

Switchings of semifield multiplications

Xiang-dong Hou¹ · Ferruh Özbudak² · Yue Zhou³

Received: 15 July 2014 / Revised: 1 April 2015 / Accepted: 7 April 2015 / Published online: 5 May 2015 © Springer Science+Business Media New York 2015

Abstract Let $B(X, Y)$ be a polynomial over \mathbb{F}_{q^n} which defines an \mathbb{F}_q -bilinear form on the vector space \mathbb{F}_{q^n} , and let ξ be a nonzero element in \mathbb{F}_{q^n} . In this paper, we consider for which *B*(*X*, *Y*), the binary operation $xy + B(x, y)$ ξ defines a (pre)semifield multiplication on \mathbb{F}_{q^n} . We prove that this question is equivalent to finding *q*-linearized polynomials $L(X) \in \mathbb{F}_{q^n}[X]$ such that $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$. For $n \leq 4$, we present several families of $L(X)$ and we investigate the derived (pre)semifields. When q equals a prime p , we show that if $n > \frac{1}{2}(p-1)(p^2 - p + 4)$, $L(X)$ must be $a_0 X$ for some $a_0 \in \mathbb{F}_{p^n}$ satisfying $\text{Tr}_{q^n/q}(a_0) \neq 0$. Finally, we include a natural connection with certain cyclic codes over finite fields, and we apply the Hasse–Weil–Serre bound for algebraic curves to prove several necessary conditions for such kind of *L*(*X*).

Keywords Cyclic code · Finite field · Linearized polynomial · Semifield · The Hasse–Weil–Serre bound

Mathematics Subject Classification 11T55 · 12E20 · 12K10 · 14H05 · 94B15

Communicated by S. Ball.

 \boxtimes Yue Zhou yue.zhou.ovgu@gmail.com

> Xiang-dong Hou xhou@usf.edu

Ferruh Özbudak ozbudak@metu.edu.tr

¹ Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

² Department of Mathematics and the Institute of Applied Mathematics, Middle East Technical University, Dumlupınar Bulvarı No. 1, 06800 Ankara, Turkey

³ College of Science, National University of Defense Technology, Yanwachi Street No. 137, Changsha 410073, China

1 Introduction

A *semifield* S is an algebraic structure satisfying all the axioms of a skewfield except (possibly) the associativity. In other words, it satisfies the following axioms:

 $(S1)$ $(S, +)$ is a group, with identity element 0;

(S2) $(\mathbb{S} \setminus \{0\}, *)$ is a quasigroup;

- (S3) $0 * a = a * 0 = 0$ for all *a*;
- (S4) The left and right distributive laws hold, namely for any $a, b, c \in \mathbb{S}$,

$$
(a + b) * c = a * c + b * c,
$$

$$
a * (b + c) = a * b + a * c;
$$

(S5) There is an element $e \in \mathbb{S}$ such that $e * x = x * e = x$ for all $x \in \mathbb{S}$.

A finite field is a trivial example of a semifield. Furthermore, if S does not necessarily have a multiplicative identity, then it is called a *presemifield*. For a presemifield $\mathcal{S}, (\mathcal{S}, +)$ is necessarily abelian [\[17](#page-21-0)]. A semifield is not necessarily commutative or associative. However, by Wedderburn's Theorem [\[27](#page-22-0)], in the finite case, associativity implies commutativity. Therefore, a non-associative finite commutative semifield is the closest algebraic structure to a finite field. We refer to $[18]$ for a recent and comprehensive survey.

The first family of non-trivial semifields was constructed by Dickson [\[7\]](#page-21-1) more than a century ago. In [\[17](#page-21-0)], Knuth showed that the additive group of a finite semifield $\mathcal S$ is an elementary abelian group, and the additive order of the nonzero elements in S is called the *characteristic* of S. Hence, any finite semifield can be represented by (\mathbb{F}_q , +, *), where *q* is a power of a prime *p*. Here (\mathbb{F}_q , +) is the additive group of the finite field \mathbb{F}_q and $x * y$ can be written as $x * y = \sum_{i,j} a_{ij} x^{p^i} y^{p^j}$, which forms a mapping from $\mathbb{F}_q \times \mathbb{F}_q$ to \mathbb{F}_q .

Geometrically speaking, there is a well-known correspondence, via coordinatisation, between (pre)semifields and projective planes of Lenz-Barlotti type V.1, see [\[5](#page-21-2)[,13\]](#page-21-3). In [\[1\]](#page-21-4), Albert showed that two (pre)semifields coordinatise isomorphic planes if and only if they are isotopic.

Definition 1.1 Let $\mathbb{S}_1 = (\mathbb{F}_p^n, +, *)$ and $\mathbb{S}_2 = (\mathbb{F}_p^n, +, *)$ be two presemifields. If there exist three bijective linear mappings *L*, *M*, *N* : $\mathbb{F}_p^n \to \mathbb{F}_p^n$ such that

$$
M(x) \star N(y) = L(x * y)
$$

for any $x, y \in \mathbb{F}_p^n$, then \mathbb{S}_1 and \mathbb{S}_2 are called *isotopic*, and the triple (M, N, L) is called an *isotopism* between \mathbb{S}_1 and \mathbb{S}_2 .

Let $\mathbb{P} = (\mathbb{F}_{p^n}, +, *)$ be a presemifield. We can obtain a semifield from it via isotopisms in several ways, such as the well known Kaplansky's trick (see [\[18](#page-22-1), p 2]). The following method was recently given by Bierbrauer [\[2](#page-21-5)]. Define a new multiplication \star by the rule

$$
x \star y := B^{-1}(B_1(x) * y), \tag{1.1}
$$

where $B(x) := 1 * x$ and $B_1(x) * 1 = 1 * x$. We have $x * 1 = B^{-1}(B_1(x) * 1) = B^{-1}(1 * x) = x$ and $1 \star x = B^{-1}(B_1(1) * x) = B^{-1}(1 * x) = x$, thus $(\mathbb{F}_{p^n}, +, \star)$ is a semifield with identity 1. In particular, when $\mathbb P$ is commutative, B_1 is the identity mapping.

Let $\mathbb{S} = (\mathbb{F}_{p^n}, +, *)$ be a semifield. The subsets

$$
N_l(\mathbb{S}) = \{a \in \mathbb{S} : (a * x) * y = a * (x * y) \text{ for all } x, y \in \mathbb{S}\},
$$

\n
$$
N_m(\mathbb{S}) = \{a \in \mathbb{S} : (x * a) * y = x * (a * y) \text{ for all } x, y \in \mathbb{S}\},
$$

\n
$$
N_r(\mathbb{S}) = \{a \in \mathbb{S} : (x * y) * a = x * (y * a) \text{ for all } x, y \in \mathbb{S}\},
$$

are called the *left, middle* and *right nucleus* of S, respectively. It is easy to check that these sets are finite fields. The subset $N(\mathbb{S}) = N_l(\mathbb{S}) \cap N_m(\mathbb{S}) \cap N_r(\mathbb{S})$ is called the *nucleus* of S. It is easy to see if S is commutative, then $N_l(\mathbb{S}) = N_r(\mathbb{S})$ and $N_l(\mathbb{S}) \subseteq N_m(\mathbb{S})$, therefore $N_l(S) = N_r(S) = N(S)$. In [\[13\]](#page-21-3), a geometric interpretation of these nuclei is discussed. The subset ${a \in \mathbb{S} : a * x = x * a \text{ for all } x \in \mathbb{S} }$ is called the *commutative center* of \mathbb{S} and its intersection with *N*(S) is called the *center* of S.

Let *G* be a group and *N* a subgroup. A subset *D* of *G* is called a *relative difference set* with parameters $(|G|/|N|, |N|, |D|, \lambda)$ if the list of differences of *D* covers every element in $G \setminus N$ exactly λ times, and no element in $N \setminus \{0\}$. We call N the *forbidden subgroup*.

Jungnickel [\[15\]](#page-21-6) showed that every semifield S of order *q* leads to a $(q, q, q, 1)$ -relative difference set *D* in a group *G* which is not necessarily abelian. Assume that S is commutative. If $q = p^n$ and *p* is odd, then *G* is isomorphic to the elementary abelian group C_p^{2n} ; if $q = 2^n$, then $G \cong C_4^n$. (C_m is the cyclic group of order *m*.)

Let *p* be an odd prime. A function $f : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is called *planar* if the mapping

$$
x \mapsto f(x+a) - f(x)
$$

is a permutation of \mathbb{F}_{p^n} for every $a \in \mathbb{F}_{p^n}^*$. Planar functions were first defined by Dembowski and Ostrom in [\[6](#page-21-7)]. It is not difficult to verify that planar functions over \mathbb{F}_{p^n} are equivalent to $(p^n, p^n, p^n, 1)$ -relative difference sets in C_p^{2n} . Planar functions over \mathbb{F}_{2^n} , introduced recently in [\[25,](#page-22-2)[29](#page-22-3)], has a slightly different definition: A function $f : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is called *planar*, if the mapping

$$
x \mapsto f(x+a) + f(x) + ax
$$

is a permutation of \mathbb{F}_{2^n} for every $a \in \mathbb{F}_{2^n}^*$. They are equivalent to $(2^n, 2^n, 2^n, 1)$ -relative difference sets in C_4^n ; see [\[29,](#page-22-3) Theorem 2.1].

Let *f* be a planar function over \mathbb{F}_{q^n} , where *q* is a power of prime. A *switching* of *f* is a planar function of the form $f + g\xi$ where *g* is a mapping from \mathbb{F}_{q^n} to \mathbb{F}_q and $\xi \in \mathbb{F}_{q^n}^*$. Switchings of planar functions over \mathbb{F}_{p^n} , where p is an odd prime, were investigated by Pott and the third author in [\[24\]](#page-22-4). In [\[29\]](#page-22-3), it is proved that switchings of the planar function $f(x) = 0$ defined over \mathbb{F}_{2^n} can be written as affine polynomials $\sum a_i x^{2^i} + b$, which are equivalent to $f(x)$ itself.

In the present paper, we will investigate the switchings of (pre)semifield multiplications. To be precise, we will consider when the binary operation

$$
x * y = x * y + B(x, y)\xi
$$

on \mathbb{F}_{q^n} defines a (pre)semifield multiplication, where \star is a given (pre)semifield multiplication, $\xi \in \mathbb{F}_{q^n}^*$ and $B(x, y)$ is an \mathbb{F}_q -bilinear form from $\mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$ to \mathbb{F}_q . (One may identify \mathbb{F}_{q} ^{*n*} with \mathbb{F}_{q}^{n} , although it is not necessary.) We call $x * y$ a *switching neighbour* of $x * y$. In particular, we will concentrate on the case in which \star is the multiplication of a finite field.

In Sect. [2,](#page-3-0) we show that finding *B* such that $x * y := xy + B(x, y)$ ξ defines a (pre)semifield multiplication is equivalent to finding *q*-linearized polynomials $L(X) \in \mathbb{F}_{q^n}[X]$ such that $Tr_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$. For $n \leq 4$, we give in Sect. [3](#page-5-0) several *q*-linearized polynomials $L(X) \in \mathbb{F}_{q^n}[X]$ satisfying this condition and we discuss the presemifields of the corresponding switchings. In Sect. [4,](#page-12-0) we prove that when $q = p$ is a prime and $n > (p-1)(p^2-p+4)/2$, the only $L(X)$ satisfying the above condition are those of the form βX where $\text{Tr}_{p^n/p}(\beta) \neq 0$. In Sect. [5,](#page-17-0) we explore a connection of the *q*-linearized polynomials $L(X)$ satisfying the above condition with certain cyclic codes over \mathbb{F}_q . Finally, in Sect. [6](#page-18-0) we derive several necessary conditions for the existence of the *q*-linearized polynomials *L*(*X*) from the Hasse–Weil–Serre bound for algebraic curves over finite fields.

2 Preliminary discussion

Let $\text{Tr}_{q^n/q}$ be the trace function from \mathbb{F}_{q^n} to \mathbb{F}_q . We define

$$
B(x, y) := \mathrm{Tr}_{q^n/q} \left(\sum_{i=0}^{n-1} b_i xy^{q^i} \right), \qquad x, y \in \mathbb{F}_{q^n},
$$

where $b_i \in \mathbb{F}_{q^n}$. It is easy to see that $B(x, y)$ defines an \mathbb{F}_q -bilinear form from $\mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$ to \mathbb{F}_q , and every such bilinear form can be written in this way.

In the next theorem, we consider the switchings of a finite field multiplication.

Theorem 2.1 Let $x * y := xy + B(x, y) \xi$, where $B(x, y) := \text{Tr}_{q^n/q}(\sum_{i=0}^{n-1} b_i xy^{q^i})$, $b_i \in \mathbb{F}_{q^n}$ $and\ \xi\in\mathbb{F}_{q^n}^*.$ Then $*$ defines a presemifield multiplication on \mathbb{F}_{q^n} if and only if for any $a\in\mathbb{F}_{q^n}^*.$ $\text{Tr}_{q^n/q}(M(a)/a) \neq -1$, where $M(X) := \xi \sum_{i=0}^{n-1} b_i X^{q^i} \in \mathbb{F}_{q^n}[X]$.

Proof (\Rightarrow) Let *x* $*$ *y* be a presemifield multiplication. Assume to the contrary that there is $a \in \mathbb{F}_{q^n}^*$ such that

$$
\mathrm{Tr}_{q^n/q}(M(a)/a) = -1.
$$

We consider the equation $x * a = 0$. It has a solution x if and only if there exists $u \in \mathbb{F}_q$ such that

$$
xa = \xi u \quad \text{and} \tag{2.1}
$$

$$
B(x,a) = -u.\tag{2.2}
$$

Plugging [\(2.1\)](#page-3-1) into [\(2.2\)](#page-3-2), we have $B(\xi u/a, a) = -u$, which means that

$$
u\mathrm{Tr}_{q^n/q}\left(\xi\sum_{i=0}^{n-1}b_ia^{q^i-1}\right)=-u,
$$

i.e.

$$
u\mathrm{Tr}_{q^n/q}(M(a)/a)=-u,
$$

which holds for any $u \in \mathbb{F}_q$ according to our assumption. Therefore, $x * a = 0$ has a nonzero solution. It contradicts our assumption that ∗ defines a presemifield multiplication.

(⇐) It is easy to see that the left and right distributivity of the multiplication ∗ hold. We only need to show that for any $a \neq 0$, $x * a = 0$ if and only if $x = 0$. This is achieved by reversing the first part of the proof.

Let $x * y$ be the multiplication defined in Theorem [2.1.](#page-3-3) Then it is straightforward to verify that the presemifield (\mathbb{F}_{q^n} , $+$, $*$) is isotopic to (\mathbb{F}_{q^n} , $+$, $*$), where

$$
x \star y := xy + B'(x, y)
$$

and $B'(x, y) = \text{Tr}_{q^n/q} (\xi \sum_{i=0}^{n-1} b_i xy^{q^i})$. Therefore, we can restrict ourselves to the switchings of finite field multiplications with $\xi = 1$.

For the switchings

$$
x \star y + B(x, y)\xi
$$

of a (pre)semifield multiplication \star , it is difficulty to obtain explicit conditions on $B(x, y)$. The reason is that generally we can not explicitly write down the solution of $x \star a = \xi u$ as we did for (2.1) .

Let α be an element in \mathbb{F}_{q^n} such that $\text{Tr}_{q^n/q}(\alpha) = 1$. To find $M(X)$ satisfying the condition in Theorem 2.1, we only need to consider the *q*-linearized polynomial $L(X) := M(X) + \alpha X \in$ $\mathbb{F}_{q^n}[X]$ such that

$$
\operatorname{Tr}_{q^n/q}(L(x)/x) \neq 0 \quad \text{for all } x \in \mathbb{F}_{q^n}^*.
$$
 (2.3)

Obviously, when $L(X) = \beta X$, where $\text{Tr}_{q^n/q}(\beta) \neq 0$, we have $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for every nonzero *x*. The question is whether there are other *L*'s. We will give several results concerning this question throughout Sects. [3](#page-5-0)[–6.](#page-18-0)

The proof of next proposition is also straightforward.

Proposition 2.2 Let $L(X) = \sum_{i=0}^{n-1} a_i X^{q^i} \in \mathbb{F}_{q^n}[X]$. If $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$, *then the mapping* $x \mapsto L(x)$ *is a permutation of* \mathbb{F}_{q^n} *.*

We include several lemmas which will be used later to investigate the commutativity of presemifield multiplications.

Lemma 2.3 Let $x * y := xy + B(x, y)$, where $B(x, y) := Tr_{q^n/q}(\sum_{i=0}^{n-1} b_i xy^{q^i})$, $b_i \in \mathbb{F}_{q^n}$. *Then* $*$ *is commutative if and only if* $b_i = b_{n-i}^{q^i}$ *for every* $i = 1, ..., n - 1$ *.*

Proof Clearly, $x * y = y * x$ if and only if $B(x, y) = B(y, x)$, i.e.

$$
\mathrm{Tr}_{q^n/q}\left(\sum_{i=0}^{n-1}b_ixy^{q^i}\right) = \mathrm{Tr}_{q^n/q}\left(\sum_{i=0}^{n-1}b_iyx^{q^i}\right),\,
$$

which means that

$$
\text{Tr}_{q^n/q}\left(x\sum_{i=1}^{n-1}(b_i-b_{n-i}^{q^i})y^{q^i}\right)=0
$$

for every *x*, $y \in \mathbb{F}_{q^n}$. Therefore we complete the proof.

It is possible that a non-commutative presemifield $\mathbb P$ is isotopic to a commutative presemifield. We can use the next criterion given by Bierbrauer [\[2\]](#page-21-5), as a generalization of Ganley's criterion [\[8\]](#page-21-8), to test whether this happens.

Lemma 2.4 *A presemifield* $(\mathbb{P}, +, *)$ *is isotopic to a commutative semifield if and only if there is some nonzero* v *such that* $A(v * x) * y = A(v * y) * x$ *, where* $A : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ *is defined by* $A(x) * 1 = x$.

Given an arbitrary presemifield multiplication, it is not easy to get the explicit expression for $A(x)$. However, we can do it for the switchings of multiplications of finite fields.

Lemma 2.5 *Let* $x * y := xy + B(x, y)$ *be a switching of* \mathbb{F}_{q^n} *, where* $B(x, y) :=$ $\text{Tr}_{q^n/q}(\sum_{i=0}^{n-1}b_ixy^{q^i}), b_i \in \mathbb{F}_{q^n}.$ Let $A: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ be such that $A(x) * 1 = x$ for every $x \in \mathbb{F}_{q^n}$ *. Then*

$$
A(x) = x + \text{Tr}_{q^n/q} \left(\frac{-tx}{1 + \text{Tr}_{q^n/q}(t)} \right),
$$
 (2.4)

where $t = \sum_{i=0}^{n-1} b_i$.

 $\circled{2}$ Springer

Proof First, we have

$$
u * 1 = u + B(u, 1)
$$

=
$$
u + \text{Tr}_{q^n/q}\left(\sum_{i=0}^{n-1} b_i u\right)
$$

=
$$
u + \text{Tr}_{q^n/q}(tu).
$$

It is worth noting that $1 * 1 = 1 + \text{Tr}_{q^n/q}(t) \neq 0$. Let $s := -t/(1 + \text{Tr}_{q^n/q}(t))$. Replacing *u* by the expression in (2.4) , we have

$$
A(x) * 1 = x + \text{Tr}_{q^n/q}(sx) + \text{Tr}_{q^n/q}[tx + t \text{Tr}_{q^n/q}(sx)]
$$

= $x + \text{Tr}_{q^n/q}[s(1 + \text{Tr}_{q^n/q}(t))x + tx]$
= x .

3 Switchings of \mathbb{F}_{q^n} for small *n*

In this section, we investigate the switchings of finite fields (\mathbb{F}_{q^n} , +, ·) where $n \leq 4$.

Lemma 3.1 *Let* $L(X) = a_1 X^q + a_0 X \in \mathbb{F}_{a^2}[X]$ *. Then the polynomial*

$$
f(X) = \text{Tr}_{q^2/q}(L(X)/X)
$$

has no root in $\mathbb{F}_{q^2}^*$ *if and only if the equation* $x^{q-1} = y$ *has no solution* $x \in \mathbb{F}_{q^2}^*$ *for every* $y \in \mathbb{F}_{q^2}$ *satisfying*

$$
a_1 y^2 + \text{Tr}_{q^2/q}(a_0)y + a_1^q = 0. \tag{3.1}
$$

Proof Let $y := x^{q-1}$, where $x \in \mathbb{F}_{q^2}^*$. Then

$$
\begin{aligned} \text{Tr}_{q^2/q}(L(x)/x) &= \text{Tr}_{q^2/q}(a_1x^{q-1} + a_0) \\ &= \text{Tr}_{q^2/q}(a_1y + a_0) \\ &= a_1^q y^q + a_1 y + \text{Tr}_{q^2/q}(a_0) \\ &= y^q(a_1y^2 + \text{Tr}_{q^2/q}(a_0)y + a_1^q) \end{aligned}
$$

since $y^{q+1} = 1$. Therefore, *f* has a nonzero root if and only if there exists a $(q - 1)$ th power in \mathbb{F}^* , satisfying (3.1). in $\mathbb{F}_{q^2}^*$ satisfying [\(3.1\)](#page-5-1). $□$

Theorem 3.2 *Let* $L(X) = a_1 X^q + a_0 X \in \mathbb{F}_{q^2}[X]$ *. Then*

$$
f(X) = \text{Tr}_{q^2/q}(L(X)/X)
$$
 (3.2)

 a_n *has no root in* $\mathbb{F}_{q^2}^*$ *if and only if g*(X) $=X^2+\text{Tr}_{q^2/q}(a_0)X+a_1^{q+1}\in \mathbb{F}_q[X]$ *has two distinct roots in* \mathbb{F}_q *.*

Proof If $a_1 = 0$, then $f(X) = \text{Tr}_{q^2/q}(a_0)$ and $g(X) = X^2 + \text{Tr}_{q^2/q}(a_0)X$. It is clear that *f* has no nonzero roots if and only if *g* has two distinct roots.

In the rest of the proof, we assume that $a_1 \neq 0$.

 \Box

(←) Let $a_1 y \text{ } \in \mathbb{F}_q$ ($y \in \mathbb{F}_{q^2}$) be a root of *g*. By Lemma [3.1,](#page-5-2) it suffices to show that $y^{q+1} \neq 1$.

Case 1. Assume that *q* is even. Since *g* has two distinct roots, we have $Tr_{q^2/a}(a_0) \neq 0$. Since

$$
(a_1y)^{q+1} = (a_1y)^2 = \text{Tr}_{q^2/q}(a_0)a_1y + a_1^{q+1},
$$

we have

$$
y^{q+1} = 1 + \frac{\text{Tr}_{q^2/q}(a_0)y}{a_1^q} \neq 1.
$$

Case 2. Assume that *q* is odd. We have $y = \frac{1}{2a_1}(-\text{Tr}_{q^2/q}(a_0) + d)$, where $d \in \mathbb{F}_q^*$ and $d^2 = \text{Tr}_{q^2/q}(a_0)^2 - 4q_1^{q+1}$. Suppose to the contrary that $y^{q+1} = 1$. It follows that

$$
(-\text{Tr}_{q^2/q}(a_0) + d)^{q+1} = 4a_1^{q+1},
$$

which means

$$
\operatorname{Tr}_{q^2/q}(a_0)^2 + d^2 - 2d \operatorname{Tr}_{q^2/q}(a_0) = 4a_1^{q+1}.
$$

Hence

$$
2d^2 - 2d \text{Tr}_{q^2/q}(a_0) = 0.
$$

Therefore $d = \text{Tr}_{q^2/q}(a_0)$. But then $d^2 = \text{Tr}_{q^2/q}(a_0)^2 \neq \text{Tr}_{q^2/q}(a_0)^2 - 4a_1^{q+1}$, which is a contradiction.

(⇒) We first show that *g* is reducible in $\mathbb{F}_q[x]$. Otherwise, let $a_1 y \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ be a root of *g*. Then $(a_1 y)^{q+1} = a_1^{q+1}$, thus $y^{q+1} = 1$. By Lemma [3.1,](#page-5-2) *f* has nonzero roots.

It remains to show that $\text{Tr}_{q^2/q}(a_0)^2-4a_1^{q+1}\neq 0$. Assume to the contrary that $\text{Tr}_{q^2/q}(a_0)^2 4a_1^{q+1} = 0.$

Case 1. Assume that *q* is even. It follows that $Tr_{q^2/q}(a_0) = 0$. Write $a_1 = x^2$, where *x* ∈ \mathbb{F}_{q^2} , and let *y* = *x*^{*q*−1}. Then *a*₁*y* is a root of *g*, which leads to a contradiction.

Case 2. Assume that *q* is odd. Then $a_1 y = -\text{Tr}_{q^2/q}(a_0)/2$ is a root of *g*, and

$$
y^{q+1} = \frac{\text{Tr}_{q^2/q}(a_0)^2}{4a_1^{q+1}} = 1,
$$

which is impossible by Lemma [3.1.](#page-5-2) \square

Remark When $n = 2$, if there is some $L(X)$ such that [\(3.2\)](#page-5-3) has no root in $\mathbb{F}_{q^2}^*$, then we can define a presemifield multiplication $*$ over \mathbb{F}_{q^2} via Theorem [2.1.](#page-3-3) Let $\mathbb{S} = (\mathbb{F}_{q^2}, +, \star)$ be a semifield which is isotopic to (\mathbb{F}_{q^2} , +, *). We may assume that \star is defined by [\(1.1\)](#page-1-0) and hence S has identity 1. There are $a_{ij} \in \mathbb{F}_{q^2}$ such that $x * y = \sum_{i,j} a_{ij} x^{q^i} y^{q^j}$ for all $x, y \in \mathbb{F}_{q^2}$. Thus there are $b_{ij} \in \mathbb{F}_{q^2}$ such that $x \star y = \sum_{i,j} b_{ij} x^{q^i} y^{q^j}$ for all $x, y \in \mathbb{F}_{q^2}$. It follows that the center of S contains \mathbb{F}_q . (For $x \in \mathbb{F}_q$ and $y \in \mathbb{F}_{q^2}$, we have $x \star y = x(1 \star y) = xy$ and $y \star x = x(y \star 1) = xy$. This implies that \mathbb{F}_q is contained in both the commutative center and the nucleus of S.) Due to the classification of two-dimensional finite semifields by Dickson [\[7](#page-21-1)], S is isotopic to a finite field.

Theorem 3.3 Let q be a power of an odd prime and let $L(X) = a_1 X^{q^2} + a_0 X \in \mathbb{F}_{q^4}[X]$ *with a*₁ \neq 0. Then $\text{Tr}_{q^4/q}(L(X)/X)$ has no root in $\mathbb{F}_{q^4}^*$ if and only if $a_1^{q^2+1}$ is a square in \mathbb{F}_q^* *and* $\text{Tr}_{a^4/a}(a_0) = 0$ *.*

Proof Let $b = \text{Tr}_{q^4/q}(a_0)$. Let $x \in \mathbb{F}_{q^4}^*$ and set $y := x^{q^2-1}$ and $z := a_1 y + a_1^{q^2}/y$. Then

$$
\begin{split} \text{Tr}_{q^4/q}(L(x)/x) &= \text{Tr}_{q^4/q}(a_1 x^{q^2 - 1} + a_0) \\ &= a_1 y + a_1^q y^q + a_1^{q^2} / y + a_1^{q^3} / y^q + \text{Tr}_{q^4/q}(a_0) \\ &= z + z^q + b. \\ &= \left(z + \frac{b}{2}\right)^q + \left(z + \frac{b}{2}\right). \end{split} \tag{3.3}
$$

Thus $\text{Tr}_{q^4/q}(L(x)/x) = 0$ if and only if $(z + \frac{b}{2})^{q-1} = -1$ or 0, i.e., $z = t - \frac{b}{2}$ for some *t* ∈ *T* := {*t* ∈ \mathbb{F}_{q^4} : *t*^{*q*} = −*t*} ⊂ \mathbb{F}_{q^2} . Since *z* = *a*₁*y* + $a_1^{q^2}/y$, we see that *z* = *t* − $\frac{b}{2}$ if and only if

$$
a_1 y^2 + \left(\frac{b}{2} - t\right) y + a_1^{q^2} = 0. \tag{3.4}
$$

By the proof of Theorem [3.2,](#page-5-4) we see that $\{x \in \mathbb{F}_{q^4}^* : y = x^{q^2-1} \text{ satisfies (3.4)}\}\neq \emptyset \text{ if and}$ only if

$$
g(X) := X^2 + \left(\frac{b}{2} - t\right)X + a_1^{q^2 + 1}
$$

has two distinct roots in \mathbb{F}_{q^2} . Therefore, to sum up, $\text{Tr}_{q^4/q}(L(x)/x)$ has no root in $\mathbb{F}_{q^4}^*$ if and only if $g(X)$ has two distinct roots in \mathbb{F}_{q^2} for every $t \in T$. We now proceed to prove the "if" and the "only if" portions of the theorem separately.

(←) Assume *b* = 0 and $a_1^{q^2+1}$ is a square in \mathbb{F}_q^* . Then $a_1^{q^2+1} \neq t^2$ for all *t* ∈ *T*. Hence

$$
\Delta := \left(\frac{b}{2} - t\right)^2 - 4a_1^{q^2 + 1} = t^2 - 4a_1^{q^2 + 1} \in \mathbb{F}_q^*.
$$

It follows that *g* has two distinct roots in \mathbb{F}_q^2 .

(⇒) Assume that $\text{Tr}_{q^4/q}(L(X)/X)$ has no root in $\mathbb{F}_{q^4}^*$. We want to show

R1. $b = 0$, and **R2.** $a_1^{q^2+1}$ is a square in \mathbb{F}_q^* . Equivalently, $a_1^{q^2+1}$ is in \mathbb{F}_q and there is no $t \in T$ such that $t^2 = 4a_1^{q^2+1}.$

Now we assume that $\Delta = \left(\frac{b}{2} - t\right)^2 - 4a_1^{q^2+1} \neq 0$ always has a square root in \mathbb{F}_{q^2} for every *t* ∈ *T*. Choose an element ξ of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$ such that $\xi^{q-1} = -1$. Then every element of \mathbb{F}_{q^2} can be written as $z + w\xi$, where $z, w \in \mathbb{F}_q$, and $T = \{x\xi : x \in \mathbb{F}_q\}$. We write $a_1^{q^2+1} = A_1 + A_2 \xi$. As Δ is always a square in $\mathbb{F}_{q^2}^*$, the equation

$$
(z + w\xi)^2 = (x\xi - b/2)^2 - (A_1 + A_2\xi)
$$
\n(3.5)

in (z, w) has solutions for every $x \in \mathbb{F}_q$. Expanding [\(3.5\)](#page-7-0), we have

$$
z^{2} + w^{2}\alpha = x^{2}\alpha + b^{2}/4 - A_{1}, \qquad (3.6)
$$

$$
2wz = -xb - A_2,\tag{3.7}
$$

where $\alpha = \xi^2 \in \mathbb{F}_q$.

If we can show that $b = 0$ and $A_2 = 0$, then the proof is complete (**R2** can be easily derived from the condition that $\Delta \neq 0$). Suppose to the contrary that at least one of *b* and A_2 is not 0. Then there exists at most one $x = x_0 \in \mathbb{F}_q$ such that $w = 0$ by [\(3.7\)](#page-8-0). Now assume that $w \neq 0$. From [\(3.7\)](#page-8-0) we have

$$
z = -\frac{xb + A_2}{2w}.
$$

Plugging it into (3.6) , we get

$$
\frac{(xb+A_2)^2}{4w^2} + w^2 \alpha = x^2 \alpha + \frac{b^2}{4} - A_1,
$$

i.e.,

$$
\alpha(w^2)^2 - \left(x^2\alpha + \frac{b^2}{4} - A_1\right)w^2 + \frac{(xb + A_2)^2}{4} = 0.
$$

For every given $x \in \mathbb{F}_q \setminus \{x_0\}$, this equation always has a solution w in \mathbb{F}_q . It follows that

$$
f(x) = \left(x^2 \alpha + \frac{b^2}{4} - A_1\right)^2 - \alpha (xb + A_2)^2
$$

is always a square in \mathbb{F}_q . Let ψ be the multiplicative character of \mathbb{F}_q of order 2, and for convenience we set $\psi(0) = 0$. Then we have

$$
\sum_{c \in \mathbb{F}_q} \psi(f(c)) \ge q - 6. \tag{3.8}
$$

On the other hand, by Theorem 5.41 in [\[19](#page-22-5)] (it is routine to verify all the conditions for $f(x)$, because $(b, A_2) \neq (0, 0)$ and $(A_1, A_2) \neq (0, 0)$, we have

$$
\sum_{c \in \mathbb{F}_q} \psi(f(c)) \le 3\sqrt{q}.
$$

Therefore *q* − 6 ≤ 3 \sqrt{q} , which means that *q* = 3, 5, 7, 9, 11, 13, 17, 19. We can use MAGMA [\[3](#page-21-9)] to show that $f(x)$ is not always a square for $x \in \mathbb{F}_q \setminus \{x_0\}$ when $q \le 19$.
Hence $h = A_2 = 0$ which completes the proof Hence $b = A_2 = 0$, which completes the proof.

Theorem 3.4 Let q be a power of an odd prime. Let $a_1 \in \mathbb{F}_{q^4}^*$ such that $a_1^{q^2+1}$ is a square in \mathbb{F}_q^* *and let* \tilde{a}_0 *be an element in* \mathbb{F}_{q^4} *such that* $\text{Tr}_{q^4/q}(\tilde{a}_0) = -1$ *. Define*

$$
x * y = xy + \text{Tr}_{q^4/q}(a_1xy^{q^2} + \tilde{a}_0xy).
$$

According to Theorems [2.1](#page-3-3) and [3.3,](#page-6-0) (\mathbb{F}_{q^4} , +, *) *forms a presemifield. Furthermore, it is isotopic to a commutative semifield.*

Proof According to Lemma [2.4,](#page-4-1) we only have to show that there exists some v such that

$$
A(v * x) * y = A(v * y) * x
$$

for every *x*, $y \in \mathbb{F}_{q^4}$, where *A* is given by [\(2.4\)](#page-4-0).

 $\circled{2}$ Springer

Using the same notation as in Lemma [2.5,](#page-4-2) we set $t = a_1 + \tilde{a}_0$ and $s = -t/(1+Tr_{q^4/q}(t)).$ Now,

$$
A(v * x) = A(vx + Tr_{q^4/q}(a_1vx^{q^2} + \tilde{a}_0vx))
$$

= $vx + Tr_{q^4/q}(a_1vx^{q^2} + \tilde{a}_0vx) + Tr_{q^4/q}[s(vx + Tr_{q^4/q}(a_1vx^{q^2} + \tilde{a}_0vx))]$
= $vx + (1 + Tr_{q^4/q}(s))Tr_{q^4/q}(a_1vx^{q^2} + \tilde{a}_0vx) + Tr_{q^4/q}(svx)$
= $vx + \frac{Tr_{q^4/q}(a_1vx^{q^2} + \tilde{a}_0vx)}{1 + Tr_{q^4/q}(a_1 + \tilde{a}_0)} - \frac{Tr_{q^4/q}((a_1 + \tilde{a}_0vx)}{1 + Tr_{q^4/q}(a_1 + \tilde{a}_0)}$
= $vx + \frac{Tr_{q^4/q}(a_1vx^{q^2} - a_1vx)}{1 + Tr_{q^4/q}(a_1 + \tilde{a}_0)}$.

For convenience, let $r(x)$ denote $A(v*x) - vx$. Then

$$
A(v*x)*y = vxy + r(x)y + Tr_{q^4/q}(a_1vxy^{q^2} + \tilde{a}_0vxy) + r(x)Tr_{q^4/q}(a_1y^{q^2} + \tilde{a}_0y)
$$

= $vxy + \frac{Tr_{q^4/q}(a_1vx^{q^2} - a_1vx)}{1 + Tr_{q^4/q}(a_1 + \tilde{a}_0)}(y + Tr_{q^4/q}(a_1y^{q^2} + \tilde{a}_0y))$
+ $Tr_{q^4/q}(a_1vxy^{q^2} + \tilde{a}_0vxy).$

It is not difficult to see that if v is an element in \mathbb{F}_{q^4} such that $a_1v \in \mathbb{F}_{q^2}$, then $A(v*x)*y =$ $A(v * y) * x$, from which it follows that (\mathbb{F}_{q^4} , +, *) is isotopic to a commutative semifield. \Box

Theorem 3.5 Let q be a power of an odd prime. Let $a_1 \in \mathbb{F}_{q^4}^*$ such that $a_1^{q^2+1}$ is a square *in* \mathbb{F}_q^* *and let* \tilde{a}_0 *be an element in* \mathbb{F}_{q^4} *such that* $\text{Tr}_{q^4/q}(\tilde{a}_0) = -1$ *. Let* $x * y$ *be defined as in Theorem [3.4,](#page-8-1) i.e.,*

$$
x * y = xy + \text{Tr}_{q^4/q}(a_1xy^{q^2} + \tilde{a}_0xy).
$$

Then the presemifield (\mathbb{F}_{q^4} , $+$, $*$) *is isotopic to Dickson's semifield.*

Proof We have already shown in Theorem [3.4](#page-8-1) that (\mathbb{F}_{q^4} , +, *) is isotopic to a commutative semifield, which is denoted by S. Next we are going to prove that its middle nucleus $N_m(\mathbb{S})$ is of size q^2 and its left nucleus $N_l(\mathbb{S})$ is of size q. Furthermore, as \mathbb{S} is commutative, we have $N_r(\mathbb{S}) = N_l(\mathbb{S})$. Due to the classification of semifields planes of order q^4 with kernel \mathbb{F}_{q^2} and center \mathbb{F}_q by Cardinali, Polverino and Trombetti in [\[4](#page-21-10)], (\mathbb{F}_{q^4} , +, *) is isotopic to Dickson's semifield.

To determine the middle and left nuclei of S, we need to introduce another presemifield multiplication $x \circ y$, which corresponds to the *dual spread* of the spread defined by $x * y$. (For more details on the dual spread, see $[16]$.) Actually, $x \circ y$ is defined as

$$
x \circ y := xy + (a_1 y^{q^2} + \tilde{a}_{0} y) \text{Tr}_{q^4/q}(x).
$$
 (3.9)

It is straightforward to verify that $\text{Tr}_{q^4/q}(x(z \circ y) - z(x * y)) = 0$. Let S' denote a semifield which is isotopic to the presemifield defined by $x \circ y$. According to the interchanging of nuclei of semifields in the so called *Knuth orbit* ([\[16](#page-21-11)] and [\[18,](#page-22-1) Sect. 1.4]), we have $N_l(\mathbb{S}') \cong N_m(\mathbb{S})$ and $N_m(\mathbb{S}') \cong N_l(\mathbb{S})$.

To determine $N_l(\mathbb{S}')$ and $N_m(\mathbb{S}')$, we use the connection between certain homology groups as described in [\[13,](#page-21-3) Theorem 8.2] and [\[14,](#page-21-12) Result 12.4]. To be precise, we want to find every *q*-linearized polynomial *A*(*X*) over \mathbb{F}_{q^4} such that for every $y \in \mathbb{F}_{q^4}$, there is a $y' \in \mathbb{F}_{q^4}$

satisfying $A(x) \circ y = x \circ y'$ for every $x \in \mathbb{F}_{q^4}$. The set $\mathcal{M}(\mathbb{S}')$ of all such $A(X)$ is equivalent to the middle nucleus $N_m(\mathbb{S}')$.

First, it is routine to verify that $A(X) = uX$ with $u \in \mathbb{F}_q$ is in $\mathcal{M}(\mathbb{S}')$. Next we show that there are no other $A(X)$ in $\mathcal{M}(\mathbb{S}^{\prime})$.

Assume that

$$
A(x)y + \text{Tr}_{q^4/q}(A(x))(a_1y^{q^2} + \tilde{a}_0y) = xy' + \text{Tr}_{q^4/q}(x)(a_1y^{q^2} + \tilde{a}_0y') \tag{3.10}
$$

holds for every $x \in \mathbb{F}_{q^4}$.

Let $x_0 \in \mathbb{F}_{q^4}^*$ be such that $\text{Tr}_{q^4/q}(x_0) = \text{Tr}_{q^4/q}(A(x_0)) = 0$. Then

$$
A(x_0)y=x_0y'.
$$

It means that $y' = uy$ holds for each $y \in \mathbb{F}_{q^4}$, where $u = A(x_0)/x_0$. Plugging it into [\(3.10\)](#page-10-0), we have

$$
A(x)y + \text{Tr}_{q^4/q}(A(x))(a_1y^{q^2} + \tilde{a}_0y) = uxy + \text{Tr}_{q^4/q}(x)(a_1(uy)^{q^2} + \tilde{a}_0uy).
$$

From this equation we can deduce that

$$
A(x) - ux + (\text{Tr}_{q^4/q}(A(x)) - \text{Tr}_{q^4/q}(x)u)\tilde{a}_0 = 0,
$$
\n(3.11)

$$
(\text{Tr}_{q^4/q}(A(x)) - \text{Tr}_{q^4/q}(x)u^{q^2})a_1 = 0.
$$
 (3.12)

Since $a_1 \neq 0$, from [\(3.12\)](#page-10-1) we see that

$$
\text{Tr}_{q^4/q}(A(x)) = u^{q^2} \text{Tr}_{q^4/q}(x)
$$
\n(3.13)

for every $x \in \mathbb{F}_{q^4}$. From [\(3.13\)](#page-10-2) it follows that $u \in \mathbb{F}_q$. Therefore, by [\(3.11\)](#page-10-1), we have *A*(*x*) = *ux* where *u* $\in \mathbb{F}_q$. Hence $|N_l(\mathbb{S})| = |N_m(\mathbb{S}')| = q$.

Next we determine every *q*-linearized polynomial $A(X)$ over \mathbb{F}_{q^4} such that for every $y \in \mathbb{F}_{q^4}$, there is a $y' \in \mathbb{F}_{q^4}$ satisfying $A(x \circ y) = x \circ y'$ for every $x \in \mathbb{F}_{q^4}$. The set of all such $\hat{A}(X)$ is equivalent to the left nucleus $N_l(\mathbb{S}^l)$.

Assume that

$$
A(xy + \text{Tr}_{q^4/q}(x)(a_1y^{q^2} + \tilde{a}_0y)) = xy' + \text{Tr}_{q^4/q}(x)(a_1y^{q^2} + \tilde{a}_0y'). \tag{3.14}
$$

It is readily verified that when $A(X) = cX$ for some $c \in \mathbb{F}_{q^2}$, [\(3.14\)](#page-10-3) holds for all *x* and *y* in \mathbb{F}_{q^4} with $y' = cy$. Hence \mathbb{F}_{q^2} is a subfield contained in $N_l(\mathbb{S}^l)$. On the other hand, $N_l(\mathbb{S}^l)$ has to be a proper subfield of \mathbb{F}_{q^4} , for otherwise S' would be a finite field, which would lead to a contradiction. Therefore, we have $|N_m(\mathbb{S})| = |N_l(\mathbb{S}')| = q^2$, which completes the proof. \Box

Theorem 3.6 *Let q be a power of a prime and let u, v be elements in* \mathbb{F}_q^* *such that* $N_{a^3/a}(-v/u) \neq 1$ *. For every* $\beta \in \mathcal{B}$ *, where*

$$
\mathcal{B} := \left\{ x \in \mathbb{F}_{q^3} : \text{Tr}_{q^3/q}(u^{q^2}v^q x) = u^{q^2+q+1} + v^{q^2+q+1} \right\},
$$

the equation

$$
ux^{q^2-1} + vx^{q-1} + \beta = 0 \tag{3.15}
$$

has no solution in $\mathbb{F}_{q^3}^*$ *. Let* $L(X) := u^{q^2}v^q(ua^{q^2-1}X^{q^2} + va^{q-1}X^q + \theta X)$ *, where* $\theta \in \mathcal{B}$ *and* $a \in \mathbb{F}_{q^3}^*$. Then the polynomial $\text{Tr}_{q^3/q}(L(X)/X)$ has no root in $\mathbb{F}_{q^3}^*$.

Proof When $\beta = 0$, [\(3.15\)](#page-10-4) becomes $x^{q-1}(ux^{q(q-1)} + v) = 0$. If there exists $x \in \mathbb{F}_{q^3}^*$ such that $ux^{q(q-1)} + v = 0$, then $N_{q^3/q}(-v/u) = N_{q^3/q}(x^{q(q-1)}) = 1$, which leads to a contradiction.

Now suppose $\beta \neq 0$. Assume to the contrary that [\(3.15\)](#page-10-4) has a solution $x \in \mathbb{F}_{q^3}^*$. Let *y* := x^{q-1} . Then we have $uy^{q+1} + vy + \beta = 0$. It follows that

$$
y^q = \frac{-vy - \beta}{uy},\tag{3.16}
$$

and

$$
y^{q^2} = \frac{v^q(vy + \beta) - \beta^q u y}{-u^q(vy + \beta)}.
$$

Hence

$$
y^{q^2}y^q y = \frac{v^q(vy + \beta) - \beta^q u y}{u^{q+1}},
$$

which is equal to 1 since $y = x^{q-1}$. Therefore,

$$
(v^{q+1} - \beta^q u)y + v^q \beta = u^{q+1}.
$$
 (3.17)

Suppose that $u\beta^q = v^{q+1}$. Then $u^{q^2}v^q\beta = v^{q^2+1}v^q$, and $\text{Tr}_{q^3/q}(u^{q^2}v^q\beta) = 3v^{q^2+q+1}$. On the other hand, we also have $u^{q+1} = v^q \beta$ from [\(3.17\)](#page-11-0). It follows that $Tr_{q^3/q}(u^{q^2}v^q \beta) =$ $3u^{q^2+q+1}$. All together with $\beta \in \mathcal{B}$, we have that

$$
u^{q^2+q+1} + v^{q^2+q+1} = 3v^{q^2+q+1} = 3u^{q^2+q+1},
$$

which can not holds for 3 $\nmid q$. Moreover, if 3 | *q*, then $u^{q^2+q+1} = -v^{q^2+q+1}$ which contradicts the assumption that $N_{q^3/q}(-v/u) \neq 1$. Hence $u\beta^q \neq v^{q+1}$.

Since $\mu \beta^q \neq \nu^{q+1}$, from [\(3.17\)](#page-11-0) we obtain

$$
y = \frac{u^{q+1} - v^q \beta}{v^{q+1} - \beta^q u}.
$$
\n(3.18)

Plugging (3.18) into (3.16) , we have

$$
\frac{u^{q^2+q} - v^{q^2} \beta^q}{v^{q^2+q} - \beta^{q^2} u^q} = \frac{vu^q - \beta^{q+1}}{v^q \beta - u^{q+1}}.
$$

Hence

$$
u^{q^2+q}v^q\beta - u^{q^2+2q+1} + u^{q+1}v^{q^2}\beta^q - v^{q^2+q}\beta^{q+1}
$$

=
$$
v^{q^2+q+1}u^q - \beta^{q^2}vu^{2q} - v^{q^2+q}\beta^{q+1} + \beta^{q^2+q+1}u^q.
$$

Dividing it by u^q , we have

$$
\beta^{q^2+q+1} - (u^q v \beta^{q^2} + u v^{q^2} \beta^q + u^{q^2} v^q \beta) + u^{q^2+q+1} + v^{q^2+q+1} = 0.
$$

It follows from $\text{Tr}_{q^3/q}(u^{q^2}v^q\beta) = u^{q^2+q+1} + v^{q^2+q+1}$ that

$$
\beta^{q^2+q+1}=0.
$$

Hence $\beta = 0$, which is a contradiction. Therefore, [\(3.15\)](#page-10-4) has no solution in $\mathbb{F}_{q^3}^*$.

 \circledcirc Springer

Furthermore, if $Tr_{q^3/q}(L(X)/X)$ has a root $x_0 \in \mathbb{F}_{q^3}^*$, then $u^{q^2}v^q(u(ax_0)^{q^2-1} +$ $v(ax_0)^{q-1} + \theta = \gamma$ for some $\gamma \in \mathbb{F}_{q^3}$ satisfying $\text{Tr}_{q^3/q}(\gamma) = 0$. We write γ as $\gamma = u^{q^2}v^q\tau$ for some $\tau \in \mathbb{F}_{q^3}$. Then $\theta - \tau \in \mathcal{B}$ and

$$
u(ax_0)^{q^2-1} + v(ax_0)^{q-1} + \theta - \tau = 0,
$$

which contradicts the fact that [\(3.15\)](#page-10-4) has no solution in \mathbb{F}_a^* . q^3 . \Box

For given *u* and v, it is not difficult to see that for different *a*, we obtain isotopic semifields via Theorem [3.6:](#page-10-5) Let the multiplication corresponding to $a = 1$ be $xy + B(x, y)$. Then for other $a \in \mathbb{F}_{q^3}^*$, the semifield multiplication is $xy + B(x/a, ay)$. Furthermore, when $u = v$ and $a = 1$, it follows from Lemma [2.3](#page-4-3) that the presemifield $\mathbb P$ derived from $L(x)$ in Theorem [3.6](#page-10-5) is commutative. It is worth noting that, up to isotopism, we can obtain non-commutative semifields via Theorem [3.6.](#page-10-5) For instance, let $q = 4$ and let ξ be a primitive element of \mathbb{F}_{q^3} which is a root of $X^6 + X^4 + X^3 + X + 1$. Setting $u = \xi^5$, $v = \xi$ and $\beta = \xi^{62}$, we can use Lemma [2.4](#page-4-1) and computer to show that the presemifield $\mathbb P$ derived from Theorem [3.6](#page-10-5) is not isotopic to a commutative one.

According to the classification of semifields of order $q³$ with center containing \mathbb{F}_q in [\[21\]](#page-22-6), the presemifield obtained via Theorem [3.6](#page-10-5) is either finite field or generalized twisted field.

Besides all the *L*'s described in this section, we did not find any other examples. Thus we propose the following question:

Question 3.7 *For n* > 4*, is there a q-linearized polynomial* $L(X) = \sum_{i=0}^{n-1} a_i X^{q^i} \in \mathbb{F}_{q^n}[X]$ *with* $(a_1, ..., a_{n-1})$ ≠ $(0, ..., 0)$ *satisfying* (2.3) ?

4 Switchings of \mathbb{F}_{p^n} for large *n*

The main result of this section is a negative answer to Question [3.7](#page-12-1) when $q = p$ (prime) and *n* is large.

Theorem 4.1 *Let* $q = p$ *, where* p *is a prime, and assume* $n \geq \frac{1}{2}(p-1)(p^2 - p + 4)$ *. If* $L(X) = \sum_{i=0}^{n-1} a_i X^{p^i} \in \mathbb{F}_{p^n}[X]$ *satisfies* [\(2.3\)](#page-4-4)*, i.e.,*

$$
\operatorname{Tr}_{p^n/p}\big(L(x)/x\big) \neq 0 \ \text{ for all } x \in \mathbb{F}_{p^n}^*,
$$

then $a_1 = \cdots = a_{n-1} = 0$.

In 1971, Payne [\[22\]](#page-22-7) considered a similar problem which calls for the determination of all 2-linearized polynomials $L = \sum_{i=0}^{n-1} a_i X^{2^i} \in \mathbb{F}_{2^n}[X]$ such that both $L(X)$ and $L(X)/X$ are permutation polynomials of \mathbb{F}_{2^n} . Such linearized polynomials give rise to translation ovoids in the projective plane PG(2, \mathbb{F}_{2^n}) [\[23\]](#page-22-8). Payne later solved the problem by showing that such linearized polynomials can have only one term [\[23\]](#page-22-8). For a different proof of Payne's theorem, see [\[11](#page-21-13), Sect. 8.5]. For the *q*-ary version of Payne's theorem, see [\[12\]](#page-21-14).

4.1 Preliminaries

Let $L(X) = \sum_{i=0}^{n-1} a_i X^{q^i} \in \mathbb{F}_{q^n}[X]$. For $x \in \mathbb{F}_{q^n}^*$, we have

$$
\operatorname{Tr}_{q^n/q}\left(\frac{L(x)}{x}\right) = \operatorname{Tr}_{q^n/q}\left(\sum_{i=0}^{n-1} a_i x^{q^i-1}\right) = \sum_{0 \le i, j \le n-1} a_i^{q^j} x^{q^j (q^i-1)}.
$$

Therefore [\(2.3\)](#page-4-4) is equivalent to

$$
\left[\sum_{0 \le i, j \le n-1} a_i^{q^j} X^{q^j (q^i - 1)}\right]^{q-1} \equiv \text{Tr}_{q^n/q}(a_0)^{q-1} + \left[1 - \text{Tr}_{q^n/q}(a_0)^{q-1}\right] X^{q^n - 1}
$$
\n(mod $X^{q^n} - X$).

\n(4.1)

Let $\Omega = \{0, 1, \ldots, q^n - 1\}$ and $\Omega_0 = \{0, 1, \ldots, \frac{q^n - 1}{q - 1}\}$. For $\alpha, \beta \in \Omega_0$, define $\alpha \oplus \beta \in \Omega_0$ such that $\alpha \oplus \beta \equiv \alpha + \beta \pmod{\frac{q^n-1}{q-1}}$ and

$$
\alpha \oplus \beta = \begin{cases} 0 & \text{if } \alpha = \beta = 0, \\ \frac{q^n - 1}{q - 1} & \text{if } \alpha + \beta \equiv 0 \pmod{\frac{q^n - 1}{q - 1}} \text{ and } (\alpha, \beta) \neq (0, 0). \end{cases}
$$

For $d_0, \ldots, d_{n-1} \in \mathbb{Z}$, we write

$$
(d_0, \ldots, d_{n-1})_q = \sum_{i=0}^{n-1} d_i q^i.
$$

When *q* is clear from the context, we write $(d_0, \ldots, d_{n-1})_q = (d_0, \ldots, d_{n-1})$. For *j*, $i \in \mathbb{Z}$, $i \geq 0$, let

$$
s(j,i) = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & \cdots & 1 \\ 0 & \cdots & 0 \end{pmatrix}}_{i} q,
$$

where the positions of the digits are labeled modulo *n* and the string of 1's may wrap around. For example, with $n = 4$,

$$
s(1,3) = (0\ 1\ 1\ 1), \qquad s(3,2) = (1\ 0\ 0\ 1).
$$

Note that

$$
s(j,i) \equiv q^j \frac{q^i - 1}{q - 1} \pmod{q^n - 1}.
$$

For each $\alpha \in \Omega_0$, let $C(\alpha)$ denote the coefficient of $X^{\alpha(q-1)}$ in the left side of [\(4.1\)](#page-13-0) after reduction modulo $X^{q^n} - X$. Then we have

$$
C(\alpha) = \sum_{\substack{0 \le j_1, i_1, \dots, j_{q-1}, i_{q-1} \le n-1 \\ s(j_1, i_1) \oplus \dots \oplus s(j_{q-1}, i_{q-1}) = \alpha}} \prod_{k=1}^{q-1} a_{i_k}^{q^{j_k}}.
$$
 (4.2)

Let

$$
S = \{s(j, i) : 0 \le j \le n - 1, 1 \le i \le n - 1\}.
$$

If $C(\alpha) = 0$, we can derive from [\(4.2\)](#page-13-1) useful information about a_i 's if we know the possible ways to express α as an \oplus sum of $q - 1$ elements (not necessarily distinct) of *S* ∪ {0}.

Let $\alpha = (d_0, \ldots, d_{n-1})_q \in \Omega$, where $0 \leq d_i \leq q-1$. If $d_i > d_{i-1}$ $(d_i < d_{i-1})$, where the subscripts are taken modulo *n*, we say that *i* is an *ascending* (*descending*) position of α with multiplicity $|d_i - d_{i-1}|$. The multiset of ascending (descending) positions of α is denoted by $\text{Asc}(\alpha)$ (Des(α)). The multiset cardinality $|\text{Asc}(\alpha)|$ (= $|\text{Des}(\alpha)|$) is denoted by asc(α). For example, if $\alpha = (201130)$, then

$$
Asc(\alpha) = \{0, 0, 2, 4, 4\}, \quad Des(\alpha) = \{1, 1, 5, 5, 5\}, \quad asc(\alpha) = 5.
$$

Assume that $\alpha \in \Omega$ has asc $(\alpha) = q - 1$. Then α cannot be a sum of less than $q - 1$ elements (not necessarily distinct) of *S*. Moreover, if

$$
\alpha = s(j_1, i_1) + \cdots + s(j_{q-1}, i_{q-1}),
$$

where $0 \le j_1, ..., j_{q-1} \le n-1$ and $1 \le i_1, ..., i_{q-1} \le n-1$, we must have ${j_1, \ldots, j_{q-1}}$ = Asc(α) and ${j_1 + i_1, \ldots, j_{q-1} + i_{q-1}}$ = Des(α), where $j_k + i_k$ is taken modulo *n*.

4.2 Proof of Theorem [4.1](#page-12-2)

Lemma 4.2 *Let* $q = p$ *, where p is a prime, and assume* $L = \sum_{i=0}^{n-1} a_i X^{p^i} \in \mathbb{F}_{p^n}[X]$ *satisfies* [\(2.3\)](#page-4-4)*. Then for all* $1 \le i_1 < \cdots < i_{p-1}$ *and* $0 \le t_{p-2} \le \cdots \le t_1$ *with* $i_{p-1} + i_1 \le n-2$ *, we have*

$$
\sum_{\tau} \prod_{k=1}^{p-1} a_{i_{p-k}+\tau(p-k)}^{p^{i_{p-1}-i_{p-k}}} = 0,
$$
\n(4.3)

where $(\tau(1), \ldots, \tau(p-1))$ *runs through all permutations of* $(t_1, \ldots, t_{p-2}, 0)$ *.*

Proof Let
$$
\alpha = (\overbrace{1 \cdots 1}^{i_{p-1}-i_{p-2}} \cdots \overbrace{p-2 \cdots p-2}^{i_{2}-i_{1}} \overbrace{p-1 \cdots p-1}^{i_{1}}
$$

$$
\underbrace{p-2 \cdots p-2}_{t_{p-2}} \underbrace{p-3 \cdots p-3}_{t_{p-3}-t_{p-2}} \cdots \underbrace{1 \cdots 1}_{t_{1}-t_{2}} \underbrace{0 \cdots 0}_{n-i_{p-1}-t_{1}}) \in \Omega_{0}.
$$

For $1 \leq k \leq p-2$, we have

$$
\alpha + (k \cdots k) = (\overbrace{k+1 \cdots k+1 \cdots p-1}^{i_{p-1}} \cdots p-1 \overbrace{0 \cdots 1 \cdots 1 \cdots \cdots d}^{t_1} \overbrace{e \underbrace{k \cdots k}_{\geq 1}},
$$

where $e = k + 1$ or k , depending on whether it receives a carry from the preceding digit. If $e = k + 1$, then $asc(\alpha + (k \cdots k)) \ge p - 1 - k + k + 1 = p$. If $e = k$, then $t_1 > 0$ and $d \geq k + 1$, which also implies that asc($\alpha + (k \cdots k)$) $\geq p$. Therefore $\alpha + (k \cdots k)$ is not a sum of $\leq p - 1$ elements (not necessarily distinct) of *S*, i.e., not a sum of $p - 1$ elements (not necessarily distinct) of $S \cup \{0\}$.

On the other hand, we have $asc(\alpha) = p - 1$ and

$$
Asc(α) = {0, ip-1 - ip-2, ..., ip-1 - i1},
$$

\n
$$
Des(α) = {ip-1, ip-1 + tp-2, ..., ip-1 + t1}.
$$

Therefore, the only possible ways to express α as a sum of $p - 1$ elements (not necessarily distinct) of $S \cup \{0\}$ are

$$
\alpha = s(0, i_{p-1} + \tau(p-1)) + s(i_{p-1} - i_{p-2}, i_{p-2} + \tau(p-2))
$$

+ \cdots + s(i_{p-1} - i_1, i_1 + \tau(1)),

where $(\tau(1), \ldots, \tau(p-1))$ is a permutation of $(t_1, \ldots, t_{p-2}, 0)$. Together with the fact that for $1 \le k \le p - 2$, $\alpha + (k \cdots k)$ is not a sum of $p - 1$ elements (not necessarily distinct) of $S \cup \{0\}$, we have proved that

$$
\alpha = \alpha_1 \oplus \cdots \oplus \alpha_{p-1}, \quad \alpha_i \in S \cup \{0\},\
$$

 $\circled{2}$ Springer

if and only if

$$
\{\alpha_1, \ldots, \alpha_{p-1}\} = \{s(0, i_{p-1} + \tau(p-1)), s(i_{p-1} - i_{p-2}, i_{p-2} + \tau(p-2)),
$$

$$
\ldots, s(i_{p-1} - i_1, i_1 + \tau(1))\},\
$$

where $(\tau(1), \ldots, \tau(p-1))$ is a permutation of $(t_1, \ldots, t_{p-2}, 0)$.

Now we have

$$
0 = C(\alpha) \qquad \text{(by (4.1))}
$$
\n
$$
= (p-1)! \sum_{\tau} \prod_{k=1}^{p-1} a_{i_{p-k} + \tau(p-k)}^{p^{i_{p-1} - i_{p-k}}} \qquad \text{(by (4.2)),} \tag{4.4}
$$

which gives (4.3) .

Proof of Theorem [4.1](#page-12-2) 1° We first show that for all $1 \leq k \leq p - 1$ and

$$
1 + \sum_{j=0}^{k-1} j \le i_k < \cdots < i_{p-1} \le n - k - 1,
$$

we have

 $a_{i_k} \cdots a_{i_{n-1}} = 0.$

We use induction on *k*. When $k = 1$, the conclusion follows from Lemma [4.2](#page-14-1) with $t_{p-2} =$ ···= *t*¹ = 0. Assume 2 ≤ *k* ≤ *p*−1. In Lemma [4.2,](#page-14-1) let *t*¹ = *k*−1, *t*² = *k*−2, ..., *tk*−¹ = 1, $t_k = \cdots = t_{p-2} = 0$, $i_{k-1} = i_k - 1$, $i_{k-2} = i_k - 2$, ..., $i_1 = i_k - (k-1)$, and note that $i_{p-1} + t_1 = i_{p-1} + k - 1 \leq n - 2$. We have

$$
\sum_{\tau} \prod_{j=1}^{p-1} a_{i_j + \tau(j)}^* = 0,
$$
\n(4.5)

where $(\tau(1), \ldots, \tau(p-1))$ runs through all permutations of $(k-1, k-2, \ldots, 1, 0, \ldots, 0)$ and the ∗'s are suitable powers of *p*. (In general, we use a ∗ to denote a positive integer exponent whose exact value is not important.) Multiplying [\(4.5\)](#page-15-0) by $a_{i_k} \cdots a_{i_{p-1}}$ gives

$$
a_{i_k}^* \cdots a_{i_{p-1}}^* + \sum_{\substack{\tau \\ (\tau(1), \dots, \tau(k-1)) \neq (k-1, \dots, 1)}} a_{i_k} \cdots a_{i_{p-1}} \prod_{j=1}^{p-1} a_{i_j + \tau(j)}^* = 0.
$$
 (4.6)

When $(\tau(1), \ldots, \tau(k-1)) \neq (k-1, \ldots, 1)$, at least one of $i_1 + \tau(1), \ldots, i_{p-1} + \tau(p-1)$, say *i*_{k−1}, is less than *i_k*. Also note that $i'_{k-1} \ge i_1 = i_k - (k-1) \ge 1 + 1 + 2 + \cdots + (k-2)$. Therefore by the induction hypothesis, $a_{i'_{k-1}} a_{i_k} \cdots a_{i_{p-1}} = 0$. Thus the \sum in [\(4.6\)](#page-15-1) equals 0, which gives $a_{i_k} \cdots a_{i_{p-1}} = 0$.

2° Let $k = p - 1$ in 1°. We have

$$
a_i = 0
$$
 for all $1 + \frac{1}{2}(p-2)(p-1) \le i \le n - p$.

3◦ We claim that

$$
a_i = 0
$$
 for all $1 \le i \le \frac{1}{2}(p-2)(p-1)$.

Assume to the contrary that this is not true. Let $1 \le l \le \frac{1}{2}(p-2)(p-1)$ be the largest integer such that $a_l \neq 0$. Let

$$
\alpha = (\underbrace{1 \cdots 1}_{l} \underbrace{0 \cdots 0}_{p+1} \underbrace{1 \cdots 1}_{l} \underbrace{0 \cdots 0}_{p+1} \cdots \underbrace{1 \cdots 1}_{l} \underbrace{0 \cdots 0}_{p+1} 0 \cdots 0) \in \Omega_0.
$$

(Here we used the assumption that *n* ≥ $(p-1)\left[\frac{1}{2}(p-2)(p-1)+p+1\right]$.) For $0 \le k \le p-2$, we have $\operatorname{asc}(\alpha + (k \cdots k)) = p - 1$ and

$$
Asc(\alpha + (k \cdots k)) = \{0, l + p + 1, 2(l + p + 1), \dots, (p - 2)(l + p + 1)\},
$$

$$
Des(\alpha + (k \cdots k)) = \{l, l + p + 1 + l, 2(l + p + 1) + l, \dots, (p - 2)(l + p + 1) + l\}.
$$

If $\alpha + (k \cdots k)$ is expressed as a sum of $p - 1$ elements (not necessarily distinct) of *S*, the expression must be of the form

$$
\alpha + (k \cdots k) = s(0, i_1) + s(l + p + 1, i_2) + \cdots + s((p - 2)(l + p + 1), i_{p-1}), \quad (4.7)
$$

where *i*₁, ..., *i*_{*p*−1} ∈ {1, ..., *n* − 1}, and in modulus *n*

$$
\begin{aligned} \{i_1, \ l+p+1+i_2, \ \ldots, \ (p-2)(l+p+1)+i_{p-1}\} \\ &= \{l, \ l+p+1+l, \ 2(l+p+1)+l, \ \ldots, \ (p-2)(l+p+1)+l\}. \end{aligned} \tag{4.8}
$$

We further require $a_{i_1} \cdots a_{i_{n-1}} \neq 0$, which implies that $i_1, \ldots, i_{p-1} \in \{1, \ldots, l\} \cup \{n-p+1\}$ 1,..., $n-1$. It follows from [\(4.8\)](#page-16-0) that $i_1 = \cdots = i_{p-1} = l$. Thus we have

$$
0 = C(\alpha)
$$
 (by (4.1))
= $(p-1)! a_l^{p^0} a_l^{p^{l+p+1}} \cdots a_l^{p^{(p-2)(l+p+1)}}$ (by (4.2) and (4.7)), (4.9)

which is a contradiction.

4◦ Finally, we claim that

$$
a_i = 0 \quad \text{for all } n - p + 1 \le i \le n - 1.
$$

For $x \in \mathbb{F}_{p^n}^*$,

$$
\operatorname{Tr}_{p^n/p} (L(x^{-1})/x^{-1}) = \operatorname{Tr}_{p^n/p} \left(\sum_{i=0}^{n-1} a_i x^{1-p^i} \right) = \operatorname{Tr}_{p^n/p} \left(\sum_{i=0}^{n-1} a_i^{p^{n-i}} x^{p^{n-i}-1} \right)
$$

$$
= \operatorname{Tr}_{p^n/p} \left(\sum_{i=0}^{n-1} a_{n-i}^{p^i} x^{p^i-1} \right),
$$

where $a_n = a_0$. Thus $L_1(X) := \sum_{i=0}^{n-1} a_{n-i}^{p^i} X^{p^i}$ also satisfies [\(2.3\)](#page-4-4). By 2° and 3°, $a_{n-i} = 0$ for all $1 \le i \le n - p$, i.e., $a_i = 0$ for all $p \le i \le n - 1$. Since $p \le n - p - 1$, the claim is \Box

It appears that the assumption that $n \geq \frac{1}{2}(p-1)(p^2 - p + 4)$ in Theorem [4.1](#page-12-2) may be weakened. On the other hand, when q is not a prime, the proofs of Lemma [4.2](#page-14-1) and Theorem [4.1](#page-12-2) fail for the following reason: In [\(4.4\)](#page-15-2) and [\(4.9\)](#page-16-1), $(p-1)!$ is replaced by $(q-1)!$, which is 0 in \mathbb{F}_q . When $q = p^e$, [\(4.1\)](#page-13-0) becomes

 $\circled{2}$ Springer

$$
\left[\prod_{k=0}^{e-1} \sum_{0 \le i,j \le n-1} a_1^{p^k q^j} X^{p^k q^j (q^i - 1)}\right]^{p-1} \equiv \operatorname{Tr}_{q^n/q}(a_0)^{q-1} + \left[1 - \operatorname{Tr}_{q^n/q}(a_0)^{q-1}\right] X^{q^n - 1}
$$
\n(mod $X^{q^n} - X$).

The question is how to decipher this equation.

5 A connection to some cyclic codes for general \mathbb{F}_q

In this section we prove certain necessary conditions for a *q*-linearized polynomials $L(X) \in$ $\mathbb{F}_{q^n}[X]$ to satisfy $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$, where *q* is a prime power. In particular, we give a natural connection to some cyclic codes. There is also a connection of such cyclic codes to some algebraic curves. In the next section, we will use this connection to algebraic curves to get some necessary conditions for such *q*-linearized polynomials $L(X) \in \mathbb{F}_{q^n}[X]$.

If $L(X) = a_0 X \in \mathbb{F}_{q^n}[X]$, then $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$ if and only if $\text{Tr}_{q^n/q}(a_0) \neq 0$. Hence we assume that $L(X) = a_0 X + a_1 X^q + \cdots + a_{n-1} X^{q^{n-1}} \in \mathbb{F}_{q^n}[X]$ with $(a_1, a_2, \ldots, a_{n-1}) \neq (0, 0, \ldots, 0)$.

First we recall some notation and basic facts from coding theory (see, for example, [\[20](#page-22-9)]). Let $N = q^n - 1$. A code of length *N* over \mathbb{F}_q is just a nonempty subset of \mathbb{F}_q^N . It is called a *linear* code if it is a vector space over \mathbb{F}_q . The set C^{\perp} of all *N*-tuples in \mathbb{F}_q^N orthogonal to all codewords of a linear code C with respect to the usual inner product on \mathbb{F}_q^N is called the *dual code* of *C*. The Hamming weight of an arbitrary *N*-tuple $\mathbf{u} = (u_0, u_1, \dots, u_{N-1}) \in \mathbb{F}_q^N$ is

$$
||\mathbf{u}|| = |\{0 \le i \le N - 1 : u_i \neq 0\}|.
$$

A *cyclic* code of length *N* over \mathbb{F}_q is an ideal *C* of the quotient ring $R = \mathbb{F}_q[X]/\langle X^N - 1 \rangle$. Here a codeword $(c_0, c_1, \ldots, c_{N-1}) \in \mathbb{F}_q^N$ of *C* corresponds to an element $c_0 + c_1 X + \cdots$ $c_{N-1}X^{N-1} + \langle X^N - 1 \rangle \in C$. All ideals of *R* are principal. The monic polynomial *g*(*X*) of the least degree such that $C = \frac{g(X)}{X^N - 1}$ is called the *generator* polynomial of *C*. The dual C^{\perp} is cyclic with generator polynomial $X^{\deg h} h(X^{-1})/h(0)$, where $h(X) = (X^N - 1)/g(X)$.

If $\theta \in \mathbb{F}_{q^n}$ is a root of $g(X)$, then so is θ^q . A set $B \subset \mathbb{F}_{q^n}$ is called a *basic zero set* of *C* if both of the following conditions are satisfied:

- $\{\theta^{q^i} : \theta \in B, 0 \le i \le n-1\}$ is the set of the roots of $g(X)$.
- If $\theta_1, \theta_2 \in B$ with $\theta_1^{q^i} = \theta_2$ for some integer *i*, then $\theta_1 = \theta_2$.

The following proposition gives a natural connection to some cyclic codes. Some arguments in its proof will also be used in the next section.

Proposition 5.1 *Let* γ *be a primitive element of* $\mathbb{F}_{q^n}^*$ *. Let* C *be the cyclic code of length* $N = q^n - 1$ *over* \mathbb{F}_q *whose dual code* C^{\perp} *has*

$$
\{1, \gamma^{q-1}, \gamma^{q^2-1}, \ldots, \gamma^{q^{n-1}-1}\}
$$

as a basic zero set. We have the following: There exists a q-linearized polynomial $L(X)$ = $a_0X + a_1X^q + \cdots + a_{n-1}X^{q^{n-1}} \in \mathbb{F}_{q^n}[X]$ *with* $(a_1, a_2, \ldots, a_{n-1}) \neq (0, 0, \ldots, 0)$ *such that* $Tr_{q^n/q}(L(x)/x) \neq 0$ *for all* $x \in \mathbb{F}_{q^n}^*$ *if and only if the cyclic code C has a codeword* $(c_0, c_1, \ldots, c_{N-1})$ *of Hamming weight* \dot{N} such that $(c_0, c_1, \ldots, c_{N-1}) ≠ u(1, 1, \ldots, 1)$ *for any* $u \in \mathbb{F}_q^*$. Moreover the dimension of C over \mathbb{F}_q *is* $n^2 - n + 1$.

Proof We first show that $\{1, \gamma^{q-1}, \gamma^{q^2-1}, \ldots, \gamma^{q^{n-1}-1}\}$ is a basic zero set. This means that the exponents 0, $q-1$, q^2-1 , ..., $q^{n-1}-1$ are in distinct *q*-cyclotomic cosets modulo q^n-1 . For $0 \le d < q^n - 1$, let $\psi(d)$ be the base *q* digits of *d*, i.e., $\psi(d) = (d_0, d_1, \ldots, d_{n-1})$, where 0 ≤ *d_i* ≤ *q* − 1 are integers such that $d = \sum_{i=0}^{n-1} d_i q^i$. Let $\overline{0}, \overline{q-1}, \overline{q^2-1}, \ldots, \overline{q^{n-1}-1}$ denote the *q*-cyclotomic cosets of 0, $q - 1$, $q^2 - 1$, ..., $q^{n-1} - 1$ modulo $q^n - 1$. Their images under ψ are

$$
\psi(\overline{0}) = \{(0, 0, \dots, 0)\},
$$

\n
$$
\psi(\overline{q-1}) = \{(q-1, 0, 0, \dots, 0), (0, q-1, 0, \dots, 0), \dots, (0, 0, \dots, 0, q-1)\},
$$

\n
$$
\psi(\overline{q^2-1}) = \{(q-1, q-1, 0, \dots, 0), (0, q-1, q-1, \dots, 0), \dots, (q-1, 0, \dots, 0, q-1)\},
$$

\n
$$
\vdots
$$

\n
$$
\psi(\overline{q^{n-1}-1}) = \{(q-1, \dots, q-1, 0), (0, q-1, \dots, q-1), \dots, (q-1, 0, \dots, q-1)\}.
$$

Note that the elements in each row are obtained via cyclic shifts of the first element of the row. This proves that $0, q - 1, q^2 - 1, \ldots, q^{n-1} - 1$ are in distinct *q*-cyclotomic cosets modulo $qⁿ$ − 1. Moreover the cardinality of the union of their *q*-cyclotomic cosets modulo $qⁿ$ − 1 is

$$
1 + (n - 1)n = n^2 - n + 1.
$$

Therefore the dimensions of *C* is $n^2 - n + 1$. Finally using Delsarte's Theorem [\[26,](#page-22-10) Theorem 9.1.2] we obtain that the codewords of *C* in \mathbb{F}_q^N are

$$
C = \left\{ \left(\text{Tr}_{q^n/q} \left(a_0 + a_1 x^{q-1} + \cdots + a_{n-1} x^{q^{n-1}-1} \right) \right)_{x \in \mathbb{F}_{q^n}^*} : a_0, a_1, \ldots, a_{n-1} \in \mathbb{F}_{q^n} \right\}.
$$

Note that $\text{Tr}_{q^n/q}(L(x)/x) = u$ for all $x \in \mathbb{F}_{q^n}^*$ if and only if $\text{Tr}_{q^n/q}(L(X)/X) = u$ (mod $X^{q^n} - X$), from which it follows that $(a_1, a_2, ..., a_{n-1}) = (0, 0, ..., 0)$. This completes the proof. \Box

6 Some conditions via the Hasse–Weil–Serre bound for general F*^q*

In this section we obtain some necessary conditions for the *q*-linearized polynomials *L*(*X*) ∈ $\mathbb{F}_{q^n}[X]$ such that $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$.

The Hasse–Weil–Serre bound for algebraic curves over finite fields implies upper and lower bounds on the Hamming weights of codewords of cyclic codes (see [\[10](#page-21-15)[,28\]](#page-22-11)). Using this method we obtain Theorem [6.1.](#page-18-1)

First we introduce further notations. Let Res : $\mathbb{Z} \to \{0, 1, \ldots, q^n - 2\}$ be the map such that Res (*j*) \equiv *j* (mod $q^n - 1$). Put $q = p^m$ with $m \ge 1$, where p is the characteristic of \mathbb{F}_q . Let Lead : {0, 1, ..., $p^{mn} - 2$ } \rightarrow {0, 1, ..., $p^{mn} - 2$ } be the map sending *j* to the smallest integer *k* in $\{0, 1, \ldots, p^{mn-2}\}$ such that $k \equiv j p^u \pmod{p^{mn}-1}$ for some integer $u \geq 0$. In other words, Lead(*j*) is the smallest nonnegative integer in the *p*-cyclotomic coset of *j* modulo $p^{mn} - 1$. It is important to note that if $0 < j < p^{mn} - 1$, then Lead(*j*) is a nonnegative integer which is coprime to *p*.

Theorem 6.1 *Let* $L(X) = a_0 X + a_1 X^q + \cdots + a_{n-1} X^{q^{n-1}} \in \mathbb{F}_{q^n}[X]$ *be a q-linearized* $polynomial with (a_1, \ldots, a_{n-1}) \neq (0, \ldots, 0)$ *. For each* $1 \leq j \leq q^n - 2$ with $gcd(j, q^n - 1) =$ 1*, let*

 $\ell(j) = \max{\{\text{Lead}(Res(j(q^{i} - 1))): 1 \leq i \leq n - 1 \text{ and } a_{i} \neq 0\}}.$

Moreover, let

$$
\ell = \min_{j} \ell(j),\tag{6.1}
$$

where the minimum is over all integers $1 \leq j \leq q^n - 2$ *with* $gcd(j, q^n - 1) = 1$ *. Then we have the following:*

• *Case* $Tr_{a^n/a}(a_0) \neq 0$ *: If*

$$
q^{n} + 1 - \frac{(q-1)(\ell-1)}{2} \lfloor 2q^{n/2} \rfloor > 1,
$$
\n(6.2)

then it is impossible that $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ *for all* $x \in \mathbb{F}_{q^n}^*$.

• *Case* $\text{Tr}_{a^n/a}(a_0) = 0$ *: If*

$$
q^{n} + 1 - \frac{(q-1)(\ell - 1)}{2} \lfloor 2q^{n/2} \rfloor > q + 1,
$$
\n(6.3)

then it is impossible that $\mathrm{Tr}_{q^n/q}(L(x)/x) \neq 0$ *for all* $x \in \mathbb{F}_{q^n}^*$.

Proof If γ is a primite element of $\mathbb{F}_{q^n}^*$, then γ^j is also a primitive element of $\mathbb{F}_{q^n}^*$ for all $1 \leq j \leq q^n - 2$ with gcd(*j*, $q^n - 1$) = 1. Note that

$$
\text{Tr}_{q^n/q}(L(x)/x) = \text{Tr}_{q^n/q}\left(a_0 + a_1x^{q-1} + \dots + a_{n-1}x^{q^{n-1}-1}\right) \neq 0 \text{ for all } x \in \mathbb{F}_{q^n}^*,
$$

if and only if

$$
\operatorname{Tr}_{q^n/q}(L(x^j)/x^j) = \operatorname{Tr}_{q^n/q}(a_0 + a_1x^{j(q-1)} + \cdots + a_{n-1}x^{j(q^{n-1}-1)}) \neq 0 \text{ for all } x \in \mathbb{F}_{q^n}^*.
$$

Moreover, $x^{j(q^i-1)} = x^{\text{Res}(j(q^i-1))}$ for $x \in \mathbb{F}_{q^n}^*$, $1 \le i \le n-1$ and $1 \le j \le q^n - 2$.

Recall that ℓ is defined in [\(6.1\)](#page-19-0). We choose and fix an integer $1 \le j \le q^n - 2$ with $gcd(j, q^n - 1) = 1$ such that $\ell = \ell(j)$.

Let a_{t_1}, \ldots, a_{t_s} be the nonzero coefficients among a_1, \ldots, a_{n-1} . (Note that $s \ge 1$ since $(a_1, \ldots, a_{n-1}) \neq (0, \ldots, 0)$.) Since $0, q^{t_1} - 1, \ldots, q^{t_s} - 1$ belong to different *p*-cyclotomic cosets modulo $q^n - 1$ and $gcd(j, q^n - 1) = 1$, we have that 0, $j(q^{t_1}-1), \ldots, j(q^{t_s}-1)$ belong to different *p*-cyclotomic cosets modulo $q^n - 1$. Thus Res ($j(q^{t_i} - 1)$) = $j_i p^{u_i}$, where $u_i ≥ 0$, $p \nmid j_i, 1 \le i \le s$, and j_1, \ldots, j_s are distinct. We may assume $0 < j_1 < j_2 < \cdots < j_s = \ell$. We have

$$
a_0 + a_1 X^{\text{Res}(j(q-1))} + \cdots + a_{n-1} X^{\text{Res}(j(q^{n-1}-1))} = a_0 + b_1 X^{j_1 p^{u_1}} + \cdots + b_s X^{j_s p^{u_s}},
$$

where $b_i = a_{t_i}$, $1 \leq i \leq s$.

Let χ be the Artin-Shreier type algebraic curve over \mathbb{F}_{q^n} given by

$$
\chi: Y^q - Y = a_0 + b_1 X^{j_1 p^{u_1}} + \cdots + b_s X^{j_s p^{u_s}}.
$$

Let $S \subset \mathbb{F}_{p^{mn}}^*$ be a complete set of coset representatives of \mathbb{F}_p^* in $\mathbb{F}_{p^{mn}}^*$. For $\mu \in S$, let χ_{μ} be the Artin-Shreier type algebraic curve over \mathbb{F}_{q^n} given by

$$
\chi_{\mu}: Y^{p} - Y = \mu \left(a_{0} + b_{1} X^{j_{1} p^{\mu_{1}}} + \cdots + b_{s} X^{j_{s} p^{\mu_{s}}} \right)
$$

Note that χ_{μ} is a degree p covering of the projective line. Using [\[9,](#page-21-16) Theorem 2.1] the genus $g(\chi)$ of χ is computed in terms of the genera of χ_{μ} as

$$
g(\chi) = \sum_{\mu \in S} g(\chi_{\mu}).
$$
\n(6.4)

.

Now we determine the genus $g(\chi_{\mu})$ of χ_{μ} . We choose and fix $\mu \in S$. Let $c_1, c_2, \ldots, c_s \in$ F∗ *^pmn* be such that

$$
c_1^{p^{u_1}} = \mu b_1, c_2^{p^{u_2}} = \mu b_2, \ldots, c_s^{p^{u_s}} = \mu b_s.
$$

Let χ'_μ be the Artin-Schreier type algebraic curve over \mathbb{F}_{q^n} given by

$$
\chi'_{\mu}: Y^{p}-Y=\mu a_{0}+c_{1}X^{j_{1}}+\cdots+c_{s}X^{j_{s}}.
$$

We observe that χ_{μ} and χ'_{μ} are birationally isomorphic and hence the genera $g(\chi_{\mu})$ and $g(\chi'_\mu)$ are the same. Indeed, if $u_1 \geq 1$, then

$$
Y^{p} - Y = \mu a_{0} + c_{1}^{p^{u_{1}}} X^{j_{1}p^{u_{1}}} + c_{2}^{p^{u_{2}}} X^{j_{2}p^{u_{2}}} + \cdots + c_{s}^{p^{u_{s}}} X^{j_{s}p^{u_{s}}}
$$

$$
= \mu a_{0} + (c_{1}^{p^{u_{1}-1}} X^{j_{1}p^{u_{1}-1}})^{p} + c_{2}^{p^{u_{2}}} X^{j_{2}p^{u_{2}}} + \cdots + c_{s}^{p^{u_{s}}} X^{j_{s}p^{u_{s}}}
$$

and hence

$$
\[Y - \left(c_1^{p^{u_1-1}} X^{j_1 p^{u_1-1}}\right)\]^{p} - \left[Y - \left(c_1^{p^{u_1-1}} X^{j_1 p^{u_1-1}}\right)\right]
$$

= $\mu a_0 + c_1^{p^{u_1-1}} X^{j_1 p^{u_1-1}} + c_2^{p^{u_2}} X^{j_2 p^{u_2}} + \dots + c_s^{p^{u_s}} X^{j_s p^{u_s}}.$

This gives a birational isomorphism between χ_{μ} and the curve given by

$$
Y^{p}-Y=\mu a_{0}+c_{1}^{p^{u_{1}-1}}X^{j_{1}p^{u_{1}-1}}+c_{2}^{p^{u_{2}}}X^{j_{2}p^{u_{2}}}+\cdots+c_{s}^{p^{u_{s}}}X^{j_{s}p^{u_{s}}}.
$$

By induction on u_1 we obtain a birational isomorphism between χ_{μ} and the curve given by

$$
Y^{p} - Y = \mu a_{0} + c_{1} X^{j_{1}} + c_{2}^{p^{u_{2}}} X^{j_{2} p^{u_{2}}} + \cdots + c_{s}^{p^{u_{s}}} X^{j_{s} p^{u_{s}}}.
$$

Applying the same method to the monomials $c_2^{p^{u_2}} X^{j_2 p^{u_2}}$, ..., $c_s^{p^{u_s}} X^{j_s p^{u_s}}$ we conclude that the curves χ_{μ} and χ'_{μ} are birationally isomorphic.

Recall that the integers $0, j_1, \ldots, j_s$ are in distinct *p*-cyclotomic cosets modulo $q^n - 1$. As $c_s \neq 0$ and $gcd(j_s, p) = 1$ we obtain that χ'_μ is absolutely irreducible over \mathbb{F}_{q^n} . Moreover $s \geq 1$ and $j_s = \ell$. Hence by [\[26,](#page-22-10) Proposition 3.7.8] we have

$$
g(\chi_{\mu}) = g(\chi_{\mu}') = (p-1)(\ell - 1)/2,
$$

which is independent from the choice of $\mu \in S$. Using [\(6.4\)](#page-19-1) for the genus $g(\chi)$ of χ we obtain that

$$
g(\chi) = \sum_{\mu \in S} g(\chi_{\mu}) = |S|(p-1)(\ell-1)/2 = (q-1)(\ell-1)/2.
$$

Assume that $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$. The number $N(\chi)$ of \mathbb{F}_{q^n} -rational points of χ is

$$
N(\chi) = 1 + q |\{x \in \mathbb{F}_{q^n} : \text{Tr}(L(x)/x) = 0\}| = \begin{cases} 1 & \text{if } \text{Tr}_{q^n/q}(a_0) \neq 0, \\ q+1 & \text{if } \text{Tr}_{q^n/q}(a_0) = 0. \end{cases} \tag{6.5}
$$

The Hasse–Weil–Serre lower bound on $N(\chi)$ (see, for example, [\[26](#page-22-10), Theorem 5.3.1]) implies that

$$
N(\chi) \ge q^n + 1 - \frac{(q-1)(\ell-1)}{2} \lfloor 2q^{n/2} \rfloor.
$$
 (6.6)

Combining (6.2) , (6.3) , (6.5) and (6.6) , we complete the proof.

The following corollary, which is a restatement of Theorem [6.1,](#page-18-1) shows that the distribution of the nonzero coefficients of a *q*-linearized polynomial *L* satisfying $Tr_{q^n/q}(L(x)/x) \neq 0$ for all $x \in \mathbb{F}_{q^n}^*$ is subject to certain restrictions.

Corollary 6.2 *Let* $L(X) = a_0 X + a_1 X^q + \cdots + a_{n-1} X^{q^{n-1}} \in \mathbb{F}_{q^n}[X]$ *be a q-linearized polynomial with* $(a_1, \ldots, a_{n-1}) \neq (0, \ldots, 0)$ *. Assume that* $\text{Tr}_{q^n/q}(L(x)/x) \neq 0$ *for all x* ∈ $\mathbb{F}_{q^n}^*$. Then for each integer $1 \leq j \leq q^n - 2$ with $gcd(j, q^n - 1) = 1$ we have the *following:*

(i) *If* $\text{Tr}_{q^n/q}(a_0) \neq 0$ *, there exits* $1 \leq i \leq n-1$ *such that* $a_i \neq 0$ *and*

$$
|\text{lead}(\text{Res}(j(q^{i}-1))) \geq 1 + \left\lceil \frac{2q^{n}}{(q-1)\lfloor 2q^{n/2} \rfloor} \right\rceil.
$$

(ii) *If* $\text{Tr}_{q^n/q}(a_0) = 0$ *, there exits* $1 \le i \le n - 1$ *such that* $a_i \neq 0$ *and*

$$
\text{Lead}(\text{Res}(j(q^{i}-1))) \geq 1 + \left\lceil \frac{2(q^{n}-q)}{(q-1)\lfloor 2q^{n/2} \rfloor} \right\rceil.
$$

Acknowledgments The authors are very grateful to the anonymous referees for their valuable comments and suggestions. Xiang-dong Hou is research partially supported by NSA Grant H98230-12-1-0245. Ferruh Özbudak is research partially supported by TUB˙ITAK under Grant No. TBAG-112T011. Yue Zhou is partially supported by the National Basic Research Program of China (No. 2013CB338002) and the National Natural Science Foundation of China (No. 11401579, 61272484).

References

- 1. Albert A.A.: Finite division algebras and finite planes. In: Proceedings of the Symposium on Applied Mathematics, vol. 10, pp. 53–70. American Mathematical Society, Providence (1960).
- 2. Bierbrauer J.: Semifields, theory and elementary constructions. Invited talk presented in Combinatorics 2012, Perugia (2012).
- 3. Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: the user language. J. Symb. Comput. **24**(3–4), 235–265 (1997).
- 4. Cardinali I., Polverino O., Trombetti R.: Semifield planes of order q^4 with kernel \mathbb{F}_{q^2} and center \mathbb{F}_q . Eur. J. Comb. **27**(6), 940–961 (2006).
- 5. Dembowski P.: Finite Geometries. Springer, New York (1997).
- 6. Dembowski P., Ostrom T.G.: Planes of order *n* with collineation groups of order *n*2. Math. Z. **103**, 239–258 (1968).
- 7. Dickson L.E.: On commutative linear algebras in which division is always uniquely possible. Trans. Am. Math. Soc. **7**(4), 514–522 (1906).
- 8. Ganley M.J.: Polarities in translation planes. Geom. Dedicata **1**(1), 103–116 (1972).
- 9. Garcia A., Stichtenoth H.: Elementary abelian *p*-extensions of algebraic function fields. Manuscr. Math. **72**(1), 67–79 (1991).
- 10. Guneri C., Özbudak F.: Weil–Serre type bounds for cyclic codes. IEEE Trans. Inf. Theory **54**(12), 5381– 5395 (2008).
- 11. Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).
- 12. Hou X.: Solution to a problem of S. Payne. Proc. Am. Math. Soc. **132**(1), 1–6 (2004).
- 13. Hughes D.R., Piper F.C.: Projective Planes. Springer, New York (1973).
- 14. Johnson N.L., Jha V., Biliotti M.: Handbook of Finite Translation Planes. Pure and Applied Mathematics (Boca Raton), vol. 289. Chapman & Hall/CRC, Boca Raton (2007).
- 15. Jungnickel D.: On automorphism groups of divisible designs. Can. J. Math. **34**(2), 257–297 (1982).
- 16. Kantor W.M.: Commutative semifields and symplectic spreads. J. Algebra **270**(1), 96–114 (2003).
- 17. Knuth D.E.: Finite semifields and projective planes. J. Algebra **2**, 182–217 (1965).
- 18. Lavrauw M., Polverino O.: Finite semifields. In: Storme, L., De Beule, J. (eds.), Current Research Topics in Galois Geometry, chap. 6, pp. 131–160. NOVA Academic Publishers, Hauppauge (2011).
- 19. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, 2nd edn, vol. 20. Cambridge University Press, Cambridge (1997).
- 20. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
- 21. Menichetti G.: On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. J. Algebra **47**(2), 400–410 (1977).
- 22. Payne S.E.: Linear transformations of a finite field. Am. Math. Monthly **78**, 659–660 (1971).
- 23. Payne S.E.: A complete determination of translation ovoids in finite Desarguesian planes. Lincei—Rend. Sc. Fis. Mat. Nat. LI, pp. 328–331 (1971).
- 24. Pott A., Zhou Y.: Switching construction of planar functions on finite fields. In: Proceedings of the Third International Conference on Arithmetic of Finite Fields. WAIFI'10, pp. 135–150. Springer, Berlin (2010).
- 25. Schmidt, K.-U., Zhou, Y.: Planar functions over fields of characteristic two. J. Algebraic Comb. **40**(2), 503–526 (2014).
- 26. Stichtenoth H.: Algebraic Function Fields and Codes, 2nd edn. Springer, Berlin (2008).
- 27. Wedderburn J.H.M.: A theorem on finite algebras. Trans. Am. Math. Soc. **6**(3), 349–352 (1905).
- 28. Wolfmann J.: New bounds on cyclic codes from algebraic curves. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory and Applications. Lecture Notes in Computer Science, vol. 388, pp. 47–62. Springer, Berlin (1989).
- 29. Zhou Y.:(2*n*, 2*n*, 2*n*, 1)-Relative difference sets and their representations. J. Comb. Des. **21**(12), 563–584 (2013).