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Abstract Let B(X, Y ) be a polynomial over Fqn which defines an Fq -bilinear form on the
vector space Fqn , and let ξ be a nonzero element in Fqn . In this paper, we consider for which
B(X, Y ), the binary operation xy + B(x, y)ξ defines a (pre)semifield multiplication on Fqn .
We prove that this question is equivalent to finding q-linearized polynomials L(X) ∈ Fqn [X ]
such that Trqn/q(L(x)/x) �= 0 for all x ∈ F

∗
qn . For n ≤ 4, we present several families of L(X)

and we investigate the derived (pre)semifields. When q equals a prime p, we show that if
n > 1

2 (p−1)(p2 − p+4), L(X)must be a0X for some a0 ∈ Fpn satisfying Trqn/q(a0) �= 0.
Finally, we include a natural connection with certain cyclic codes over finite fields, and we
apply the Hasse–Weil–Serre bound for algebraic curves to prove several necessary conditions
for such kind of L(X).
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1 Introduction

A semifield S is an algebraic structure satisfying all the axiomsof a skewfield except (possibly)
the associativity. In other words, it satisfies the following axioms:

(S1) (S,+) is a group, with identity element 0;
(S2) (S \ {0}, ∗) is a quasigroup;
(S3) 0 ∗ a = a ∗ 0 = 0 for all a;
(S4) The left and right distributive laws hold, namely for any a, b, c ∈ S,

(a + b) ∗ c = a ∗ c + b ∗ c,

a ∗ (b + c) = a ∗ b + a ∗ c;
(S5) There is an element e ∈ S such that e ∗ x = x ∗ e = x for all x ∈ S.

A finite field is a trivial example of a semifield. Furthermore, if S does not necessarily have a
multiplicative identity, then it is called a presemifield. For a presemifield S, (S,+) is neces-
sarily abelian [17]. A semifield is not necessarily commutative or associative. However, by
Wedderburn’s Theorem [27], in the finite case, associativity implies commutativity. There-
fore, a non-associative finite commutative semifield is the closest algebraic structure to a
finite field. We refer to [18] for a recent and comprehensive survey.

The first family of non-trivial semifields was constructed by Dickson [7] more than a
century ago. In [17], Knuth showed that the additive group of a finite semifield S is an
elementary abelian group, and the additive order of the nonzero elements in S is called the
characteristic of S. Hence, any finite semifield can be represented by (Fq ,+, ∗), where q is
a power of a prime p. Here (Fq ,+) is the additive group of the finite field Fq and x ∗ y can

be written as x ∗ y = ∑
i, j ai j x

pi y p
j
, which forms a mapping from Fq × Fq to Fq .

Geometrically speaking, there is a well-known correspondence, via coordinatisation,
between (pre)semifields and projective planes of Lenz-Barlotti type V.1, see [5,13]. In [1],
Albert showed that two (pre)semifields coordinatise isomorphic planes if and only if they are
isotopic.

Definition 1.1 Let S1 = (Fn
p,+, ∗) and S2 = (Fn

p,+, �) be two presemifields. If there exist
three bijective linear mappings L , M, N : F

n
p → F

n
p such that

M(x) � N (y) = L(x ∗ y)

for any x, y ∈ F
n
p , then S1 and S2 are called isotopic, and the triple (M, N , L) is called an

isotopism between S1 and S2.

Let P = (Fpn ,+, ∗) be a presemifield. We can obtain a semifield from it via isotopisms
in several ways, such as the well known Kaplansky’s trick (see [18, p 2]). The following
method was recently given by Bierbrauer [2]. Define a new multiplication � by the rule

x � y := B−1(B1(x) ∗ y), (1.1)

where B(x) := 1∗x and B1(x)∗1 = 1∗x .We have x�1 = B−1(B1(x)∗1) = B−1(1∗x) = x
and 1 � x = B−1(B1(1) ∗ x) = B−1(1 ∗ x) = x , thus (Fpn ,+, �) is a semifield with identity
1. In particular, when P is commutative, B1 is the identity mapping.

Let S = (Fpn ,+, ∗) be a semifield. The subsets

Nl(S) = {a ∈ S : (a ∗ x) ∗ y = a ∗ (x ∗ y) for all x, y ∈ S},
Nm(S) = {a ∈ S : (x ∗ a) ∗ y = x ∗ (a ∗ y) for all x, y ∈ S},
Nr (S) = {a ∈ S : (x ∗ y) ∗ a = x ∗ (y ∗ a) for all x, y ∈ S},
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Switchings of semifield multiplications 219

are called the left, middle and right nucleus of S, respectively. It is easy to check that these
sets are finite fields. The subset N (S) = Nl(S) ∩ Nm(S) ∩ Nr (S) is called the nucleus of
S. It is easy to see if S is commutative, then Nl(S) = Nr (S) and Nl(S) ⊆ Nm(S), therefore
Nl(S) = Nr (S) = N (S). In [13], a geometric interpretation of these nuclei is discussed. The
subset {a ∈ S : a ∗ x = x ∗ a for all x ∈ S} is called the commutative center of S and its
intersection with N (S) is called the center of S.

Let G be a group and N a subgroup. A subset D of G is called a relative difference set
with parameters (|G|/|N |, |N |, |D|, λ) if the list of differences of D covers every element in
G \ N exactly λ times, and no element in N \ {0}. We call N the forbidden subgroup.

Jungnickel [15] showed that every semifield S of order q leads to a (q, q, q, 1)-relative
difference set D in a groupG which is not necessarily abelian. Assume that S is commutative.
If q = pn and p is odd, then G is isomorphic to the elementary abelian groupC2n

p ; if q = 2n ,
then G ∼= Cn

4 . (Cm is the cyclic group of order m.)
Let p be an odd prime. A function f : Fpn → Fpn is called planar if the mapping

x 
→ f (x + a) − f (x)

is a permutation of Fpn for every a ∈ F
∗
pn . Planar functions were first defined by Dembowski

and Ostrom in [6]. It is not difficult to verify that planar functions over Fpn are equivalent to
(pn, pn, pn, 1)-relative difference sets inC2n

p . Planar functions over F2n , introduced recently
in [25,29], has a slightly different definition: A function f : F2n → F2n is called planar, if
the mapping

x 
→ f (x + a) + f (x) + ax

is a permutation of F2n for every a ∈ F
∗
2n . They are equivalent to (2n, 2n, 2n, 1)-relative

difference sets in Cn
4 ; see [29, Theorem 2.1].

Let f be a planar function over Fqn , where q is a power of prime. A switching of f is
a planar function of the form f + gξ where g is a mapping from Fqn to Fq and ξ ∈ F

∗
qn .

Switchings of planar functions over Fpn , where p is an odd prime, were investigated by
Pott and the third author in [24]. In [29], it is proved that switchings of the planar function
f (x) = 0 defined over F2n can be written as affine polynomials

∑
ai x2

i + b, which are
equivalent to f (x) itself.

In the present paper, we will investigate the switchings of (pre)semifield multiplications.
To be precise, we will consider when the binary operation

x ∗ y = x � y + B(x, y)ξ

on Fqn defines a (pre)semifield multiplication, where � is a given (pre)semifield multiplica-
tion, ξ ∈ F

∗
qn and B(x, y) is an Fq -bilinear form from Fqn × Fqn to Fq . (One may identify

Fqn with F
n
q , although it is not necessary.) We call x ∗ y a switching neighbour of x � y. In

particular, we will concentrate on the case in which � is the multiplication of a finite field.
In Sect. 2, we show that finding B such that x∗y := xy+B(x, y)ξ defines a (pre)semifield

multiplication is equivalent to finding q-linearized polynomials L(X) ∈ Fqn [X ] such that
Trqn/q(L(x)/x) �= 0 for all x ∈ F

∗
qn . For n ≤ 4, we give in Sect. 3 several q-linearized

polynomials L(X) ∈ Fqn [X ] satisfying this condition and we discuss the presemifields
of the corresponding switchings. In Sect. 4, we prove that when q = p is a prime and
n > (p−1)(p2− p+4)/2, the only L(X) satisfying the above condition are those of the form
βX where Trpn/p(β) �= 0. In Sect. 5, we explore a connection of the q-linearized polynomials
L(X) satisfying the above condition with certain cyclic codes over Fq . Finally, in Sect. 6 we
derive several necessary conditions for the existence of the q-linearized polynomials L(X)

from the Hasse–Weil–Serre bound for algebraic curves over finite fields.
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220 X. Hou et al.

2 Preliminary discussion

Let Trqn/q be the trace function from Fqn to Fq . We define

B(x, y) := Trqn/q

(
n−1∑

i=0

bi xy
qi
)

, x, y ∈ Fqn ,

where bi ∈ Fqn . It is easy to see that B(x, y) defines an Fq -bilinear form from Fqn × Fqn to
Fq , and every such bilinear form can be written in this way.

In the next theorem, we consider the switchings of a finite field multiplication.

Theorem 2.1 Let x∗y := xy+B(x, y)ξ , where B(x, y) := Trqn/q(
∑n−1

i=0 bi xyq
i
), bi ∈ Fqn ,

and ξ ∈ F
∗
qn . Then ∗ defines a presemifieldmultiplication onFqn if and only if for any a ∈ F

∗
qn ,

Trqn/q(M(a)/a) �= −1, where M(X) := ξ
∑n−1

i=0 bi Xqi ∈ Fqn [X ].

Proof (⇒) Let x ∗ y be a presemifield multiplication. Assume to the contrary that there is
a ∈ F

∗
qn such that

Trqn/q(M(a)/a) = −1.

We consider the equation x ∗a = 0. It has a solution x if and only if there exists u ∈ Fq such
that

xa = ξu and (2.1)

B(x, a) = −u. (2.2)

Plugging (2.1) into (2.2), we have B(ξu/a, a) = −u, which means that

uTrqn/q

(

ξ

n−1∑

i=0

bia
qi−1

)

= −u,

i.e.

uTrqn/q(M(a)/a) = −u,

which holds for any u ∈ Fq according to our assumption. Therefore, x ∗a = 0 has a nonzero
solution. It contradicts our assumption that ∗ defines a presemifield multiplication.

(⇐) It is easy to see that the left and right distributivity of the multiplication ∗ hold. We
only need to show that for any a �= 0, x ∗ a = 0 if and only if x = 0. This is achieved by
reversing the first part of the proof. �

Let x ∗ y be the multiplication defined in Theorem 2.1. Then it is straightforward to verify
that the presemifield (Fqn ,+, ∗) is isotopic to (Fqn ,+, �), where

x � y := xy + B ′(x, y)

and B ′(x, y) = Trqn/q(ξ
∑n−1

i=0 bi xyq
i
). Therefore, we can restrict ourselves to the switch-

ings of finite field multiplications with ξ = 1.
For the switchings

x � y + B(x, y)ξ
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Switchings of semifield multiplications 221

of a (pre)semifield multiplication �, it is difficulty to obtain explicit conditions on B(x, y).
The reason is that generally we can not explicitly write down the solution of x � a = ξu as
we did for (2.1).

Let α be an element in Fqn such that Trqn/q(α) = 1. To findM(X) satisfying the condition
inTheorem2.1,weonly need to consider theq-linearizedpolynomial L(X) := M(X)+αX ∈
Fqn [X ] such that

Trqn/q(L(x)/x) �= 0 for all x ∈ F
∗
qn . (2.3)

Obviously, when L(X) = βX , where Trqn/q(β) �= 0, we have Trqn/q(L(x)/x) �= 0 for
every nonzero x . The question is whether there are other L’s. We will give several results
concerning this question throughout Sects. 3–6.

The proof of next proposition is also straightforward.

Proposition 2.2 Let L(X) = ∑n−1
i=0 ai Xqi ∈ Fqn [X ]. IfTrqn/q(L(x)/x) �= 0 for all x ∈ F

∗
qn ,

then the mapping x 
→ L(x) is a permutation of Fqn .

We include several lemmas which will be used later to investigate the commutativity of
presemifield multiplications.

Lemma 2.3 Let x ∗ y := xy + B(x, y), where B(x, y) := Trqn/q(
∑n−1

i=0 bi xyq
i
), bi ∈ Fqn .

Then ∗ is commutative if and only if bi = bq
i

n−i for every i = 1, . . . , n − 1.

Proof Clearly, x ∗ y = y ∗ x if and only if B(x, y) = B(y, x), i.e.

Trqn/q

(
n−1∑

i=0

bi xy
qi
)

= Trqn/q

(
n−1∑

i=0

bi yx
qi
)

,

which means that

Trqn/q

(

x
n−1∑

i=1

(bi − bq
i

n−i )y
qi
)

= 0

for every x, y ∈ Fqn . Therefore we complete the proof. �
It is possible that a non-commutative presemifield P is isotopic to a commutative presemi-

field. We can use the next criterion given by Bierbrauer [2], as a generalization of Ganley’s
criterion [8], to test whether this happens.

Lemma 2.4 A presemifield (P,+, ∗) is isotopic to a commutative semifield if and only if
there is some nonzero v such that A(v ∗ x) ∗ y = A(v ∗ y) ∗ x, where A : Fqn → Fqn is
defined by A(x) ∗ 1 = x.

Given an arbitrary presemifield multiplication, it is not easy to get the explicit expression
for A(x). However, we can do it for the switchings of multiplications of finite fields.

Lemma 2.5 Let x ∗ y := xy + B(x, y) be a switching of Fqn , where B(x, y) :=
Trqn/q(

∑n−1
i=0 bi xyq

i
), bi ∈ Fqn . Let A : Fqn → Fqn be such that A(x) ∗ 1 = x for every

x ∈ Fqn . Then

A(x) = x + Trqn/q

( −t x

1 + Trqn/q(t)

)

, (2.4)

where t = ∑n−1
i=0 bi .
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222 X. Hou et al.

Proof First, we have

u ∗ 1 = u + B(u, 1)

= u + Trqn/q

(
n−1∑

i=0

biu

)

= u + Trqn/q(tu).

It is worth noting that 1 ∗ 1 = 1+ Trqn/q(t) �= 0. Let s := −t/(1+ Trqn/q(t)). Replacing u
by the expression in (2.4), we have

A(x) ∗ 1 = x + Trqn/q(sx) + Trqn/q
[
t x + tTrqn/q(sx)

]

= x + Trqn/q
[
s(1 + Trqn/q(t))x + t x

]

= x .

�

3 Switchings of Fqn for small n

In this section, we investigate the switchings of finite fields (Fqn ,+, ·) where n ≤ 4.

Lemma 3.1 Let L(X) = a1Xq + a0X ∈ Fq2 [X ]. Then the polynomial
f (X) = Trq2/q(L(X)/X)

has no root in F
∗
q2

if and only if the equation xq−1 = y has no solution x ∈ F
∗
q2

for every
y ∈ Fq2 satisfying

a1y
2 + Trq2/q(a0)y + aq1 = 0. (3.1)

Proof Let y := xq−1, where x ∈ F
∗
q2
. Then

Trq2/q(L(x)/x) = Trq2/q(a1x
q−1 + a0)

= Trq2/q(a1y + a0)

= aq1 y
q + a1y + Trq2/q(a0)

= yq(a1y
2 + Trq2/q(a0)y + aq1 )

since yq+1 = 1. Therefore, f has a nonzero root if and only if there exists a (q − 1)th power
in F

∗
q2

satisfying (3.1). �

Theorem 3.2 Let L(X) = a1Xq + a0X ∈ Fq2 [X ]. Then
f (X) = Trq2/q(L(X)/X) (3.2)

has no root in F
∗
q2

if and only if g(X) = X2 +Trq2/q(a0)X + aq+1
1 ∈ Fq [X ] has two distinct

roots in Fq .

Proof If a1 = 0, then f (X) = Trq2/q(a0) and g(X) = X2 + Trq2/q(a0)X . It is clear that f
has no nonzero roots if and only if g has two distinct roots.

In the rest of the proof, we assume that a1 �= 0.
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Switchings of semifield multiplications 223

(⇐) Let a1y ∈ Fq (y ∈ Fq2 ) be a root of g. By Lemma 3.1, it suffices to show that
yq+1 �= 1.

Case 1. Assume that q is even. Since g has two distinct roots, we have Trq2/q(a0) �= 0.
Since

(a1y)
q+1 = (a1y)

2 = Trq2/q(a0)a1y + aq+1
1 ,

we have

yq+1 = 1 + Trq2/q(a0)y

aq1
�= 1.

Case 2. Assume that q is odd. We have y = 1
2a1

(−Trq2/q(a0) + d), where d ∈ F
∗
q and

d2 = Trq2/q(a0)
2 − 4aq+1

1 . Suppose to the contrary that yq+1 = 1. It follows that

(−Trq2/q(a0) + d)q+1 = 4aq+1
1 ,

which means

Trq2/q(a0)
2 + d2 − 2dTrq2/q(a0) = 4aq+1

1 .

Hence

2d2 − 2dTrq2/q(a0) = 0.

Therefore d = Trq2/q(a0). But then d2 = Trq2/q(a0)
2 �= Trq2/q(a0)

2 − 4aq+1
1 , which is a

contradiction.
(⇒) We first show that g is reducible in Fq [x]. Otherwise, let a1y ∈ Fq2 \ Fq be a root of

g. Then (a1y)q+1 = aq+1
1 , thus yq+1 = 1. By Lemma 3.1, f has nonzero roots.

It remains to show thatTrq2/q(a0)
2−4aq+1

1 �= 0.Assume to the contrary thatTrq2/q(a0)
2−

4aq+1
1 = 0.
Case 1. Assume that q is even. It follows that Trq2/q(a0) = 0. Write a1 = x2, where

x ∈ Fq2 , and let y = xq−1. Then a1y is a root of g, which leads to a contradiction.
Case 2. Assume that q is odd. Then a1y = −Trq2/q(a0)/2 is a root of g, and

yq+1 = Trq2/q(a0)
2

4aq+1
1

= 1,

which is impossible by Lemma 3.1. �

Remark When n = 2, if there is some L(X) such that (3.2) has no root in F
∗
q2
, then we can

define a presemifield multiplication ∗ over Fq2 via Theorem 2.1. Let S = (Fq2 ,+, �) be a
semifield which is isotopic to (Fq2 ,+, ∗).Wemay assume that � is defined by (1.1) and hence

S has identity 1. There are ai j ∈ Fq2 such that x ∗ y = ∑
i, j ai j x

qi yq
j
for all x, y ∈ Fq2 .

Thus there are bi j ∈ Fq2 such that x � y = ∑
i, j bi j x

qi yq
j
for all x, y ∈ Fq2 . It follows that

the center of S contains Fq . (For x ∈ Fq and y ∈ Fq2 , we have x � y = x(1 � y) = xy and
y � x = x(y � 1) = xy. This implies that Fq is contained in both the commutative center and
the nucleus of S.) Due to the classification of two-dimensional finite semifields by Dickson
[7], S is isotopic to a finite field.
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Theorem 3.3 Let q be a power of an odd prime and let L(X) = a1Xq2 + a0X ∈ Fq4 [X ]
with a1 �= 0. Then Trq4/q(L(X)/X) has no root in F

∗
q4

if and only if aq
2+1

1 is a square in F
∗
q

and Trq4/q(a0) = 0.

Proof Let b = Trq4/q(a0). Let x ∈ F
∗
q4

and set y := xq
2−1 and z := a1y + aq

2

1 /y. Then

Trq4/q(L(x)/x) = Trq4/q(a1x
q2−1 + a0)

= a1y + aq1 y
q + aq

2

1 /y + aq
3

1 /yq + Trq4/q(a0)

= z + zq + b.

=
(

z + b

2

)q

+
(

z + b

2

)

. (3.3)

Thus Trq4/q(L(x)/x) = 0 if and only if (z + b
2 )q−1 = −1 or 0, i.e., z = t − b

2 for some

t ∈ T := {t ∈ Fq4 : tq = −t} ⊂ Fq2 . Since z = a1y + aq
2

1 /y, we see that z = t − b
2 if and

only if

a1y
2 +

(
b

2
− t

)

y + aq
2

1 = 0. (3.4)

By the proof of Theorem 3.2, we see that {x ∈ F
∗
q4

: y = xq
2−1 satisfies (3.4)} �= ∅ if and

only if

g(X) := X2 +
(
b

2
− t

)

X + aq
2+1

1

has two distinct roots in Fq2 . Therefore, to sum up, Trq4/q(L(x)/x) has no root in F
∗
q4

if and
only if g(X) has two distinct roots in Fq2 for every t ∈ T . We now proceed to prove the “if”
and the “only if” portions of the theorem separately.

(⇐) Assume b = 0 and aq
2+1

1 is a square in F
∗
q . Then a

q2+1
1 �= t2 for all t ∈ T . Hence

� :=
(
b

2
− t

)2

− 4aq
2+1

1 = t2 − 4aq
2+1

1 ∈ F
∗
q .

It follows that g has two distinct roots in Fq2 .
(⇒) Assume that Trq4/q(L(X)/X) has no root in F

∗
q4
. We want to show

R1. b = 0, and

R2. aq
2+1

1 is a square in F
∗
q . Equivalently, a

q2+1
1 is in Fq and there is no t ∈ T such that

t2 = 4aq
2+1

1 .

Now we assume that � = ( b
2 − t

)2 − 4aq
2+1

1 �= 0 always has a square root in Fq2 for
every t ∈ T . Choose an element ξ of Fq2 \ Fq such that ξq−1 = −1. Then every element
of Fq2 can be written as z + wξ , where z, w ∈ Fq , and T = {xξ : x ∈ Fq}. We write

aq
2+1

1 = A1 + A2ξ . As � is always a square in F
∗
q2
, the equation

(z + wξ)2 = (xξ − b/2)2 − (A1 + A2ξ) (3.5)

in (z, w) has solutions for every x ∈ Fq . Expanding (3.5), we have
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Switchings of semifield multiplications 225

z2 + w2α = x2α + b2/4 − A1, (3.6)

2wz = −xb − A2, (3.7)

where α = ξ2 ∈ Fq .
If we can show that b = 0 and A2 = 0, then the proof is complete (R2 can be easily

derived from the condition that � �= 0). Suppose to the contrary that at least one of b and A2

is not 0. Then there exists at most one x = x0 ∈ Fq such that w = 0 by (3.7). Now assume
that w �= 0. From (3.7) we have

z = − xb + A2

2w
.

Plugging it into (3.6), we get

(xb + A2)
2

4w2 + w2α = x2α + b2

4
− A1,

i.e.,

α(w2)2 −
(

x2α + b2

4
− A1

)

w2 + (xb + A2)
2

4
= 0.

For every given x ∈ Fq \ {x0}, this equation always has a solution w in Fq . It follows that

f (x) =
(

x2α + b2

4
− A1

)2

− α(xb + A2)
2

is always a square in Fq . Let ψ be the multiplicative character of Fq of order 2, and for
convenience we set ψ(0) = 0. Then we have

∑

c∈Fq
ψ( f (c)) ≥ q − 6. (3.8)

On the other hand, by Theorem 5.41 in [19] (it is routine to verify all the conditions for f (x),
because (b, A2) �= (0, 0) and (A1, A2) �= (0, 0)), we have

∑

c∈Fq
ψ( f (c)) ≤ 3

√
q.

Therefore q − 6 ≤ 3
√
q, which means that q = 3, 5, 7, 9, 11, 13, 17, 19. We can use

MAGMA [3] to show that f (x) is not always a square for x ∈ Fq \ {x0} when q ≤ 19.
Hence b = A2 = 0, which completes the proof. �

Theorem 3.4 Let q be a power of an odd prime. Let a1 ∈ F
∗
q4

such that aq
2+1

1 is a square in

F
∗
q and let ã0 be an element in Fq4 such that Trq4/q(ã0) = −1. Define

x ∗ y = xy + Trq4/q(a1xy
q2 + ã0xy).

According to Theorems 2.1 and 3.3, (Fq4 ,+, ∗) forms a presemifield. Furthermore, it is
isotopic to a commutative semifield.

Proof According to Lemma 2.4, we only have to show that there exists some v such that

A(v ∗ x) ∗ y = A(v ∗ y) ∗ x

for every x , y ∈ Fq4 , where A is given by (2.4).
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Using the same notation as in Lemma 2.5, we set t = a1+ ã0 and s = −t/(1+Trq4/q(t)).
Now,

A(v ∗ x) = A(vx + Trq4/q(a1vx
q2 + ã0vx))

= vx + Trq4/q(a1vx
q2 + ã0vx) + Trq4/q

[
s(vx + Trq4/q(a1vx

q2 + ã0vx))
]

= vx + (1 + Trq4/q(s))Trq4/q(a1vx
q2 + ã0vx) + Trq4/q(svx)

= vx + Trq4/q(a1vx
q2 + ã0vx)

1 + Trq4/q(a1 + ã0)
− Trq4/q((a1 + ã0)vx)

1 + Trq4/q(a1 + ã0)

= vx + Trq4/q(a1vx
q2 − a1vx)

1 + Trq4/q(a1 + ã0)
.

For convenience, let r(x) denote A(v ∗ x) − vx . Then

A(v ∗ x) ∗ y = vxy + r(x)y + Trq4/q(a1vxy
q2 + ã0vxy) + r(x)Trq4/q(a1y

q2 + ã0y)

= vxy + Trq4/q(a1vx
q2 − a1vx)

1 + Trq4/q(a1 + ã0)
(y + Trq4/q(a1y

q2 + ã0y))

+ Trq4/q(a1vxy
q2 + ã0vxy).

It is not difficult to see that if v is an element in Fq4 such that a1v ∈ Fq2 , then A(v ∗ x) ∗ y =
A(v ∗ y) ∗ x , from which it follows that (Fq4 ,+, ∗) is isotopic to a commutative semifield. �

Theorem 3.5 Let q be a power of an odd prime. Let a1 ∈ F
∗
q4

such that aq
2+1

1 is a square

in F
∗
q and let ã0 be an element in Fq4 such that Trq4/q(ã0) = −1. Let x ∗ y be defined as in

Theorem 3.4, i.e.,

x ∗ y = xy + Trq4/q(a1xy
q2 + ã0xy).

Then the presemifield (Fq4 ,+, ∗) is isotopic to Dickson’s semifield.

Proof We have already shown in Theorem 3.4 that (Fq4 ,+, ∗) is isotopic to a commutative
semifield, which is denoted by S. Next we are going to prove that its middle nucleus Nm(S)

is of size q2 and its left nucleus Nl(S) is of size q . Furthermore, as S is commutative, we
have Nr (S) = Nl(S) . Due to the classification of semifields planes of order q4 with kernel
Fq2 and center Fq by Cardinali, Polverino and Trombetti in [4], (Fq4 ,+, ∗) is isotopic to
Dickson’s semifield.

To determine the middle and left nuclei of S, we need to introduce another presemifield
multiplication x ◦ y, which corresponds to the dual spread of the spread defined by x ∗ y.
(For more details on the dual spread, see [16].) Actually, x ◦ y is defined as

x ◦ y := xy + (a1y
q2 + ã0y)Trq4/q(x). (3.9)

It is straightforward to verify that Trq4/q(x(z ◦ y) − z(x ∗ y)) = 0. Let S
′ denote a semifield

which is isotopic to the presemifield defined by x ◦y. According to the interchanging of nuclei
of semifields in the so called Knuth orbit ([16] and [18, Sect. 1.4]), we have Nl(S

′) ∼= Nm(S)

and Nm(S′) ∼= Nl(S).
To determine Nl(S

′) and Nm(S′), we use the connection between certain homology groups
as described in [13, Theorem 8.2] and [14, Result 12.4]. To be precise, we want to find every
q-linearized polynomial A(X) over Fq4 such that for every y ∈ Fq4 , there is a y′ ∈ Fq4
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satisfying A(x) ◦ y = x ◦ y′ for every x ∈ Fq4 . The setM(S′) of all such A(X) is equivalent
to the middle nucleus Nm(S′).

First, it is routine to verify that A(X) = uX with u ∈ Fq is in M(S′). Next we show that
there are no other A(X) in M(S′).

Assume that

A(x)y + Trq4/q(A(x))(a1y
q2 + ã0y) = xy′ + Trq4/q(x)(a1y

′q2 + ã0y
′) (3.10)

holds for every x ∈ Fq4 .
Let x0 ∈ F

∗
q4

be such that Trq4/q(x0) = Trq4/q(A(x0)) = 0. Then

A(x0)y = x0y
′.

It means that y′ = uy holds for each y ∈ Fq4 , where u = A(x0)/x0. Plugging it into (3.10),
we have

A(x)y + Trq4/q(A(x))(a1y
q2 + ã0y) = uxy + Trq4/q(x)(a1(uy)

q2 + ã0uy).

From this equation we can deduce that

A(x) − ux + (Trq4/q(A(x)) − Trq4/q(x)u)ã0 = 0, (3.11)

(Trq4/q(A(x)) − Trq4/q(x)u
q2)a1 = 0. (3.12)

Since a1 �= 0, from (3.12) we see that

Trq4/q(A(x)) = uq
2
Trq4/q(x) (3.13)

for every x ∈ Fq4 . From (3.13) it follows that u ∈ Fq . Therefore, by (3.11), we have
A(x) = ux where u ∈ Fq . Hence |Nl(S)| = |Nm(S′)| = q .

Next we determine every q-linearized polynomial A(X) over Fq4 such that for every
y ∈ Fq4 , there is a y′ ∈ Fq4 satisfying A(x ◦ y) = x ◦ y′ for every x ∈ Fq4 . The set of all
such A(X) is equivalent to the left nucleus Nl(S

′).
Assume that

A(xy + Trq4/q(x)(a1y
q2 + ã0y)) = xy′ + Trq4/q(x)(a1y

′q2 + ã0y
′). (3.14)

It is readily verified that when A(X) = cX for some c ∈ Fq2 , (3.14) holds for all x and y in
Fq4 with y′ = cy. Hence Fq2 is a subfield contained in Nl(S

′). On the other hand, Nl(S
′) has

to be a proper subfield of Fq4 , for otherwise S
′ would be a finite field, which would lead to a

contradiction. Therefore, we have |Nm(S)| = |Nl(S
′)| = q2, which completes the proof. �

Theorem 3.6 Let q be a power of a prime and let u, v be elements in F
∗
q3

such that

Nq3/q(−v/u) �= 1. For every β ∈ B, where

B :=
{
x ∈ Fq3 : Trq3/q(uq

2
vq x) = uq

2+q+1 + vq
2+q+1

}
,

the equation

uxq
2−1 + vxq−1 + β = 0 (3.15)

has no solution in F
∗
q3
. Let L(X) := uq

2
vq(uaq

2−1Xq2 +vaq−1Xq + θX), where θ ∈ B and

a ∈ F
∗
q3
. Then the polynomial Trq3/q(L(X)/X) has no root in F

∗
q3
.
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Proof When β = 0, (3.15) becomes xq−1(uxq(q−1) + v) = 0. If there exists x ∈ F
∗
q3

such that uxq(q−1) + v = 0, then Nq3/q(−v/u) = Nq3/q(x
q(q−1)) = 1, which leads to a

contradiction.
Now suppose β �= 0. Assume to the contrary that (3.15) has a solution x ∈ F

∗
q3
. Let

y := xq−1. Then we have uyq+1 + vy + β = 0. It follows that

yq = −vy − β

uy
, (3.16)

and

yq
2 = vq(vy + β) − βquy

−uq(vy + β)
.

Hence

yq
2
yq y = vq(vy + β) − βquy

uq+1 ,

which is equal to 1 since y = xq−1. Therefore,

(vq+1 − βqu)y + vqβ = uq+1. (3.17)

Suppose that uβq = vq+1. Then uq
2
vqβ = vq

2+1vq , and Trq3/q(u
q2vqβ) = 3vq

2+q+1. On

the other hand, we also have uq+1 = vqβ from (3.17). It follows that Trq3/q(u
q2vqβ) =

3uq
2+q+1. All together with β ∈ B, we have that

uq
2+q+1 + vq

2+q+1 = 3vq
2+q+1 = 3uq

2+q+1,

which can not holds for 3 � q . Moreover, if 3 | q , then uq
2+q+1 = −vq

2+q+1 which
contradicts the assumption that Nq3/q(−v/u) �= 1. Hence uβq �= vq+1.

Since uβq �= vq+1, from (3.17) we obtain

y = uq+1 − vqβ

vq+1 − βqu
. (3.18)

Plugging (3.18) into (3.16), we have

uq
2+q − vq

2
βq

vq
2+q − βq2uq

= vuq − βq+1

vqβ − uq+1 .

Hence

uq
2+qvqβ − uq

2+2q+1 + uq+1vq
2
βq − vq

2+qβq+1

= vq
2+q+1uq − βq2vu2q − vq

2+qβq+1 + βq2+q+1uq .

Dividing it by uq , we have

βq2+q+1 − (uqvβq2 + uvq
2
βq + uq

2
vqβ) + uq

2+q+1 + vq
2+q+1 = 0.

It follows from Trq3/q(u
q2vqβ) = uq

2+q+1 + vq
2+q+1 that

βq2+q+1 = 0.

Hence β = 0, which is a contradiction. Therefore, (3.15) has no solution in F
∗
q3
.

123



Switchings of semifield multiplications 229

Furthermore, if Trq3/q(L(X)/X) has a root x0 ∈ F
∗
q3
, then uq

2
vq(u(ax0)q

2−1 +
v(ax0)q−1 + θ) = γ for some γ ∈ Fq3 satisfying Trq3/q(γ ) = 0. We write γ as γ = uq

2
vqτ

for some τ ∈ Fq3 . Then θ − τ ∈ B and

u(ax0)
q2−1 + v(ax0)

q−1 + θ − τ = 0,

which contradicts the fact that (3.15) has no solution in F
∗
q3
. �

For given u and v, it is not difficult to see that for different a, we obtain isotopic semifields
via Theorem 3.6: Let the multiplication corresponding to a = 1 be xy + B(x, y). Then for
other a ∈ F

∗
q3
, the semifield multiplication is xy + B(x/a, ay). Furthermore, when u = v

and a = 1, it follows from Lemma 2.3 that the presemifield P derived from L(x) in Theorem
3.6 is commutative. It is worth noting that, up to isotopism, we can obtain non-commutative
semifields via Theorem 3.6. For instance, let q = 4 and let ξ be a primitive element of Fq3

which is a root of X6 + X4 + X3 + X + 1. Setting u = ξ5, v = ξ and β = ξ62, we can use
Lemma 2.4 and computer to show that the presemifield P derived from Theorem 3.6 is not
isotopic to a commutative one.

According to the classification of semifields of order q3 with center containing Fq in [21],
the presemifield obtained via Theorem 3.6 is either finite field or generalized twisted field.

Besides all the L’s described in this section, we did not find any other examples. Thus we
propose the following question:

Question 3.7 For n > 4, is there a q-linearized polynomial L(X) = ∑n−1
i=0 ai Xqi ∈ Fqn [X ]

with (a1, . . . , an−1) �= (0, . . . , 0) satisfying (2.3)?

4 Switchings of F pn for large n

The main result of this section is a negative answer to Question 3.7 when q = p (prime) and
n is large.

Theorem 4.1 Let q = p, where p is a prime, and assume n ≥ 1
2 (p − 1)(p2 − p + 4). If

L(X) = ∑n−1
i=0 ai X pi ∈ Fpn [X ] satisfies (2.3), i.e.,

Tr pn/p
(
L(x)/x

) �= 0 for all x ∈ F
∗
pn ,

then a1 = · · · = an−1 = 0.

In 1971, Payne [22] considered a similar problem which calls for the determination of all
2-linearized polynomials L = ∑n−1

i=0 ai X2i ∈ F2n [X ] such that both L(X) and L(X)/X are
permutation polynomials of F2n . Such linearized polynomials give rise to translation ovoids
in the projective plane PG(2, F2n ) [23]. Payne later solved the problem by showing that such
linearized polynomials can have only one term [23]. For a different proof of Payne’s theorem,
see [11, Sect. 8.5]. For the q-ary version of Payne’s theorem, see [12].

4.1 Preliminaries

Let L(X) = ∑n−1
i=0 ai Xqi ∈ Fqn [X ]. For x ∈ F

∗
qn , we have

Trqn/q

(
L(x)

x

)

= Trqn/q

(
n−1∑

i=0

ai x
qi−1

)

=
∑

0≤i, j≤n−1

aq
j

i xq
j (qi−1).
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Therefore (2.3) is equivalent to
⎡

⎣
∑

0≤i, j≤n−1

aq
j

i Xq j (qi−1)

⎤

⎦

q−1

≡ Trqn/q(a0)
q−1 + [

1 − Trqn/q(a0)
q−1] Xqn−1

(mod Xqn − X). (4.1)

Let � = {0, 1, . . . , qn − 1} and �0 = {0, 1, . . . , qn−1
q−1 }. For α, β ∈ �0, define α ⊕ β ∈ �0

such that α ⊕ β ≡ α + β (mod qn−1
q−1 ) and

α ⊕ β =
{
0 if α = β = 0,
qn−1
q−1 if α + β ≡ 0 (mod qn−1

q−1 ) and (α, β) �= (0, 0).

For d0, . . . , dn−1 ∈ Z, we write

(d0, . . . , dn−1)q =
n−1∑

i=0

diq
i .

When q is clear from the context, we write (d0, . . . , dn−1)q = (d0, . . . , dn−1). For j, i ∈ Z,
i ≥ 0, let

s( j, i) = (
0
0 · · · 0

j
1 · · · 1︸ ︷︷ ︸

i

0 · · · n−1
0 )q ,

where the positions of the digits are labeled modulo n and the string of 1’s may wrap around.
For example, with n = 4,

s(1, 3) = (0 1 1 1), s(3, 2) = (1 0 0 1).

Note that

s( j, i) ≡ q j q
i − 1

q − 1
(mod qn − 1).

For each α ∈ �0, let C(α) denote the coefficient of Xα(q−1) in the left side of (4.1) after
reduction modulo Xqn − X . Then we have

C(α) =
∑

0≤ j1,i1,..., jq−1,iq−1≤n−1
s( j1,i1)⊕···⊕s( jq−1,iq−1)=α

q−1∏

k=1

aq
jk

ik
. (4.2)

Let

S = {s( j, i) : 0 ≤ j ≤ n − 1, 1 ≤ i ≤ n − 1}.
If C(α) = 0, we can derive from (4.2) useful information about ai ’s if we know the possible
ways to express α as an ⊕ sum of q − 1 elements (not necessarily distinct) of S ∪ {0}.

Let α = (d0, . . . , dn−1)q ∈ �, where 0 ≤ di ≤ q−1. If di > di−1 (di < di−1), where the
subscripts are taken modulo n, we say that i is an ascending (descending) position of α with
multiplicity |di − di−1|. The multiset of ascending (descending) positions of α is denoted by
Asc(α) (Des(α)). The multiset cardinality |Asc(α)| (= |Des(α)|) is denoted by asc(α). For
example, if α = (2 0 1 1 3 0), then

Asc(α) = {0, 0, 2, 4, 4}, Des(α) = {1, 1, 5, 5, 5}, asc(α) = 5.
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Assume that α ∈ � has asc(α) = q − 1. Then α cannot be a sum of less than q − 1 elements
(not necessarily distinct) of S. Moreover, if

α = s( j1, i1) + · · · + s( jq−1, iq−1),

where 0 ≤ j1, . . . , jq−1 ≤ n − 1 and 1 ≤ i1, . . . , iq−1 ≤ n − 1, we must have
{ j1, . . . , jq−1} = Asc(α) and { j1 + i1, . . . , jq−1 + iq−1} = Des(α), where jk + ik is taken
modulo n.

4.2 Proof of Theorem 4.1

Lemma 4.2 Let q = p,where p is a prime, and assume L = ∑n−1
i=0 ai X pi ∈ Fpn [X ] satisfies

(2.3). Then for all 1 ≤ i1 < · · · < i p−1 and 0 ≤ tp−2 ≤ · · · ≤ t1 with i p−1 + t1 ≤ n − 2, we
have

∑

τ

p−1∏

k=1

a pi p−1−i p−k

i p−k+τ(p−k) = 0, (4.3)

where (τ (1), . . . , τ (p − 1)) runs through all permutations of (t1, . . . , tp−2, 0).

Proof Let
α = (

i p−1−i p−2
︷ ︸︸ ︷
1 · · · 1 · · ·

i2−i1
︷ ︸︸ ︷
p − 2 · · · p − 2

i1
︷ ︸︸ ︷
p − 1 · · · p − 1

p − 2 · · · p − 2
︸ ︷︷ ︸

tp−2

p − 3 · · · p − 3
︸ ︷︷ ︸

tp−3−tp−2

· · · 1 · · · 1︸ ︷︷ ︸
t1−t2

0 · · · 0︸ ︷︷ ︸
n−i p−1−t1

≥2

) ∈ �0.

For 1 ≤ k ≤ p − 2, we have

α + (k · · · k) = (

i p−1
︷ ︸︸ ︷
k+1 · · · k+1 · · · p−1 · · · p − 1 0 1 · · · 1 · · ·

t1
︷ ︸︸ ︷
· · · d

n−i p−1−t1
︷ ︸︸ ︷
e k · · · k︸ ︷︷ ︸

≥1

),

where e = k + 1 or k, depending on whether it receives a carry from the preceding digit. If
e = k + 1, then asc(α + (k · · · k)) ≥ p − 1 − k + k + 1 = p. If e = k, then t1 > 0 and
d ≥ k + 1, which also implies that asc(α + (k · · · k)) ≥ p. Therefore α + (k · · · k) is not
a sum of ≤ p − 1 elements (not necessarily distinct) of S, i.e., not a sum of p − 1 elements
(not necessarily distinct) of S ∪ {0}.

On the other hand, we have asc(α) = p − 1 and

Asc(α) = {0, i p−1 − i p−2, . . . , i p−1 − i1},
Des(α) = {i p−1, i p−1 + tp−2, . . . , i p−1 + t1}.

Therefore, the only possible ways to express α as a sum of p − 1 elements (not necessarily
distinct) of S ∪ {0} are

α = s(0, i p−1 + τ(p − 1)) + s(i p−1 − i p−2, i p−2 + τ(p − 2))

+ · · · + s(i p−1 − i1, i1 + τ(1)),

where (τ (1), . . . , τ (p − 1)) is a permutation of (t1, . . . , tp−2, 0). Together with the fact that
for 1 ≤ k ≤ p − 2, α + (k · · · k) is not a sum of p − 1 elements (not necessarily distinct)
of S ∪ {0}, we have proved that

α = α1 ⊕ · · · ⊕ αp−1, αi ∈ S ∪ {0},
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if and only if

{α1, . . . , αp−1} = {
s(0, i p−1 + τ(p − 1)), s(i p−1 − i p−2, i p−2 + τ(p − 2)),

. . . , s(i p−1 − i1, i1 + τ(1))
}
,

where (τ (1), . . . , τ (p − 1)) is a permutation of (t1, . . . , tp−2, 0).
Now we have

0 = C(α) (by (4.1))

= (p − 1)!
∑

τ

p−1∏

k=1

a pi p−1−i p−k

i p−k+τ(p−k) (by (4.2)), (4.4)

which gives (4.3). �
Proof of Theorem 4.1 1◦ We first show that for all 1 ≤ k ≤ p − 1 and

1 +
k−1∑

j=0

j ≤ ik < · · · < i p−1 ≤ n − k − 1,

we have

aik · · · aip−1 = 0.

We use induction on k. When k = 1, the conclusion follows from Lemma 4.2 with tp−2 =
· · · = t1 = 0.Assume 2 ≤ k ≤ p−1. In Lemma4.2, let t1 = k−1, t2 = k−2, . . . , tk−1 = 1,
tk = · · · = tp−2 = 0, ik−1 = ik − 1, ik−2 = ik − 2, . . . , i1 = ik − (k − 1), and note that
i p−1 + t1 = i p−1 + k − 1 ≤ n − 2. We have

∑

τ

p−1∏

j=1

a∗
i j+τ( j) = 0, (4.5)

where (τ (1), . . . , τ (p − 1)) runs through all permutations of (k − 1, k − 2, . . . , 1, 0, . . . , 0)
and the ∗’s are suitable powers of p. (In general, we use a ∗ to denote a positive integer
exponent whose exact value is not important.) Multiplying (4.5) by aik · · · aip−1 gives

a∗
ik · · · a∗

i p−1
+

∑

τ
(τ (1),...,τ (k−1))�=(k−1,...,1)

aik · · · aip−1

p−1∏

j=1

a∗
i j+τ( j) = 0. (4.6)

When (τ (1), . . . , τ (k−1)) �= (k−1, . . . , 1), at least one of i1 + τ(1), . . . , i p−1 + τ(p−1),
say i ′k−1, is less than ik . Also note that i

′
k−1 ≥ i1 = ik − (k − 1) ≥ 1+ 1+ 2+ · · ·+ (k − 2).

Therefore by the induction hypothesis, ai ′k−1
aik · · · aip−1 = 0. Thus the

∑
in (4.6) equals 0,

which gives aik · · · aip−1 = 0.
2◦ Let k = p − 1 in 1◦. We have

ai = 0 for all 1 + 1

2
(p − 2)(p − 1) ≤ i ≤ n − p.

3◦ We claim that

ai = 0 for all 1 ≤ i ≤ 1

2
(p − 2)(p − 1).
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Assume to the contrary that this is not true. Let 1 ≤ l ≤ 1
2 (p − 2)(p − 1) be the largest

integer such that al �= 0. Let

α = (1 · · · 1︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
p+1

1 · · · 1︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
p+1

· · · 1 · · · 1︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
p+1

︸ ︷︷ ︸
p−1 copies

0 · · · 0) ∈ �0.

(Here we used the assumption that n ≥ (p−1)
[ 1
2 (p−2)(p−1)+ p+1

]
.) For 0 ≤ k ≤ p−2,

we have asc(α + (k · · · k)) = p − 1 and

Asc
(
α + (k · · · k)

) = {
0, l + p + 1, 2(l + p + 1), . . . , (p − 2)(l + p + 1)

}
,

Des
(
α + (k · · · k)

) = {
l, l + p + 1 + l, 2(l + p + 1) + l, . . . , (p − 2)(l + p + 1) + l

}
.

If α + (k · · · k) is expressed as a sum of p − 1 elements (not necessarily distinct) of S, the
expression must be of the form

α + (k · · · k) = s(0, i1) + s(l + p + 1, i2) + · · · + s((p − 2)(l + p + 1), i p−1), (4.7)

where i1, . . . , i p−1 ∈ {1, . . . , n − 1}, and in modulus n
{
i1, l + p + 1 + i2, . . . , (p − 2)(l + p + 1) + i p−1

}

= {
l, l + p + 1 + l, 2(l + p + 1) + l, . . . , (p − 2)(l + p + 1) + l

}
. (4.8)

We further require ai1 · · · aip−1 �= 0, which implies that i1, . . . , i p−1 ∈ {1, . . . , l}∪ {n− p+
1, . . . , n − 1}. It follows from (4.8) that i1 = · · · = i p−1 = l. Thus we have

0 = C(α) (by (4.1))

= (p − 1)! a p0

l a pl+p+1

l · · · a p(p−2)(l+p+1)

l (by (4.2) and (4.7)), (4.9)

which is a contradiction.
4◦ Finally, we claim that

ai = 0 for all n − p + 1 ≤ i ≤ n − 1.

For x ∈ F
∗
pn ,

Tr pn/p
(
L(x−1)/x−1) = Tr pn/p

(
n−1∑

i=0

ai x
1−pi

)

= Tr pn/p

(
n−1∑

i=0

a pn−i

i x pn−i−1

)

= Tr pn/p

(
n−1∑

i=0

a pi

n−i x
pi−1

)

,

where an = a0. Thus L1(X) := ∑n−1
i=0 a pi

n−i X
pi also satisfies (2.3). By 2◦ and 3◦, an−i = 0

for all 1 ≤ i ≤ n − p, i.e., ai = 0 for all p ≤ i ≤ n − 1. Since p ≤ n − p − 1, the claim is
proved. �

It appears that the assumption that n ≥ 1
2 (p − 1)(p2 − p + 4) in Theorem 4.1 may be

weakened.On the other hand,whenq is not a prime, the proofs ofLemma4.2 andTheorem4.1
fail for the following reason: In (4.4) and (4.9), (p − 1)! is replaced by (q − 1)!, which is 0
in Fq . When q = pe, (4.1) becomes
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⎡

⎣
e−1∏

k=0

∑

0≤i, j≤n−1

a pkq j

1 X pkq j (qi−1)

⎤

⎦

p−1

≡ Trqn/q(a0)q−1 +
[
1 − Trqn/q(a0)q−1

]
Xqn−1

(mod Xqn − X).

The question is how to decipher this equation.

5 A connection to some cyclic codes for general Fq

In this section we prove certain necessary conditions for a q-linearized polynomials L(X) ∈
Fqn [X ] to satisfy Trqn/q(L(x)/x) �= 0 for all x ∈ F

∗
qn , where q is a prime power. In particular,

we give a natural connection to some cyclic codes. There is also a connection of such cyclic
codes to some algebraic curves. In the next section, we will use this connection to algebraic
curves to get some necessary conditions for such q-linearized polynomials L(X) ∈ Fqn [X ].

If L(X) = a0X ∈ Fqn [X ], then Trqn/q(L(x)/x) �= 0 for all x ∈ F
∗
qn if and only if

Trqn/q(a0) �= 0. Hence we assume that L(X) = a0X + a1Xq + · · · + an−1Xqn−1 ∈ Fqn [X ]
with (a1, a2, . . . , an−1) �= (0, 0, . . . , 0).

First we recall some notation and basic facts from coding theory (see, for example, [20]).
Let N = qn − 1. A code of length N over Fq is just a nonempty subset of F

N
q . It is called a

linear code if it is a vector space over Fq . The set C⊥ of all N -tuples in F
N
q orthogonal to all

codewords of a linear code C with respect to the usual inner product on F
N
q is called the dual

code of C . The Hamming weight of an arbitrary N -tuple u = (u0, u1, . . . , uN−1) ∈ F
N
q is

||u|| = |{0 ≤ i ≤ N − 1 : ui �= 0}|.
A cyclic code of length N over Fq is an ideal C of the quotient ring R = Fq [X ]/〈XN − 1〉.
Here a codeword (c0, c1, . . . , cN−1) ∈ F

N
q of C corresponds to an element c0 + c1X + · · ·+

cN−1XN−1+〈XN −1〉 ∈ C . All ideals of R are principal. Themonic polynomial g(X) of the
least degree such thatC = 〈g(X)〉/〈XN−1〉 is called thegeneratorpolynomial ofC . The dual
C⊥ is cyclic with generator polynomial Xdeg hh(X−1)/h(0), where h(X) = (XN −1)/g(X).

If θ ∈ Fqn is a root of g(X), then so is θq . A set B ⊂ Fqn is called a basic zero set of C if
both of the following conditions are satisfied:

• {θqi : θ ∈ B, 0 ≤ i ≤ n − 1} is the set of the roots of g(X).

• If θ1, θ2 ∈ B with θ
qi

1 = θ2 for some integer i , then θ1 = θ2.

The following proposition gives a natural connection to some cyclic codes. Some argu-
ments in its proof will also be used in the next section.

Proposition 5.1 Let γ be a primitive element of F
∗
qn . Let C be the cyclic code of length

N = qn − 1 over Fq whose dual code C⊥ has
{
1, γ q−1, γ q2−1, . . . , γ qn−1−1

}

as a basic zero set. We have the following: There exists a q-linearized polynomial L(X) =
a0X + a1Xq + · · · + an−1Xqn−1 ∈ Fqn [X ] with (a1, a2, . . . , an−1) �= (0, 0, . . . , 0) such
that Trqn/q(L(x)/x) �= 0 for all x ∈ F

∗
qn if and only if the cyclic code C has a codeword

(c0, c1, . . . , cN−1) of Hamming weight N such that (c0, c1, . . . , cN−1) �= u(1, 1, . . . , 1) for
any u ∈ F

∗
q . Moreover the dimension of C over Fq is n2 − n + 1.
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Proof We first show that {1, γ q−1, γ q2−1, . . . , γ qn−1−1} is a basic zero set. This means that
the exponents 0, q−1, q2−1, . . . , qn−1−1 are in distinct q-cyclotomic cosetsmodulo qn−1.
For 0 ≤ d < qn−1, letψ(d) be the base q digits of d , i.e.,ψ(d) = (d0, d1, . . . , dn−1), where
0 ≤ di ≤ q − 1 are integers such that d = ∑n−1

i=0 diqi . Let 0, q − 1, q2 − 1, . . . , qn−1 − 1
denote the q-cyclotomic cosets of 0, q − 1, q2 − 1, . . . , qn−1 − 1 modulo qn − 1. Their
images under ψ are

ψ(0) = {(0, 0, . . . , 0)},

ψ(q − 1)={(q − 1, 0, 0, . . . , 0), (0, q − 1, 0, . . . , 0), . . . , (0, 0, , . . . , 0, q − 1)},

ψ(q2 − 1)={(q−1, q−1, 0, . . . , 0), (0, q−1, q−1, . . . , 0), . . . , (q−1, 0, . . . , 0, q−1)},
...

ψ(qn−1 − 1) = {(q − 1, . . . , q − 1, 0), (0, q − 1, . . . , q − 1), . . . ,
(q − 1, . . . , q − 1, 0, q − 1)}.

Note that the elements in each row are obtained via cyclic shifts of the first element of the row.
This proves that 0, q − 1, q2 − 1, . . . , qn−1 − 1 are in distinct q-cyclotomic cosets modulo
qn − 1. Moreover the cardinality of the union of their q-cyclotomic cosets modulo qn − 1 is

1 + (n − 1)n = n2 − n + 1.

Therefore the dimensions of C is n2 − n + 1. Finally using Delsarte’s Theorem [26, Theo-
rem 9.1.2] we obtain that the codewords of C in F

N
q are

C =
{
(
Trqn/q

(
a0 + a1x

q−1 + · · · + an−1x
qn−1−1

))

x∈F∗
qn

: a0, a1, . . . , an−1 ∈ Fqn

}

.

Note that Trqn/q(L(x)/x) = u for all x ∈ F
∗
qn if and only if Trqn/q(L(X)/X) ≡ u

(mod Xqn − X), from which it follows that (a1, a2, . . . , an−1) = (0, 0, . . . , 0). This com-
pletes the proof. �

6 Some conditions via the Hasse–Weil–Serre bound for general Fq

In this section we obtain some necessary conditions for the q-linearized polynomials L(X) ∈
Fqn [X ] such that Trqn/q(L(x)/x) �= 0 for all x ∈ F

∗
qn .

The Hasse–Weil–Serre bound for algebraic curves over finite fields implies upper and
lower bounds on the Hamming weights of codewords of cyclic codes (see [10,28]). Using
this method we obtain Theorem 6.1.

First we introduce further notations. Let Res : Z → {0, 1, . . . , qn − 2} be the map such
that Res ( j) ≡ j (mod qn − 1). Put q = pm with m ≥ 1, where p is the characteristic of
Fq . Let Lead : {0, 1, . . . , pmn − 2} → {0, 1, . . . , pmn − 2} be the map sending j to the
smallest integer k in {0, 1, . . . , pmn−2} such that k ≡ j pu (mod pmn − 1) for some integer
u ≥ 0. In other words, Lead( j) is the smallest nonnegative integer in the p-cyclotomic coset
of j modulo pmn − 1. It is important to note that if 0 < j < pmn − 1, then Lead( j) is a
nonnegative integer which is coprime to p.

Theorem 6.1 Let L(X) = a0X + a1Xq + · · · + an−1Xqn−1 ∈ Fqn [X ] be a q-linearized
polynomialwith (a1, . . . , an−1) �= (0, . . . , 0). For each 1 ≤ j ≤ qn−2with gcd( j, qn−1) =
1, let
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( j) = max{Lead(Res ( j (qi − 1))) : 1 ≤ i ≤ n − 1 and ai �= 0}.
Moreover, let

 = min
j

( j), (6.1)

where the minimum is over all integers 1 ≤ j ≤ qn − 2 with gcd( j, qn − 1) = 1. Then we
have the following:

• Case Trqn/q(a0) �= 0: If

qn + 1 − (q − 1)( − 1)

2
�2qn/2� > 1, (6.2)

then it is impossible that Trqn/q(L(x)/x) �= 0 for all x ∈ F
∗
qn .• Case Trqn/q(a0) = 0: If

qn + 1 − (q − 1)( − 1)

2
�2qn/2� > q + 1, (6.3)

then it is impossible that Trqn/q(L(x)/x) �= 0 for all x ∈ F
∗
qn .

Proof If γ is a primite element of F
∗
qn , then γ j is also a primitive element of F

∗
qn for all

1 ≤ j ≤ qn − 2 with gcd( j, qn − 1) = 1. Note that

Trqn/q(L(x)/x) = Trqn/q
(
a0 + a1x

q−1 + · · · + an−1x
qn−1−1

)
�= 0 for all x ∈ F

∗
qn ,

if and only if

Trqn/q(L(x j )/x j ) = Trqn/q(a0 + a1x
j (q−1) + · · · + an−1x

j (qn−1−1)) �= 0 for all x ∈ F
∗
qn .

Moreover, x j (qi−1) = xRes ( j (qi−1)) for x ∈ F
∗
qn , 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ qn − 2.

Recall that  is defined in (6.1). We choose and fix an integer 1 ≤ j ≤ qn − 2 with
gcd( j, qn − 1) = 1 such that  = ( j).

Let at1 , . . . , ats be the nonzero coefficients among a1, . . . , an−1. (Note that s ≥ 1 since
(a1, . . . , an−1) �= (0, . . . , 0).) Since 0, qt1 −1, . . . , qts −1 belong to different p-cyclotomic
cosetsmoduloqn−1 and gcd( j, qn−1) = 1,we have that 0, j (qt1−1), . . . , j (qts −1) belong
to different p-cyclotomic cosetsmodulo qn−1. ThusRes ( j (qti −1)) = ji pui , where ui ≥ 0,
p � ji , 1 ≤ i ≤ s, and j1, . . . , js are distinct. We may assume 0 < j1 < j2 < · · · < js = .
We have

a0 + a1X
Res ( j (q−1)) + · · · + an−1X

Res ( j (qn−1−1)) = a0 + b1X
j1 pu1 + · · · + bs X

js pus ,

where bi = ati , 1 ≤ i ≤ s.
Let χ be the Artin-Shreier type algebraic curve over Fqn given by

χ : Yq − Y = a0 + b1X
j1 pu1 + · · · + bs X

js pus.

Let S ⊂ F
∗
pmn be a complete set of coset representatives of F

∗
p in F

∗
pmn . For μ ∈ S, let χμ be

the Artin-Shreier type algebraic curve over Fqn given by

χμ : Y p − Y = μ
(
a0 + b1X

j1 pu1 + · · · + bs X
js pus

)
.

Note that χμ is a degree p covering of the projective line. Using [9, Theorem 2.1] the genus
g(χ) of χ is computed in terms of the genera of χμ as

g(χ) =
∑

μ∈S
g(χμ). (6.4)
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Now we determine the genus g(χμ) of χμ. We choose and fix μ ∈ S. Let c1, c2, . . . , cs ∈
F

∗
pmn be such that

cp
u1

1 = μb1, cp
u2

2 = μb2, . . . , cp
us

s = μbs .

Let χ ′
μ be the Artin-Schreier type algebraic curve over Fqn given by

χ ′
μ : Y p − Y = μa0 + c1X

j1 + · · · + cs X
js .

We observe that χμ and χ ′
μ are birationally isomorphic and hence the genera g(χμ) and

g(χ ′
μ) are the same. Indeed, if u1 ≥ 1, then

Y p − Y = μa0 + cp
u1

1 X j1 pu1 + cp
u2

2 X j2 pu2 + · · · + cp
us

s X js pus

= μa0 +
(
cp

u1−1

1 X j1 pu1−1
)p + cp

u2

2 X j2 pu2 + · · · + cp
us

s X js pus

and hence
[
Y −

(
cp

u1−1

1 X j1 pu1−1
)]p −

[
Y −

(
cp

u1−1

1 X j1 pu1−1
)]

= μa0 + cp
u1−1

1 X j1 pu1−1 + cp
u2

2 X j2 pu2 + · · · + cp
us

s X js pus .

This gives a birational isomorphism between χμ and the curve given by

Y p − Y = μa0 + cp
u1−1

1 X j1 pu1−1 + cp
u2

2 X j2 pu2 + · · · + cp
us

s X js pus .

By induction on u1 we obtain a birational isomorphism between χμ and the curve given by

Y p − Y = μa0 + c1X
j1 + cp

u2

2 X j2 pu2 + · · · + cp
us

s X js pus .

Applying the same method to the monomials cp
u2

2 X j2 pu2 , . . . , cp
us

s X js pus we conclude that
the curves χμ and χ ′

μ are birationally isomorphic.
Recall that the integers 0, j1, . . . , js are in distinct p-cyclotomic cosets modulo qn − 1.

As cs �= 0 and gcd( js, p) = 1 we obtain that χ ′
μ is absolutely irreducible over Fqn . Moreover

s ≥ 1 and js = . Hence by [26, Proposition 3.7.8] we have

g(χμ) = g(χ ′
μ) = (p − 1)( − 1)/2,

which is independent from the choice of μ ∈ S. Using (6.4) for the genus g(χ) of χ we
obtain that

g(χ) =
∑

μ∈S
g(χμ) = |S|(p − 1)( − 1)/2 = (q − 1)( − 1)/2.

Assume that Trqn/q(L(x)/x) �= 0 for all x ∈ F
∗
qn . The number N (χ) of Fqn -rational

points of χ is

N (χ) = 1 + q|{x ∈ Fqn : Tr(L(x)/x) = 0}| =
{

1 if Trqn/q(a0) �= 0,
q + 1 if Trqn/q(a0) = 0.

(6.5)

TheHasse–Weil–Serre lower bound on N (χ) (see, for example, [26, Theorem 5.3.1]) implies
that

N (χ) ≥ qn + 1 − (q − 1)( − 1)

2
�2qn/2�. (6.6)

Combining (6.2), (6.3), (6.5) and (6.6), we complete the proof. �
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The following corollary, which is a restatement of Theorem 6.1, shows that the distribution
of the nonzero coefficients of a q-linearized polynomial L satisfying Trqn/q(L(x)/x) �= 0
for all x ∈ F

∗
qn is subject to certain restrictions.

Corollary 6.2 Let L(X) = a0X + a1Xq + · · · + an−1Xqn−1 ∈ Fqn [X ] be a q-linearized
polynomial with (a1, . . . , an−1) �= (0, . . . , 0). Assume that Trqn/q(L(x)/x) �= 0 for all
x ∈ F

∗
qn . Then for each integer 1 ≤ j ≤ qn − 2 with gcd( j, qn − 1) = 1 we have the

following:

(i) If Trqn/q(a0) �= 0, there exits 1 ≤ i ≤ n − 1 such that ai �= 0 and

Lead(Res ( j (qi − 1))) ≥ 1 +
⌈

2qn

(q − 1)�2qn/2�
⌉

.

(ii) If Trqn/q(a0) = 0, there exits 1 ≤ i ≤ n − 1 such that ai �= 0 and

Lead(Res ( j (qi − 1))) ≥ 1 +
⌈

2(qn − q)

(q − 1)�2qn/2�
⌉

.
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