
Des. Codes Cryptogr. (2016) 80:333–358
DOI 10.1007/s10623-015-0095-1

Homomorphic AES evaluation using the modified
LTV scheme

Yarkın Doröz1 · Yin Hu1 · Berk Sunar1

Received: 1 October 2014 / Revised: 25 April 2015 / Accepted: 6 May 2015 /
Published online: 28 May 2015
© Springer Science+Business Media New York 2015

Abstract Since its introduction more than a decade ago the homomorphic properties of
the NTRU encryption scheme have gone largely ignored. A variant of NTRU proposed by
Stehlé and Steinfeld was recently extended into a full fledged multi-key fully homomorphic
encryption scheme by López-Alt, Tromer andVaikuntanathan (LTV). This NTRUbased FHE
presents a viable alternative to the currently dominant BGV style FHE schemes. While the
scheme appears to be more efficient, a full implementation and comparison to BGV style
implementations has been missing in the literature. In this work, we develop a customized
implementation of the LTV. First parameters are selected to yield an efficient and yet secure
LTV instantiation. We present an analysis of the noise growth that allows us to formulate a
modulus cutting strategy for arbitrary circuits. Furthermore, we introduce a specialization of
the ring structure that allows us to drastically reduce the public key size making evaluation of
deep circuits such as the AES block cipher viable on a standard computer with a reasonable
amount of memory. Moreover, with the modulus specialization the need for key switching
is eliminated. Finally, we present a generic bit-sliced implementation of the LTV scheme
that embodies a number of optimizations. To assess the performance of the scheme we
homomorphically evaluate the full 10 round AES circuit in 29 h with 2048 message slots
resulting in 51 s per AES block evaluation time.

Keywords Fully homomorphic encryption · NTRU · AES · Ring-LWE

Mathematics Subject Classification 94A60

Communicated by L. Perret.

B Yarkın Doröz
ydoroz@wpi.edu

Yin Hu
hhyy_best@alum.wpi.edu

Berk Sunar
sunar@wpi.edu

1 Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-015-0095-1&domain=pdf

334 Y. Doröz et al.

1 Introduction

Fully homomorphic encryption has come a long way in a mere few years since the first
plausibly secure construction was introduced by Gentry [1] in 2009. This advance settled
an open problem posed by Rivest [2], and opened the door to many new applications. In a
nutshell, by employing FHE one may perform an arbitrary number of computations directly
on the encrypted data without revealing the secret key. This feature, makes FHE a powerful
tool in multi-party computing and perfectly suited to protect sensitive data in distributed
applications including those hosted on semi-trusted cloud servers.

The efficiency bottleneck that prevents FHE from being deployed in real-life applications
is now being bridged with the introduction of numerous new optimizations and related proof-
of-concept implementations. The first implementation of an FHE variant was proposed by
Gentry and Halevi [3]. An impressive array of optimizations were proposed with the goals
of reducing the size of the public-key and improving the performance of the primitives. Still,
encryption of one bit takes more than a second on a high-end Intel Xeon based server, while
the recrypt primitive takes nearly half a minute in the lowest security setting. In [4], a GPU
based implementation of the same scheme was developed which managed to reduce the
recryption time to a few seconds.

Recently more efficient schemes emerged based on the hardness of learning with errors
(LWE) problem. In [5] Brakerski, Gentry, and Vaikuntanathan (BGV) introduced an LWE
based scheme that reduces the need for bootstrapping. Instead the BGV scheme uses a
new lightweight method, i.e. modulus switching, to mitigate noise growth in ciphertexts as
homomorphic evaluation proceeds.Whilemodulus switching cannot restore the original level
of noise as bootstrapping does, it still manages to gain exponentially on depth of the circuits
evaluated without affecting the depth of the decryption circuit. Therefore, as long as we can
fix the depth of the circuit a priori, we can perform evaluations without bootstrapping using
a leveled implementation.

In [6] Gentry, Halevi and Smart introduced the first evaluation of a complex circuit, i.e. a
full AES block evaluation by using a BGV style scheme introduced earlier in [7] by the same
authors. The scheme makes use of batching [7,8], key switching and modulus switching
techniques to obtain an efficient leveled implementation. Three batching techniques are used
to obtain bit–sliced, byte–sliced and SIMD implementations.With 5min per block evaluation
time the byte-sliced implementation is faster, but also requires less memory. The SIMD
implementation takes about 40 min per block.

In [9], López-Alt, Tromer and Vaikuntanathan (LTV) presented a leveled FHE scheme
based on the modified NTRU [10] scheme introduced earlier by Stehlé and Steinfeld [11].
A unique aspect of the LTV scheme is that it supports homomorphic evaluation of cipher-
texts encrypted by using public keys assigned to different parties. The authors outline the
scheme using a leveled implementation and introduce a technique called relinearization to
facilitate key switching during the levels of the evaluation. Modulus switching is also per-
formed after multiplication and addition operations. The security of LTV scheme relies on
two assumptions: the ring LWE assumption, and the Decisional Small Polynomial Ratio
(DSPR) assumption. The scheme also supports bootstrapping. While the scheme appears to
be efficient, the analysis in [9] lacks concrete parameters.

Very recentlyBos et al. [12] presented a leveled implementation based onLTV.The authors
modify the proposed scheme LTV in a number of aspects to build up their own somewhat
homomorphic encryption scheme. They also mention that one can implement the bootstrap-
ping operation and turn their somewhat homomorphic scheme into a fully homomorphic

123

Homomorphic AES evaluation using the modified LTV scheme 335

encryption scheme. The semantic security of LTV is based on uniformity of the public key
which relies on the DSPR assumption. In [12], the LTV scheme is modified by adopting a
tensor product technique introduced by Brakerski [13] such that the security depends only on
standard lattice assumptions. Furthermore, they use the scale-invariant approach to achieve
much more reduced noise growth. Lastly, the authors improve the flexibility of the scheme
by splitting the message using the Chinese Remainder Theorem and then encrypting them
into separate ciphertexts. This makes integer based arithmetic easier and more efficient with
a cost of a reduction in the depth of circuits that can be evaluated with the scheme.

1.1 Our contributions

We introduce an implementation of the LTV FHE scheme along with a number of optimiza-
tions. More specifically we

– present a batched, bit-sliced implementation of the LTV scheme. The implementation is
generic and is not customized to optimally evaluate any class of circuits (e.g. AES) more
efficiently than others.

– resolve the parameter selection issue in the light of recent theoretical and experimental
results in the field of lattice reduction.

– introduce a specialization of the rings that simplifies modulus switching and allows us to
significantly reduce the size of the public key.We show that the impact of this specialization
on the key space is negligibly small. Even further, with the specialization key switching
is no longer needed.

– rigorously analyze the noise growth of the LTV scheme over the levels of computation,
and develop a simple formula for estimating the number of bits one needs to cut during
the modulus switching step.

– homomorphically evaluate the full 128-bit AES circuit in a bit-sliced implementation to
demonstrate the scalability of the introduced technique. Our implementation is 5.8 times
faster than the byte sliced implementation and 47 times faster than the SIMD implemen-
tation of [6].

2 Background

In [9], López-Alt, Tromer andVaikuntanathanproposed amulti-keyhomomorphic encryption
scheme (LTV) based on a modified NTRU [10] scheme previously introduced by Stehlé and
Steinfeld [11]. In this section we adapt their presentation to derive a single-key formulation
suitable for homomorphic evaluation by a single party.

2.1 Preliminaries

We work with polynomials in R = Zq [x]/〈xn + 1〉 where n represents the lattice dimension.
All operations are performed in Rq = R/qR where q is the prime modulus. Elements
of Zq are associated with elements of {�− q

2 �, . . . , � q
2 �}. We require the ability to sample

from a probability distribution χ , i.e. the truncated discrete Gaussian distribution DZn ,σ with

Gaussian parameter σ , deviation r = σ/
√
2π and Gaussian function e−πx2/σ 2

. For a detailed
treatment of the discrete Gaussian distribution see [14]. A polynomial is B-bounded if all of
its coefficients are in [−B, B]. For an element a ∈ R we define ||a|| as the Euclidean norm
and ||a||∞ = max|ai | as the infinity norm where the following rules apply.

123

336 Y. Doröz et al.

Lemma 1 ([9,15]) Let n ∈ N and let φ(x) = xn + 1 and let R = Z[x]/〈φ(x)〉. For any
a, b ∈ R

||ab|| ≤ √
n||a||||b||

||ab||∞ ≤ n||a||∞||b||∞ .

Samples of the truncated discrete Gaussian distribution may be obtained from a discrete
Gaussian distribution DZn ,σ (see [14]) with the aid of the following lemma:

Lemma 2 ([14] Lemma 4.4) Let n ∈ N. For any real number
√
2πr > ω(

√
log(n)), we

have

Pr
x←DZn ,σ

[
||x || >

√
2πr

√
n
]

≤ 2−n+1 .

Informally, the lemma tells us that by sampling from a discrete gaussian distribution DZn ,σ

we obtain a σ
√
n-bounded polynomial with very high probability.

2.2 The LTV scheme

We are now ready to introduce the LTV variant of the NTRU scheme. We would like to stress
that we specialize the scheme to work in the single user setting for clarity. One (positive)
side-effect is that we no longer need to relinearize after homomorphic addition operations.
For a full description see [9]. The scheme sets its parameters by using the security parameter
η as:

– an integer n = n(η),
– a prime number q = q(η),
– a degree-n polynomial φ(x) = φη(x) = xn + 1,
– a B(η)- bounded error distribution χ = χ(η) over the ring R = Z[x]/〈φ(x)〉.

The primitives of the public key encryption scheme E = (KeyGen,Encrypt,
Decrypt,Eval,Relinearize) are defined as follows:

– KeyGen: We choose a decreasing sequence of primes q0 > q1 > · · · > qd , a polynomial
φ(x) = xn + 1 and set χ as a truncated discrete Gaussian distribution that is B-bounded.
For each i , we sample u(i) and g(i) from distribution χ , set f (i) = 2u(i) + 1 and h(i) =
2g(i)

(
f (i)

)−1
in ring Rqi = Zqi [x]/〈φ(x)〉. (If f (i) is not invertible in this ring, re-sample.)

We then sample, for i = 0, . . . , d and for τ = 0, . . . , �log qi�, s(i)
τ and e(i)

τ from χ and

publish evaluation keys
{
ζ

(i)
τ

}i
τ
where ζ

(i)
τ = h(i)s(i)

τ +2e(i)
τ +2τ

(
f (i−1)

)2
in Rqi−1 . Then

set; secret key sk = (f (i)) and public keys pk = (h(i), ζ
(i)
τ).

– Encrypt: To encrypt a bit b ∈ {0, 1} with a public key (h(0), q0), Encrypt first generates
random samples s and e from χ and sets c(0) = h(0)s + 2e + b, a polynomial in Rq0 .

– Decrypt: To decrypt the ciphertext c with the corresponding private key f (i), Decrypt
multiplies the ciphertext and the private key in Rqi then compute the message by modulo
two: m = c(i) f (i) (mod 2).

– Eval: Arithmetic operations are performed directly on ciphertexts as follows: Suppose
c(0)
1 = Encrypt(b1) and c(0)

2 = Encrypt(b2). Then XOR is effected by simply adding
and AND is effected by simply multiplying the ciphertexts:

b1 ⊕ b2 = Decrypt
(
c(0)
1 + c(0)

2

)
and b1 · b2 = Decrypt

(
c(0)
1 × c(0)

2

)
.

123

Homomorphic AES evaluation using the modified LTV scheme 337

Polynomialmultiplication incurs amuchgreater growth in the noise, so eachmultiplication
step is followed by a modulus switching. First, we compute

c̃(0)(x) = c(0)
1 · c(0)

2 (mod φ(x))

and then perform Relinearization, as described below, to obtain c̃(1)(x) followed by
modulus switchingEncrypt(b1 ·b2) = ⌊ q1

q0
c̃(1)(x)

⌉
2 where the subscript 2 on the rounding

operator indicates that we round up or down in order to make all coefficients equal modulo
2. The same process hold for evaluating with i th level ciphertexts, e.g. computing c̃(i)(x)
from c(i−1)

1 and c(i−1)
2 .

– Relinearize: We will show the general process that computing c̃(i)(x) from c̃(i−1)(x). We
expand c̃(i−1)(x) as an integer linear combination of 1-bounded polynomials c̃(i−1)(x) =
∑

τ 2
τ c̃(i−1)

τ (x)where c̃(i−1)
τ (x) takes its coefficients from {0, 1}.We then define c̃(i)(x) =

∑
τ ζ

(i)
τ (x)c̃(i−1)

τ (x) in Rqi .
To see why relinearization works, observe that simple substitution gives us

c̃(i)(x) = h(i)(x)

⎡

⎣
�log qi �∑

τ=0

s(i)
τ (x)c̃(i−1)

τ (x)

⎤

⎦ + 2

⎡

⎣
�log qi �∑

τ=0

e(i)
τ (x)c̃(i−1)

τ (x)

⎤

⎦

+
[
f (i−1)

]2 �log qi �∑

τ=0

2τ c̃(i−1)
τ (x)

= h(i)(x)S(x) + 2E(x) +
[
f (i−1)

]2
c̃(i−1)(x)

= h(i)(x)S(x) + 2E(x) +
[
f (i−1)c(i−1)

1 (x)
] [

f (i−1)c(i−1)
2 (x)

]

= h(i)(x)S(x) + 2E ′(x) + m1m2

modulo qi−1 for some pseudorandom polynomials S(x) and E ′(x). This ensures that the
output of each gate takes the form of a valid encryption of the product m1m2 of plaintexts
with reduced noise. Later in Sect. 5 we study the growth of noise under relinearization
more carefully.

3 Parameter selection in the LTV

A significant challenge in implementing and improving LTV is parameter selection. In [9]
and [10] the security analysis is mostly given in asymmptotics by reduction to the related
learning with errors (LWE) problem [11]. In this section, after briefly reviewing the security
of the LTV schemewe summarize the results of our preliminary work on parameter selection.

3.1 DSPR problem

The scheme proposed by Stehlé and Steinfeld [11] is a modification to NTRU [10], whose
security can be reduced to the hardness of the Ring-LWE (RLWE) problem. The reduc-
tion relies on the hardness of the Decisional Small Polynomial Ratio (DSPRφ,q,χ) Problem
defined as follows:

123

338 Y. Doröz et al.

Definition 1 ([9,11] decisional small polynomial ratio (DSPRφ,q,χ) Problem) Let φ(x) ∈
Z[x] be a polynomial of degree n, q ∈ Z be a prime integer, and let χ denote a distribution
over the ring R = Z [x]/(φ(x)). The decisional small polynomial ratio problem DSPRφ,q,χ

is to distinguish between the following two distributions:

– a polynomial h = g f −1, where f and g are sampled from the distribution χ (with f
invertible over Rq), and

– a polynomial h sampled uniformly at random over Rq .

Stehlé and Steinfeld have shown that the DSPRφ,q,χ problem is hard even for unbounded
adversaries when n is a power of two, φ(x) = xn + 1 is the n-th cyclotomic polynomial, and
χ is the discrete Gaussian DZn ,σ for σ >

√
q · poly(n). Specifically, the security reduction

is obtained through a hybrid argument as follows:

1. Recall that for the LTV scheme, the public key is of the form h = 2g f −1 where g, f
chosen from a Gaussian distribution χ where f is kept secret. If the DSPR problem is
hard, we can replace h = 2g f −1 by some uniformly sampled h′.

2. Once h is replaced by h′, the encryption c = h′s + 2e + m takes the form of the RLWE
problem andwe can replace the challenge cipher by c′ = u+m with a uniformly sampled
u, thereby ensuring security.

In this way we can reduce the LTV scheme into a RLWE problem. However, the RLWE
problem is still relatively new and lacks thorough security analysis. A common approach is
to assume that RLWE follows the same behavior as the LWE problem [6]. Then, the second
part of the reduction immediately suggest a distinguishability criteria in the lattice setting.
The matrix H is derived from the coefficients of the public key polynomial h as

H =

⎛

⎜
⎜
⎜
⎝

h0 h1 · · · hn−1

−hn−1 h0 · · · hn−2
...

...
. . .

...

−h1 −h2 · · · h0

⎞

⎟
⎟
⎟
⎠

.

We can connect the q-ary lattice ΛH definition to the distinguishability of the masks in the
LTV scheme. For simplicity we consider only a single level instantiation of LTV. To encrypt
a bit b ∈ {0, 1}with a public key (h, q), we first generate random samples s and e from χ and
compute the ciphertext c = hs+2e+b (mod q). Here we care about the indistinguishability
of the mask hs + 2e from a randomly selected element of Rq . We can cast the encryption
procedure in terms of the q-ary latticeΛH as follows c = Hs+2e+bwhere we use boldface
symbols to denote the vector representation of polynomials obtained trivially by listing the
polynomial coefficients. Then the decisional LWE problem in the context of the LTV scheme
is to distinguish between the following two distributions:

– a vector v sampled randomly from Z
n , and

– a vector v = Hs+2ewhere e and s are sampled from the distributionDZn ,σ , respectively.

Given a vector v we need to decide whether this is a randomly selected vector or close to
an element of the q-ary lattice ΛH. The natural approach [16] to distinguishing between the
two cases is to find a short vector w in the dual lattice Λ∗

H and then check whether w · vT

is close to an integer. If not then we decide that the sample was randomly chosen; otherwise
we conclude that v is a noisy lattice sample. Here we can follow the work of Micciancio and
Regev [16, Sect. 5.4] who considered the security of LWE distinguishability with the dual
basis approach. They note that this method is effective as long as the perturbation of v from

123

Homomorphic AES evaluation using the modified LTV scheme 339

a lattice point in the direction of w is not much bigger than 1/||w||. Since our perturbation
is Gaussian, its standard deviation in the direction of w is r ′ = √

2r . Therefore we need
r � 1/(

√
2||w||). Micciancio and Regev note that restricting r ′ > 1.5/(

√
2||w||) provides

a sufficient security margin and derive the following criteria

r ′ ≥ 1.5q · max

(
1

q
, 2−2

√
n log(q) log(δ)

)
.

This gives us another condition to satisfy once q, n and δ are selected.

3.2 Concrete parameters

Stehlé and Steinfeld reduced the security of their scheme to the hardness of the RLWE.
Unfortunately, the reduction onlyworkswhen awide distributionDZn ,σ , i.e.σ >

√
q ·poly(n)

is used. Due to noise growth with such an instantiation the LTV scheme [9] will not be able
to support even a single homomorphic multiplication. Therefore [9] assumes the hardness
of DSPRφ,q,χ for smaller r values in order to support homomorphic evaluation. The impact
of the new parameter settings to the security level is largely unknown and requires further
research. However, even if we assume that the DSPRφ,q,χ problem is difficult, we still need
to ensure the hardness of the RLWE problem. As we discussed above, a common approach is
to assume that it follows the same behavior as the LWE problem. Under this assumption only,
we can select parameters. If we omit the noise, given the prime number q and k-bit security
level, the dimension is bounded as in [6] as n ≤ log(q)(k+110)/7.2 . This bound is based on
experiments run by Lindner and Peikert [17] with the NTL library. The bound is rather loose
since it is not exactly clear how the experiments will scale to larger dimensions. For instance,
[17] ran experiments with the NTL library but extrapolates a running time which grows as
2O(k) where k is the block size, whereas NTL’s enumeration implementation grows as 2O(k2).
Another issue is the assumption of δ0 = O(21/k) which should be δ0 = O(k1/k). On the
positive side, these simplifications yield a loose upper bound and should not negatively affect
the security.

For example, given a 256-bit prime q , an 80-bit security level will require dimension
n = 6756. This large estimate is actually an upper bound and assumes that the LTV scheme
can be reduced to the RLWE problem. It is not clear whether the reverse is true, i.e. whether
attacks against the RLWEproblem apply to the LTV scheme. For instance, the standard attack
on the LWE problem requires many samples generated with the same secret s. However, in
the LTV scheme, the corresponding samples are ciphertexts of the form c = h′s + 2e + m,
where the s polynomials are randomly generated and independent. This difference alone
suggests that standard attacks against LWE problems cannot be directly applied to the LTV
scheme.

3.3 NTRU lattice attacks

As a variant of NTRU, the LTV scheme suffers from the same attack as the original NTRU.
We can follow a similar approach as in the original NTRU paper [10] (see also [18]) to find
the secret f : Consider the following 2n by 2n NTRU lattice where the hi are the coefficients
of h = 2g f −1. Let ΛL be the lattice generated by the matrix.

L =
(
I H
0 qI

)

123

340 Y. Doröz et al.

whereH is derived from the public key polynomial h as defined above. Clearly, ΛL contains
the vector a = (f, 2g) which is short, i.e. ||a||∞ ≤ 4B + 1. Now the problem is transformed
to searching for short lattice vectors. Quite naturally, to be able to select concrete parameters
with a reasonable safety margin we need to have a clear estimate on the work factor of finding
a short vector in ΛL.

In what follows, we present a Hermite (work) factor estimate, and experimental results
that will allow us to choose safe parameters.

3.4 Hermite factor estimates

Gama and Nguyen [19] proposed a useful approach to estimate the hardness of the SVP in
an n-dimensional lattice ΛL using the Hermite factor δ defined as

(
d∏

i=1

λi (ΛL)

)1/d

≤ √
δvol(ΛL)1/n , (1)

where in the equation λi (ΛL) denotes the i-th minimum of the lattice ΛL and d is any
number between the range 1 ≤ d ≤ n. More practically we can compute δ as

δn = ||b1||/ det(ΛL)1/n

where ||b1|| is the length of the shortest vector or the length of the vector for which we are
searching. The authors also estimate that, for larger dimensional lattices, a factor δn ≤ 1.01n

would be the feasibility limit for current lattice reduction algorithms. In [17], Lindner and
Peikert gave further experimental results regarding the relation between the Hermite factor
and the break time as t (δ) := log(T (δ)) = 1.8/ log(δ)−110. For instance, for δn = 1.0066n ,
we need about 280 s on the platform in [17].

For the LTV scheme, we can estimate the δ of the NTRU lattice and thus the time required
to find the shortest vector. Clearly, the NTRU lattice has dimension 2n and volume qn .
However, the desired level of approximation, i.e. the desired ||b1|| is unclear. In [19], Gama
and Nguyen use q as the desired level for the original NTRU. However, for the much larger
q used in the LTV scheme, this estimate will not apply. In particular, Minkowski tells us that
ΛL has a nonzero vector of length at most det(L)1/t

√
t where t is the dimension. There will

be exponentially many (in t) vectors of length poly(t) det(L)1/t .
To overcome this impasse we make use of an observation by Coppersmith and Shamir

[20]: we do not need to find the precise secret key since most of the vectors of similar norm
will correctly decrypt NTRU ciphertexts. Setting ||b1|| as the norm of the short vector we are
searching for and volume as qn , we can simplify the Hermite factor to

δ2n = ||b1||
(qn)1/2n

.

Following the recommendation of [20], we set the norm of b1 as q/4. Coppersmith and
Shamir observed that q/10 can ensure a successful attack in the majority of cases for NTRU
with dimension n = 167 while q/4 is enough to extract some information. With a much
larger dimension used than in NTRU, we may need a ||b|| even smaller than q/10 to fully
recover a usable key. However, we choose q/4 here to provide a conservative estimate of the
security parameters. Thus δ2n = q/4

q1/2
= √

q/4 . In Table 1 we compiled the Hermite factor
for various choices of q and n values.

123

Homomorphic AES evaluation using the modified LTV scheme 341

Table 1 Hermite factor estimates for various dimensions n and sizes of q

n log2(q)

512 1024 2048

213 1.0108 1.0218 1.0441

214 1.0053 1.0108 1.0218

215 1.0027 1.0054 1.0108

216 1.0013 1.0027 1.0054

Bold values indicate the parameters that ensure security level 280 or higher
According to [17] for δn = 1.0066n , we need about 280 s computation on a current PC. Therefore, we need
δ < 1.0066 and the smaller δ the higher the security margin will be

Table 2 Estimated security level with BKZ

Dimension 28,340 28,940 30,140 31,300 32,768

Security 70 80 100 120 144

Running times were collected on an Intel Xeon 2.9 GHz machine and converted to bits by taking the logarithm

3.5 Experimental approach

As a secondary countermeasure we ran a large number of experiments to determine the
time required to compromise the LTV scheme following the lattice formulation of Hoffstein,
Pipher, and Silverman with the relaxation introduced by Coppersmith and Shamir [20]. We
generated various LTV keys with coefficient size log(q) = 1024 and various dimensions.
To search the short vectors required in the attacks described as above we used the Block-
Korkin-Zolotarev (BKZ) [21] lattice reduction functions in Shoup’s NTL Library 6.0 [22]
linked with the GNU Multiprecision (GMP) 5.1.3 package. We set the LLL constant to 0.99
and ran the program with the block size 2. The block size has exponential impact on the
resulting vector size and the running time of the algorithm. For the dimensions covered by
our experiments, even the lowest block size was enough to successfully carry out attacks.
Experiment results show that with the same block size, the size of the recovered keys grows
exponentially with the dimension and the time for the algorithm grows polynomially with
the dimension. As discussed above, the recovered vectors are only useful if they are shorter
than q/4. When the dimension is sufficiently large we end up with vectors longer than this
limit, and we will need larger block sizes causing an exponential rise in the time required to
recover a useful vector [21]. From the collected data, we estimated that the block size of 2
can be used until about dimension n = 26,777.

Clearly, we cannot run test on such large dimensions to examine the exponential effects
and estimate the cost for higher dimensions. To investigate the detailed impact of larger
block sizes, we ran the experiment on low dimensionswith higher block sizes and checked the
changes on the recovered key sizes and the running time. The result of the experiment follows
the prediction of [21], i.e. the result vector size decreases exponentially while the running
time grows exponentially with the block size. Assuming that the higher dimensions follow
similar rates, we estimate the security level for higher dimensions in Table 2. The estimation
assumes the relation between parameters follows a similar pattern for low dimension and high

123

342 Y. Doröz et al.

Table 3 Hermite factor δ estimates for security level sec reported in [25]

Dimension 1000 5000 10,000 15,000 20,000 25,000 30,000 40,000 50,000 60,000

sec = 64 1.00851 1.00896 1.00918 1.00931 1.00940 1.00948 1.00954 1.00964 1.00972 1.00979

sec = 80 1.00763 1.00799 1.00811 1.00826 1.00833 1.00839 1.00846 1.00851 1.00857 1.00862

sec = 128 1.00592 1.00609 1.00619 1.00624 1.00628 1.00629 1.00634 1.00638 1.00641 1.00644

dimensions and ignores all sub-exponential terms.1 Therefore the estimated security level is
not very precise. However, the results are not far off from what the Hermite factor estimate
predicts. For instance, our experiments predict a 80-bit security for dimension n = 28,940
with log(q) = 1024. The Hermite work factor estimate for the same parameters yields
δ = 1.0061. This is slightly more conservative than [17] whose experiments found that
δ = 1.0066 for the same security level.

3.6 BKZ 2.0

In a recent work, van de Pol and Smart [23] demonstrated that it is possible to work with
lattices of smaller dimensions while maintaining the same security level by utilizing the
BKZ-2.0 simulator of Chen and Nguyen. They argue that general assumption of a secure
Hermite factor δB, for a lattice basis B, that works for every dimensional lattice is not true.
Therefore, one should take into account the hardness of lattice basis reduction in higher
dimensions during the parameter selection process. The authors use the following approach
to determine the Hermite factor δB and the dimensions (n, q) of the lattice. First, the security
parameter sec, e.g. 80, 128 or 256, is selected which corresponds to visiting 2sec nodes in
the BKZ algorithm. Then the lattice dimension d and δB are chosen such that the reduction
works by visiting 2sec nodes. The evaluation is carried out with the simulator of Chen and
Nguyen [24] for various block sizes and number of rounds. This results in a Hermite factor
δB as a function of lattice dimension d and security parameter sec. Lastly, they use the
Hermite factor δB to obtain (n, q) using the distinguishing attack analysis of Micciancio and
Regev [16].

This work was later revisited by Lepoint and Naehrig [25]. Pol and Smart [23] only
computed the Hermite factor for powers of two and used linear interpolation to match the
enumeration costs to compute the Hermite factors. On the other hand Lepoint and Naehrig
performed the experiments for all dimensions from 1000 to 65,000 and further they used
quadratic function interpolation to set the missing values of enumeration costs. This results
in a more precise Hermite factor computation. Also, the authors rely on the more recent work
of Chen and Nguyen [26] for enumeration costs to determine the Hermite factors. Their
Hermite factor computation is given in Table 3.

4 Optimizations

4.1 Batching

Batching has become an indispensable tool for boosting the efficiency of homomorphic
evaluations [8]. In a nutshell, batching allows us to evaluate a circuit, e.g. AES, on multiple

1 Ignoring those terms will result in a more conservative estimation.

123

Homomorphic AES evaluation using the modified LTV scheme 343

independent data inputs simultaneously by embedding them into the same ciphertext. With
batching multiple message bits belonging to parallel data streams are packed into a single
ciphertext all undergoing the same operation similarly as in the single instruction multiple
data (SIMD) computing paradigm.

The LTV scheme we use here permits the encryption of binary polynomials as messages.
However a simple encoding where each message polynomial coefficient holds a message
bit is not very useful when it comes to the evaluation of multiplication operations. When
we multiply two ciphertexts (evaluate an AND) the resulting ciphertext will contain the
product of the two message polynomials. However, we will not be able to extract the parallel
product of message bits packed in the original ciphertext operands. The cross product terms
will overwrite the desired results. Therefore, a different type of encoding of the message
polynomial is required so that AND and XOR operations can be performed on batched
bits fully in parallel. We adopted the technique presented by Smart and Vercauteren [8].
Their technique is based on an elegant application of the Chinese Remainder Theorem on
a cyclotomic polynomial Φm(x) where deg(Φm(x)) = φ(m). An important property of
cyclotomic polynomials with m odd is that it factorizes into same degree factors over F2. In
other words, Φm has the form

Φm(x) =
∏

i∈[�]
Fi (x),

where � is the number of factors irreducible in F2 and deg(Fi (x)) = d and d = N/�.
The parameter d is the smallest value satisfying m|(2d − 1). Each factor Fi defines a
message slot in which we can embed message bits. Actually we can embed elements of
F2[x]/〈Fi 〉 and perform batched arithmetic in the same domain. However, in this paper we
will only embed elements of F2 in the message slots. To pack a vector of � message bits
a = (a0, a1, a2, . . . , a�−1) into a message polynomial a(x) we compute the CRT inverse on
the vector a

a(x) = CRT−1(a) = a0M0 + a1M1 + · · · + a�−1M�−1 (mod Φm).

The values Mi are precomputed values that are shown as:

Mi = Φm

Fi (x)

((
Φm

Fi (x)

)−1

(mod Fi (x))

)

(mod Φm).

The batched message can be extracted easily by performing modular reduction on the poly-
nomial, e.g. ai = a(x) (mod Fi (x)). Due to the Chinese Remainder Theoremmultiplication
and addition of the message polynomials carry through to the residues: ai · bi = a(x) · b(x)
(mod Fi (x)) and ai + bi = a(x) + b(x) (mod Fi (x)).

4.2 Reducing the public key size

To cope with the growth of noise, following Brakerski et al [5] we introduce a series of
decreasing moduli q0 > q1 > · · · > qt−1; one modulus per circuit level. Modulus switching
is a powerful technique that exponentially reduces the growth of noise during computations.
Here we introduce a mild optimization that allows us to reduce the public key size drastically.
We require that qi = pt−i for i = 0, . . . , t − 1 where p ∈ Z is a prime integer. Therefore,
Zqi ⊃ Zq j for any i < j . We also require the secret key f ∈ Zq0/〈Φ(x)〉 to be invertible
in all rings Zqi . Luckily, the following lemma from [27] tells us that we only need to worry

123

344 Y. Doröz et al.

about invertibility in Zp = Fp . Note that the lemma is given for R′
p = Zp[x]/〈xn − 1〉

however the proof given in [27] is generic and also applies to the Rp setting.

Lemma 3 (Lemma 3.3 in [27]) Let p be a prime, and let f be a polynomial. If f is a unit
in R′

p, (or Rp) then f is a unit in R′
pk

(or Rpk) for every k ≥ 1.

Under this condition the inverse f −1 ∈ Zq0/〈Φ(x)〉 which is contained in the public
key h will persist through the levels of computations, while implicitly being reduced to
each new subring Zqi+1/〈Φ(x)〉 when qi+1 is used in the computation. More precisely, let
f (i)(x) = f (x)−1 (mod qi). Thenwe claim f (i) (mod qi+1) = f (i+1) for i = 0, . . . , t−1.
To see why this works, note that by definition it holds that f (x) f (t−1)(x) = 1 (mod p)
which allows us to write f (x) f (t−1)(x) = 1− pu(x) for some u(x) and form the geometric
(Maclaurin series) expansion of f (x)−1 w.r.t. modulus qt−k = pk−1 for any k = 1, . . . , t as
follows:

f (x)−1 = f (t−1)(x)(1 − pu(x))−1 = f (t−1)(x)(1 + pu(x) + p2u(x)2

+ · · · + pk−2u(x)k−2) (mod pk−1).

Then it holds that f (i) (mod qi+1) = f (i+1) for i = 0, . . . , t − 1. This means that to switch
to a new level (and modulus) during homomorphic evaluation the public key we simply
compute via modular reduction. The secret key f remains the same for all levels. Therefore,
key switching is no longer needed. Alsowe no longer need to store a secret-key/public-key for
each level of the circuit. With this approach we can still take advantage of modulus switching
without having to pay for storage or key switching.

In the original scheme, the public key size is quadratically dependent on the number of
the levels the instantiation can support. Also the number of evaluation keys needed in a level
is dependent to the bit size of the modulus at that level, i.e. log qi . Having a polynomial size
n log qi at each level, the public key size can be written as

|PK| =
t−2∑

i=0

n(log qi)
2.

In ourmodified schemewe only need the key for the first level q0 = pt which is progressively
reduced as the evaluation proceeds through the levels, and therefore

|PK′| = n(log q0)
2.

In Sect. 7 we calculate the public key size for two settings which show drastic savings in
memory use.

To understand the impact of this restriction on key generation and on the size of the key
space we invoke an earlier result by Silverman [27]. In this study, Silverman analyzed the
probability of a randomly chosen f ∈ R′

q = Zq [x]/〈xn − 1〉 to be invertible in R′
q .

Theorem 1 ([27]) Let q = pk be a power of a prime p, and let n ≥ 2 be an integer with
gcd(q, n) = 1. Define w ≥ 1 to be the smallest positive integer such that pw = 1mod n and
for each integer d|w, let

νd = 1

d

∑

e|d
μ

(
d

e

)
gcd(n, pe − 1)

123

Homomorphic AES evaluation using the modified LTV scheme 345

then

|R′∗
q |

|R′
q |

=
∏

d|w

(
1 − 1

pd

)νd

.

Silverman [27] noted that the large class of noninvertible polynomials f ∈ R′
q such that

f (1) = 0 can be avoided by “intelligently choosing” f . He further restricts the selection
f ∈ R′

q such that f (1) = 1 and derives an approximation on the probability of picking an
invertible f which simplifies for large and prime n as follows

|R′∗
q (1)|

|R′
q(1)|

≈ 1 − n − 1

wpw
.

Here R′
q(1) = { f ∈ R′

q s.t. f (1) = 1} and R′∗
q (1) = { f ∈ R′

q s.t. f (1) = 1 and ∃g ∈
R′
q s.t. g f = 1}. Note that the failure probability may be made negligibly small by picking

appropriate p and n values.
In this paper we are working in a much simpler setting, i.e. Rq = Zq [z]/〈Φm(x)〉. The

uniform factorization of the cyclotomic polynomial Φ(x) allows us to adapt Silverman’s
analysis [27] and obtain a much simpler result. Assuming gcd(n, p) = 1, the cyclotomic
polynomial factors into equal degree irreducible polynomials Φm(x) = ∏�

i=1 Fi (x) over
Zp , where deg(Fi (x)) = w, � = φ(m)/w and w ≥ 1 ∈ Z is the smallest integer satisfying
pw = 1 (mod φ(m)). Therefore

Fp[x]/〈Φm(x)〉 ∼= Fp[x]/〈F1(x)〉 × · · · × Fp[x]/〈F�(x)〉 ∼= (Fpw)�

and for Rq we have νd = �. With this simplification the probability of randomly picking an
invertible f ∈ Rq given in Theorem 1 simplifies to

|R∗
q |

|Rq | = |R∗
p|

|Rp| =
(
1 − 1

pw

)�

.

When p is large |R∗
q |/|Rq | ≈ 1 − �p−w .

With the new restriction imposed by the selection of the moduli we introduce a modified
KeyGen procedure as follows.

4.3 Modified KeyGen

We use the chosen decreasing moduli q0 > q1 > · · · > qt−1 where qi = pt−i for i =
0, . . . , t−1.We further set themth cyclotomic polynomialΦm(x) as our polynomialmodulus
and set χ as a truncated discrete Gaussian distribution that is B-bounded. We sample u and
g from distribution χ , set f = 2u + 1 and h = 2g f −1 in ring Rq0 = Zq0 [x]/〈Φm(x)〉. We
then sample, for τ = 0, . . . , �log q0�, sτ and eτ from χ and publish evaluation key {ζτ }(0)τ

where ζ
(0)
τ = hsτ + 2eτ + 2τ f in Rq0 . Then using Lemma 3, we can evaluate rest of the

evaluation keys for a level i by simply computing ζ
(i)
τ = ζ

(0)
τ mod qi . Then set; secret key

sk = (f) and public key pk = (h, ζτ).

4.4 Optimizing relinearization

In homomorphic circuit evaluation using LTV by far the most expensive operation is relin-
earization. Therefore, it becomes essential to optimize relinearization as much as possible.
Recall that the relinearization operation computes a sum of encrypted shifted versions

123

346 Y. Doröz et al.

of a secret key f (x) and polynomials c̃τ (x) with coefficients in F2 extracted from the
ciphertext c:

c̃(x) =
∑

τ

ζτ (x) · c̃τ (x).

For simplicity we dropped the level indices in superscripts. The ciphertext ζτ (x) ∈
Rq [x]/〈Φ(x)〉 values are full size polynomials with coefficients in Rq and do shrink in
size over the levels of evaluation after each modulus switching operation. In contrast
c̃τ (x) ∈ F2[x]/〈Φ(x)〉 where τ ranges log(q). We may evaluate the summation, by scan-
ning the coefficients of the current c̃τ (x) and conditionally shifting and adding ζτ (x) to the
current sum depending on the value of the coefficient. With this approach the computational
complexity of relinearization becomesO(n log(q)) polynomial summations orO(n2 log(q))

coefficient, i.e. Zq , summations. This approach is useful only for small n.
In contrast, if we directly compute the sum after we compute the products we obtain a

more efficient algorithm. The number of polynomial multiplications is O(log(q)) each hav-
ing a complexity ofO(n log(n) log log(n)) with the Schönhage Strassen algorithm [28]. The
algorithm simply uses Number Theoretic Transform (NTT) and completes the polynomial
multiplication in three steps; conversion of the polynomials to NTT form, digit-wise multi-
plications, conversion from NTT to polynomial form. After the multiplications, coefficient
additions require O(n log(q)) operations. The total complexity of relinearization becomes
O(n log(n) log log(n) log(q)) coefficient operations.

Another optimization technique is to store the polynomials ζτ (x) in NTT form. This
eliminates the time needed for the conversions of ζτ (x) at beginning of each multiplication
operation. Furthermore, polynomial additions are also performed in NTT form to eliminate
NTT−1 conversions to polynomial form. Representing the precomputed NTT form of ζτ (x)
as ζ ′

τ (x) we can rewrite the relinearization operations as follows:

c̃(x) = NTT−1

[
∑

τ

ζ ′
τ (x) · NTT[c̃τ (x)]

]

.

With this final optimization, we eliminate 2/3rds of the conversions in each relinearization
and obtain nearly 3 times speedup.

5 Coping with noise

In this section, we describe our approach in managing the growth of noise over the homo-
morphic evaluation of levels of the circuit. The accumulation of noise from the evaluations of
additions adds very little noise compared to that contributed by multiplication. Therefore, as
long as we have a reasonably balanced circuit we can focus only on multiplications. Further-
more, in our analysis we focus on noise growth with regards to its effect on the correctness
of the scheme. Our goal is to minimize the computational burden, i.e. minimize parameters
q and n, such that the scheme still correctly decrypts with very high probability.

Consider two plaintextsm1,m2 ∈ {0, 1} and parameters g, s ∈ χ encrypted using a single
user (single key) with no modulus switching specialization of the LTV scheme. The secret
key is f = 2 f ′ + 1 where f ′ ∈ χ . the product of two given ciphertexts c1 = E(m1) =
hs1 + 2e1 + m1 and c2 = E(m2) = hs2 + 2e2 + m2 yields:

c1c2 = h2s1s2 + h(s1m2 + s2m1) + 2[h(s1e2 + s2e1) + e1m2 + e2m1 + 2e1e2] + m1m2.

123

Homomorphic AES evaluation using the modified LTV scheme 347

To decrypt the resulting ciphertext we compute:

f 2c1c2 = 4g2s1s2 + 2g f (s1m2 + s2m1) + 2
[
2g f (s1e2 + s2e1)

+ f 2e1m2 + f 2e2m1 + 2 f 2e1e2
] + f 2m1m2.

The accumulative noise in the ciphertext should satisfy the following condition and avoid
any wraparound to prevent corruption in the message coefficients during decryption:

q/2 > 4n3B4 + 4n3B3(2B + 1) + 8n3B3(2B + 1) + 8n3B2(2B + 1)2 + n3B2(2B + 1)2

> n3(64B4 + 48B3 + 9B2).

Note that this is the worst case behavior of the norm and therefore decryption will work for
most ciphertexts even with a somewhat smaller q .

5.1 Modulus switching

It will be impractical to evaluate a deep circuit, e.g. AES, using this approach since the
norm grows exponentially with the depth of the circuit. To cope with the growth of noise,
we employ modulus switching as introduced in [5]. For this, we make use of a series of
decreasing moduli q0 > q1 > · · · > qt ; one modulus per level. Modulus switching is a
powerful technique that exponentially reduces the growth of noise during computations. The
modulus switching operation is done for a ciphertext c is shown as cnew = �c · qi+1/qi�2.
The ceil-floor represents the rounding operation and subscript 2 represents matching the
parities of c and cnew in modulus 2. The modulus switching operation is performed by first
multiplying the coefficients by qi+1/qi ≈ κ and rounding them to the nearest integer. Later,
a parity correction operation performed by adding a parity polynomial Pi . As before, for
c1 = E(m1) = hs1 + 2e1 + m1 and c2 = E(m2) = hs2 + 2e2 + m2 the product of the two
ciphertexts gives

c1c2 = h2s1s2 + h(s1m2 + s2m1) + 2[h(s1e2 + s2e1) + e1m2 + e2m1 + 2e1e2] + m1m2.

After modulus switching, i.e. multiplication by q1/q0 ≈ κ and correction of parities sym-
bolized by Pi ∈ DZn ,σ we obtain

c1c2κ + P1 = [
h2s1s2 + h(s1m2 + s2m1)

+ 2[h(s1e2 + s2e1) + e1m2 + e2m1 + 2e1e2 + m1m2
]
κ + P1.

After i levels the ciphertext products (for simplicity assume c = c1 = . . . = c2i) where each
multiplication is followed by modulus switching and parity corrections (symbolized by the
Pi) will be

c2
i = (

. . .
((
c2κ + P1

)2
κ + P2

)2
. . . κ + P2i

)
.

We may decrypt the result as follows:

c2
i
f 2

i = (
. . .

((
c2κ + P1

)2
κ + P2

)2
. . . κ + P2i

)
f 2

i

= (
. . .

((
c2κ + P1

)2
κ + P2

)2
. . . κ + P2i

)
f 2

i
.

The correctness condition becomes ||c2i f 2i ||∞ < q/2. Note that due to the final multiplica-
tion with the f 2

i
term we still have exponential growth in the norm with the circuit depth.

Therefore, we need one more ingredient, i.e. relinearization [9], to force the growth into a
linear function of the circuit depth. Intuitively, relinearization achieves to linearize the growth
by homomorphically multiplying the current ciphertext by f right beforemodulus switching.

123

348 Y. Doröz et al.

5.2 Relinearization and modulus switching

After each multiplication level we implement a relinearization operation which keeps the
power of f in the ciphertext under control and reduces the chances of wraparound before
decryption. Assume we homomorphically evaluate a simple d-level circuit C(m) = m2d

by computing repeated squaring, relinearization and modulus switching operations on a
ciphertext c where ||c||∞ = Bi . Recall that for relinearization we compute

c̃(i)(x) =
∑

τ

ζ (i)
τ (x)c̃(i−1)

τ (x),

where each ζ
(i)
τ (x) is of the form ζ

(i)
τ (x) = h(i)s(i)

τ + 2e(i)
τ + 2τ f (i−1) in Rqi−1 . Substituting

this value we obtain

c̃(i)(x) =
∑

τ

[
h(i)s(i)

τ + 2e(i)
τ + 2τ

(
f (i−1)

)]
c̃(i−1)
τ (x)

=
∑

τ

[
h(i)s(i)

τ + 2e(i)
τ

]
c̃(i−1)
τ (x) +

∑

τ

2τ
(
f (i−1)

)
c̃(i−1)
τ (x).

Since we are only interested in bounding the growth of noise we assume s(i)
τ = s ∈ χ ,

g(i)
τ = g ∈ χ and e(i)

τ = e ∈ χ and drop unnecessary indices from here on:

c̃(i) =
∑

τ

(hs + 2e + 2τ f)c̃(i−1)
τ

=
∑

τ

(hs + 2e)c̃(i−1)
τ +

∑

τ

2τ f c̃(i−1)
τ

=
∑

τ

(2g f −1s + 2e)c̃(i−1)
τ + f c̃(i−1)

=
∑

τ∈[log(q)]
(2g f −1s + 2e)c̃(i−1)

τ + c̃(i−1) f.

Also factoring in the modulus switching and parity correction steps and substituting c̃(i−1)

= c2 we obtain the reduced noise ciphertext c̃′ as

c̃′ =
⎛

⎝
∑

τ∈[log(q)]
(2g f −1s + 2e)c̃τ + c2 f

⎞

⎠ κ + P,

where P ∈ {0, 1} represents the parity polynomial. The distribution (and norm) of the left
summand in the inner parenthesis is constant over the levels. To simplify the equation we
use the shorthand X0 = ∑

τ∈[log(qi)](2g f
−1s + 2e)c̃τ where the index is used to indicate the

level. Assume we use Yi to label the ciphertext (output) of evaluation level i then

Y1 = (
f c2 + X0

)
κ + P1 .

Assumewe continue this process, i.e. squaring, relinearization, modulus switching and parity
correction ford levels and thendecrypt bymultiplying the resulting ciphertext by f weobtain:

Yi = (
f Y 2

i−1 + Xi−1
)
κ + Pi , for i = 1, . . . , d − 1.

To decrypt Yd−1 we need ||Yd−1 f ||∞ < q/2. Now first note that

123

Homomorphic AES evaluation using the modified LTV scheme 349

Yi f = [(
f Y 2

i−1 + Xi−1
)
κ + Pi

]
f

= (
(Yi−1 f)

2 + Xi−1 f
)
κ + Pi f.

Therefore, ||Yi f ||∞ ≤ ||(Yi−1 f)2||∞κ + ||Xi−1 f ||∞κ + ||Pi f ||∞. Also note that

|| f Xi ||∞ = ||
∑

τ

(2gsτ + 2eτ f)c̃τ ||∞

≤ ||
∑

τ

2gsτ c̃τ ||∞ + ||
∑

τ

2eτ f c̃τ ||∞.

Since || f ||∞ = 2B + 1, ||c̃τ ||∞ = ||sτ ||∞ = ||eτ ||∞ = ||g||∞ ≤ B and all polynomials
have at most degree n it follows that

|| f Xi ||∞ ≤ (2n2B3 + 2n2B2(2B + 1)) log(qi)

≤ n2(6B3 + 2B2) log(qi).

Now let Bi denote an upper bound on the norm of a decrypted ciphertext entering level i of
leveled circuit, i.e. Bi ≥ || f Yi ||∞. Using the equation Bi ≥ || f Yi ||∞ we can set the norm
||(Yi−1 f)2||∞ as

||(Yi−1 f)
2||∞ ≤ n||(Yi−1 f)||∞ · ||(Yi−1 f)||∞

≤ nB2
i−1.

The norm of the output grows from one level to the next including multiplication (squaring
with our simplification), relinearization and modulus switching as follows:

Bi ≤ [
nB2

i−1 + n2(6B3 + 2B2) log(qi)
]
κ + n(2B + 1) . (2)

Notice the level independent (fixed) noise growth term on the right summand of the recursion.
In practice, κ needs to be chosen so as to stabilize the norm over the levels of computation,
i.e. B1 ≈ B2 ≈ · · · ≈ Bd−1 < qd−1/2. Finally, we can make the accounting a bit more
generic by defining circuit parameters νi which denote the maximum number of ciphertext
additions that take place in evaluation level i . With this parameter we can bound the worst
case growth simply by multiplying any ciphertext that goes into level i + 1 by νi as follows

Bi ≤ [
ν2i nB

2
i−1 + n2(6B3 + 2B2) log(qi)

]
κ + n(2B + 1) . (3)

5.3 Average case behavior

In our analysis so far we have considered worst case behavior.When viewed as a distribution,
the product norm ||ab||∞ will grow much more slowly and the probability that the norm will
reach theworst case has exponentially small probability. To take advantage of the slow growth
we can instead focus on the growth of the standard deviation by modeling each coefficient of
a and b as a scaled continuous Gaussian distribution with zero mean and deviation r = B.
The coefficients of the product (ab)i = ∑

i=0,...,n−1 aibn−1−i , behave as drawn from a scaled
chi-square distribution with 2n degrees of freedom, i.e. χ2(2n). To see this just note each
coefficient product can be rewritten as aibn−1−i = 1

4 (ai + bn−1−i)
2 − 1

4 (ai − bn−1−i)
2.

As n becomes large χ2(2n) becomes close to an ideal Gaussian distribution with variance
4n. Thus r((ab)i) ≈ √

nB2 for large n. Therefore, a sufficiently good approximation of the
expected norm may be obtained by replacing n with

√
n in Eq. 3 as follows

Bi,avg ≈
[
νi

√
nB2

i−1,avg + n(6B3 + 2B2) log(qi)
]
κ + √

n(2B + 1) .

123

350 Y. Doröz et al.

Table 4 Worst case and average
case number of bits log(1/K)

required to cut to correctly
evaluate a pure multiplication
circuit of depth L with B = 2 and
α = 6 for n and q chosen such
that δ(n, q) = 1.0066

log(n) log(q) Worst case Average case

log(1/K) #L log(1/K) #L

12 155 36 3 33 3

13 311 37 7 33 8

14 622 39 14 34 17

15 1244 40 30 34 35

16 2488 42 58 35 70

17 4976 44 112 35 141

For practical values of n and small B the left-hand-side dominates the other terms in the
equation. Further simplifying we obtain

Bi,avg ≈
[
νi

√
nB2

i−1,avg + n(6B3 + 2B2) log(qi)
]
κ . (4)

Assuming nearly fixed νi ≈ ν, if we set 1/κ = ε
[
ν
√
nB2

i−1,avg +n(6B3 +2B2) log(q0)
]
for

a small constant ε > 1 we can stabilize the growth of the norm and keep it nearly constant
over the levels of the evaluation. Initially recursive computation will start with B0,avg = 2
and the noise will grow in a few steps until it is stable. Our experiments showed that after
5–6 levels of computation the noise stabilizes between 210 < Bi,avg < 215 for latticec of
dimensions 212 < n < 217. By taking Bi,avg = 212 and ν = 1 we tabulated the cutting sizes
and attainable levels of homomorphic evaluation in Table 4.

We can simplify the noise equation further to gain more insight on the noise growth and
subsequently on how the modulus q and the dimension n will be affected. Fix B = 2 and
assume we are interested in evaluating a depth t circuit and therefore q0 = pt+1. Also since
with our q0 = pt+1 specialization 1/κ ≈ p and since p � ν neglecting log(ν) we can
simplify our noise estimate as follows:

p ≈ ν
√
nB2

i−1,avg + 56n(t + 1) log p .

This nonlinear equation displays the relationship between the chosen dimension n and depth
of circuit we wish to support and the number of bits we need to cut in each level. However,
p and n are not independent since n and q = pt+1 are tied through the Hermite factor

δ = (
√
q/4)1/(2n) = (

√
pt+1/4)

1
2n and p = (4δ2n)2/(t+1). Substituting p yields

(4δ2n)2/(t+1) ≈ ν
√
nB2

i−1,avg + 56n(t + 1) log (4δ2n)2/(t+1)

≈ ν
√
nB2

i−1,avg + 56n(t + 1)2/(t + 1)(log 4 + log(δ2n))

≈ ν
√
nB2

i−1,avg + 112n(2 + 2n log(δ)).

By taking the logarithm and fixing ν and the security level δ we see that t ∼ O(n/ log(n)).

5.4 Failure probability

Equation 4 tells us that we can use a much smaller q than that determined by the worst case
bound in Eq. 3 if are willing to accept a small decryption failure probability at the expense
of a small margin. The failure probability is easily approximated. If we set q/2 > αBavg

where α > 1 captures the margin, then αBavg/σ determines how much of the probability
space we cover in a Gaussian distribution N (μ = 0, σ). The probability for the norm

123

Homomorphic AES evaluation using the modified LTV scheme 351

of a single coefficient to exceed a preset margin ασ becomes Prob [||(ab)i ||∞ > ασ] ≈
1 − erf

(
α/

√
2
)
where erf denotes the error function. For the entire product polynomial we

can approximate the worst case probability by assuming independent product coefficients as
Prob [||ab||∞ > ασ] ≈ 1− erf

(
α/

√
2
)n . Having dependent coefficients (as they really are)

will only improve the success probability. For instance, assuming n = 214 and σ = B with
a modest margin of α = 7 we obtain a reasonably small failure probability of 2−60.

6 Evaluating AES using LTV-FHE

Here we briefly summarize the AES circuit we use during evaluation. The homomorphic
evaluation function takes as input the encrypted AES evaluation keys, and the description of
the AES circuit as input. All input bits are individually encrypted into separate ciphertexts.
We do not use byte-slicing in our implementation. Our description follows the standard
definition of AES with 128-bit keys where each of the 10 rounds are divided into four steps:
AddRoundKey, ShiftRows, MixColumns and SubBytes:

6.1 AddRoundKey

The round keys are derived from the key through an expansion algorithm and encrypted to
be given alongside the message beforehand. The first round key is added right after the com-
putation starts and the remaining round keys are added at the end of each of their respective
rounds during evaluation. Therefore, each round key is prepared for the level during which
it will be used. As we will shortly show each AES level requires 4 multiplication levels.
Therefore the round key for level i is computed in Rq4i for 0 ≤ i ≤ 10. Adding a round key
is a simple XOR operation performed by addition of the ciphertexts. Since round keys are
fresh ciphertexts, the added noise is limited to a single bit.

6.2 ShiftRows

The shifting of rows is a simple operation that only requires swapping of indices trivially
handled in the code. This operation has no effect on the noise.

6.3 MixColumns

The Mix Column operation is a 4 × 4 matrix multiplication with constant terms in GF(28).
The multiplication is between a byte and one of the constant terms of {x + 1, x, 1} with
modulo (x8 + x4 + x3 + x + 1). These products are evaluated by simple additions and shifts
as follows:

(b7b6b5b4b3b2b1b0)
×1−→ (b7b6b5b4b3b2b1b0)

(b7b6b5b4b3b2b1b0)
×x−→ (b6b5b4b3b2b1b0b7) ⊕ (000b7b70b70)

(b7b6b5b4b3b2b1b0)
×(x+1)−−−−→ (b7b6b5b4b3b2b1b0) ⊕ (b6b5b4b3b2b1b0b7) ⊕ (000b7b70b70)

Once themultiplication of the rows are finished, 4 values are added to each other. The addition
operations add a few bits of noise.

123

352 Y. Doröz et al.

6.4 SubBytes

The SubBytes step or the S–Box is the only place where we require homomorphic mul-
tiplications and Relinearization operations. An S–Box lookup in AES corresponds to a
finite field inverse computation followed by the application of an affine transformation; i.e.,
s = Mb−1 ⊕ B. M is a {0, 1} matrix and B is constant vector for the affine transforma-
tion which may are simply realized using addition operations between ciphertexts. The time
consuming part of the S–Box is the evaluation of inversion operation. In [29], the authors
introduced a compact design for computing the inverse. The input byte in GF(28) is con-
verted using an isomorphism into a tower field representation, i.e. GF(((22)2)2), which
allows much more efficient inversion. This conversion to/from tower field representation is
achieved by simply multiplying with a conversion matrix with {0, 1} coefficients. The inver-
sion operation can bewritten as: b−1 = X (X−1b)−1.With this modificaiton the operations in
the SubBytes step can be expressed as s = M(X (X−1b)−1) ⊕ B. The conversion matrices
X−1 and the matrix product MX are given as follows:

X−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

MX =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

With tower field representation, the 8-bit S–Box substitution requires 4 (multiplication) levels
of circuit evaluation. The full 10 round 128 bit-AES block homomorphic evaluation requires
the evaluation of a depth 40 circuit.

7 Implementation results

We implemented the customized LTV scheme with the optimizations summarized in Sect. 4
using Shoup’s NTL library version 6.0 [22] compiled with the GMP 5.1.3 package. The
implementation batches bits into ciphertexts using CRT applied using a cyclotomic modulus
polynomial Φm(x) where deg(Φ) = n. Also note that we fix χ with B = 2 and r ′ = 1.55.
The evaluation functions supports homomorphic additions and multiplication operations.
Each multiplication is followed by a Relinearization operation and modulus switching in
our implementation. After homomorphic evaluation the results may be recovered from the
message slots using remainder computations as usual.

7.1 Homomorphic AES evaluation

Using the LTV primitives we implemented the depth 40 AES circuit described in Sect. 6.
The AES S-Box evaluation, is completed using 18Relinearization operations and thus 2880
Relinearizations are needed for the full AES.

We ran the AES evaluation for two choices of parameters:

– Polynomial degree of n = 27,000 with a modulus of size log (q) = 1230 and Hermite
factor δ = 1.0078 (low security setting). For a error margin of α ≈ 8 and number of
additions per AES level of ν ≈ 100 if we cut log(p) ≈ log(1/K) = 30 bits at each level

123

Homomorphic AES evaluation using the modified LTV scheme 353

Table 5 The two settings under which we evaluated AES and timing results on Intel Xeon @ 2.9 GHz

n log(q0) δ log(1/K) Message slots Total time Time/block

27,000 1230 1.0078 30 1800 25 h 50 s

32,768 1271 1.0067 31 2048 29 h 51 s

Eq. 4 tells us that the noise will stabilize around 12.8 bits. For α ≈ 8 we obtain an error
probability of 2−41 per ciphertext. Under these parameters the total running time of AES
is 25 h. Since we batched with 1800 message slots we obtain 50 s evaluation time per
block.

– Polynomial degree set as n = 32,768 with modulus size log (q) = 1271 and Hermite
factor δ = 1.0067. For a error margin of α ≈ 8 and number of additions of ν ≈ 100 if we
cut log(1/K) = 31 bits at each level the noise will stabilize around 12.6 bits. The total
running time is 29 h resulting in 51 s per block encryption with 2048 message slots.

Table 5 summarizes the parameters for the two settings and the timing results.
When we utilize the two Hermite factor for the security analysis using the formula in [17],

i.e. 1.8/ log δ − 110, we compute 77 and 50-bits security for δ = 1.0067 and δ = 1.0078
respectively. If we use the Hermite factor parameters from the Table 3 we have a security
level of larger than 128- bits for δ = 1.0067 and we have security level of between 80 and
128-bits for δ = 1.0078.

7.2 Memory requirements

In the implementation we are taking advantage of the reduced public key size as described
in Sect. 4. To support a 40 level AES circuit evaluation with the original scheme in [9]
for the two settings outlined above we would need to store public keys of size 67 and
87 GBytes, respectively. The optimized scheme reduces the public keys to 4.75 and 6.15
GBytes. This demonstrates the effectiveness of the optimization. We can perform the eval-
uation on common machines with less than 16 Gbytes memory. Table 6 summarizes the
public key sizes for the two chosen parameter settings with and without the public key
optimization.

Since our server has more memory, to speed up the relinearization operations we keep
the public keys in the NTT domain requiring 12.2 Gbytes and 13.1 Gbytes, respectively.
Also we keep all the keys for a round (4 levels at a time) in memory. Keeping the public
keys in the NTT domain improved the speed of relinearizations by about 3 times. Since
relinearizations amount to about 70 % of the time we gained an overall speedup of 2.5 times
in AES evaluation.

Table 6 Sizes of public-key in various representations with and without optimization for the two selected
parameter settings

Representation Original (GBytes) Optimized (GBytes) AES speedup

Polynomial 67 87 4.75 6.13 1

NTT 172 184 12.2 13.1 2.5

123

354 Y. Doröz et al.

8 Comparison

In the following, we will briefly compare our implementation with other homomorphic
encryption libraries and implementations that have appeared in the literature.

8.1 GHS-AES

When compared to the BGV style leveled AES implementation by Gentry, Smart, Halevi
(GHS) [6]; our implementation runs 47 times faster than the bit-sliced and 5.8 times faster
than the byte-sliced implementation. Our implementation is more comparable to the bit-
sliced version since we did not customize our software library to more efficiently evaluate
AES in order to keep it generic. While we also use optimizations such as modulus switching,
and batching the two implementations differ in the way they handle noise. In the GHS
FHE implementation take a more fine grain approach to modulus switching, by cutting
the noise even after constant multiplications, additions and shifting operations. Depending
on the implementation is bit-sliced or byte-sliced, the number of levels ranges between
50 to 100 where in each level 18–20 bits are cut. In the presented work we only cut the
modulus after multiplications and therefore we have a fixed 40 levels with 30–31 bits cut per
level.

8.2 GHS-AES (updated implementation)

In the final revision of this manuscript, Gentry, Smart, Halevi (GHS) [30] published sig-
nificantly improved runtime results. Compared to the earlier implementation, the authors
used the latest version of the HElib library. They managed to decrease the number of levels
in the AES circuit but had to increase the number of bits cut in each level to manage the
additional noise growth. The new result only reports a SIMD version. Two variations of the
implementation are reported: one with bootstrapping and one without bootstrapping. In the
bootstrapping version, 180 blocks are processed at a time which achieves a 6 s amortized
runtime using only 23 circuit levels. In the non-bootstrapping implementation, they process
120 blocks at a time and achieve 2 s per block runtime for 40 circuit levels. Also the design
only requires around 3.5GB of memory.

8.3 MS-AES

Very recently Mella and Susella (MS) revisited the homomorphic AES computation of
GHS AES with some optimizations in [31]. They used the homomorphic encryption library
HElib [32] that is based on BGV style homomorphic encryption. The authors managed
to reduce the number of levels to 4 per AES round to a total of 40 levels for the entire
AES circuit evaluation. They implemented two versions of AES; byte-sliced and packed.
In byte-sliced version they were able to pack 12 AES evaluations with 16 ciphertexts,
whereas in the packed version they use 1 ciphertext and were not able to pack multi-
ple AES evaluations. The byte-sliced implementation has an execution time of 2 h 47
min with an amortized time of 14 min. For the packed implementation the total exe-
cution time is only 22 min. In terms of execution time the MS implementation is the
fastest with 22 min, and 2 h 47 min runtime compared to ours with 29 h, and to GHS
with 36 and 65 h runtime. However in the amortized case, we are the fastest with 51
s runtime compared to MS with 22 and 14 min, and to GHS with 40 and 5 min run-
times.

123

Homomorphic AES evaluation using the modified LTV scheme 355

Table 7 Number of
multiplications and evaluation
key sizes for constructions in [12]
and ours

YASHE YASHE’ Ours

of Multiplications � �3 log q

Eval. key size �n log q �3n log q n(log q)2

8.4 YASHE

In another recent work, Bos et al. introduced a scale-invariant implementation of LTV called
YASHE [12]. The authors select a word sizew for the homomorphic computations, and create
� = �logw q� + 2 vectors to support the radix w operations. The construction has evaluation

key that is element of R�3 for a polynomial ring R. This means that, any increase in the
evaluation depth and size of q will cause cubic growth in the evaluation key size. In order to
overcome large growth the authors modified the scheme called YASHE’ to reduce the key
size and achieved it to be an element of R�. Also they are able to reduce the complexity of
the key-switching operation from �3 multiplications to �.

Our variant of LTV is closer to YASHE’ in terms of complexity. The computations and
memory requirements grow linearly with the evaluation depth, i.e. log q . Furthermore, as we
progress through the levels with modulus switching technique, the homomorphic evaluation
accelerates since the operands shrink which is not the case in scale–invariant with fixed run
time. The YASHE scheme overcomes the negative effect by selecting a larger word size w,
e.g. they can set w = 32 and achieve a high performance boost. In our case, our scheme
is constructed with bit operations. Thus it is harder to eliminate the negative effects of bit
size growth. The number of multiplications and evaluation key sizes are given in Table 7.
The YASHE authors give implementation results only for the small case. They set the ring
R = Z[x]/(X4096 + 1), the prime q as a 127-bit number and the word size w as 232. In the
implementation key-switching takes 31 ms. Using the same parameters our relinearization
takes about 139 ms when q equals to 125-bit number. At the smallest bit size, q is equal to
25-bit number and it takes 20 ms to complete relinearization. For the given case, our scheme
seem to be slower with an average of 80 ms run time. Of course this is a single setting and
more experiments with various settings should be studied to see how the timings are affected.

8.5 GPU implementation of LTV

Dai et al. recently reported a GPU implementation of our modified LTV scheme on an
NVIDIA GeForce GTX 690 graphics cards in [33]. The authors developed a custom GPU
CUDA library to support fast discrete Fourier transform based arithmetic for large degree
polynomials. This fast arithmetic library later is used to accelerate the homomorphicmultipli-
cation and relinearization operations. The authors achieved a 4.15 h batched AES evaluation
resulting in a 7.3 s per block amortized running time. This implementation achieves a 7.6
times speedup over our CPU implementation.

8.6 Windowed implementation of LTV

Recently, Öztürk et al. reported [34] a windowed implementation of the LTV implementation
presented in this paper. In the design, the evaluation keys are constructed using powers of a
word w instead of powers of 2. This decreases the number of evaluation keys from log q to
log q/w where log q is the bit length of the modulus. With this additional optimization, the

123

356 Y. Doröz et al.

authors achieve a 4.4 times speedup and reduce the per AES block amortized running time
to 12.6 s.

9 Conclusion

In this work, we presented a customized leveled implementation of the NTRU based LTV
homomorphic encryption scheme. We introduced a number of optimizations to obtain an
efficient bit-sliced and batched implementation. We analyzed noise growth for increasing
circuit depths and developed a simple formula that allows one to determine parameter sizes
to support arbitrary depth circuits efficiently. Furthermore, we specialized the modulus in
a way that allows us to drastically reduce the public key size while retaining the ability to
apply modulus reduction and switching through the levels of evaluation. The reduced public
key size makes it possible to evaluate deep circuits such as the AES block cipher on common
(non-server) computing platforms with a reasonable amount of memory.

To expose the performance of the LTV, we homomorphically evaluated the full 10 round
AES circuit in 29 h with 2048message slots yielding a 51 s per AES block evaluation making
it 47 times faster than the generic bit-sliced implementation, 5.8 times faster than the AES
customized byte sliced BGV implementation by Gentry, Halevi and Smart. In the final stages
of the revision of this manuscript Gentry, Halevi and Smart introduced an updated version
of their implementation with a significant speedup achieved via a highly optimized custom
SIMD implementation. This suggests that our implementation can be further sped up via the
SIMD evaluation strategy.

Acknowledgments We would like to thank Jeffrey Hoffstein for pointing us to Coppersmith and Shamir’s
paper [20], and for helpful discussions to William J. Martin on the LTV scheme and to Joppe W. Bos and
Michael Naehrig for clarifying the YASHE scheme. This work was in part supported by the NSF-CNS Awards
#1117590 and #1319130.

References

1. Gentry C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, Ser. STOC ’09, pp. 169–178. ACM, New York (2009).

2. Rivest R., Adleman L., Dertouzos M.: On Data Banks and Privacy Homomorphisms, pp. 169–177.
Academic Press, New York (1978).

3. Gentry C., Halevi S.: Implementing gentrys fully-homomorphic encryption scheme. In: Paterson K. (ed.)
Advances in Cryptology (EUROCRYPT 2011). Lecture Notes in Computer Science, vol. 6632, pp. 129–
148. Springer, Berlin (2011).

4. Wang W., Hu Y., Chen L., Huang X., Sunar B.: Accelerating fully homomorphic encryption using GPU.
In: High Performance Extreme Computing (HPEC), Sept 2012, pp. 1–5 (2012).

5. Brakerski Z., Gentry C., Vaikuntanathan V.: (leveled) fully homomorphic encryption without bootstrap-
ping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS ’12),
pp. 309–325. ACM, New York (2012).

6. Gentry C., Halevi S., Smart N.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini R., Canetti
R. (eds.) Advances in Cryptology (CRYPTO 2012). Lecture Notes in Computer Science, vol. 7417, pp.
850–867. Springer, Berlin (2012). doi:10.1007/978-3-642-32009-5_49.

7. Gentry C., Halevi S., Smart N.: Fully homomorphic encryption with polylog overhead. In: Pointcheval D.,
Johansson T. (eds.) Advances in Cryptology (EUROCRYPT 2012). Lecture Notes in Computer Science,
vol. 7237, pp. 465–482. Springer, Berlin (2012). doi:10.1007/978-3-642-29011-4_28.

8. Smart N., Vercauteren F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81,
(2014). doi:10.1007/s10623-012-9720-4.

123

http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/s10623-012-9720-4

Homomorphic AES evaluation using the modified LTV scheme 357

9. López-Alt A., Tromer E., VaikuntanathanV.: On-the-flymultiparty computation on the cloud viamultikey
fully homomorphic encryption. In: Proceedings of the 44th Annual ACM Symposium on Theory of
Computing (STOC ’12), pp. 1219–1234. ACM, New York (2012).

10. Hoffstein J., Pipher J., Silverman J.: NTRU: a ring-based public key cryptosystem. In: Buhler J. (ed.)
Algorithmic Number Theory. Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer,
Berlin. doi:10.1007/BFb0054868.

11. Stehl D., Steinfeld R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson
K. (ed.) Advances in Cryptology (EUROCRYPT 2011). Lecture Notes in Computer Science, vol. 6632,
pp. 27–47. Springer, Berlin (2011). doi:10.1007/978-3-642-20465-4_4.

12. Bos J., Lauter K., Loftus J., NaehrigM.: Improved security for a ring-based fully homomorphic encryption
scheme. In: Stam M. (ed.) Cryptography and Coding. Lecture Notes in Computer Science, vol. 8308, pp.
45–64. Springer, Berlin (2013). doi:10.1007/978-3-642-45239-0_4.

13. Brakerski Z.: Fully homomorphic encryption without modulus switching from classical gapSVP. In:
Safavi-Naini R., Canetti R. (eds.) Advances in Cryptology (CRYPTO 2012). Lecture Notes in Computer
Science, vol. 7417, pp. 868–886. Springer, Berlin (2012). doi:10.1007/978-3-642-32009-5_50.

14. Micciancio D., Regev O.: Worst-case to average-case reductions based on gaussian measures. SIAM J.
Comput. 37(1), 267–302 (2007). doi:10.1137/S0097539705447360.

15. Lyubashevsky V., Peikert C., Regev O.: On ideal lattices and learning with errors over rings. In: Gilbert
H. (ed.) Advances in Cryptology (EUROCRYPT 2010). Lecture Notes in Computer Science, vol. 6110,
pp. 1–23. Springer, Berlin (2010). doi:10.1007/978-3-642-13190-5_1.

16. Micciancio D., Regev O.: Lattice-based cryptography. In: Bernstein D., Buchmann J., Dahmen E. (eds.)
Post-quantum Cryptography, pp. 147–191. Springer, Berlin (2009). doi:10.1007/978-3-540-88702-7_5.

17. Lindner R., Peikert C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias A. (ed.)
Topics in Cryptology (CT-RSA 2011). Lecture Notes in Computer Science, vol. 6558, pp. 319–339.
Springer, Berlin (2011). doi:10.1007/978-3-642-19074-2_21.

18. Hoffstein J., Silverman J.H., Whyte W.: Estimated breaking times for NTRU lattices. version 2, NTRU
Cryptosystems, Technical Report (2003).

19. Gama N., Nguyen P.: Predicting lattice reduction. In: Smart N. (ed.) Advances in Cryptology (EURO-
CRYPT 2008). Lecture Notes in Computer Science, vol. 4965, pp. 31–51. Springer, Berlin (2008). doi:10.
1007/978-3-540-78967-3_3.

20. CoppersmithD., Shamir A.: Lattice attacks onNTRU. In: FumyW. (ed.) Advances in Cryptology (EURO-
CRYPT 97). Lecture Notes in Computer Science, vol. 1233, pp. 52–61. Springer, Berlin (1997). doi:10.
1007/3-540-69053-0_5.

21. Schnorr C., Euchner M.: Lattice basis reduction: improved practical algorithms and solving subset sum
problems. Math. Program., 66(1–3), 181–199 (1994). doi:10.1007/BF01581144.

22. Shoup V.: NTL: A Library for Doing Number Theory. http://www.shoup.net/ntl
23. van de Pol J., Smart N.: Estimating key sizes for high dimensional lattice-based systems. In: Stam M.

(ed.) Cryptography and Coding. Lecture Notes in Computer Science, vol. 8308, pp. 290–303. Springer,
Berlin (2013). doi:10.1007/978-3-642-45239-0_17.

24. Chen Y., Nguyen P.: BKZ 2.0: better lattice security estimates. In: Lee D., Wang X. (eds.) Advances
in Cryptology (ASIACRYPT 2011). Lecture Notes in Computer Science, vol. 7073, pp. 1–20. Springer,
Berlin (2011). doi:10.1007/978-3-642-25385-0_1.

25. Lepoint T., Naehrig M.: A comparison of the homomorphic encryption schemes FV and YASHE. In:
Pointcheval D., Vergnaud D. (eds.) Progress in Cryptology (AFRICACRYPT 2014). Lecture Notes in
Computer Science, vol. 8469, pp. 318–335. Springer, Berlin (2014). doi:10.1007/978-3-319-06734-6_
20.

26. Chen Y., Nguyen P.: BKZ 2.0: Better Lattice Security Estimates. (2013). http://www.di.ens.fr/ychen/
research/Full_BKZ.pdf.

27. Silverman J.H.: Invertibility in Truncated Polynomial Rings. Technical report, NTRU Cryptosystems
(1998).

28. Schnhage A., Strassen V.: Schnelle multiplikation großer zahlen. Computing 7(3–4), 281–292 (1971).
29. Canright D.: A very compact S-Box for AES. In: Rao J., Sunar B. (eds.) Cryptographic Hardware and

Embedded Systems (CHES 2005). Lecture Notes in Computer Science, vol. 3659, pp. 441–455. Springer,
Berlin (2005). doi:10.1007/11545262_32.

30. Gentry C., Halevi S., Smart N.: Homomorphic evaluation of the AES circuit (updated implementation).
(2015). https://eprint.iacr.org/2012/099.pdf.

31. Mella S., Susella R.: On the homomorphic computation of symmetric cryptographic primitives. In: Stam
M. (ed.) Cryptography and Coding. Lecture Notes in Computer Science, vol. 8308, pp. 28–44. Springer,
Berlin (2013). doi:10.1007/978-3-642-45239-0_3.

123

http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-642-20465-4_4
http://dx.doi.org/10.1007/978-3-642-45239-0_4
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1137/S0097539705447360
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-540-88702-7_5
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/3-540-69053-0_5
http://dx.doi.org/10.1007/3-540-69053-0_5
http://dx.doi.org/10.1007/BF01581144
http://www.shoup.net/ntl
http://dx.doi.org/10.1007/978-3-642-45239-0_17
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://www.di.ens.fr/ychen/research/Full_BKZ.pdf
http://www.di.ens.fr/ychen/research/Full_BKZ.pdf
http://dx.doi.org/10.1007/11545262_32
https://eprint.iacr.org/2012/099.pdf
http://dx.doi.org/10.1007/978-3-642-45239-0_3

358 Y. Doröz et al.

32. Helib: A Software Library that Implements Homomorphic Encryption (HE). https://github.com/shaih/
HElib.

33. Dai W., Doröz Y., Sunar B.: Accelerating NTRU based homomorphic encryption using GPUs. IACR
Cryptology ePrint Archive, vol. 389 (2014). http://eprint.iacr.org/2014/389.

34. Öztürk E., Doröz Y., Sunar B., Savaş E.: Accelerating somewhat homomorphic evaluation using FPGAs.
Cryptology ePrint Archive, Report 2015/294 (2015). http://eprint.iacr.org/.

123

https://github.com/shaih/HElib
https://github.com/shaih/HElib
http://eprint.iacr.org/2014/389
http://eprint.iacr.org/

	Homomorphic AES evaluation using the modified LTV scheme
	Abstract
	1 Introduction
	1.1 Our contributions

	2 Background
	2.1 Preliminaries
	2.2 The LTV scheme

	3 Parameter selection in the LTV
	3.1 DSPR problem
	3.2 Concrete parameters
	3.3 NTRU lattice attacks
	3.4 Hermite factor estimates
	3.5 Experimental approach
	3.6 BKZ 2.0

	4 Optimizations
	4.1 Batching
	4.2 Reducing the public key size
	4.3 Modified KeyGen
	4.4 Optimizing relinearization

	5 Coping with noise
	5.1 Modulus switching
	5.2 Relinearization and modulus switching
	5.3 Average case behavior
	5.4 Failure probability

	6 Evaluating AES using LTV-FHE
	6.1 AddRoundKey
	6.2 ShiftRows
	6.3 MixColumns
	6.4 SubBytes

	7 Implementation results
	7.1 Homomorphic AES evaluation
	7.2 Memory requirements

	8 Comparison
	8.1 GHS-AES
	8.2 GHS-AES (updated implementation)
	8.3 MS-AES
	8.4 YASHE
	8.5 GPU implementation of LTV
	8.6 Windowed implementation of LTV

	9 Conclusion
	Acknowledgments
	References

