly
also at the 95 % success rate, the perfect DP tradeoff (dash) could be more useful than the
non-perfect rainbow tradeoff (dot), unless one is extremely constrained in the amount of
pre-computation possible. At the 99 % success rate, even though the perfect DP tradeoff can
provide better online efficiency than the non-perfect rainbow tradeoff, the pre-computation
penalty seems to be somewhat too high for the small advantage in online efficiency. As
for the non-perfect DP tradeoff (line), we can safely say that it is almost obsolete at these
high success rate requirements. We also add that if we had included the pc-tc curves for
the classical Hellman tradeoff in these graphs, they would have almost overlapped with the
curves for the non-perfect DP tradeoff.

The success rates covered by Fig. 4 are those that would be of practical interest. However,
we acknowledge that for success rate requirements that are much lower, such as 25 or 50 %,
the situation is somewhat different. One can easily verify through curves similar to those of
Fig. 4 that the use of the perfect DP tradeoff can be advisable at these less interesting low
success rates.

The comments we have given so far concerning Fig. 4 should generally be acceptable, but
when lowering the pre-computation cost is immensely important, there remains a small pos-
sibility that the non-perfect rainbow tradeoff (dot) could be preferred over the perfect rainbow
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Fig. 4 The tradeoff coefficients 1
4 D̄tc (dashed), R̄tc (empty circles),

1
4Dtc (line), and Rtc (dots), with adjust-

ments suitable for direct comparison, in relation to their respective pre-computation costs, at various success
rates
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Fig. 5 Tradeoff coefficient for perfect (circles) and non-perfect (dots) rainbow tradeoffs in relation to their
pre-computation costs at 99 % success rate

tradeoff (circle). This is illustrated by Fig. 5, which is an enlarged view of a small rectangular
part from the 99 % box of Fig. 4. We have intentionally stretched the small rectangle in
the horizontal direction and have reduced the height, so that even a small difference in the
pre-computation coefficient is perceived as being significant. Even though some sacrifice in
the online efficiency is inevitable, the options provided by the non-perfect rainbow tradeoff
(dot) now seem much more reasonable than previously felt when viewed from within Fig. 4.

To summarize, when the online efficiency and pre-computation cost are both taken into
account, the perfect rainbow tradeoff is very likely to be advantageous over perfect DP,
non-perfect rainbow, and non-perfect DP tradeoffs, in typical situations. However, there
may be special circumstances under which the preferences could be different. For example,
importance of lowering the pre-computation cost may shift the preference towards the non-
perfect rainbow tradeoff, and the need for fine-tuned parameter choices maymake the perfect
DP tradeoff, or even the non-perfect DP tradeoff, favorable at low success rate requirements.

Before ending this section, let us briefly add two remarks concerning the D̄msc = 1.97255
value that minimizes the tradeoff coefficient D̄tc. Even though our derivation of the formula
for D̄tc relied on the empirical result (14), since the range in which (14) is accurate contains
the minimizing D̄msc value, one can be confident that D̄msc = 1.97255 indeed provides a
(local) minimum for D̄tc. In the opposite direction, as was already discussed, since D̄msc

values greater than 1.97255 will not be used, it suffices to restrict our attention to parameters
in the 0 < D̄msc ≤ 1.97255 range, so that our confirmation of (14) being accurate in the
range 0 < D̄msc < 2.3 is more than enough.

6 Conclusion

In this work, we analyzed the execution complexity of the perfect DP tradeoff and computed
its tradeoff coefficient. We also combined the existing results on the execution complexity
of the perfect rainbow tradeoff to present its online efficiency. Using this information, the
performances of the perfect DP tradeoff and perfect rainbow tradeoff were compared against
each other. Results from the previous work [14] on the non-perfect table tradeoffs were also
included in our comparison for easy reference. Our conclusion, in overly simplified terms,
is that the perfect rainbow tradeoff is advantageous over the classical Hellman, non-perfect
DP, non-perfect rainbow, and perfect DP tradeoffs.

On the surface, our conclusionmay seem to be a repetition of the claim given by the article
[21] that first introduced the rainbow tradeoff, but the two claims differ fundamentally in their
contents. The previous work [21] measured the storage size in terms of the number of table
entries, but the physical storage size was considered in our comparisons. Our comparison
was based on the expected execution complexities, rather than the worst case complexities,
which were used by [21]. Finally, our comparison considered both the online efficiency and
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the cost of pre-computation, whereas only the optimal online behavior was considered by
[21]. In other words, different concepts of one algorithm being better than another algorithm
were employed by [21] and this work in comparing tradeoff algorithms.

In addition to the conceptual differences which make our comparisons more meaningful
in practice than the previous claims of [21], there was also a difference in the accuracy of
the two comparisons. The claim of [21] relied on parameter sets for different algorithms
that were heuristically shown to bring about roughly corresponding success rates, but the
parameter sets for different algorithms were conditioned to achieve exactly the same success
rate in our comparison. In addition, our comparison, unlike that of [21], fully accounted for
the cost of resolving false alarms, which constitutes a significant portion of the online time.

Despite our simplified conclusion of the perfect rainbow tradeoff outperforming the other
four algorithms, we do not rule out the possibility of encountering situations where the
conclusions could be different. One example would be when lowering the pre-computation
cost is immensely important. Theremay also be issueswe have ignored, such as the possibility
of loading a pre-computation table fully into fast memory or table lookup characteristics,
which could make the two DP tradeoffs, with smaller individual tables, preferable over the
two rainbow tradeoffs. Furthermore, recent implementation platforms such as GPUs, where
the scheduling of the online computation needs to be totally different frommost computation
platforms and accesses to large storage are inconvenient, could call for a completely different
analysis of the execution complexities.

It remains to extend this work and verify whether the lesser known recently proposed
tradeoff algorithms [1,12,15,20,26–28,31,33,34] are superiority to the more widely known
algorithms covered by [14] and this work, in the sense we have considered in this work. Note
that the results and approaches of this work have already been used to show [17,18] that the
fuzzy rainbow tradeoff [3,4] could be seen as performing better than even the perfect rainbow
tradeoff. Also note that [16] had arrived at a negative conclusion concerning the non-perfect
table case of the pH tradeff [12,24].
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Appendix 1: Effects of chain length bounds and parallelization on the DP
tradeoff

Let us briefly comment on the two techniques for the DP tradeoff that were not considered
during our complexity analyses. Specifically, these were the use of upper and lower bounds
on the chain lengths and the parallel processing of tables during the online phase.

The use of chain length bounds will increase the number of pre-computation chains that
are discarded, so that the amount of pre-computation must be increased in order to maintain
the success rate. The effect of chain length bounds on the online efficiency is unclear, but
making the pre-computation chain lengths shorter has the tendency to reduce chain merges
and false alarms, so this could have a positive effect. However, a quick review of Fig. 4 shows
that no small enhancement in the online efficiency is likely to make the perfect DP tradeoff
more preferable over the perfect rainbow tradeoff, even if no penalty on the pre-computation
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cost was involved. Hence, there seems to be little reason to consider the perfect DP tradeoff
variant that utilizes chain length bounds, except possibly at low success rates.

The work [12,24] suggested that all the pre-computation tables be processed in parallel,
rather than sequentially, during the online phase. Parallel processing causes the shorter online
chains to be treated before the longer ones, and since the online phase is likely to terminate
with the correct answer before any of the pre-computation tables are fully processed, this
leads to a larger portion of the online computation being spent on processing the shorter
chains. Since shorter chains are less likely to induce false alarms, this has a positive effect
of reducing the cost of dealing with alarms. However, the recent analysis on the non-perfect
parallel DP tradeoff [16] indicates that one cannot hope to see any drastic improvement of
the perfect DP tradeoff performance through parallelization. For now, there seems to be no
reason to expect the parallel perfect DP tradeoff to perform better than the perfect rainbow
tradeoff, especially under the high success rate requirements which are of interest.

Appendix 2: Appropriate chain length upper bound

Let us analyze how often one can expect to see over-length chains when an upper bound
on the chain length is set. This information will give us an indication of how large a bound
qualifies as a sufficiently large chain length bound.

We first wish to write down the probability for a chain generated from a given starting
point to fall into an infinite loop without reaching a DP within its first t̂ iterations. The chain
can fall into a loop if the first iteration lands on the given starting point itself. The probability
for such an event can be stated to be 1

N , when the chain is treated as a random walk. If the
first iteration lands on a non-DP that is different from the starting point, which happens with
probability 1 − 1

t − 1
N , then the chain can fall into a loop if the second iteration lands on

either of the first two points, which happens with probability 2
N . Continuing, the probability

in question may be written as

1

N
+

(
1 − 1

t
− 1

N

)
2

N
+

(
1 − 1

t
− 1

N

) (
1 − 1

t
− 2

N

)
3

N
+ · · · · · ·

· · · · · · +
(
1 − 1

t
− 1

N

) (
1 − 1

t
− 2

N

)
· · ·

(
1 − 1

t
− t̂ − 2

N

)
t̂ − 1

N
.

(35)

If we assume t t̂ 	 N, the i
N term appearing inside each set of parentheses can be ignored

and the above may be approximated by

1

N
+

(
1 − 1

t

)
2

N
+ · · · +

(
1 − 1

t

)t̂−2 t̂ − 1

N
. (36)

Arguing as before, we can state that the probability for a chain not to reach a DP within
its first t̂ iterations, without falling into a loop, is

(
1 − 1

t
− 1

N

) (
1 − 1

t
− 2

N

)
· · ·

(
1 − 1

t
− t̂ − 2

N

) (
1 − 1

t
− t̂ − 1

N

)
, (37)

and this can be approximated by
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(
1 − 1

t

)t̂−1

, (38)

under the assumption that t t̂ 	 N.
The sum of (36) and (38)

1

N
+

(
1 − 1

t

)
2

N
+ · · · +

(
1 − 1

t

)t̂−2 t̂ − 1

N
+

(
1 − 1

t

)t̂−1

, (39)

is the probability for a chain not to reach a DPwithin its first t̂ iterations. If we further assume
that t̂

t is not too large, we can approximate and rewrite this in the form

t2

N

(
1

t
+ e− 1

t
2

t
+ e− 2

t
3

t
+ · · · + e− t̂−2

t
t̂ − 1

t

)
1

t
+ e− t̂−1

t , (40)

and approximate the above once more with the definite integral

t2

N

∫ t̂
t

0
e−uu du + e− t̂

t = t2

N

{
1 −

(
1 + t̂

t

)
e− t̂

t

}
+ e− t̂

t . (41)

This probability approaches t2
N = O

( 1
m

)
very quickly, as t̂

t is increased. For example,
even at the moderately large chain length bound of t̂ = 15 t , the probability for a randomly

generated chain to be discarded due to its length is t2
N 0.999995+ 3.05902× 10−7, which is

small enough for our purposes.
As a word of caution, we add that, due to the first term of O

( 1
m

)
order, the number of long

chains expected during the generation of a full DP matrix cannot be made arbitrarily close
to zero by increasing the chain length bound, since each DP matrix contains m chains. Only
the fraction of over-length chains among all chains approaches zero with the increase of the
chain length bound.

Appendix 3: Rigorous proof of Lemma 3

The very short proof of Lemma 3 given in the main body of this paper will seem sufficient to
most cryptographers. However, there are subtle issues involving random functions that were
ignored in the proof. This section is an attempt at resolving these issues. We strongly urge
any interested reader to review [14, Appendix B] before reading this section.

Recall that we are using Dk(F) to denote the set of elements of N that are k-many F-
iterations away from their closest DPs, and suppose that D0, D1, …, Dk are any collection
of mutually disjoint subsets of N , with D0 denoting the set of all DPs. Let us consider any
function F : N → N and discuss when the series of conditions

C1: Di = Di (F), for i = 1, . . . , k

would be satisfied by the function. Note that the omitted condition D0 = D0(F) is always
satisfied.

The series of conditions C1 is satisfied by the function F if and only if the following three
items are all satisfied:

C2: Di = Di (F), for i = 1, . . . , k − 1.
C3: F(Dk) ⊂ Dk−1.
C4: F(N \ Dk) ∩ Dk−1 = ∅.
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Repeating this argument, we see that the satisfaction of Condition-C1 by an F is equivalent
to the satisfaction of the following two series of conditions.

C5: F(Dk) ⊂ Dk−1, …, F(D2) ⊂ D1, and F(D1) ⊂ D0.
C6: F(N \ Dk) ∩ Dk−1 = ∅, …, F(N \ D2) ∩ D1 = ∅, and F(N \ D1) ∩ D0 = ∅.
Suppose that we are now trying to construct a function that satisfies these conditions. Then

the condition F(Dk) ⊂ Dk−1 would certainly places a restriction on how we may define F
on Dk . However, since the set Dk does not overlap with any of the other sets D0, . . . , Dk−1,
none of the other sub-conditions of C5 places any restriction on the definition of F on Dk .
Next, the sub-condition F(N \Dk)∩Dk−1 = ∅ of C6 is certainly irrelevant to the definition
of F on Dk . The other sub-conditions of C6 are not quite so irrelevant, but since Dk−1 does
not overlap with any of the sets D0, . . . , Dk−2, as long as the condition F(Dk) ⊂ Dk−1 is
adhered to, they are automatically satisfied and do not places any additional restriction of how
wemay define F on Dk . More generally, for each i = 1, . . . , k, the condition F(Di ) ⊂ Di−1

is the only restriction placed on the definition of F on Di by C5 and C6. In other words,
asking for C1 to be satisfied by a function F places no restriction on the definition of F on
Di other than that F(Di ) ⊂ Di−1 be satisfied.

The discussion given so far can be reinterpreted as follows. Let D0, D1, . . . , Dk be any
collection ofmutually disjoint subsets ofN , with D0 denoting the set of all DPs. By choosing
a function F : N → N satisfyingCondition-C1, one determines functions Fi : Di → Di−1

for each i = 1, . . . , k. Let us fix any i . If the choice of F is made uniformly at random
from the set of all function satisfying Condition-C1, the distribution of the corresponding
Fi : Di → Di−1, defined on the set of all functions having domain Di and co-domain Di−1,
also becomes the uniform distribution.

We are now ready to prove the lemma. Choose any explicit family of disjoint sets D0, …,
Dk such that D0 is the set of all DPs. For a random function satisfying Condition-C1, since
each Fi : Di → Di−1 is a random function, we can expect to see

|F(D′)|
|Di−1| = 1 − exp

(
− |D′|

|Di−1|
)

(42)

for every set D′ ⊂ Di and i = 1, . . . , k. So far,wehavefixed D0,…, Dk first andhave claimed
information on iterated image sizes only for functions F satisfying Condition-C1, which is
associatedwith the sets D0,…, Dk . However, observe that this iterative equation depends only
on the set sizes |D′|, |D0|, …, |Dk | and not on the specific sets D′, D0, . . . , Dk . Also recall
that (11) is expected of a random function. Interpreting this as (11) holding accurately for the
vast majority of functions F , the truth of Lemma 3 follows. A review of [14, Appendix B] is
required to fully understand this final statement.

Appendix 4: Optimal rainbow tradeoff parameters

In this section we discuss the parameter set for the perfect rainbow tradeoff that the previous
analysis [2] suggested and claimed to be optimal. Let us explain the steps they take to fix
the parameters, in the language of this work. The required success rate R̄ps and the total
number of table entries M are treated as the externally supplied parameters. First (28) is
used to fix the number of tables � = �− 1

2 ln(1 − R̄ps)�. This forces the number of starting
points per table to m = M

�
and we know from (26) that the remaining parameter t must be

fixed to
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Fig. 6 Pre-computation cost versus tradeoff coefficient for the perfect rainbow tradeoff at success rates slightly
lower than 1 − 1

e2
= 86.466 %

t = − N
m�

ln(1 − R̄ps) = − N
M

ln(1 − R̄ps), (43)

if the requested success rate is to be achieved. In short, the number of tables is chosen to be
as small as possible, subject to the condition (28), and the rest of the parameters are set to
what they must be in order to satisfy the externally given requirements.

It is not hard to show that the tradeoff coefficient R̄tc of Theorem 2, when combined with
(27), is an increasing function of � in the range � ≥ 1 and 0 ≤ R̄ps < 1. This implies that
the parameters suggested by [2] are optimal in the sense that it gives the smallest possible
tradeoff coefficient among those achieving the intended success rate. An easier approach
would be to state that, the optimal parameter set of [2] corresponds to the rightmost empty
circle in each box of Fig. 4, which is clearly the lowest dot in each box.

However, we want to emphasize that the rightmost circle of each box is just one of the
many options that are available to the tradeoff algorithm implementer, and that this specific
option is not likely to be favored over others when the pre-computation cost is taken into
account, except possibly at low success rates. Furthermore, Fig. 6 demonstrates that there
are success rates for which using parameters corresponding to the rightmost dot is certainly
impractical.

The parameter set that is most efficient in terms of the online resource requirements is very
often not the most practical or reasonable parameter set option among those made available
by a tradeoff method. The current work provides the information which enables the tradeoff
implementer to decide on the most sensible, rather than the most online-efficient, parameter
to use.
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