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Abstract Let I, be a finite field with r = ¢™ elements, « a primitive element of I, Tr,/,
the trace function from ¥, onto Fy, r — 1 = nN for two integers n, N > 1, and 6 = aN . In
this paper, we use Gauss sums to investigate the complete weight enumerators of irreducible
cyclic codes

¢ = {e@) = (Ttyyq(@), Tryg@b), . .., Trryg (a6" ") 1 a € F,}

and explicitly present the complete weight enumerators of some irreducible cyclic codes when
ged(n,g—1)=qg—1or ‘12;1 Moreover, we determine the complete weight enumerators of
a class of cyclic codes with the check polynomials /1 (x)h2(x) by using Gauss sums, where
hi(x) are the minimal polynomials of o, ! over F, and F*,, = (a;) fori = 1, 2. We shall

obtain their explicit complete weight enumerators if gecd(m, m2) = 1 and ¢ = 3 or 4.
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1 Introduction

Let[F, be a finite field with g elements and » a positive integer with gcd(g, n) = 1. An|[n, k, d]
linear code C is a k-dimensional subspace of IFZ with the minimum distance d. Furthermore, a
cyclic code C of length n over [F,; can be viewed as an ideal of IF; [x]/(x" —1). Note that every
ideal of F,[x]/(x" — 1) is principal. There is a monic polynomial g(x) of the least degree
such that C = (g(x)) and g(x) | (x" — 1). Then g(x) is called the generator polynomial
and h(x) = (x" — 1)/g(x) is called the check polynomial of the cyclic code C. If h(x) is
irreducible over IF;, we call C the irreducible cyclic code.

Now we recall the definition of the complete weight enumerator of linear code [24,25]. The
complete weight enumerator of nonlinear codes can be defined in the same way. Suppose

that the elements of F,; are wy = 0, w1, ..., wy—1, which are listed in some fixed order.
The composition of a vector v = (vg, vy, ..., V,—1) € IFZ is defined to be comp(v) =
(to, t1, ..., t4—1), where each t; = 1;(v) is the number of components v;(0 < j <n —1) of

v that are equal to w;. Clearly, we have

q—1
S
i=0
Definition 1.1 LetCbean [n, k] linear code over F, and let A(fo, t1, ..., t;—1) be the number
of codewords ¢ € C withcomp(¢) = (7, 1, . .., ;—1). Then the complete weight enumerator
of C is the polynomial
f t 1g—1(c)
We (20,21 s 2g-1) = D 20921 - 2,0
ceC
fo _t Ig—1
- > Ato, 11, - tg-D)2g'2) -2,
(t0,11,.-tg—1)EBy
g—1
where B, = 1 (o, t1, ..., 4g-1) :0<t; <n, > ti=nt.
i=0

For binary cyclic codes, the complete weight enumerators are just their Hamming weight
enumerators. It is not difficult to see that the Hamming weight enumerators, which have been
extensively investigated (see [8,11-13,19-21,23,26,28-32]), can follow from the complete
weight enumerators. Moreover, the complete weight enumerators are applied to study the
Walsh transform of monomial functions over finite fields [14] and compute the deception
probabilities of certain authentication codes constructed from linear codes [7,10]. Constant
composition codes whose complete weight enumerators have one term have been intensively
studied and some families of optimal constant composition codes were presented [4,6,9].
Hence it is interesting to determine the complete weight enumerators of linear codes.

The complete weight enumerators of Reed-Solomon codes were studied by Blake and
Kith [3,15]. Kuzmin and Nechaev [16, 17] presented the complete weight enumerators of the
generalized Kerdock code and related linear codes over Galois rings. In this paper, we shall
use Gauss sums to investigate the complete weight enumerators of cyclic codes and obtain
their explicit values in some cases.

Suppose that [, is a finite field and m is the order of ¢ modulo n. Let IF, be a finite field
with r = g™ elements, « be a primitive element of F,, Tr,/, be the trace function from [,
onto F,, r — 1 = nN for two integers n, N > 1, and 6 = o In this paper, we shall use
Gauss sums to determine the complete weight enumerators of irreducible cyclic codes
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C = {e(a) = (Tty)q(a), Tryq@b), ..., Trrjg(a0" ') ta € F, }. (1.1

By Delsarte’s theorem [6], the check polynomial of such cyclic code is the minimal polyno-
mial of 6! over F,,. When ged(n, ¢ —1) = ¢ — 1 or qT_l, we explicitly present the complete
weight enumerators of some irreducible cyclic codes.

Suppose that o and a; are two primitive elements of Fy» and Fym , respectively, where
my and my are two distinct positive integers with gcd(my,my) = §. Let n = (¢! —
D(g™ —1)/(@° — 1) and T; = Trymi ;4 denote the trace function from Fym; to F, for
i = 1,2. Let C be a cyclic code with the check polynomial /1 (x)h;(x), where h;(x) are
the minimal polynomials of ;" ! over F, for i = 1, 2. Then by Delsarte’s theorem [6] we
have

C={cab):aecFym,beFym}, (12)

where

c(a, b) = (Ti(a) + Ta(b), Ti(ay) + To(be), ..., Ty (ac; ") + T2 (b)) (1.3)

The Hamming weight distribution of this cyclic code was presented in [18,19] when s = 1, 2.
In this paper, we also use Gauss sums to study the complete weight enumerator of such cyclic
code defined by two finite fields. Furthermore, if § = 1, we give the explicit complete weight
enumerators of these cyclic codes over F3 or 4 by using Gauss sums.

The rest of this paper is organized as follows. In Sect. 2, we introduce some results
about Gauss sums. In Sect. 3, we investigate the complete weight enumerators of irreducible
cyclic codes and explicitly present the complete weight enumerators when ged(n, g — 1) =
g—1or ”2;1 In Sect. 4, we study the complete weight enumerators of a class of cyclic codes
defined by two finite fields. Furthermore, if gcd(m, my) = 1, we give the explicit complete
weight enumerators of these cyclic codes over F3 or F4 by using Gauss sums. In Sect. 5, we
conclude this paper.

For convenience, we introduce the following notations in this paper:

F, Finite field of r elements, and r = ¢™
r—1=nN Integer factorization of r — 1
o, B,a1, 02 Generators of F}, IE‘Z, ]FZml, and IF‘(’;,,,Z, respectively
Try/q Trace function from I, to Fy

=1 — .
g=e I [-th primitive root of unity
b, v Canonical additive characters of F; and IFy, respectively
Y1, Y2 Canonical additive characters of Fm; and F_m,, respectively
F; Multiplicative character group of F;:
G(\), GO, G(n1), G(\2) Gauss sums over ]F,f’ ij qul, a£1\d ]quz, respectively
X x's X1 x2 Generators of F, ]FZ, ]FZml, and Fzmz, respectively

2 Gauss sum

Let IF, be a finite field with r elements, where r is a power of a prime p. The canonical
additive character of the finite field F, can be defined as follows:

¥ F, > C* Y (x) = ;;,Fr’/”(x),
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298 C.Lietal.

where {, =e 7 isa p-th primitive root of unity and Tr,/,, denotes the trace function from

F, to F),. The orthogonal property of additive characters which can be found in [22] is given
by

r, ifa=0;
Z¢(“x)—[o, ifa e

xeF,
Let
r:Ff— C*

be a multiplicative character of F;¥. Among the characters of ' we have the trivial character
Mo defined by Ao(x) = 1forallx € F}. Wealso have the orthogonal property of multiplicative
characters which can be given by

_fr=1, ifn=o;
ZMX)_[O, if % # %o
xelF
For the characters \, %/, we can define the multiplication by setting A \'(x) = n(x)\ (x)

for all x € F}. Let ) be the conjugate character of ) defined by X (x) = % (x), where X (x)
denotes the complex conjugate of \(x). Then

W) = MR = 1R =1,

so x~! = . Then the set ﬂli\‘;‘ of the characters of ' forms a group with identity )9 under
such multiplication of characters. Furthermore, the multiplicative group F} is isomorphic to
F¥ [22]. Define a multiplicative character of F, by

x@)y=¢ ,i=0,1,....,r -2,

where « is a generator of Fy. Then ﬁﬁf = (x).
Now we define the Gauss sum over F, by

GO = D nOP ().

xely

It is easy to see that G()\.o) = —1. Gauss sums can be viewed as the Fourier coefficients in
the Fourier expansion of the restriction of ¢ to F in terms of the multiplicative characters

of F,,i.e.,
1 _
Y =— Z G(M)n(x), forx € F*. (2.1)
relFx
In general, the explicit determination of Gauss sums is a difficult problem. However, they
can be explicitly evaluated in a few cases. For future use, we state some results about the

Gauss sums. The quadratic Gauss sums are known and given in the following lemma.

Lemma 2.1 [2,22] Suppose that r = p* and n is a quadratic multiplicative character of I,
where p is an odd prime and s > 1. Then

G(n) = (==L, ifp=1 (mod 4),
P=1 (1" (/=D r, ifp=3 (mod4).

We also state the Gauss sums in the semi-primitive case, where there exists an integer f
such that p/ = —1 (mod N) and N is the order of ) in F}.
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Lemma 2.2 [2,8] Let \ be a multiplicative character of order N of i, where N > 2 is an
integer. Assume that there exists a least positive integer f such that p/ = —1 (mod N). Let
r = p*Is for some positive integer s. Then

(=, ifp=2
A'(pf-%—l)

(—D)~H T ifp > 2.

GO = [

Furthermore, for 1 <i < N — 1, the Gauss sums GO\ can be given by

GOJ) = (=1)i/r, if N is even, p, s and "C\,H are odd;
(==Y /r, otherwise.

If[(Z/NZ)* : (p)] =2and —1 ¢ (p), whichis the index 2 case, Gauss sums are explicitly
determined [27] and one of the results is listed here.

Lemma 2.3 [8,27] Let N = 3 (mod 4) be a prime and N # 3. Suppose that f =
ordy(p) = % and r = pI* for some positive integer s, where ®(N) denotes the number
of integers k with 1 < k < N such that gcd(k, N) = 1. Let \ be a multiplicative character

of order N of F¥. Then

GOy = (-1t (“ + ('N;”V ‘N)

forl <i < N — 1, where (ﬁ) denotes the Legendre symbol, h is the ideal class number of
Q(v—N), and a, b € Z are given by

N—-1+2h

=-2p 4 (mod N).

[a2 + Nb* = 4ph;

3 Irreducible cyclic codes

In this section, we use Gauss sums to study the complete weight enumerators of irreducible
cyclic codes

C = {e@) = (Try)q(@), Tryjq@b), ..., Trrjg(a6" ") 1a € F, }.

Moreover, if ged(n,g — 1) =g — 1 or ”2;1, then we explicitly present the complete weight
enumerators of some irreducible cyclic codes.

For a codeword ¢(a) and ¢ € Fy, let N(c) denote the number of components Tr, /, (ab?)
of ¢(a) that are equal to ¢, i.e.,

N(@) =1{0<i<n—1:Tr,@d)=cl
=0<i<n—1:Tr,u@d)—c=0}.
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300 C.Lietal.

Let ¢ be the canonical additive character of IF,. Then ¥ = ¢ o Tr,/, is the canonical
additive character of . By the orthogonal property of additive characters we have

n—1

Z > ¢((Trry(ad’) — o))

i=0 }G]Fq

= Z Zw(yaamm( ye)

) €F, i=0

N(c)

n—1

S Z > wyaaHp(—yo). 3.1)

q q yely i=0

By (2.1), for ac # 0, we have

N(c) = =+ — Z Z Z G(x)x(yaaN’)— > GO (=ye)

q VE]F* '—O XEF* )\./G]F*
n 1
=*+— GOVGONHN@) (V)L @i
g qlq—-D0r— Z MGOINM@N (= C)yé ) (y)z(; @)
XEIF;

Note that r — 1 = nN and
Niyv _ | 1, if )\N =1;
g)\(a )= [0, otherwise.

Letaand g = Qi = be two primitive elements of - and Fy, respectively. Define x (o) = ¢ -1
and x'(B) = {4— 1,Wehave]F*—()IF*—( Nand N = x7,j=0,1,...,qg = 2. If
xN_l,thenx_x Li=0,1,...,N—1. Itlseasytoseethat

q—2
ST = DB Bk = Z(cq 7y
VeF; k=0
_lg-—-1, if%i—}—jzo (mod g — 1);
1o, otherwise.

DenoteS:{(i,j):jE—%i (modg —1),0 <i < N-1,0<j <gqg —2}. Then
|S| = N and we have

1 i ,
N =2+ — > GG " @y (—o). (3.2)
q (i,j)es
Similarly, by (3.1) we have
N©) =~ + — Z Gx"x" (@), (33)
iel

where I = {i : "51i =0 (mod ¢ — 1),0 <i < N —1}.
The explicit values of Gauss sums are necessary to determine the values of N(0) and
N(c) when (i, j) € S and i € I. It is clear that there is a positive integer d such that
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ged("5 g — 1) = & Then (g — 1) | ged(r — 1, N(g — 1)) = Y 's0d | N. Thus
1:{i:kd.05k§ g—l}andlll— d.If’N11+]_0 (modq—l),thenqd;llj
and j = qd;lk, 0 < k < d — 1. In the following, we consider two cases: (1) d = 1, i.e.,
N =2.

3.1 The case: N | ;;}

In this case, we can get a general formula on the values of N(c), c € F,.

_1,

N(0) = q—N+— ZG(‘L’ )t (a)
and
N@) = — — q— Z G@)HT'(a)
for ¢ # 0, where T = x".
Proof If N | £ l,then(q—l) | ==L By j = _T’ =0 (mod g—1)and0 < j < g -2,
we have j —(q)andS— {(,0): O<z < N — 1}. Then by (3.2) we have
n _ . .
N@)=—--— D> GX")x"(a)
q 9qN ZO:
n 1

N—
==+ ——— > GEH"Hx"(a)
N gN 21:
N—

1
r

1 —iN i
=N~ 216(1 )T (a),

where T = x".
Itisclearthat / ={i : 0 <i <N

r—q

N(0) = qN

. ZG(r )yt (a).

This completes the proof. O

In the rest of this section, we always assume that the elements of F, are wy =
0, w1, ..., w41, which are listed in some fixed order. Let comp(¢) = (fo, t1,...,%—1)
be the composition of a codeword ¢ = (cg, c1, ..., ch—1), Where t; = t;(c) is the number of
components ¢;(0 < j < n — 1) of ¢ that are equal to w;.

If N = 1, then by Theorem 3.1 we have

N@O)=—-—1and N(c) = — forc #0,
q

which conforms to the distribution property of m-sequence. As a direct consequence of
Theorem 3.1, we get the following result.
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302 C.Lietal.

Corollary 3.2 Let r = q¢ and N = 1. Then the complete weight enumerator of the irre-
ducible cyclic code C defined by (1.1) is

,
_ Lo
We (20, 21,220 -2 2g-1) =25 +(r =Dz 2

<~

15 z 25 ezl
By Theorem 3.1 we can easily get the following theorem by using quadratic Gauss sums
and we omit the proof here. In fact, the same result was presented in [1] for the case that ¢

is a prime.

Theorem 3.3 Letr = g™, g = p/, and N = 2, where m > 0 is an even integer, p is an odd
prime, and f is a positive integer. Then the complete weight enumerator of the irreducible
cyclic code C defined by (1.1) is

= -1 r—1
We(z0, 215225 -5 2g-1) = 2¢° +TZ6‘°zf'z§‘-~-zﬁll+ 3 zg‘)zflzf‘~-~zfl_1,
where
r—gq q—1 r 1
Ay = — ——r Al = —+ —/r,
0 2 24 Jr, Ay 24 2q«/;
r—q q-—1 r 1
By = T JrB=———
0 2 + 2 Jr, By 2 qu/;

Example 3.4 (1) Letq = p =3, m = 4,and N = 2. Then r = 81 and n = 40. Suppose
that o is a primitive element of Fg; and & = . By Theorem 3.3, the complete weight
enumerator of the irreducible cyclic code C defined by (1.1) is

Zéo + 402(1)02%5255 + 402662%2252,
which is consistent with numerical computation by Magma.
2) Letgq = p=5,m =2,and N = 2. Then r = 25 and n = 12. Suppose that « is a
primitive element of F»5 and @ = o%. By Theorem 3.3, the complete weight enumerator
of the irreducible cyclic code C defined by (1.1) is

2+ 1223232323 + 122823232323,
which is consistent with numerical computation by Magma.
Below we give the complete weight enumerators of the irreducible cyclic codes by using

semi-primitive Gauss sums. In fact, the same result was presented in [1] for the case that g
is a prime.
Theorem 3.5 Assume that there exists a least positive integer f such that pf = —1
(mod N). Let r = g™ = p2/3 for some positive integer s. If N | ;:i, then the complete
weight enumerator of the irreducible cyclic code C defined by (1.1) is

r—1

SEr= 1A A a A (N=D@ —=1) gy, B _» B
N 0 1 1 1 0 1 1 1
Z9" + N 29 21 22 "'Zq—l+TZO 1% Ty

where Ag, A1, By and By are given as follows.

f
(1) If N is even, p, s, and pTH are odd, we have

r—q-l—(q—l)(N—])\/? r—(N—l)\/?
Ag = A= —————,
gN gN
P Rk N/ N

gN gN
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(2) Otherwise, we have

r=g DTG DN = DYE = DT W = DYE

qN gN
A Rt VN R

gN gN

Ay =

By =

Proof If N is even, p, s, and % are odd, then by Lemma 2.2 we have
Gy =(=D)'rforl <i <N-—1.
Thus

Ny,

N—-1 . N
ZG(?l)tl(a): (N_ 1)\/;, lfa 60[2<a
P —Jr, otherwise.

By Theorem 3.1, we get the proof of (1).
In other cases, by Lemma 2.2 we have

G =" rforl<i<N-—1.

Thus
S G < | CDTIW = DVE - ifa e @
— T (=15 /r, otherwise.
i=
By Theorem 3.1, we also get the proof of (2). O

Example 3.6 (1) Letq = p=3,m =6,and N = 4. Thenr =729, N | ;_T%,andn = 182.
Suppose that o is a primitive element of F7o9 and § = «*. By Theorem 3.5, the complete

weight enumerator of the irreducible cyclic code C defined by (1.1) is
20 + 18220 27* 53" 4 54623°225,
which is consistent with numerical computation by Magma.
(2) Letq =4,p=2,m =4,and N = 5. Then r = 256, N | ;j, and n = 51. Suppose
that « is a primitive element of Fos6 and 6 = od. By Theorem 3.5, the complete weight
enumerator of the irreducible cyclic code C defined by (1.1) is

2(5)1 + 51z8z%6z%6z§6 + 2041551{2152%2,

which is consistent with numerical computation by Magma.

Now we employ index 2 Gauss sums to present the complete weight enumerators of a
class of irreducible cyclic codes. For convenience, we consider the case that N is a prime
and r = ¢, where m = % The general case can be similarly dealt with.

Theorem 3.7 Let N = 3 (mod 4) and q be two distinct primes, where N # 3. Suppose
that m := ordy(q) = %N). Let h be the ideal class number of Q(/—N) and r = q™. If

N | ;_fll, then the complete weight enumerator of the irreducible cyclic code C defined by
(1.1) is

e 4 (N-1—1) B, B B B

ZON +TZ00Z]1121'.'qul+TZOOZIIZZI.'.qu_l
(N=D—-1) ¢ c;.c c

+ TZOOZIIZ21 "'qu_ls
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where

r — a(N —1 —1 m—h
g, AN DG D) e

Ao = A= — = ———— ,
gN 2gN gN 2gN

oo (T4 @HPNIG =D w1 S
qgN 2gN gN 2gN
r — El —l;N —1 m— r & —BN m—h

Coz q—( )(q )th,Clzi—i— qT7
qgN 2gN qN 2gN

and a, b € 7 are determined by

Proof Note that ord(T) = N. Then by Lemma 2.3 we have
A+ (EbY=N
G = 7(1@ g"7

forl <i < N — 1, where (ﬁ) denotes the Legendre symbol, % is the ideal class number of
Q(/—N), and a, b e 7 are given by

N—142h

=—-2q 4 (mod N).

{&2+Nl;2 = 4q";

N

Now we compute the sum

N-1 N-1~ | (i Nf /N
> @@ =y T (N;b Yot

i=l1 i=l1
Ifa € (@V), thenti(a) = 1 for 1 <i < N — 1. Thus

N—-1 ~ N-1 , ~
—in i _ g _ m—h V=N m=h L _ g _ m—h
> GET @ =3IV T + g T Y () = 5V - g

i=1 i=1

=

S

By Theorem 3.1, we have

r — a(N —1 —1 m—nh
Ny T8 AN D@D e
gN 2gN
and
r a(N—1) m=n
N = = S —g"T = A
gN 2gN
for ¢ # 0.

Ifa € a(aV) forsomeu, 1 <u < N — 1, then t(a) = ¢y~ Itis easy to see that

N-1 o »
2 G @=q¢"7

i=1

=

N

+by—N

~ ~ N—1
- Tf<a>+% V=N Zl dwl|. G

1 .
=1 ()=—1

1
i

(

=/~
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Note that
N-1 N-1 i N—-1 N-1 , .
. L+ (%) ; 1 : .
v'(a) = Z(N) vi(a) = 2( o + (%) d&’)
i=1 i=1 i=1 i=1
(%)=
—1( L+ (5)vV=N) (3.5)
2 N ' '
where the last equality follows from Lemma 2.1. Similarly, we have
N-1 1 u
‘@=(-1-(5)V=N). 3.6
> fw=5(-1-(5 (3.6)

For (%) =1, by (3.4)—(3.6) and Theorem 3.1, we have

- a EN - ] n—,
Ny =" g (@+bN)g—-1 mh_ g
gN 2gN
and
r (:i +5N m—h
N@)=—+ g7 =B
gN 2gN
for ¢ # 0. Similarly, for (%) = —1, we have
— i—bN)(g—1)
N@©) =" q (a )(q )th=Co
gN 2gN
and
r 51 — EN m—h
N()=— + g7 =C

gN 2gN

for ¢ # 0. Then we can get the complete weight enumerator of the irreducible cyclic code C
and this completes the proof. O

Example 3.8 Letq =4, N =7,andm = 3. Thenr = 64, N | ;%%,n:%h: 1,a =3,

and b = +1. Suppose that « is a primitive element of Fg4 and 6 = . By Theorem 3.7, the
complete weight enumerator of the irreducible cyclic code C defined by (1.1) is

zg + 9z8zlzzz3 + 27z?z%zg + 27z2z%z§z§,
which is consistent with numerical computation by Magma.

3.2 The case: d=2

Ifgcd(%,q—l) = %,thenbyd | N we see that N is even. By %i—kj =0 (mod g—1)
and0 < j < g — 2, we have j =0,%.Thus

q—1 N
S=12k,0),{2k+1, — ) :0<k<——1}.
2 2
In this case, itisclearthat I = {i =2k : 0 <k < % —1}.
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Below we mainly use quadratic Gauss sums to study a class of irreducible cyclic codes.
In fact, for d = 2, the complete weight enumerators of more irreducible cyclic codes can be
similarly determined by using semi-primitive Gauss sums and index 2 Gauss sums.

Theorem 3.9 Let r = ¢, ¢ = p/, and N = 2, where m > 0 is an odd integer, p is an
odd prime, and f is a positive integer. Suppose that IF‘; = (B), o1,...,wq-1 € (B%), and
2

Wgtl, ..., 05— € B(B2). Then the complete weight enumerator of the irreducible cyclic
2
code C defined by (1.1) is

r—1

ol —1
ABB. B C c
We(zo, 21,22, -5 2g—1) = Z° t A E Ty T g
2 2
r—1
ACC. . C B B
T 0 g T 2
2 2

where

a=""9p_" +7~/”1,C=L_7«/”1,
2q 29 2q 29  2q

Proof If N = 2, m > 0 is an odd integer, and p is an odd prime, then d = 2, § =
{(0, 0), (1, %)}, and I = {0}. By (3.2), (3.3), and Lemma 2.1, we can get the desired
conclusions. ]

Example 3.10 (1) Letg = p =3, m = 3,and N = 2. Then r = 27 and n = 13. Suppose
that « is a primitive element of F»7 and 6 = «®. By Theorem 3.9, the complete weight
enumerator of the irreducible cyclic code C defined by (1.1) is

z2§° + 13282573 + 13732325,

which is consistent with numerical computation by Magma.

2) Letg = p=5,m =3,and N = 2. Then r = 125 and n = 62. Suppose that « is a
primitive element of Fj»5 and @ = . By Theorem 3.9, the complete weight enumerator
of the irreducible cyclic code C defined by (1.1) is

182 + 622(1)245155%013‘0 + 62z(l)zzi0zéoz§5zf,

which is consistent with numerical computation by Magma.

4 Cyclic codes from two distinct fields

In this section, we use Gauss sums to study the complete weight enumerator of the cyclic code
defined by (1.2) and (1.3). Furthermore, we give the explicit complete weight enumerators
of these cyclic codes over F3 or Fy if gcd(my, my) = 1.

For a codeword ¢(a, b) of (1.3) and ¢ € Fy, let N(c) denote the number of components
T (aozﬁ) + Tz(baé) of ¢(a, b) that are equal to c, i.e.,

N(e) = {0 <i <n—1:T(aa})+ Ta(baj) = c}|
={0<i <n—1:Ti(aa}]) + Ta(bay) — c =0},

where n = (g™ — 1)(¢™ — 1)/ (¢ — 1).
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Let ¢ be the canonical additive character of IF;. Then v/; = ¢ o T; is the canonical additive
character of Fn; fori = 1, 2. By the orthogonal property of additive characters we have

n—1

1 . .
> = > ¢ (Ti(ac}) + Ta(bah) — c))

i=0 7 yel,

N(c)

n—1

2y Z > Vi (yae) Yo (ybal)p (—ye). .1

q q}dﬁ‘*z =0

By (2.1), for a, b, ¢ # 0, we have

n—1

= D> D dn(vaa))ya(ybab)(—ye)

yeky i=0

1 n—1

(g = D@m= (g —1) Z Z Z G(On)n(yaat)

yeky i=0 MEF

g1

x> Gaalybay) D GO (=yo).

1€, VeF:

my

Let A] = %,Az = gt and i = 5@’ — D) 15 = 0.1, AAy — L1 =
0,1,...,4% — 2. Then we have

= (g — (g™ i (g™ — Z Z z GGG O)

ME]F*ml ME]F 2 N e]F*

@®—2 A A—1

X le(ya))\z(yb)x( yc) Z Z M (as(q 1)+r)x2(a;(qtl>+z)

yE]F*

1
= TS DD 2 X 2 G0nGG)GH)

£y el o ro€F* o )JeIE‘*

52 A1Ar—1
6_1 6_1
X > Gar b (=ye) D n@na@s) > we” oy ).
ye]FZ t=0 s=0

Since gcd(mq,my) = 4§, we have gcd(Aq, Ap) = 1. For any fixed u,v (u €

{0,1,..., A1 — 1}, v € {0,1,..., Ay — 1}), by Chinese Remainder Theorem, it is easy
to see that there is a unique s (s € {0, 1, ..., AjAy — 1}) satisfying

s=u (mod Ay);

s=v (mod Aj).
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Thus we see that the inner sum

A1Ar—1

s s Ar-l s Az—1 s
z . (Otfq 71)5) X2 (az(q 7l)s) _ M (afq 71)1,4) Z a2 (Oéq 71)11)
s=0 =0 =0

u v
my_ my _ . 8 _ §_
— L l(qtp_(?); 1)7 if }\(II ! =1 and )\_g ! = 1;
0, otherwise.

Let x; and yx» be two generators ofﬂfzm . andﬁ’;m2 defined by x1(a1) = {gmi—1 and x2(a2)

5_ 5_ .
gqm2—1, respectively. If )\q - 1, )\g - 1, then \| = XIA” A\ = XZA”, 0<i,j

|— mp __
g% — 2, where A} = &=L Ay = qull . Thus we have

IA

5 1°
| ¢* =2 g2
LS S eamtihemthoid
T - D@ _1)2,, 0 k=0
6 2 )
« Z XAll(ya)Xz 2](yb)X/k( yC) Z XAll(ai)X2A2J(a£)’ (4.2)
Ve, =0

where x’ is a generator of@; defined by x'(B) = ¢4—1. Note that XlAli(oq) = ;“;5_1 and
%2 (@) = ¢J; . Then

q ) -2
Z(XAll(al)X2 21((12)) _ z(gt;&;jl t
t=0
¢ =1, ifi+j=0 (modgq®—1);
n [0, otherwise. 4.3)

Ifi +j=0 (mod ¢° —1),thenby 0 < i, j < g% —2wegetj=¢q® —1—i.By(42)and
(4.3) we have

b _0g-2
1 .
= > > G@MNG G @ (B (o)
(g—D(@’ -1 g
< S B E Xk, )

ye]F;;

We easily see that y; ALgy = §q 1 X 22(8) = {qA_zl’ and x'(B) = ¢4—1, where F; = (B).
Thus

. . q_2
> @ o e =X (d e et e)

ye]F* v=0

q—2 L -2 , o
_ Ari—Agi+ 5’_*’
=3 (e = (5

v=0 v=0
q—1, if@i—i—kso (mod g — 1);
0, otherwise.
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Denote S = {(i, k) : ™5™2i +k =0 (mod g —1),0 <i <¢°—2,0 <k < g —2}.
Then by (4.4) we have

1 A i /
R > GEPHGH GG @ B x (o)
(i,k)eS

and
n 1 _
NO =24 > GG GH I @B D) (—o).  (@4.5)
a 4@ -1 5
Similarly, for a, b # 0, we have
¢*-2

1 . . .
N(O) = g t oy Z GG O I @™ ) > M E ).
ye]F;

It is easy to see that

Ayi —=Asi _la—- L, if Wi =0 (rnOd 1= b
Z]F: X ey = ‘0, otherwise.
yeFy

Denote / = {i : 215" = (modq—l),0§i§q‘s—2}.Then

N(O) = g + (7 > GGG i @ b). (4.6)
iel

Moreover, if a = 0 or b = 0, it is easy to present the exact values of N(0) and N(c) by
Corollary 3.2. Then by (4.5) and (4.6) we get the following theorem.

Theorem 4.1 (1) Ifa =0,b # 0, then

mo—1 qml -1 mr—149 "=
N(0) = (g™ _l)q5 7 and N(c) = q"*~ 7 forc;éO
2) Ifa #0,b =0, then
N(©0) = (g™~ —l)c]”;;andN(c)—qm' Kt forc;aéO
q°—1 q°
() Ifa #0,b # 0, then
N(0) = g +—— ( ZG<XIA1‘)G(XA2‘)XA”(a)#ﬂ'(b)
iel
and
1
NEO="4 > GGG @3 ()X (o)
q 4@ =1 S

forc #0, where I = {i : ™572i =0 (mod g — 1), 0<i<gqg®—2yandS=1{G,J):
s "’Zl—i-j—O(modq—l) 0<i<qg®—20<j<qg-2}

It is clear that the complete weight enumerator of the cyclic code C involves the values
of Gauss sums. Unfortunately, the exact values of Gauss sums remain open in most cases.
Below we consider a class of ternary cyclic codes if ged(m, m2) = 1 and present their
explicit complete weight enumerators.
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Theorem 4.2 Let the notations be as above, ¢ = 3, and gcd(m, my) = 1.

(1) If 2t (my —my), then the complete weight enumerator of the ternary cyclic code defined
by (1.2) is

@M-nE"2-1 3m=1_1)32=1 gmy—13"2-1 g —1372-1
ZO 2 + (3m] _ I)Z(() ) 2 Z] 2 Z2 2
ma—1_1 3M1—1 3m2—13"'171 3mp—1 3" -1
+(3"™ = 1)z A
3m — 1)(3" — 1 3 — 1)(3" — 1
+( X )zézfzg + ( N )Z('?ZICZQB,
2 2
where
4 3m|+m2—1 _ 3m1—1 _ 3"12—1 +1
= ) s
P St L L NS PR
= 2 - E - ’
gmitmy—=1 _ gmi—=1 _ g3my—1 1 my+my—1

(2) If 2| (m1 —my), then the complete weight enumerator of the ternary cyclic code defined
by (1.2)is

[ S D)) -1 3M2_1 —_13m2-1 —13"Mm2—1
R ) -t
1
- 1] —13"1 -1 amy—13"1-1
@m2-1_1)3 3m2 3m)
+ (3m2 _ I)ZO 2 2 2 2z 2
my+mo—2
G"M —-DE™ -1 a—3" 77— pop
+ > 2y 2123
3m1 1 3m2 1 my+mpy—2
G —=1DG" —=1) a3 2 E.E
2 ZO Zl ZZ )
where
3m1+m2—l _ 3m1—1 _ 3m2—] 1 my+my—2
D= 5 +o3 T
gmitmy—1 _ gmi—1 _ g3my—1 1 my+my—2
E= 2 AR

Proof If ¢ = 3 and gcd(my, my) = 1, then ord()(lA‘) = ord(szz) =2.By Lemma 2.1 we
have

G(x)=v=3, G = (=M~ /(=3ym, and G(x32) = (1)1 /(=3)m.
(1) If 2+ (my — m2), then
I ={0}and S = {(0, 0), (1, 1)}.

By Theorem 4.1 we have

n 1 gmi+my—1 _ gmi—1 _ gmy—1 +1
NO)==-4+-= =A.
© 3 + 3 2
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Note that x'(—1) = —1. Then

1
N(1) = % (1 DMy ) Y3 @ () (1)

3ml+m2—1 _ 3m|—l _ 3m2—1 1 mytmy—1 A
—A

_ 3 —SE T M @ 0)

gmp+my—1_3ymy—1_3gmy—1 1 my+my—1 . 2 2

; —3(=3)" 7 =B, ifae(ef),be(3)or
_ aeal(af),beaz(a§>;
+my—1_amy—1_amy—1 mytmy—1 .
3mit+my 32'"1 M %(_3) 2 = C, otherwise.

It is clear that x'(—2) = x/(1) = 1. Similarly, we have

my+mo—1_amy—1_2amy—1 my+my—1 .
L S S L3y =, ifae(ad),be(ad)or
NQ2) = aca(o?) bear(0d);
mi+my—1__2amp—1__2mo—1 my+my—1 .
i 321 A %(—3) 7 = B, otherwise.

Then by Theorem 4.1, the complete weight enumerator of the ternary cyclic code defined by
(1.2)1s

@M -nE"2 -1 my—1 321 amy—13"2-1 amy—13"2-1
=D (3m-l-1) 3m1 3m1
3 + @™ =Dz, i 72 2
(3;112—1_1)3’”1—1 mp—13"1-1 amy—13"1-1
+ (3mz _ I)ZO 2 Zl 2 Zz 2
@™ - DHE™ 1) 3™~ D@E™ 1)
+ > Zézfzzc + 5 zézfz?.

() If2 | (m; — my), then

I ={0,1} and S = {(0, 0), (1, 0)}.

By Theorem 4.1 we have

1
N(0) = % +30+ (=DM =L/(=3ym (= 1™~/ (=3ym2 x M (@) a2 (b))
= 243 N @B )

my+my—2
A= (=" ifac (o). be (@) or

acay{af),bear(a3);

my+my—2

A+ (=3)7 2 , otherwise.

Similarly, we have

mi+mo—1_ami—1_my—1 my+mpy—2 .

L S S 4 W37 7 =D, ifae(a}),be () or
N(l) = N(Z) = aeotl(ot%),beaz(a%);

my+mo—1_amy—1_2my—1 my+my—2 .

L S S 1(-3)7 7 = E, otherwise.
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Then by Theorem 4.1, the complete weight enumerator of the ternary cyclic code defined by
(1.2) is

@M -nE"2-1 1 3’"2 1 13M2 -1 —13"2-1
ZO ) + (3ml 1) 83”'1 —-1) Z::ml 5 Z;ml 5
1_ 3ml 1 13M1 -1 13" -1
+3™ — 1)z 03mz K zfmz 2 zimz 2
+my—2
@™ —=1DGB™ =1) 43" pp
> 2y 2123
(3m1 _ 1)(3,"2 _ 1) my+mpy—2
A+(=3)" 2 E_E
) Z() 12y
This completes the proof. O

Example 4.3 (1) Letqg = 3,m| = 2,andmy = 3. Thenn = 104and 2 t (m —m3). Suppose
that o1 and «» are two primitive elements of Fg and Fy7, respectively. By Theorem 4.2,
the complete weight enumerator of the ternary cyclic code defined by (1.2) is

104+8Z26Z%9Z;9+26Z32Z36Z36+ 1042852?02394‘ 1042852?9230,

which is consistent with numerical computation by Magma.

(2) Letg =3,m; =3,and mp = 5. Then n = 3146 and 2 | (m — m2). Suppose that oy
and «; are two primitive elements of Fp; and F43, respectively. By Theorem 4.2, the
complete weight enumerator of the ternary cyclic code defined by (1.2) is

3146+26Z%8 1089 1089+242Z1040 1053 1053+3]46ZIO76 103521035
+314621022 1062 1062

which is consistent with numerical computation by Magma.

Now we consider a class of cyclic codes over Fy4 if gcd(m, my) = 1 and present their
explicit complete weight enumerators.

Theorem 4.4 Let the notations be as above, ¢ = 4, and gcd(m, my) = 1.

(1) If3 1 (m1 —my), then the complete weight enumerator of the ternary cyclic code defined

by (1.2) is
@ —nH@mn2 -1 @mi- 171)4 221 ymy 147221 ymy - 14'"2 Lo gmy—14"2-1
3 mi 3 3 3
20 + (4 1) 2 Z4 2 23
+(4m2 Iz (@m-1 1)4’"1 1Z4m2 14’”?2 1Z4m2 14’"; 1Z4m2 14’"13 1
— 3 1 2 3
4mi_ 1)@4m — 1 4mi _ 1)@4m — 1
+( )3( )ZOZIZZZ3C+( )3( ) 4 oz ZZB3C
N DI |
+ ( )3( )zf)“zlczzczf,
where
A 4m1+m271 _4m171 _ 4m271 +1
= 3 R
4m1+m2—1 _ 4m1—1 _ 4m2—1 (_2)m1+m2
B = + ,
3 3
4m1+m271 _ 4m171 _ 4)11271 (_2)1n1+m271
C =
3 3
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(2) If3 | (m; —m>), then the complete weight enumerator of the ternary cyclic code defined
by (1.2) is

@ —p@n2-n my—1_ 1y 4" 2 1 ogm—14"2-1 4m 14'"2 1 gmp—14M2-1
@ 1-hE72-1D (@ami=1_p) 4m1— 4m1— 4m1—
3 m 3 3 3
ZO + (4 — 1) 0 Zl 22 Zg
@m=1_ )4 Lol gmy—1 4" -1 gmy—14"1 -1 gmy—14"1 -1
+(4m2 - 1) 0 Zl 3 Z2 3 Z3 3
(4m1 _ 1)(41112 -1 A—(=2ym1+m2=l p p p
3 20 212223
N 24M — DA™ — 1) a_oymtm2 p pop
3 2y 212273 »
where
4m1+m271 _ 4m171 _ 4m271 (_2)m1+m271
D= ,
3 3
4m|+mg—l _ 4m1—1 _ 4m2—1 (_2)m1+mz—2
E= +
3 3

Proof 1t is very similar to the proof of Theorem 4.2. By Lemma 2.2, we can get the desired
conclusions. o

Example 4.5 (1) Letq = 4,m; = 2,andmy = 3. Thenn = 315and 3 t (m; —m3). Suppose
that o1 and «p are two primitive elements of F¢ and Fe4, respectively. By Theorem 4.4,
the complete weight enumerator of the cyclic code over F4 defined by (1.2) is

315 + 15Z83Z84Z§4Z§4 + 63Z(7)5ZE]§0Z§0Z§0 + 315Z(7)9Z68Z22§4Z§4
+3152) 2842888 + 31500724254,

which is consistent with numerical computation by Magma.

(2) Letg = 4, m; = 2,and my = 5. Thenn = 5115 and 3 | (m; — my). Suppose that
a1 and «p are two primitive elements of [F1¢ and [Fys, respectively. By Theorem 4.4, the
complete weight enumerator of the cyclic code over Fy defined by (1.2) is

5115 + 1511023 1364 1364 1364+ 1023Z1275 1280 1280 :1:.280
1215 1'300 1'300 1300 1311 1268 1268 1268
+51152 2 + 102302 2 3

which is consistent with numerical computation by Magma.

S Concluding remarks

In this paper, we used Gauss sums to study the complete weight enumerators of irreducible
cyclic codes and a class of cyclic codes from two distinct finite fields. The general formulas
which involve Gauss sums were presented. Moreover, the explicit complete weight enumera-
tors of some cyclic codes were given by using the known Gauss sums. In fact, by MacWilliams
theorem for complete weight enumerators [24], we can get the complete weight enumerators
of their dual codes.

The Hamming weight enumerators of cyclic codes have been extensively investigated by
using Gauss periods and quadratic forms [11,13,26]. Based on these mathematical tools, we
would like to determine the complete weight enumerators of more cyclic codes.
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