
Des. Codes Cryptogr. (2015) 77:541–552
DOI 10.1007/s10623-015-0089-z

PASS-Encrypt: a public key cryptosystem based
on partial evaluation of polynomials

Jeffrey Hoffstein1 · Joseph H. Silverman1

Received: 20 August 2014 / Revised: 19 April 2015 / Accepted: 22 April 2015 /
Published online: 9 May 2015
© Springer Science+Business Media New York 2015

Abstract Anewhard problem in number theory, based onpartial evaluation of certain classes
of constrained polynomials, was introduced in Hoffstein et al. (Secure user identification
based on constrained polynomials, 2000) and further refined in Hoffstein et al. (Polynomial
rings and efficient public key authentication, 1999; Practical signatures from the partial
Fourier recovery problem, 2013), Hoffstein and Silverman (Polynomial rings and efficient
public key authentication. II, 2001) to create an efficient authentication and digital signature
scheme called PASS. In this paperwe present a public key cryptosystem called PASS-Encrypt
that is based on the same underlying hard problem.We also provide an alternative description
in terms of partial knowledge of discrete Fourier transforms.

Keywords Lattice-based cryptography · Public key cryptography · Discrete Fourier
transform

Mathematics Subject Classification Primary: 11T71 · Secondary: 11H71, 94A60

1 Introduction

Wepresent PASS-Encrypt, a public key cryptosystemwhose security is based on the difficulty
of reconstructing a small polynomial from some of its values, or equivalently, on the difficulty

Dedicated to the memory of Scott Vanstone.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Cryptography, Codes, Designs and Finite Fields: In Memory of Scott A. Vanstone”.

B Joseph H. Silverman
jhs@math.brown.edu

Jeffrey Hoffstein
jhoff@math.brown.edu

1 Mathematics Department, Brown University, Box 1917, Providence, RI 02912, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-015-0089-z&domain=pdf

542 J. Hoffstein, J. H. Silverman

of reconstructing a short vector from partial knowledge of its discrete Fourier transfrom.
PASS-Encrypt is a PKC companion to the digital signature scheme called PASS (Polynomial
Authentication and Signature Scheme) that was introduced in [11] and further refined in [7,
9]. We give theoretical descriptions of two versions of PASS-Encrypt and explain how the
underlying partial DFT problem is equivalent to finding short or close vectors in certain
lattices. Items that we do not discuss in this paper include (1) the use of standard methods to
turn our basic scheme into a system that has both semantic and chosen-ciphertext security;
(2) the possibility of creating provably secure variants of PASS-Encrypt. Thus one may
view this note as proposing a candidate trapdoor one-way function, rather than describing a
fully-fledged encryption scheme.

2 Some historical remarks

Themid-1990s saw a flurry of activity around the use of hard lattice problems to create public
key cryptosystems and digital signature schemes that were either extremely efficient [6,8,9]
or had desirable theoretical properties [1]. Among the former, the NTRUEncrypt PKC [8]
developed by the authors and Jill Pipher was presented at the Crypto 96 rump session and
published in 1998. NTRUEncrypt relies directly on SVP and CVP in certain cyclic modular
lattices whose special structure accounts for its efficiency. Various signature schemes based
on NTRU-type lattices have been proposed over the years, but until recently [13] they all
suffered from transcript information leakage. (See also [2,5,17,18] for other work on amelio-
ration of transcript leakage in NTRU signatures.) Themid-1990s also saw the introduction by
the authors and Dan Lieman [7,9] of a digital signature scheme called PASS that was based
on the difficulty of reconstructing a small polynomial from a partial list of its values. PASS,
which was published in 1999, also suffered from transcript leakage, although a recent vari-
ant [12] uses rejection sampling to eliminate this problem. Shortly after PASS was originally
developed, the authors realized that the PASS problem could also be used as the basis for a
public key cryptosystem, and theywrote up some preliminary notes (dated January 14, 1999).
However, since it was clear at that time that NTRUEncrypt would be more efficient and have
smaller key and ciphertext sizes, they did not further develop PASS-Encrypt.

The past decade has seen a resurgence of interest in lattice-based cryptosystems for a
variety of reasons, including their potential resistance to quantum algorithms, their use by
Gentry in the construction of a fully homomorphic encryption scheme [4], and other work
such as the construction of multilinear pairings [3]. In view of this activity and the recent
introduction of a transcript secure PASS signature scheme [12], the authors felt that it might
be of interest to publish their practical and efficient PKC based on the PASS problem, despite
the fact that PASS-Encrypt remains somewhat less efficient than NTRUEncrypt, and despite
the fact that we have not investigated variants of PASS-Encrypt that might admit formal
proofs of security.

3 Discrete Fourier transformations and polynomial evaluation

We set the following notation, which will remain fixed throughout this paper.

Fq a finite field with q elements.
N a prime satisfying q ≡ 1 (mod N).
p a small prime that does not divide q .

123

PASS-Encrypt 543

w a primitive N th root of unity in Fq .
S an ordered subset of {0, 1, 2, . . . , N − 1}. Let s = #S.
S′ the ordered complement of S, i.e., S′ = {0 ≤ i ≤ N − 1 : i /∈ S}. Let s′ = #S′.

For a ∈ F
N
q , the Discrete Fourier Transformation of a is the vector F(a) ∈ F

N
q whose

kth coordinate is

F(a)k =
N−1∑

i=0

aiw
ik .

The Inverse Discrete Fourier Transform F−1 is defined by the similar formula

F−1(a)k = 1

N

N−1∑

i=0

aiw
−ik .

It is easy to verify that

F−1 ◦ F(a) = a and F ◦ F−1(a) = a.

Thus knowledge of a vector is equivalent to knowledge of its Fourier transform, albeit subject
to a certain amount of computation.

For any subset S = {k1, k2, . . . , ks} of indices, we let FS(a) be the corresponding subset
of the coordinates of F(a):

FS(a) = (F(a)k1 ,F(a)k2 , . . . ,F(a)ks
)
.

We call FS(a) a Partial Fourier Transform, in the sense that it contains partial information
about the full Fourier transform. Note that knowledge of a partial Fourier transform is not,
in general, sufficient to determine the original vector. Indeed, if s �= N , then there will be
many vectors with the same S-partial Fourier transform.

There are two types of products that are useful. The first is simply component-by-
component multiplication,

a · b = (a0b0, b1b1, . . . , aN−1bN−1).

The second is the convolution product a⊗b whose kth coordinate is given by the formula

(a⊗b)k =
N−1∑

i=0

aibk−i ,

where it is understood that b j = b j+N if j < 0.
It is a standard, and very important, fact that the Fourier transform is a homomorphism

from the ring of vectors with convolution product to the ring of vectors with component
multiplication. That is, it satisfies

F(a + b) = F(a) + F(b) and F(a⊗b) = F(a) · F(b).

Remark 1 Fourier transformations and vector multiplications can also be described in terms
of polynomials. To do this, we identify the vector a with the polynomial

a(X) = a0 + a1X + a2X
2 + · · · + aN−1X

N−1.

Then the kth Fourier coefficient of a is simply the value of a(X) at X = wk ,

F(a)k = a(wk).

123

544 J. Hoffstein, J. H. Silverman

Similarly, the inverse Fourier transform is F−1(a)k = N−1a(w−k). Notice that the partial
Fourier transformation FS(a) is the list of values a(wk) for the indices k ∈ S.

Continuing with the polynomial interpretation, we note that the convolution product a⊗b
is equal to the product a(X)b(X) in the quotient ring Fq [X]/(XN − 1). In other words, the
polynomial corresponding to a⊗b is equal to the polynomial obtained by first multiplying
a(X)b(X) as polynomials and then setting XN+i = Xi for 0 ≤ i < N .

4 PASS-Encrypt: version 1

Public parameters:The quantities q , N ,w, S, and S′ are public cryptosystemparameters
that are chosen based on the desired speed and security level.
Key creation: Bob’s private key is a small vector f ∈ F

N
q . Bob’s public key is the partial

Fourier Transform FS(f) of f . For decryption purposes, Bob will probably want to
compute and store (privately) the full Fourier Transform F(f).
Encryption: Alice’s plaintext1 is a moderately small vector m ∈ F

N
q , where the actual

information transmitted is the value of m modulo p. She also chooses a small random
vector r ∈ F

N
q . She computes F(m) and F(r). Using these values and Bob’s public key

FS(f), she computes the following three quantities:

e = pFS(f) · FS(r) + FS(m).

e′ = FS′(r).

e′′ = FS′(m).

She transmits to Bob the ciphertext (e, e′, e′′). Note that since e′ and e′′ are only partial
Fourier Transforms of r and m, they do not allow an attacker to directly reconstruct r
and m.
Decryption: Bob combines his private knowledge of FS′(f) with the values e′ and e′′
that he received from Alice to compute

pFS′(f) · FS′(r) + FS′(m).

Combining this with e, Bob knows the value of

pF(f) · F(r) + F(m).

Taking the inverse Fourier transform of this quantity yields

p f⊗r + m.

Since the coefficients of f and r are small relative to q , this vector may be reduced
modulo p to yield the message m.

Table 1 illustrates the information that is public and the information that is private. An
attacker knows only the four boxes marked Public, which is insufficient information to
recover themessage. Bob additionally knows thePrivate Key box, and using that information
he is able to reconstruct the information that belongs in the empty box. He then knows
the complete last column, i.e., he knows the complete discrete Fourier transformation of
p f⊗r + m, so he is able to recover p f⊗r + m itself, and then by reduction modulo p he
recovers m.

1 In practice, of course, the actual plaintext must be suitably padded to achieve chosen-ciphertext security.
Further, minor modifications are needed to achieve semantic security.

123

PASS-Encrypt 545

Table 1 The PASS-Encrypt
public key cryptosystem

f m r p f⊗r + m

S Bob’s Alice’s Alice’s Alice’s

Public Private Private Public

Key Message Value Message

S′ Bob’s Alice’s Alice’s

Private Public Public

Key Message Value

5 Homomorphic properties

In view of the current widespread interest in homomorphic encryption, we make some brief
remarks on homomorphic properties of PASS-Encrypt. Addition works in a straightforward
way. Alice computes the sums

(e1, e′
1, e

′′
1) + (e2, e′

2, e
′′
2)

and returns them to Bob. Bob can then reconstruct the full Fourier transform

pF(f) · F(r1) + F(m1) + pF(f) · F(r2) + F(m2)

= F(
p f⊗(r1 + r2) + (m1 + m2)

)
,

and hence he can recover

p f⊗(r1 + r2) + (m1 + m2).

Assuming that the coefficients are not too large, i.e., have magnitude at most q/2, reduction
modulo p yields the plaintext sum m1 + m2.

The situation with products is less straightforward due to the presence of cross terms. In
order to recover m1⊗m2 from a computation involving the encryptions of m1 and m2, Bob
needs to know the following four quantities:

e1 · e2, e′
1 · e′

2, e′′
1 · e′′

2, e′
1 · e′′

2 + e′
2 · e′′

1 . (1)

To make it clear why Bob needs the fourth quantity, we set the notation that if v = FS′(u) is
the S′-partial DFT of the vector u, then C(v) = FS(u) is the complementary S-partial DFT
of u. In particular, knowledge of both v and C(v) is enough to recover v via the inverse DFT.

With this notation, we see that

e1 · e2 =
(
pFS(f) · FS(r1) + FS(m1)

)
·
(
pFS(f) · FS(r2) + FS(m2)

)

=
(
pFS(f) · C(e′

1) + C(e′′
1)

)
·
(
pFS(f) · C(e′

2) + C(e′′
2)

)

= p2FS(f) · FS(f) · C(e′
1) · C(e′

2)

+ pFS(f) ·
(
C(e′

1) · C(e′′
2) + C(e′

2) · C(e′′
1)

)
+ C(e′′

1) · C(e′′
2).

123

546 J. Hoffstein, J. H. Silverman

Hence using the four quantities (1) and his knowledge of the full DFT of f , Bob can recover
the full Fourier transform

(
pF(f) · F(r1) + F(m1)

)
·
(
pF(f) · F(r2) + F(m2)

)

= F
(
(p f⊗r1 + m1)⊗(p f⊗r2 + m2)

)
.

Applying the inverse DFT gives

(p f⊗r1 + m1)⊗(p f⊗r2 + m2),

and again assuming that the coefficients are not too large, reduction modulo p gives the value
of m1⊗m2 mod p.

In general, to decrypt an n-fold product requires n + 2 polynomial combinations of the
original encrypted values. The first of these is simply e1 · e2 · · · en . For the others, we obtain
one for each 0 ≤ k ≤ n by computing

∑

I⊂{1,2,...,n}
#I=k

∏

i∈I
e′
i ·

∏

i /∈I
e′′
i (the product is coordinate-wise).

These values and the knowledge of f allow Bob to recover the full Fourier transform of

n∏

i=1

(p f⊗r i + mi) (the product is convolution),

and then reduction modulo p recovers
∏

mi mod p if the coefficients are not too large.

6 PASS-Encrypt: version 2

At the cost of some additional computation, it is possible to improve various operating
characteristics of PASS-Encrypt, including key sizes and bandwidth. The basic idea is to
switch the p factor from the product f⊗r to the plaintext m. The cryptosystem parameters
and the public and private keys are the same in both versions of PASS-Encrypt, so a single
key can be used.

For concreteness, we make the following choices:

• p = 3
• f and r are chosen as random vectors with coordinates equal to −1, 0, or 1.
• m is chosen with coordinates in the range −M/2 < mi ≤ M/2. An appropriate choice

for M is M ≈ q/6.

Public Parameters: As in Version 1, the quantities q , N , w, S, and S′ are public cryp-
tosystem parameters as before.
Key Creation: As in Version 1, Bob’s private key is a small vector f ∈ F

N
q and Bob’s

public key is the partial Fourier Transform FS(f) of f .
Encryption:Alice’s plaintext is a vectorm ∈ F

N
q with coordinates−M/2 < mi ≤ M/2.

She also chooses a small random vector r ∈ F
N
q as in Version 1. She computes F(m)

and F(r). Using these values and Bob’s public key FS(f), she computes the following
three quantities:

123

PASS-Encrypt 547

e = FS(f) · FS(r) + pFS(m).

e′ = FS′(r).

e′′ = FS′(m).

She transmits to Bob the encrypted message (e, e′, e′′).
Decryption: Bob combines his private knowledge of FS′(f) with the values e′ and e′′
that he received from Alice to compute

FS′(f) · FS′(r) + pFS′(m).

Combining this with e, Bob knows the value of

F(f) · F(r) + pF(m).

Taking the inverse Fourier transform of this quantity yields

f⊗r + pm.

For appropriate choices of parameters, the coordinates of this vector will be in the range
from −q/2 to q/2, so reduction modulo p yields the value of the product f⊗r mod p.
Since Bob knows f , he can multiply by f−1 mod p to recover r mod p. But r has
coordinates 0 and ±1, so its value modulo p (with p = 3) determines r exactly. Finally,
Bob has all of the information necessary to compute

(f⊗r + pm) − f⊗r
p

= m

in F
N
q , and since the coordinates of m satisfy |mi | ≤ M < q/2, this identifies m exactly.

7 Security analysis of lattice reduction attacks

In this section we reformulate the PASS-Encrypt problem as a lattice problem and briefly
discuss its practical security against lattice reduction algorithms. See [12, Sect. 5.2.1] for
further discussion.

7.1 Reduction of PASS-Encrypt to a lattice problem

In this section we describe how to recover a PASS-Encrypt key by searching for a small
vector in a lattice. We leave for the reader the analogous reduction of the plaintext recovery
problem to a closest vector problem. We also note that one may formulate the key recovery
problem as a CVP, but in practice CVP is solved by converting it to an SVP, which is what
we do explicitly.

Recall that the public key is the partial Fourier transfrom FS(f), or equivalently, some
of the values of the polynomial f . Treating the coordinates of f as unknowns, the attacker
knows that these coordinates satisfy the following system of linear congruences modulo q:

N−1∑

i=0

fiw
ik ≡ Ak (mod q) for k ∈ S.

Herew and the Ak’s are known quantities. The first step is to solve the s congruences for s of
the fi ’s in terms of the others. Note that this is done over the finite field Fq , so is elementary
linear algebra. This yields:

123

548 J. Hoffstein, J. H. Silverman

fN−s+ j ≡
N−s−1∑

i=0

Bi j fi + C j (mod q), 0 ≤ j < s. (2)

Here the Bi j ’s and the C j ’s are known quantities, and the attacker is looking for a solution
where the fi ’s are small. To do this, he forms the lattice L generated by the rows of the
following (N + 1)-by-(N + 1) matrix, where to ease notation, we let M = N − s − 1:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 B00 B01 · · · B0,s−1

0 1 · · · 0 0 B10 B11 · · · B1,s−1
...

...
. . .

... 0
...

...
. . .

...

0 0 · · · 1 0 BM0 BM1 · · · BM,s−1

0 0 · · · 0 1 C0 C1 · · · Cs−1

0 0 · · · 0 0 q 0 · · · 0
0 0 · · · 0 0 0 q · · · 0
...

...
. . .

... 0
...

...
. . .

...

0 0 · · · 0 0 0 0 · · · q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

The small target vector in L is created by multipying the top rows of the matrix by
f0, f1, . . . , fM , adding them to the middle row (i.e., the row with the C j ’s), and then adding
appropriate multiples of the bottom rows (i.e., the q-rows) so that the congruences (2) give
the other fi ’s. In this way we see that the following vector is in L:

v = (f0, f1, . . . , fM , 1, fM+1, . . . , fN−1).

For an appropriate choice of PASS-Encrypt parameters (with p = 3), the coordinates of the
vector f consist of an approximately equal number of 0’s, 1’s, and −1’s, so the length τ of
the target vector is

τ = ‖v‖ ≈ √
2N/3.

The lattice L has dimension N + 1 and discriminant qs , so the Gaussian heuristic [10,
Sect. 6.5.3] says that the smallest expected nonzero vector in L should have length approxi-
mately

σ =
√
dim L

2πe
· (Disc L)1/ dim L =

√
N + 1

2πe
· qs/(N+1).

Typical PASS-Encrypt parameters sets have s ≈ N/2 with q = 2N + 1 and N large, so

σ ≈ N/
√

πe.

This leads to a target-to-Gaussian ratio

τ

σ
≈

√
2πe

3N
= O

(
1√

dim L

)
.

Many experiments using varied implementations of lattice reduction algorithms have shown
that such lattice problems tend to be exponentially hard as a function of the dimension; see
for example [7–9,12,14].

Remark 2 The lattice generated by the rows of (3) has some resemblence to the standard
NTRU lattice [8], but with an important difference. Ignoring the middle column and row, the
upper-right “B-block” in an an NTRU lattice has a cyclic structure; each row of an NTRU

123

PASS-Encrypt 549

B-block is a barrel-cyclic shift of the previous row. This means that the NTRU lattice may
be viewed as a rank-2 R-module for the ring R = Z[X]/(XN − 1), or even as an ideal in a
quadratic extension of R. But the B-block of the PASS lattice does not appear to have any
sort of cyclic structure, and thus it is not an ideal (nor a module of low rank) for a ring of the
form Z[X]/(P(X)). However, at the cost of increasing the lattice dimension, we can search
for a PASS key in a lattice that does have a cyclic structure, although it is a vanderMonde-type
cyclicity, rather than the shift cyclicity of the NTRU lattice. Thus let S = {k1, k2, . . . , ks}
and consider the row-span of the (N + s)-by-(N + s) matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 1 1 · · · 1
0 1 · · · 0 0 wk1 wk2 · · · wks

...
...

. . .
... 0

...
...

. . .
...

0 0 · · · 1 0 w(N−1)k1 w(N−1)k2 · · · w(N−1)ks

0 0 · · · 0 1 −Ak1 −Ak2 · · · −Aks
0 0 · · · 0 0 q 0 · · · 0
0 0 · · · 0 0 0 q · · · 0
...

...
. . .

... 0
...

...
. . .

...

0 0 · · · 0 0 0 0 · · · q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This lattice contains the short vector (f0, f1, . . . , fN , 1, 0, . . . , 0).

Remark 3 Alexander May [15] has suggested an improved lattice attack on the NTRU cryp-
tosystem, and these ideas were further extended in [16]. However, virtually all of the gain in
May’s idea comes from the fact that the convolution modular lattices used for NTRU have
a large number of target vectors that are related to one another by rotational symmetries of
their coordinates. It is easily seen that PASS-Encrypt lattices do not have this property. With
very high probability, there is exactly one valid target vector in the lattice L; that is, exactly
one vector that can be used to decrypt a message. (More precisely, it is possible that a small
multiple of v, say 2v or 3v, will also decrypt, so what we should really say is that there is a
unique one-dimensional target subspace of L .) Hence the ideas described in [15,16] are not
helpful for PASS-Encrypt lattices.

8 Sample parameters

We list some sample parameter sets in Table 2. For these sets, we assume that S and S′ have
approximately N/2 elements, and that the coordinates of the vectors f and r are chosen
randomly uniformly from the set {−1, 0, 1}. Thus f and r are chosen from a sample space
of size 3N , so a collision search requires 3N/2 comparisons. Even for the smallest value of N
in Table 2, the bit security of a collision search is 3N/2 = 3359/2 ≈ 2284.5.

The public key consists of roughly 1
2N numbers modulo q , as do each of the three com-

ponents of the ciphertext. So we have roughly

Key Size ≈
⌈
N

2
log2(q)

⌉
bits, Ciphertext ≈

⌈
3N

2
log2(q)

⌉
bits,

The operating characteristics of PASS-Encrypt depend primarily on the speed of com-
puting N -dimensional mod q discrete Fourier transforms and of generating N -dimensional
random vectors (e.g., via SHA). When done naively, we note that a DFT requires O(N 2)

multiplications modulo q , but fast Fourier transforms reduce this to O(N log N), in which

123

550 J. Hoffstein, J. H. Silverman

Table 2 Sample PASS-Encrypt
parameters

N p q w Public key Ciphertext

359 3 719 121 1704 bits 5111 bits

641 3 1283 4 3310 bits 9928 bits

911 3 1823 25 4935 bits 14,803 bits

1223 3 2447 25 6884 bits 20,651 bits

Table 3 Operations used by
PASS-Encrypt

DFT Random ⊗ · +
Key creation 1 1 0 0 0

Encrypt 2 1 0 1
2

1
2

Decrypt (v. 1) 1 0 0 1
2

1
2

Decrypt (v. 2) 1 0 2 1
2

1
2

Table 4 Estimated PASS-Encrypt operating characteristics with comparisons to other systems

Algorithm Parameter set Encrypt (μs) Decrypt (μs) Ciphertext (bytes) Public key (bytes)

PASS 641 34 66 1241 414

911 51 121 1851 617

1223 75 231 2582 861

RSA 1024 225 15 128 128

2048 1591 50 256 256

4096 11,532 185 512 512

ECDSA secp160r1 80 270 40 20

nistp256 146 348 64 32

nistp384 268 1151 96 48

case a DFT becomes comparable to component-wise addition or multiplication. (Similarly
for convolution products.) Table 3 lists the number of N -dimensional DFTs, random vectors,
convolution multiplications, and component-wise additions and multiplications required for
each aspect of PASS-Encrypt.

Since actual operating speeds may vary by an order of magnitude or more depending
on the implementation of the basic operations, and since neither of the authors is skilled at
programming optimizations, we use [12, Sect. 6] to make rough speed comparisons. The
implementation of PASS signatures in [12] uses N ∈ {577, 769, 1153}, but takes values
of q that are much larger than 2N + 1, which tends to make the underlying lattice problem
easier, while making operations modulo q more time consuming. Doing a rough interpola-
tion/extrapolation using [12, Table 3], we obtain the estimates given in Table 4.

We performed experiments on PASS-Encrypt lattices with N ranging from 101 to 181
using a standard implementation of the LLL-BKZ algorithm and fit the output to a regression
line of the form

log(Running Time) = a dim(L) + b.

123

PASS-Encrypt 551

Table 5 Extrapolated LLL-BKZ
lattice breaking time for
PASS-Encrypt

N q Time (MIPS-years)

359 719 2.2 × 105

641 1283 3.3 × 1014

911 1823 2.1 × 1023

1223 2447 3.0 × 1033

The correlation coefficient was 0.979, so the linearity of the log-running time is quite good.
Extrapolating to higher dimensional lattices gives the estimated running times in Table 5.
For comparison, we note that the estimated times to break RSA-1024 and RSA-2048 are,
respectively, 3 × 1011 MIPS-years and 3 × 1028 MIPS-years.

Acknowledgments The authors would like to thank the referees for their helpful comments and corrections.
This research was partially supported by NSF EAGER DMS-1349908.

References

1. Ajtai M., Dwork C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC ’97
(El Paso, TX), pp. 284–293 (electronic). ACM, New York (1999).

2. DucasL.,NguyenP.Q.: FasterGaussian lattice sampling using lazy floating-point arithmetic. In:Advances
in Cryptology–ASIACRYPT 2012. Lecture Notes in Computer Science, vol. 7658, pp. 415–432. Springer,
Heidelberg (2012).

3. Garg S., GentryC., Halevi S.: Candidatemultilinearmaps from ideal lattices. In: Advances inCryptology–
EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 1–17. Springer, Heidelberg
(2013).

4. Gentry C.: Fully homomorphic encryption using ideal lattices. In: STOC’09—Proceedings of the 2009
ACM International Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009).

5. Gentry C., Peikert C., Vaikuntanathan V.: Trapdoors for hard lattices and new cryptographic constructions
[extended abstract]. In: STOC’08, pp. 197–206. ACM, New York (2008).

6. Goldreich O., Goldwasser S., Halevi S.: Public-key cryptosystems from lattice reduction problems. In:
Advances in Cryptology–CRYPTO ’97 (Santa Barbara, CA, 1997). Lecture Notes in Computer Science,
vol. 1294, pp. 112–131. Springer, Berlin (1997).

7. Hoffstein J., Silverman J.H.: Polynomial rings and efficient public key authentication. II. In: Cryptography
and Computational Number Theory (Singapore, 1999). Programe on Computer Science Applications
Logic, vol. 20, pp. 269–286. Birkhäuser, Basel (2001).

8. Hoffstein J., Pipher J., Silverman J.H.: NTRU: a ring-based public key cryptosystem. In: Algorithmic
Number Theory (Portland, OR, 1998). Lecture Notes in Computer Science, vol. 1423, pp. 267–288.
Springer, Berlin (1998).

9. Hoffstein J., Lieman D., Silverman J.H.: Polynomial rings and efficient public key authentication. In:
Cryptographic Techniques and e-Commerce (CryTEC’99). City University of Hong Kong Press, Hong
Kong (1999).

10. Hoffstein J., Pipher J., Silverman J.H.: An Introduction to Mathematical Cryptography. Undergraduate
Texts in Mathematics. Springer, New York (2008).

11. Hoffstein J., Kaliski B., Lieman D., Robshaw M., Yin Y.: Secure user identification based on constrained
polynomials. United States Patent 6,076,163. Filed October 20, 1997, Issued June 13 (2000).

12. Hoffstein J., Pipher J., Schanck J., Silverman J.H., WhyteW.: Practical signatures from the partial Fourier
recovery problem. Cryptology ePrint Archive, Report 2013/757 (2013). http://eprint.iacr.org/. Proceed-
ings of ACNS 2014 (to appear).

13. Hoffstein J., Pipher J., Schanck J., Silverman J.H., WhyteW.: Transcript secure signatures based on mod-
ular lattices. In: PQCrypto 2014. Lecture Notes in Computer Science, vol. 8772, pp. 142–159. Springer,
Switzerland (2014). To appear http://eprint.iacr.org/2014/457.

14. Howgrave-GrahamN., Silverman JH.,WhyteW.: Choosing parameter sets for NTRUEncrypt withNAEP
and SVES-3. In: Topics in Cryptology–CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376,
pp. 118–135. Springer, Berlin (2005).

123

http://eprint.iacr.org/
http://eprint.iacr.org/2014/457

552 J. Hoffstein, J. H. Silverman

15. May A.: Auf polynomgleichungen basierende public-key-kryptosysteme, June 4, (1999). Johann Wolf-
gange Goethe-Universitat, Frankfurt am Main, Fachbereich Informatik. (Masters Thesis in Computer
Science).

16. MayA., Silverman J.H.: Dimension reductionmethods for convolutionmodular lattices. In: Cryptography
andLattices (Providence,RI, 2001). LectureNotes inComputer Science, vol. 2146, pp. 110–125. Springer,
Berlin (2001).

17. Melchor C.A., Boyen X., Deneuville J.-C., Gaborit P.: Sealing the leak on classical ntru signatures. In:
PQCrypto 2014. Lecture Notes in Computer Science, vol. 8772, pp. 1–21. Springer, Switzerland (2014).
To appear http://eprint.iacr.org/2014/484.

18. Stehl D., Steinfeld R.: Making ntruencrypt and ntrusign as secure as standard worst-case problems over
ideal lattices. Cryptology ePrint Archive, Report 2013/004 (2013) http://eprint.iacr.org/.

123

http://eprint.iacr.org/2014/484
http://eprint.iacr.org/

	PASS-Encrypt: a public key cryptosystem based on partial evaluation of polynomials
	Abstract
	1 Introduction
	2 Some historical remarks
	3 Discrete Fourier transformations and polynomial evaluation
	4 PASS-Encrypt: version 1
	5 Homomorphic properties
	6 PASS-Encrypt: version 2
	7 Security analysis of lattice reduction attacks
	7.1 Reduction of PASS-Encrypt to a lattice problem

	8 Sample parameters
	Acknowledgments
	References

