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Abstract In this paper we put forward an efficient construction, based on linear algebraic
technique, of a t-(k, n)∗-visual cryptographic scheme (VCS) for monochrome images in
which t participants are essential in a (k, n)-VCS. The scheme is efficient in the sense that
it only requires solving a system of linear equations to construct the required initial basis
matrices. To make the scheme more efficient, we apply the technique of deletion of common
columns from the initial basis matrices to obtain the reduced basis matrices. However finding
exact number of common columns in the initial basis matrices is a challenging problem. In
this paper we deal with this problem.We first provide a construction and analysis of t-(k, n)∗-
VCS. We completely characterize the case of t-(n−1, n)∗-VCS, 0 ≤ t ≤ n−1, by finding a
closed form of the exact number of common columns in the initial basis matrices and thereby
deleting the common columns to get the exact value of the reduced pixel expansion and
relative contrast of the efficient and simple scheme. Our proposed closed form for reduced
pixel expansion of (n − 1, n)-VCS matches with the numerical values of the optimal pixel
expansions for every possible values of n that exist in the literature. We further deal with the
(n − 2, n)-VCS and resolve an open issue by providing an efficient algorithm for grouping
the system of linear equations and thereby show that our proposed algorithm works better
than the existing scheme based on the linear algebraic technique. Finally we provide a bound
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for reduced pixel expansion for (n − 2, n)-VCS and numerical evidence shows it achieves
almost optimal pixel expansion.

Keywords Linear algebra · Pixel expansion · Relative contrast · System of linear equations

Mathematics Subject Classification 15A03 · 94A60

1 Introduction

Avisual cryptographic scheme (VCS) for a setP = {1, 2, . . . , n} of n participants is amethod
that encodes a secret image SI into n shares which are distributed among n participants
in the form of transparencies on which the shares are photocopied. Such shares have the
property that only “qualified” subsets of participants can visually recover the secret image by
carefully stacking the transparencies. The novelty of visual cryptography lies in the fact that
the encrypted message can be decrypted directly by the human visual system, no complex
computation or computer participation is required. This is the precise reason ofVCSattracting
a lot of attention since its inception and as a result extensive research work has been done in
this area. Researchers have worked through different aspects of VCS. Definitions have been
modified, changed according to the need for different applications.

The most general type of VCS deals with the situation when the “qualified” subsets of
participants are just handpicked subsets of the set of participants P . This type of visual
cryptographic scheme is known as VCS for general access structure. One particular case,
known as a (k, n)-threshold VCS, takes care of the scenario where any “qualified” set X of
participants is a subset of P i.e., X ⊆ P , such that the cardinality of X is at least k. In this
case, any qualified subset of k or more participants can visually recover the secret image,
whereas forbidden sets of participants consisting of k−1 or less number of participants have
no information on the secret image.

Originally developed byNaor and Shamir [20], this concept has been extended in [1,4,7,8]
to general access structures. In 1996 Droste [17] gave a brilliant algorithm and used linear
program to construct basis matrices of any (k, n)-threshold VCS. In search for optimal
contrast Blundo et al., [12] resorted to the LPP. They, for the first time, defined canonical
form for a (k, n)-threshold VCS and analyzed the contrast for these schemes.

The idea of optimizing the pixel expansion of an VCS with the help of integer linear
programming (ILP) was put forward by Blundo and De Santis [9]. However they did not
implement it to get computational results. In 2011 Shyu and Chen [23] modeled the mini-
mization of the pixel expansion of a (k, n)-threshold VCS into an ILP to acquire the optimum
solution.

Adhikari et al., [4] proposed a technique to construct any (k, n)-threshold VCS using
linear algebra. The technique is useful even for the case when k is large enough. However
the question of optimality of pixel expansion was left open.

For other interesting and further studies in this area one may refer to [2,3,5,10,11,13,15,
16,18,21,22,24,25].

Recently, a new type of VCS has been introduced [6] called a (k, n)∗-VCS. It addresses
the scenario where one participant is “essential”. Loosely speaking, in this scenario a black
and white secret image is shared among n many participants in such a way that the following
two conditions are satisfied while reconstructing the secret image from the shares:

• One participant is essential in the sense that his presence is necessary to retrieve the secret
image. In other words the secret image cannot be retrieved in his absence.
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Constructions and analysis of some efficient t-(k, n)∗-VCS 167

• It is required to have the shares of at least k participants including the essential participant
to recover the secret image.

Guo et al. [14] forwarded the work (k, n)∗-VCS of [6] by considering (k, n)-VCS with t
essential participants. We denote this by the notation t-(k, n)∗-VCS. Note that in the paper
[14], the authors denote (k, n)-VCS with t essential participants as (k, n, t)-VCS. However,
to keep parity with the original paper [6], we adopt the notation t-(k, n)∗-VCS for 0 ≤ t ≤
k ≤ n. Thus for 0 ≤ t ≤ k ≤ n and P = {1, 2, 3, . . . , n}, the collection of all minimal
qualified sets for the t-(k, n)∗-VCS, denoted by �0 is given by �0 = {S ⊆ P : 1, 2, . . . , t ∈
S ∧ |S| = k}.

Note that the case when t = 0 depicts the original scenario of a (k, n)-VCS where no
participant is essential. The case t = 1 is the usual (k, n)∗-VCS while t = n leads to the
(n, n)-VCS.

The scheme proposed in [14] for t-(k, n)∗-VCS generalizes the 1-(k, n)∗-VCS proposed
in [6]. However, both of the schemes are based on the construction of (k, n)-VCS. In this
paper we put forward an efficient but direct construction, based on linear algebraic technique,
of a t-(k, n)∗-VCS for monochrome images. The scheme is efficient in the sense that it only
requires solving a system of linear equations to construct the required initial basis matrices.
To make the scheme even more efficient, we apply the technique of deletion of common
columns from the initial basis matrices to obtain the reduced basis matrices. However, as
mentioned in [1], finding exact number of common columns in the initial basis matrices is a
challenging problem. In this paperwe dealwith this open issue.Wefirst provide a construction
and analysis of t-(k, n)∗-VCS. We completely characterize the case of t-(n − 1, n)∗-VCS,
0 ≤ t ≤ n − 1, by finding a closed form of the exact number of common columns in
the initial basis matrices and thereby deleting the common columns to get the exact pixel
expansion and the relative contrast of the efficient and simple scheme. As a particular case of
t-(n− 1, n)∗, we derive a closed form of the reduced pixel expansion of (n− 1, n)-VCS. We
show that for odd n ≥ 3, our scheme has exactly half the pixel expansion but achieves the
same relative contrast of the canonical scheme based on LPP posed in [12]. For even n ≥ 3,
our scheme has the same relative contrast and the pixel expansion as the scheme posed in [12].
Furthermore, our closed form for the reduced pixel expansion, as the numerical evidences in
[23] show, indeed provides the optimal pixel expansion for (n − 1, n)-VCS. We further deal
with the (n − 2, n)-VCS and resolve an open issue, as posed in [1], by providing an efficient
algorithm for grouping the system of linear equations and thereby show that our proposed
algorithm works better in terms of pixel expansion, than the existing scheme based on the
linear algebraic technique. Finally the numerical evidences shows that our scheme provides
almost optimal pixel expansion for (n − 2, n)-VCS.

1.1 Organization of the paper

The rest of the paper is organized as follows. In Sect. 2 we discuss few terms and concepts that
are essential. In Sect. 3 we describe a very efficient construction based on linear algebraic
tools of a t-(k, n)∗-VCS where t many parties are essential. In Sect. 4 we deal with the
particular case when the threshold number of participants is n − 1 and in this process we
derive a closed form of the reduced pixel expansion. We present the analysis of the reduced
pixel expansion of any (n − 1, n)-VCS and give a closed form of the same. In Sect. 5 we
deal with (n− 2, n)-VCS and provide an algorithm to group minimal qualified sets such that
every group contains at least three sets. We also compare our scheme with existing schemes
in terms of pixel expansion and prove some bounds. Lastly we conclude with some open
issues in Sect. 6.
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2 The model and the prerequisites for monochrome VCS

Themodel that we describe here is similar to themodel as described in Blundo, De Santis, and
Stinson [10]. LetP = {1, . . . , n} be a set of elements called participants, and let 2P denote the
set of all subsets of P . Let �Qual and �Forb be subsets of 2P , where �Qual ∩ �Forb = ∅. We
will refer to members of �Qual as qualified sets and the members of �Forb as forbidden sets.
The pair (�Qual , �Forb) is called the access structure of the scheme. In general,�Qual∪�Forb

need not be 2P .
Let �0 = {A | A ∈ �Qual ∧ ∀A′ ⊂ A, A′ /∈ �Qual} be the collection of all minimal

qualified sets. A participant P ∈ P is an essential participant if there exists a set X ⊆ P such
that X ∪ {P} ∈ �Qual but X /∈ �Qual . If a participant P ∈ P is not an essential participant,
then we call the participant as a non-essential participant.

Let � ⊆ 2P \ {∅} (� ⊆ 2P ). If A ∈ � and A ⊆ A′ ⊆ P (A′ ⊆ A ⊆ P) implies A′ ∈ �

then � is said to be monotone increasing (decreasing) onP . If �Qual is monotone increasing,
�Forb is monotone decreasing, and �Qual ∪ �Forb = 2P , then the access structure is called
strong and �0 is called a basis. A visual cryptographic scheme with a strong access structure
will be termed as a strong visual cryptography scheme. In this paper we deal with only
strong access structures. Throughout this paper, we presume that �Qual ∪ �Forb = 2P . So
any X ⊆ P is either a qualified set or a forbidden set of participants.

We further assume that the secret image consists of a collection of black and white pixels,
each pixel being shared separately. To understand the sharing process consider the case
where the secret image consists of just a single black or white pixel. On sharing, this pixel
appears in the n shares distributed to the participants. However, in each share the pixel is
subdivided into m subpixels. This m is called the pixel expansion i.e., the number of pixels,
on the transparencies corresponding to the shares (each such pixel is called subpixel), needed
to represent one pixel of the original image. The shares are printed on transparencies. So a
“white” subpixel is actually an area where nothing is printed, and left transparent. We assume
that the subpixels are sufficiently small and close enough so that the eye averages them to
some shade of grey.

In order that the recovered image is clearly discernible, it is important that the grey
level of a black pixel be darker than that of a white pixel. Informally, the difference in the
grey levels of the two pixel types is called contrast. We want the contrast to be as large as
possible. Three variables control the perception of black and white regions in the recovered
image: a threshold value (t), a relative contrast (α(m)), and the pixel expansion (m). The
threshold value is a numeric value that represents a grey level that is perceived by the human
eye as the color black. The value α(m) · m is the contrast, which we want to be as large
as possible. We require that α(m) · m ≥ 1 to ensure that black and white areas will be
distinguishable.

Notations Consider an n × m Boolean matrix M and let X ⊆ {1, 2, . . . , n}. By M[X ] we
will denote the |X | × m submatrix obtained from M by retaining only the rows indexed by
the elements of X . MX will denote the Boolean “or” of the rows of M[X ]. The Hamming
weight w(V ) is the number of 1’s in a Boolean vector V .

2.1 Basis matrices

To construct a visual cryptographic scheme, it is sufficient to construct the basis matrices
corresponding to the black and white pixel. In the following, we formally define what is
meant by basis matrices.
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Constructions and analysis of some efficient t-(k, n)∗-VCS 169

Definition 2.1 (adapted from [10]) Let (�Qual, �Forb) be an access structure on a set P of n
participants. A (�Qual, �Forb,m)-VCS with relative difference α(m) and a set of thresholds
{tX }X∈�Qual is realized using the n×m basismatrices S0 and S1 if the following two conditions
hold:

1. If X = {i1, i2, . . . , i p} ∈ �Qual, then S0X , the “or ′′ of the rows i1, i2, . . . , i p of S0,
satisfies w(S0X ) ≤ tX − α(m) · m; whereas, for S1 it results in w(S1X ) ≥ tX .

2. If X = {i1, i2, . . . , i p} ∈ �Forb, the two p × m matrices obtained by restricting S0 and
S1 to rows i1, i2, . . . , i p are equal up to a column permutation.

3 Construction and analysis of some efficient t-(k, n)∗-VCS

LetP = {1, 2, 3, . . . , n} be the set of participants. Let 0 ≤ t ≤ k ≤ n be three integers where
t denotes the number of essential participants, k denotes the threshold number of participants
that is required to recover the secret image. Without loss of generality, let us assume that the
first t participants, namely, 1, 2, . . . , t are the essential participants.

We have not as such put any restriction on the parameters t, k and n other than 0 ≤
t ≤ k ≤ n. It is worth mentioning that we are interested in only those triplets (t, k, n) of
parameters which admit a meaningful visual cryptographic scheme. For example, if t = k
then the only meaningful value that n may assume is k because if n > k then the rest of
the n − k participants are non-essential and we can ignore them while sharing the secret.
Again, if k equals n then t = k = n or t equals n then all the participants are essential and
the resulting scheme is again an (n, n)-VCS. The case when t = 0 with n ≥ k > 1 is the
original (k, n)-threshold VCS where no participant is essential and any k or more of them
can recover the secret. Henceforth whenever we consider a triplet (t, k, n), it is ameaningful
triplet. Moreover, it should be noted that once (t − 1, k − 1, n − 1) is a meaningful triplet
then so is (t, k, n).

We now describe a method for constructing the basis matrices realizing a t-(k, n)∗-VCS.
The method is straightforward and efficient in the sense that it only requires solving a system
of linear equations to construct the basis matrices. This method is an extension of linear
algebraic method introduced by Adhikari et. al., in [4] and developed further in [1].

3.1 Construction of a t-(k, n)∗-VCS: linear algebraic technique

We associate to each participant i , a variable xi for all i = 1, 2, . . . , n. If X is a min-
imal qualified set for a t-(k, n)∗-VCS, then we must have each of 1, 2, . . . , t ∈ X and

|X | = k. Thus P has altogether

(
n − t

k − t

)
such subsets. Based on the lexicographic order-

ing we arrange the subsets as follows: B1, B2, . . . , Br where r=

(
n − t

k − t

)
. For example, if

P = {1, 2, 3, . . . , 6}, t = 2 and k = 4 then B1 = {1, 2, 3, 4}, B2 = {1, 2, 3, 5}, B3 =
{1, 2, 3, 6}, B4 = {1, 2, 4, 5}, B5 = {1, 2, 4, 6} and B6 = {1, 2, 5, 6}.

Let us pair the consecutive subsets, except for the last subset Br if r is odd, to form � r
2�

groups. For odd r , the last group will contain only one set, Br itself. Thus, ultimately for any
r , we have � r

2� many groups.
The groups for 2-(4, 6)∗-VCS are as follows:
Group 1: (B1, B2); Group 2: (B3, B4); and Group 3: (B5, B6).
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In general, the i-th group can be described as follows:

i th Group =
⎧⎨
⎩

(B2i−1, B2i ), for 1 ≤ i ≤ ⌈ r−2
2

⌉
, and any n > 2;

(Br−1, Br ), for even r > 2 and i = r
2 ;

(Br ), for odd r > 2 and i = ⌈ r
2

⌉
.

Let us denote by fB j = 0, the linear equation
∑

k∈Bj
xk = 0 and by fB j = 1, the linear

equation
∑

k∈Bj
xk = 1.

We consider the following systems of linear equations over the binary field Z2:
For 1 ≤ i ≤ � r−2

2 � and for any r ≥ 3,

fB2i−1 = 0
fB2i = 0

}
· · · (i) and

fB2i−1 = 1
fB2i = 1

}
· · · (i ′)

For i = r
2 and for even r > 3,

fBr−1 = 0
fBr = 0

}
· · ·

( r
2

)
and

fBr−1 = 1
fBr = 1

}
· · ·

(
r ′

2

)

For i = � r
2� and for odd r ≥ 3,

fBr = 0
} · · ·

(⌈ r
2

⌉)
and fBr = 1

} · · ·
(⌈

r ′

2

⌉)

Let for any r ≥ 3 and 1 ≤ i ≤ � r−2
2 �, S0i and S1i denote the Boolean matrices whose

columns are all possible solutions of the equations (i) and (i ′) respectively. Similarly, for
any even (odd) r ≥ 3, S0r

2
(S0� r

2 �) and S1� r
2 � (S

1
� r
2 �) denote the Boolean matrices corresponding

the solutions of the equations ( r2 )((� r
2�)) and ( r

′
2 )(� r ′

2 �) respectively.
Let (S0in, S

1
in) denote the pair of Boolean matrices obtained by the concatenations: S0in =

S01 ||S02 || · · · ||S0� r
2 � and S1in = S11 ||S12 || · · · ||S1� r

2 �.
The pair of matrices S0in and S1in , thus obtained, constitutes the basis matrices of the t-

(k, n)∗-VCS. This result follows from a more general result viz., Theorem 2.1 in [1]. For the
sake of completeness we present an easier and shorter proof of the fact. Towards proving the
results we need the following facts.

Fact 1: It is a very well known fact from linear algebra that if we consider two systems of
linear equations Ax = 0 and Ax = b where b �= 0, then all possible solutions of the second
system can be obtained by adding (i.e, addition of solution vectors) one particular solution
of the second system to each solution of the first system.

Result 1: The way we have constructed S0 and S1 it is now easy to see that each block
S1i can be obtained from S0i by adding a particular solution of the system (i ′) to each column
of S0i .

Theorem 3.1 The pair ofmatrices (S0, S1) obtained by the above algorithm, constitute basis
matrices of the t-(k, n)∗-VCS.

Proof Let m denote the pixel expansion which is the number of columns occuring in S0 or
S1. We need to prove the following:

1. If X is a qualified set of participants then w(S1X ) − w(S0X ) ≥ αX · m.
2. If Y ⊂ P is a forbidden set of participants then S0[Y ] and S1[Y ] are identical up to

column permutation.
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Let us denote � r
2� by p.

First we prove the second condition viz., the security condition. Let Y = {i1, i2, . . . , is}
be a forbidden set. We want to show that S0[Y ] and S1[Y ] are identical up to a column
permutation. Thus it is sufficient to prove that

⎧⎪⎪⎨
⎪⎪⎩

S01 [Y ] and S11 [Y ] are identical up to a column permutation
S02 [Y ] and S12 [Y ] are identical up to a column permutation
· · ·
S0p[Y ] and S1p[Y ] are identical up to a column permutation

We will prove only for S01 [Y ] and S11 [Y ]. Rest of them follow in the same manner. Recall
that each column of S01 and S11 is a solution of the systems (1) and (1′) respectively such that
the variables that are not present in any of the equations are all set equal to zero. Therefore, if
we can prove that there exists a particular solution of the system (1′), say c = (c1, c2, . . . , cn)
such that c j = 0 for j = i1, i2, . . . , is then by Result 1, the restricted matrices S0[Y ] and
S1[Y ] are identical up to a column permutation. Now, since Y is a forbidden set of participants
therefore Bi � Y for i = 1, 2 because otherwise, Y would contain aminimal qualified set and
would itself become a qualified set. Supposeμ and σ be two such indices (that is, participants)
such that μ ∈ B1 and σ ∈ B2 but μ, σ /∈ Y . If μ = σ then cμ = 1 and ci = 0 for all i �= μ,
admits a particular solution to (1′). On the other hand if μ �= σ then cμ = cσ = 1 and
ci = 0 for all i �= μ, σ gives rise to a particular solution to (1′). In both cases c j = 0 for
j = i1, i2, . . . , is and hence the proof follows.
In the same manner we can prove that S0i [Y ] and S1i [Y ] are identical up to a column per-
mutation for all i = 1, 2, . . . , p. Hence the matrices S0[Y ] and S1[Y ] are identical up to a
column permutation. This proves the security condition.

To prove the first condition that is, the contrast condition let us consider a minimal qual-
ified set X . Then X = Bj for some 1 ≤ j ≤ r , where the symbols have their usual
meanings. For S0[X ] let us break it up in S01 [X ]‖S02 [X ]‖ · · · ‖S0p[X ] and for S1[X ], in
S11 [X ]‖S12 [X ]‖ · · · ‖S1p[X ].

Without loss of generality, let X = B1 = {1, 2, 3, . . . , t, t+1, . . . , k}. Let us now consider
S0[X ] and S1[X ] that is, we restrict ourselves on the first k rows of the matrices. It is not
hard to see that each restricted column cX say, (c1, c2, . . . , ck)t of S01 [X ] is a solution of
the homogeneous system (1) and thus there exists a all zero solution. On the other hand
there does not exist an all zero solution to the non-homogeneous system (1′) and hence
w(S11[X ]) − w(S01[X ]) ≥ 1. Now since X �= Bj , j �= 1, therefore we argue in a similar

manner as for the security condition to get that S0j, j �=1[X ] and S1j, j �=1[X ] are identical up to

column permutation and hence w(S0j[X ])−w(S1j[X ]) = 0 for all j �= 1. Taking αX = 1
m , it is

easy to see that w(S1X ) − w(S0X ) ≥ αX ·m = 1. The above technique works for any minimal
qualified set X . This completes the proof of the theorem. ��

Remark Notice that the construction is direct, that is, the basis matrices can be directly
constructed given any meaningful triplet of parameters (t, k, n).

Example 3.1 If P = {1, 2, 3, 4, 5, 6}, t = 2 and k = 4 then the minimal qualified sub-
sets of participants are B1 = {1, 2, 3, 4}, B2 = {1, 2, 3, 5}, B3 = {1, 2, 3, 6}, B4 =
{1, 2, 4, 5}, B5 = {1, 2, 4, 6}, B6 = {1, 2, 5, 6}.

The basis matrices for the 2-(4, 6)∗-VCS following the above construction rule are given
by
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S0in =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

← Col 1 to 8 → ← Col 9 to 24 → ← Col 24 to 32 →
00001111 0000000011111111 00001111

00110011 0000111100001111 00110011

01010101 0011001100110011 00000000

01101001 0101010101010101 01101001

01101001 0101101010100101 01101001

00000000 0011110011000011 01010101

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

S1in =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

← Col 1 to 8 → ← Col 9 to 24 → ← Col 24 to 32 →
11110000 1111111100000000 11110000

00110011 0000111100001111 00110011

01010101 0011001100110011 00000000

01101001 0101010101010101 01101001

01101001 0101101010100101 01101001

00000000 0011110011000011 01010101

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remark The basis matrices S0in and S1in thus constructed may have common columns. We
call these basis matrices as initial basis matrices and the corresponding pixel expansion as
initial pixel expansion. In [1] the author pointed out that the common columns appearing
in the initial basis matrices S0in and S1in may be deleted to obtain reduced basis matrices
denoted by S0red and S1red . This method reduces the pixel expansion (we call it as reduced
pixel expansion) and thereby increases the relative contrast significantly. In the next section,
we adopt this technique to analyze the construction technique of any t-(k, n)∗-VCS to get
the reduced pixel expansion.

3.2 Analysis of t-(k, n)∗-VCS

The following discussion establishes the relationship between the pixel expansions and rela-
tive contrasts of a higher orderVCS and a lower order VCS constructed by the linear algebraic
method. In [14] such a discussion is given but when the difference between k and t is strictly
greater than one. However, our construction method includes all the possibilities. In the fol-
lowing lemma we first establish the relationship between the initial pixel expansions of a
higher order VCS and lower order VCS.

Lemma 1 Suppose (t − 1, k − 1, n − 1) represents a meaningful triplet. Let min(t − 1, k −
1, n − 1) denote the initial pixel expansion of a (t − 1)-(k − 1, n − 1)∗-VCS constructed
by the linear algebraic method described above. Then the t-(k, n)∗-VCS constructed using
linear algebra has initial pixel expansion 2min(t − 1, k − 1, n − 1).

Proof Suppose the set of participants for (t − 1)-(k − 1, n − 1)∗-VCS is P = {2, 3, . . . , n},
where the participants 2, 3, . . . , t are the essential participants. To construct a t-(k, n)∗-VCS,
we add another essential participant 1 to the set of participants. The new set of participants
becomes P̄ = {1, 2, 3, . . . , n} and the basis matrices for t-(k, n)∗-VCS are constructed by
solving the set of linear equations same as those for the (t − 1)-(k − 1, n − 1)∗-VCS with
the modification that the new variable x1 is added to the left hand side of each of the linear
equations. Since x1 appears in each of the equations and that x1 can have two distinct values
0 and 1, therefore the initial pixel expansion of the t-(k, n)∗-VCS is exactly twice the initial
pixel expansion of (t − 1)-(k − 1, n − 1)∗-VCS. ��
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In the following lemma we show a relationship between the number of common columns
appearing in the initial basis matrices of a lower order VCS and a higher order VCS. Deleting
those common columns will reduce the pixel expansion of the schemes and we establish a
relation between the reduced pixel expansions.

Lemma 2 Let (t−1, k−1, n−1) represent a meaningful triplet. Let mred(t−1, k−1, n−1)
denote the reduced pixel expansion of a (t−1)-(k−1, n−1)∗-VCS constructed by the linear
algebraic method. Then the t-(k, n)∗-VCS constructed using linear algebra has reduced pixel
expansion 2mred(t − 1, k − 1, n − 1).

Proof It suffices to show that the number of common columns occurring in the initial basis
matrices of t-(k, n)∗-VCS is exactly twice to that of (t − 1)-(k − 1, n− 1)∗-VCS. Suppose c
is a common column occurring in the initial basis matrices of (t − 1)-(k − 1, n − 1)∗-VCS.
Corresponding to this c, by Lemma 1, two columns appear in each of the basis matrices of
t-(k, n)∗-VCS, namely the columns (0, c) and (1, c). Since c is a common column that occurs
in the basis matrices of the (t − 1)-(k − 1, n − 1)∗-VCS, c must satisfy both the systems, for
some i and j with i �= j , as given below:

fB2i−1 = 0
fB2i = 0

}
and

fB2 j−1 = 1
fB2 j = 1

}

Then it is easy to see that (0, c) is solution to both the systems

x1 + fB2i−1 = 0
x1 + fB2i = 0

}
and

x1 + fB2 j−1 = 1
x1 + fB2 j = 1

}

corresponding to the access structure of t-(k, n)∗-VCS. Similarly (1, c) is also a common
column. Now the proof follows. ��
The following theorem is immediate.

Theorem 3.2 Let (t, k, n) be ameaningful triplet such that (0, k−t, n−t) is alsomeaningful.
Let the pixel expansion and relative contrast of the 0-(k − t, n − t)∗-VCS be m and α

respectively. Then the pixel expansion and relative contrast of the t-(k, n)∗-VCS will be 2tm
and α

2t respectively.

Corollary It is immediate that if m∗ be the optimal pixel expansion and α∗ be the optimal
relative contrast of a t-(k, n)∗-VCS then m∗ ≤ 2tm and α∗ ≥ α

2t where m is pixel expansion
and α is relative contrast of the 0-(k − t, n − t)∗-VCS.
Remark A version of Theorem 4 in [14] can be derived from Theorem 3.2. So in particular,
a version of Theorem 2.3 in [6] may also be derived by setting t = 1.

The following section deals with the scenario when k − t = 1. In this process we are able
to address the following issues. The method of construction adopted in [14] constructs the
basismatrices of a higher order t-(k, n)∗-VCS out of the basismatrices of a (k−t, n−t)-VCS
and basis matrices of an optimal (t, t)-VCS. Hence, as the authors pointed out, Corollary 1
and Corollary 2 to Theorem 4 in [14] hold true if k − t ≥ 2. Our construction method is
direct and this enables to circumvent this obstacle when the difference between k and t is
equal to 1. On the other hand we generalize the (2, n)∗-VCS in [6] to the case when there
are t many essential parties. Moreover, in [1], the author pointed out an interesting question
whether or not collecting three or more equations at a time gives better result in terms of
pixel expansion while constructing a VCS for general access structure. We resolve the issue
for (k − 1)-(k, n)∗-VCS by considering three or more equations at a time to obtain better
results in terms of pixel expansion and relative contrast.
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3.2.1 On construction of (k − 1)-(k, n)∗-VCS

Let us consider a restricted (k, n)-VCS having k − 1 essential participants. In this case
the minimal qualified sets are {1, . . . , k − 1, k}, {1, . . . , k − 1, k + 1}, {1, . . . , k − 1, k +
2}, . . . , {1, . . . , k−1, n−1}, {1, . . . , k−1, n}. Observe that taking any number of equations
at a time does not affect the security and contrast conditions of a visual cryptography scheme.
We need not take two equations at a time to form groups of linear equations. We may take
all the equations at a time forming only one group and the values of the variables x1, x2, . . .
,xk−1 determine the values of the rest of the variables. In this scenario the pixel expansion
thus becomes 2k−1. We start with an example for better understanding.

Example 3.2 Consider 3-(4, 7)∗-VCS. Here, �0 = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6},
{1, 2, 3, 7}}. To construct the 3-(4, 7)∗-VCS, we consider the following system of linear
equations over the binary field Z2. The first system is a homogeneous system of equations
and the latter one is a non-homogeneous system of equations.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + x2 + x3 + x4 = 0

x1 + x2 + x3 + x5 = 0

x1 + x2 + x3 + x6 = 0

x1 + x2 + x3 + x7 = 0

(1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + x2 + x3 + x4 = 1

x1 + x2 + x3 + x5 = 1

x1 + x2 + x3 + x6 = 1

x1 + x2 + x3 + x7 = 1

(2)

The solution of the above systems admits the following basis matrices:

S0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

00001111

00110011

01010101

01101001

01101001

01101001

01101001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11110000

00110011

01010101

01101001

01101001

01101001

01101001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The pixel expansion is 8 and the relative contrast is 1
8 .

Looking at the above example we now prove the following theorem.

Theorem 3.3 For a meaningful triplet (t, k, n) with t = k−1, there exists a (k−1)-(k, n)∗-
VCS having pixel expansion 2k−1 and relative contrast 1

2k−1 .

Proof Let m denote the number of columns of the matrices S0 and S1 (i.e, m denotes the
pixel expansion). Note that in this theorem m = 2k−1. We need to prove the following:

1. If X is a qualified set then w(S1X ) − w(S0X ) ≥ 1
2k−1 · m.

2. If Y ⊂ P is a forbidden set of participants then S0[Y ] and S1[Y ] are identical up to
column permutation.
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First we prove the second condition viz., the security condition. Let Y = {i1, i2, . . . , is}
be a forbidden set. We want to show that S0[Y ] and S1[Y ] are identical up to a column
permutation. Recall that each column of S0 is a solution of the homogeneous system of
equations and each column of S1 is a solution of the non-homogeneous system of equations.
If we can prove that there exists a particular solution of the non-homogeneous system, say
c = (c1, c2, . . . , cn) such that c j = 0 for j = i1, i2, . . . , is then by Result 1, the restricted
matrices S0[Y ] and S1[Y ]will be identical up to a column permutation. Since Y is a forbidden
set of participants, Y does not contain any Bi for all i because otherwise, Y would contain a
minimal qualified set and would itself become a qualified set. In a (k −1)-(k, n)∗-VCS there
are two types of maximal forbidden sets:

1. Type 1: {1, 2, 3, . . . , k − 2, k − 1} that is all the essential parties are present but a regular
party is unavailable.

2. Type 2: {2, 3, . . . , k − 2, k − 1, k, k + 1, . . . , n − 1, n} that is all regular parties along
with k − 2 essential parties are present but one essential party namely, 1 is missing.

If we can prove that neither type 1 nor type 2 subsets can have any information about the
secret then we are done. Let us first consider type 1 i.e. Y = {1, 2, 3, . . . , k − 2, k − 1}. In
this case we see that c1 = c2 = c3y = · · · = ck−1 = 0 and ck = ck+1 = · · · = cn = 1
is particular solution to the non-homogeneous system. Again, if Y = {2, 3, . . . , k − 2, k −
1, k, k + 1, . . . , n} is of type 2 then also c1 = 1 and c2 = c3 = · · · = cn = 0 is a particular
solution to the non-homogeneous system. Hence the proof follows.

For the proof of the contrast condition let X be a minimal qualified set of participants.
Corresponding to this X an all zero solution vector occurs in S0[X ] but there is no such vector
in S1[X ]. Hence, w(S0X ) − w(S1X ) ≥ 1 which proves the contrast condition. ��
Remark Theorem 3.3 reveals that for the (k−1)-(k, n)∗-VCS, constructed using above con-
struction, the pixel expansion and hence relative contrast depend only on k and surprisingly
not on n.

4 On construction of t-(n − 1, n)∗-VCS

In this section we deal with the particular case of the restricted access structure t-(k, n)∗-VCS
with k = n−1. For the construction and analysis of t-(n−1, n)∗-VCS, (n−1, n)-VCS plays
an important role. In this section we first revisit the technique as given in Adhikari [1] to
obtain an (n − 1, n)-threshold VCS. In that paper [1], the author pointed out that by deleting
common columns from the initial basis matrices S0in and S1in , one may construct better VCS
in terms of less pixel expansion and better relative contrast. However, the author failed to
provide the exact number of common columns in S0in and S1in for any (n − 1, n)-VCS. In
the next section, we provide the exact count of the common columns and thereby provide a
closed form formula for the exact pixel expansion of an efficient (n − 1, n)-VCS.

4.1 On (n − 1, n)-VCS

The construction of an (n−1, n)-VCS essentially follows from the construction of a general
t-(k, n)∗-VCS (as described in Sect. 3) by considering t = 0. For the sake of completeness
we sketch the construction method.

Consider a set of participants P = {1, 2, . . . , n} and let X ⊆ P having n − 1 elements.

Then P has altogether

(
n

n − 1

)
= n such subsets. Based on the increasing lexicographic
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arrangement we arrange the subsets as follows: B1, B2, . . . , Bn . We now collect the subsets
to form � n

2 � many groups. In general, the i th group Gi can be described as follows:

i th Group(Gi ) =
⎧⎨
⎩

(B2i−1, B2i ), for 1 ≤ i ≤ ⌈ n−2
2

⌉
, and any n > 2;

(Bn−1, Bn), for even n > 2 and i = n
2 ;

(Bn), for odd n > 2 and i = ⌈ n
2

⌉
,

where

B j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 2, . . . , n − 2i, n − 2i + 1, n − 2i + 3, n − 2i + 4, . . .}, j =2i − 1 and i ≤
⌈
n−2
2

⌉
;

← n − 1 many elements →
{1, 2, . . . , n − 2i, n − 2i + 2, n − 2i + 3, n − 2i + 4, . . .}, j = 2i and i ≤

⌈
n−2
2

⌉
;

← n − 1 many elements →
{1, 3, 4, 5, . . . , n}, for j = n − 1;
{2, 3, 4, 5, . . . , n}, for j = n.

Now we consider the following systems of linear equations:
For 1 ≤ j ≤ � n−2

2 � and for any n > 2,

fB2 j−1 = 0
fB2 j = 0

}
· · · ( j) and

fB2 j−1 = 1
fB2 j = 1

}
· · · ( j ′)

For i = n
2 and for even n > 2,

fBn−1 = 0
fBn = 0

}
· · ·

(n
2

)
and

fBn−1 = 1
fBn = 1

}
· · ·

(
n′

2

)

For i = � n
2 � and for odd n > 2,

fBn = 0
x1 = 0

}
· · ·

(⌈n
2

⌉)
and

fBn = 1
x1 = 0

}
· · ·

(⌈
n′

2

⌉)

For any n > 2 and 1 ≤ j ≤ � n−2
2 �, let S0j and S1j denote the Boolean matrices whose

columns are all possible solutions of the systems ( j) and ( j ′) respectively over the binary
field. Similarly, for any even (resp. odd) n > 2, let S0n

2
(resp. S0� n

2 �) and S1� n
2 � (resp. S1� n

2 �)
denote the Booleanmatrices corresponding to the solutions of the equations ( n2 )(resp.(� n

2 �))
and ( n

′
2 )(resp.� n′

2 �).
Then the matrices S0in = S01 ||S02 || · · · ||S0� n

2 � and S1in = S11 ||S12 || · · · ||S1� n
2 � formed by the

concatenation constitute the initial basis matrices of an (n − 1, n)-VCS. The proof of this
fact can be found in [1]. For the rest of our discussion we will call the matrices S0j and S1j for
all j as the j th blocks of the initial basis matrices.

The following lemma is immediate from the construction.

Lemma 3 The (n−1, n)-VCS, constructed using the linear algebraic technique as described
above, has initial pixel expansion min = � n

2 �2n−2.

Example 4.1 For the (4, 5)-VCS, the five subsets can be grouped as follows: G1 =
{{1, 2, 3, 4} , {1, 2, 3, 5}} , G2 = {{1, 2, 4, 5} , {1, 3, 4, 5}} , G3 = {{2, 3, 4, 5}}.
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The initial basis matrices obtained by solving the set of linear equations corresponding to
the above groups, are given by

S0in =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

← Col 1 to 8 → ← Col 9 to 16 → ← Col 17 to 24 →
01010101 01010101 00000000

00110011 01101001 01010101

00001111 01101001 00110011

01101001 00110011 00001111

01101001 00001111 01101001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

S1in =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

← Col 1 to 8 → ← Col 9 to 16 → ← Col 17 to 24 →
01010101 01010101 00000000

00110011 10010110 01010101

00001111 10010110 00110011

10010110 00110011 00001111

10010110 00001111 10010110

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The initial pixel expansion is 24.

Now observe that the following columns are common to both S0in and S1in .

S0in 2 3 5 7 10 11 13 15 24

S1in 16 22 23 9 8 24 20 1 7

As described in [1], these common columns can be deleted to form the reduced matri-
ces S0red and S1red which still remain basis matrices of the (4, 5)-VCS. Moreover the pixel
expansion of the reduced scheme is reduced to 15.

In general, the above technique can be applied to the initial basismatrices of any (n−1, n)-
VCS to obtain the reduced basis matrices with less pixel expansion. We are now going to
determine, case by case the exact number of common columns occurring in the initial basis
matrices S0in and S1in of an (n − 1, n)-VCS constructed by the linear algebraic method and
find the exact value of the reduced pixel expansion of the scheme. Towards finding the results
the following lemmas play an important role.

Lemma 4 Let S0in and S1in be the basis matrices of an (n − 1, n)-VCS, n ≥ 3, constructed
using linear algebraic technique. Then,

• For even n, the columns with hamming weights 0, 1, (n − 1) and n cannot be deleted
from S0in and S1in .• For odd n, the columns with hamming weights 0, 1 and n cannot be deleted from S0in and
S1in .

Proof Let us first consider the case when n is even. Then for any group G j for 1 ≤ j ≤ n
2 ,

there are n − 2 independent variables common in both the systems ( j) and ( j ′). The values
of these variables determine the values of the remaining two variables. Moreover for every
fixed (n − 2)-tuple of values of the independent variables, the values of the two dependent
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variables are equal. Further a column c with hamming weight w(c) = 0 can appear only as
a solution of the equation ( j) and not of the equation ( j ′). So, if w(c) = 0 then c ∈ S0in
only. Again if w(c) = 1 then c ∈ S1in only. If w(c) = n − 1 then the only possibility is that
among (n − 2) independent variables, (n − 3) assume the value 1 and the two dependent
variables must be 1. So, if w(c) = n − 1 then c ∈ S0in only. Lastly, when w(c) = n, then all
the variables assume the value 1 and the n-tuple (1, 1, . . . , 1) can only be a solution of the
equation ( j ′). Hence, if w(c) = n then c ∈ S1in only.
Using the same arguments we can see that for odd n,

• if w(c) = 0 then c ∈ S0in only,• if w(c) = 1 then c ∈ S1in only and
• if w(c) = n then c ∈ S0in only.

This completes the proof. ��
Remark For an (n − 1, n)-VCS and n ≥ 3

• For even n, the possible common columns occurring in S0in and S1in are the columns with
hamming weights 2, 3, . . . , n − 4, n − 3, n − 2.

• For odd n, the possible common columns for S0in and S1in are the columns with hamming
weights 2, 3, . . . , n − 3, n − 2, n − 1.

Now thatwe understand the distribution of possible common columns of an (n−1, n)-VCS
constructed by linear algebraic method, we proceed to calculate exact number of common
columns. In the following we will denote the number of common columns with hamming
weight j by d j . For example, by Lemma 4, d0 = d1 = dn = 0.

Towards finding the exact number of common columns for any (n− 1, n)-VCS we divide
the proof technique into two parts. Sect. 4.2 deals when n is even while Sect. 4.3 deals when
n is odd.

4.2 Number of common columns when n is even

Throughout this subsection, n is assumed to be even. To find the closed form of the number
of common columns, the following lemmas play an important role.

The following lemma enables us to look only at the weights that lie between 1 and n
2 while

calculating the exact number of common columns occurring in the initial basis matrices.

Lemma 5 For even n ≥ 4, the (n − 1, n)-VCS constructed using linear algebraic method
has the property that d j = dn− j for all j = 1, 2, . . . , n

2 .

Proof Recall that S0in is constructed by concatenating the blocks S01 , S
0
2 ,…, S0n

2
which are

obtained respectively by solving the systems of equations (1), (2), . . . , ( n2 ). Now S11 , S
1
2 ,…,

S1n
2
can be obtained by adding (modulo 2) a particular solution to each of the columns of

S01 , S
0
2 ,…, S0n

2
respectively. In this case, observe that (1, 1, 1, . . . , 1) is a particular solution

to each of the system of equations (1′), (2′), . . . , ( n′
2 ). Thus if a column c ∈ S0in then its

complement c̄ ∈ S1in and vice versa. Therefore if c is a common column to both S0in and S1in
then so is c̄. Lastly, if weight of c is j then weight of c̄ is (n − j). Hence, d j = dn− j for all
j = 1, 2, 3, . . . , n

2 . ��
Lemmas 6 and 7 give a closed form formula for the number of common columns of weight

j, 2 ≤ j ≤ n
2 when j is even and odd respectively.
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Lemma 6 For even n ≥ 4, the (n − 1, n)-VCS obtained using linear algebraic technique

has the property that if j is even and 2 ≤ j ≤ n
2 then d j = n

2

(
n − 2

n − j

)
.

Proof Let us first consider the first block S01 of S
0
in . Suppose c is a column of weight j , where

j is even, occurring in S01 . Therefore c is a solution to the system

x1 + x2 + · · · + xn−2 + xn−1 = 0
x1 + x2 + · · · + xn−2 + xn = 0

(3)

It is not hard to see that since j is even, xn−1 = xn = 0, that is, the last two entries of the
column c, corresponding to xn−1 and xn are both 0. Since w(c) = j , therefore among the
variables x1, x2, . . . , xn−2 only j many variables assume the value 1 and the rest of them are

all 0. Thus there are in total

(
n − 2

j

)
possible choices which implies that there are

(
n − 2

j

)

many columns of weight j occurring in S01 . Following similar argument it is easy to see that
each of the rest of ( n2 − 1) blocks have the same number of weight j columns. Therefore,

there are altogether
n

2

(
n − 2

j

)
many columns of weight j occurring in S0in .

Now let us consider the first block S11 of S1in . Suppose c is a column of weight j , where j is
even, occurring in S11 . Therefore c is a solution to the system

x1 + x2 + · · · + xn−2 + xn−1 = 1
x1 + x2 + · · · + xn−2 + xn = 1

(4)

Again, it is not hard to see that since j is even, xn−1 = xn = 1, that is, the last two entries of
column c, corresponding to xn−1 and xn , are both 1. Following a similar argument as above

we see that there are

(
n − 2

j − 2

)
many columns of weight j occurring in S11 . Hence there are

n

2

(
n − 2

j − 2

)
many columns of weight j occurring in S1in .

Observe that,
n

2

(
n − 2

j − 2

)
≤ n

2

(
n − 2

j

)
for 2 ≤ j ≤ n

2 .

Now we shall show that if there exists a column c of weight j , where j is even, in S1in then
that c must also occur in S0in .

Towards this let c be any column of weight j such that c ∈ S1in . Then c must belong to
some block, say the block constructed by solving the system of equations,

x1 + x2 + · · · + x2k−2+ x2k−1 +x2k+1 + · · · + xn = 1
x1 + x2 + · · · + x2k−2+ x2k +x2k+1 + · · · + xn = 1

(5)

It is easy to see x2k−1 = x2k = 1 and among the (n − 2) remaining variables only
( j − 2) assume the value 1. The rest of the variables assume 0. Let us write c =
(c1, c2, . . . , c2k−1, c2k, . . . , cn). Now observe that since n is even therefore there are exactly
n
2 many pairs of the form (c2i−1, c2i ), namely, (c1, c2), (c3, c4), . . . , (cn−1, cn). Among these
pairs we have already seen that (c2k−1, c2k) = (1, 1). Since j − 2 ≤ n

2 − 2, by Pigeon Hole
principle there exists at least one pair say, (c2r−1, c2r ) = (0, 0). It is now easy to observe
that c is also a solution to the system

x1 + x2 + · · · + x2r−2+ x2r−1 +x2r+1 + · · · + xn = 0
x1 + x2 + · · · + x2r−2+ x2r +x2r+1 + · · · + xn = 0

(6)
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Thus c ∈ S0in . Again it is not hard to see that if a column c of weight j , where j is even,
occurs multiple times in S1in then c also occurs at least that many times in S0in . Hence the
proof follows. ��

Lemma 7 For even n ≥ 4, the (n−1, n)-VCS constructed using the linear algebraic method

has the property that if j is odd and 3 ≤ j ≤ n
2 then d j=

n

2

(
n − 2

j − 2

)
.

Proof Proof is similar to that of Lemma 6.

Nowwe are in a position to calculate the exact value of reduced pixel expansionmred . The
following theorem provides the exact value of pixel expansion of an efficient (n−1, n)-VCS
with basis matrices S0red and S1red having no common columns.

Theorem 4.1 Let n ≥ 4 be even. Then there exists an (n − 1, n)-VCS obtained by linear

algebraic technique having pixel expansion mred = n

4

(
n
n
2

)
and relative contrast 1

mred
.

Proof Let K = {k : 2 < k ≤ n
2 and k is odd} and L = {k : 2 ≤ k ≤ n

2 and k is even}.
Then the reduced pixel expansion is given by

mred = min −
∑

2≤k≤n−2

dk

= min −
⎡
⎣ ∑

2≤k≤ n
2

dk +
∑

n
2 <k≤n−2

dk

⎤
⎦

= min −
⎡
⎣ ∑

2≤k≤ n
2

dk +
∑

2≤k< n
2

dn−k

⎤
⎦ .

Therefore by Lemma 5,

mred = min − 2
∑

2≤k≤ n
2

dk

= min − 2

[ ∑
k∈K

dk +
∑
k∈L

dk

]

= min − 2
n

2

[ ∑
k∈K

(
n − 2

k − 2

)
+

∑
k∈L

(
n − 2

k − 2

)]
+ d n

2

= min − n

2

[
2

∑
k∈K

(
n − 2

k − 2

)
+ 2

∑
k∈L

(
n − 2

k − 2

)]
+ d n

2

= min − n

2

∑
0≤k≤n−2

(
n − 2

k

)
+ n

2

(
n − 2
n
2 − 1

)
+ d n

2
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= min − n

2

∑
0≤k≤n−2

(
n − 2

k

)
+ n

2

(
n − 2
n
2 − 1

)
+ d n

2

= min − n

2
2n−2 + n

2

(
n − 2
n
2 − 1

)
+ d n

2
.

By Lemma 3, min = n

2
2n−2 and therefore,

mred = n

2

(
n − 2
n
2 − 1

)
+ n

2

(
n − 2
n
2 − 2

)
.

Using the identities on binomial coefficients the above expression reduces to mred =
n

4

(
n
n
2

)
. This completes the proof of the theorem. ��

We have found the exact value of the pixel expansion of an (n − 1, n)-VCS constructed
by using the linear algebraic technique for the case when n is even. In the next subsection we
find the same for odd n ≥ 3. For this we take a similar approach as described in Lemma 1.

4.3 Number of common columns when n is odd

Throughout this subsection we assume that n is odd. To start with, we consider the set of
participants to be the set P = {2, 3, . . . , n + 1} consisting of n many participants where
n ≥ 3 is odd. The minimal qualified sets arranged in the lexicographic order are given
by B1 = {2, 3, . . . , n}, B2 = {2, 3, . . . , n − 1, n + 1}, . . . , Bn = {3, 4, . . . , n + 1}. As
described in Sect. 4.1, the above collection of minimal qualified sets can be grouped as
follows: G1 = (B1, B2),G2 = (B3, B4), . . . ,G� n

2 � = (Bn). The initial basis matrices can
be found by solving the appropriate systems of linear equations corresponding to the above
grouping.

We now transform the access structure of the (n− 1, n)-VCS to the access structure of an
(n, n + 1)-VCS in the following manner:

We incorporate another participant 1 to the set of participants and define P∗ = {1}⋃P=
{1, 2, 3, . . . , n + 1} and B∗

1= {1}⋃
B1,B∗

2= {1}⋃
B2, . . . ,B∗

n= {1}⋃
Bn and introduce

B∗
n+1= {2}⋃

Bn . Now these (n + 1) many subsets B∗
1,B∗

2, . . . ,B∗
n+1 are precisely the min-

imal qualified sets of an (n, n + 1)-VCS on the set of participants P∗, where n + 1 is
even. As already described these sets can now be grouped into n+1

2 many groups namely,
G∗
1 ,G∗

2 , . . . ,G∗
n+1
2

and then solving the corresponding linear equations, the basis matrices

for the (n, n + 1)-VCS are obtained. By Theorem 4.1, the reduced pixel expansion of the

transformed scheme becomes n+1
4

(
n + 1
n+1
2

)
. Using this we calculate the exact value of the

reduced pixel expansion for the (n − 1, n)-VCS, when n ≥ 3 is odd.
Note: We will use the following notations and symbols for the rest of this section. All the
constructions of basis matrices are done using the linear algebraic technique. We will denote
by S0in(k, r) and S

1
in(k, r) the initial basismatrices of the (k, r)-VCS. S0red (k, r) and S

1
red(k, r)

will denote the reduced basis matrices of the (k, r)-VCS. To distinguish between the linear
equations corresponding to the (n−1, n)-VCS and (n, n+1)-VCS we will use the variables
x2, x3, . . . , xn+1 corresponding to the participants in P and the variables y1, y2, . . . , yn+1

corresponding to the participants in P∗.
Now we proceed to find the exact pixel expansion of the reduced basis matrices when n

is odd. We first give the overview of the steps. First, in Lemma 8 we find the relationship
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between the initial pixel expansions of (n−1, n)-VCS and (n, n+1)-VCS. From Lemmas 9
to 15 we calculate the number of common columns that can be deleted from the initial basis
matrices for both cases and find the relationship between the number of common columns.
Lastly, Theorem 4.2 gives the closed form of the reduced pixel expansion.

Lemma 8 Let min be the initial pixel expansion of the (n−1, n)-VCS obtained by the linear
algebraic technique, where n ≥ 3 is odd. If m∗

in denotes the initial pixel expansion of the
(n, n + 1)-VCS then m∗

in= 2min.

Proof The proof is immediate.

In the following two lemmas we show that for every column in the initial basis matrices
of the (n − 1, n)-VCS, where n ≥ 3 is odd, which does not appear in the last block S0� n

2 � of
S0in(n − 1, n) or S1� n

2 � of S
1
in(n − 1, n), there exist exactly two columns viz. (0, c) and (1, c)

that occur in the initial basis matrices of the (n, n + 1)-VCS.

Lemma 9 Let c be a column such that c ∈ S0in(n − 1, n), where n ≥ 3 is odd. Further
assume that c appears as a solution to any system of equations (as described earlier) except
the following system of equations{

x3 + x4 + · · · + xn+1 = 0
x2 = 0

(7)

Then the columns (0, c) and (1, c) occur respectively in the initial basis matrices S0in(n, n+1)
and S1in(n, n + 1) of the (n, n + 1)-VCS.

Proof Let c = (b2, b3, . . . , bn+1), where each bi ∈ {0, 1}. By the given conditions c is a
solution to some system, say{

x2 + · · · + x2k−2 + x2k−1 + x2k+1 + · · · + xn+1 = 0

x2 + · · · + x2k−2 + x2k + x2k+1 + · · · + xn+1 = 0
(8)

Then it is easy to see that (0, b2, b3, . . . , bn+1) is a solution to the system{
y1 + y2 + · · · + y2k−2 + y2k−1 + y2k+1 + · · · + yn+1 = 0

y1 + y2 + · · · + y2k−2 + y2k + y2k+1 + · · · + yn+1 = 0
(9)

corresponding to the (n, n + 1)-VCS and (1, b2, b3, . . . , bn+1) is a solution to the system{
y1 + y2 + · · · + y2k−2 + y2k−1 + y2k+1 + · · · + yn+1 = 1

y1 + y2 + · · · + y2k−2 + y2k + y2k+1 + · · · + yn+1 = 1
(10)

corresponding to the (n, n + 1)-VCS. Hence the proof. ��
Lemma 10 Let c be a column such that c ∈ S1in(n − 1, n), where n ≥ 3 is odd. Further
assume that c appears as a solution to any system of equations except the following system
of equations

x3 + x4 + · · · + xn+1 = 1
x2 = 0

(11)

Then the columns (0, c) and (1, c) occur respectively in the initial basis matrices S1in(n, n+1)
and S0in(n, n + 1) of the (n, n + 1)-VCS.
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Proof Same as the proof of the Lemma 9. ��
At this point it is not clearwhat happens if a columnoccurs in the block S0� n

2 � of S
0
in(n−1, n)

or occurs in the block S1� n
2 � of S

1
in(n − 1, n).

Let us recall that the system of linear equations corresponding to the last block S0� n
2 � of

S0in(n − 1, n) is
{
x3 + x4 + · · · + xn+1 = 0

x2 = 0
(12)

and the system corresponding to S1� n
2 � of S

1
in(n − 1, n) is

{
x3 + x4 + · · · + xn+1 = 1

x2 = 0
(13)

A typical solution of these particular systems can be written as (0, b3, . . . , bn+1), where each
bi ∈ {0, 1}.

Let us consider the system of linear equations given by (12). Observe that by our con-
struction method, this system of linear equations corresponding to the (n − 1, n)-VCS is
somewhat transformed into the system of linear equations{

y1 + y3 + · · · + yn−1 + yn + yn+1 = 0

y2 + y3 + · · · + yn−1 + yn + yn+1 = 0
(14)

corresponding to the (n, n+1)-VCS.Moreover the set of all solutions to the system (14) con-
stitutes the columns of the n+1

2 -th block of S0in(n, n+1). In (14) the variables y3, y4, . . . , yn+1

are independent and for each of the 2n−1 many possible tuples of values of them the depen-
dent variables y1 and y2 assume the same value. A similar transformation also holds for
the system of linear equations given by (13). The corresponding system of linear equations
becomes {

y1 + y3 + · · · + yn−1 + yn + yn+1 = 1

y2 + y3 + · · · + yn−1 + yn + yn+1 = 1
(15)

Now we have the following lemmas.

Lemma 11 Suppose n ≥ 3 is odd. Let the column (0, b3, . . . , bn+1) ∈ S0� n
2 � corresponding

to the (n − 1, n)-VCS where each bi ∈ {0, 1}. Then the column (0, 0, b3, . . . , bn+1) occurs
in the n+1

2 -th block of S0in(n, n + 1) and (1, 1, b3, . . . , bn+1) occurs in the n+1
2 -th block of

S1in(n, n + 1).

Proof Given that (0, b3, . . . , bn+1) is a solution to
{
x3 + x4 + · · · + xn+1 = 0

x2 = 0
(16)

It immediately follows that (0, 0, b3, . . . , bn+1) is a solution to the system{
y1 + y3 + · · · + yn−1 + yn + yn+1 = 0

y2 + y3 + · · · + yn−1 + yn + yn+1 = 0
(17)
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Again it is not hard to see that (1, 1, b3, . . . , bn+1) is a solution to the system{
y1 + y3 + · · · + yn−1 + yn + yn+1 = 1

y2 + y3 + · · · + yn−1 + yn + yn+1 = 1
(18)

Hence the proof follows. ��
Lemma 12 Suppose n ≥ 3 is odd. Let the column (0, b3, . . . , bn+1) ∈ S1� n

2 � corresponding
to the (n − 1, n)-VCS where each bi ∈ {0, 1}. Then the column (0, 0, b3, . . . , bn+1) occurs
in the n+1

2 -th block of S1in(n, n + 1) and (1, 1, b3, . . . , bn+1) occurs in the n+1
2 -th block of

S0in(n, n + 1).

Proof Same as the proof of Lemma 11. ��
Now that the redistribution of the columns is well understood, we proceed to find the

relationship between the number of deleted columns in both cases.

Lemma 13 Suppose n ≥ 3 is odd. Let us for the time being, restrict our view within the first
n−1
2 many blocks of the initial basis matrices S0in(n−1, n) and S1in(n−1, n). Further assume

that c is a common column occurring in these restricted portions of the basis matrices. Then
both the columns (0, c) and (1, c) are common columns occurring in the basis matrices
S0in(n, n + 1) and S1in(n, n + 1) of the (n, n + 1)-VCS.

Proof Let c occur as solution to the systems{
x2 + · · · + x2k−2 + x2k−1 + x2k+1 + · · · + xn+1 = 0

x2 + · · · + x2k−2 + x2k + x2k+1 + · · · + xn+1 = 0
(19)

and {
x2 + · · · + x2r−2 + x2r−1 + x2r+1 + · · · + xn+1 = 1

x2 + · · · + x2r−2 + x2r + x2r+1 + · · · + xn+1 = 1
(20)

corresponding to the (n−1, n)-VCS, where k �= r . That is, c occurs in S0in(n−1, n) and also
in S1in(n − 1, n). Since c is a solution to 19, by Lemma 9, (0, c) is a solution to the system{

y1 + y2 + · · · + y2k−2 + y2k−1 + y2k+1 + · · · + yn+1 = 0

y1 + y2 + · · · + y2k−2 + y2k + y2k+1 + · · · + yn+1 = 0
(21)

and (1, c) is a solution to the system{
y1 + y2 + · · · + y2r−2 + y2r−1 + y2r+1 + · · · + yn+1 = 1

y1 + y2 + · · · + y2r−2 + y2r + y2r+1 + · · · + yn+1 = 1
(22)

corresponding to the (n, n + 1)-VCS. In other words, (0, c) ∈ S0in(n, n + 1) and (1, c) ∈
S1in(n, n + 1). Similarly by Lemma 10, (0, c) and (1, c) occur as columns in S1in(n, n + 1)
and S0in(n, n + 1) respectively. The proof follows. ��

Therefore if d is the number of columns deleted from the initial basis matrices of the
(n − 1, n)-VCS where the columns satisfy the conditions of Lemma 13, then 2d many
corresponding columns will be deleted from the initial basis matrices of the (n, n+ 1)-VCS.
After deleting those common columns we are now left with (min − d) many columns in the
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partly reduced basis matrices of the (n − 1, n)-VCS and (m∗
in − 2d) many columns in the

partly reduced basis matrices of the (n, n + 1)-VCS. At this stage if c be any column that is
common to both the partly reduced basis matrices of the (n − 1, n)-VCS then it must hold
that either c occurs in the block S0� n

2 � of S
0
in(n − 1, n) or in the block S1� n

2 � of S
1
in(n − 1, n)

but not both.

Lemma 14 Let n ≥ 3 be odd. Further let c be a common column occurring in the partly
reduced basis matrices of the (n − 1, n)-VCS such that c ∈ S0� n

2 �. Then corresponding to this
c there are two columns namely, (0, c) and (0, c), the complement of (0, c), that are common
columns occurring in the partly reduced basis matrices of the (n, n + 1)-VCS.

Proof As c ∈ S0� n
2 � and c is a common column appearing in the partly reduced basis matrix

S0in(n − 1, n), c must belong to some i-th block of the partly reduced S1in(n − 1, n) where
i �= � n

2 �. By Lemma 10, (0, c) appears as a column in the i-th block of partly reduced
S1in(n, n + 1) corresponding to the (n, n + 1)-VCS. Again since c ∈ S0� n

2 � corresponding

to the (n − 1, n)-VCS, by Lemma 11, (0, c) appears as a column in the n+1
2 -th block of

S0in(n, n + 1) corresponding to the (n, n + 1)-VCS. Thus (0, c) is a common column in the
partly reduced basis matrices of the (n, n + 1)-VCS.
Now as (0, c) appears as a column in the n+1

2 -th block of S0in(n, n + 1) therefore it must be
a solution to the system {

y1 + y3 + · · · + yn+1 = 0

y2 + y3 + · · · + yn+1 = 0
(23)

Hence its complement (0, c) is a solution to the system{
y1 + y3 + · · · + yn+1 = 1

y2 + y3 + · · · + yn+1 = 1
(24)

This follows from the fact that y1 = 1, y2 = 1, . . . , yn+1 = 1 is a particular solution to
the system (24) as n is odd. Similarly as (0, c) occurs in the i-th block of the partly reduced
matrix S1in(n, n + 1) therefore (0, c) occurs in i-th block of S0in(n, n + 1) corresponding to
the (n, n + 1)-VCS.
The proof follows. ��

By an essentially same line of argument we can prove the following lemma.

Lemma 15 Let n ≥ 3 be odd. Further let c be a common column occurring in the partly
reduced basis matrices of the (n − 1, n)-VCS such that c ∈ S1� n

2 �. Then corresponding to this
c there are two columns namely, (0, c) and (0, c), the complement of (0, c), that are common
columns occurring in the partly reduced basis matrices of the (n, n + 1)-VCS.

If d ′ be the number of such common columns occurring in the partly reduced basis
matrices of the (n − 1, n)-VCS then there are 2d ′ many common columns occurring in
the partly reduced basis matrices of the (n, n + 1)-VCS. Thus we have shown that to each
common column appearing in the initial basis matrices of the (n − 1, n)-VCS there are two
corresponding columns that are common to the initial basis matrices of the (n, n + 1)-VCS.
Moreover, it is easy to see that the common columns occurring in the basis matrices of the
(n, n + 1)-VCS arise only in this manner. There are no more common columns. Hence the
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exact pixel expansions (after reduction) of an (n − 1, n)-VCS and the (n, n + 1)-VCS are
related via,

m∗
red = m∗

in − 2(d + d ′)
= 2min − 2(d + d ′)
= 2(min − d − d ′)
= 2mred .

Thus we have the following theorem.

Theorem 4.2 Let mred be the reduced pixel expansion of an (n − 1, n)-VCS where n ≥ 3 is
odd. Then

mred = n

2

(
n − 1
n−1
2

)
.

Proof The reduced pixel expansion mred is given as follows

mred = 1

2

n + 1

4

(
n + 1
n+1
2

)
= n

2

(
n − 1
n−1
2

)
.

��

Remark Thuswe have given a closed form formula regarding the pixel expansion and relative
contrast of an (n − 1, n)-VCS constructed using the linear algebraic technique. It is to be
noted that for odd n ≥ 3, our closed form formula for pixel expansion is exactly half that of
given in Lemma 4.4 in [12] and (i i) of Sect. 3.2 of [19]. However, the expression that we have
found for mred is exactly the same as the formulas that appear in [12,19], for even n. Further
Table 1 shows that our proposed closed form for reduced pixel expansion of (n − 1, n)-
VCS for every possible value of n matches with the numerical values of the optimal pixel
expansions as shown in [23].

We are now in a position to calculate the exact pixel expansion of any t-(n − 1, n)∗-VCS
for a meaningful triplet (t, n − 1, n) such that (0, n − 1− t, n − t) is also a meaningful one.
Using Theorem 3.2, we have the following theorem.

Table 1 Comparison of pixel expansions for different (n − 1, n)-VCSs of various values of n

(n − 1, n)-VCS mred mCA mA mBDSS mK mS mD

(2,3)-VCS 3 4 4 3 3 3 3

(3,4)-VCS 6 25 8 6 6 6 6

(4,5)-VCS 15 29 24 15 15 15 15

(5,6)-VCS 30 214 48 30 30 30 30

(6,7)-VCS 70 220 128 70 70 70 70

(7,8)-VCS 140 227 256 140 140 140 140

(8,9)-VCS 315 235 640 315 315 315 315

In the following table, mred stands for the reduced pixel expansion of our scheme, mCA denotes the pixel
expansion obtained by cumulative array method [7],mA denotes the pixel expansion obtained by Theorem 2.5
of [1], mBDSS denotes the pixel expansion as given in Appendix B of [12], mK denotes the pixel expansion
as given in Table 1 of [19], mS denotes the optimal pixel expansion as obtained in Table II, Sect. IV of [23]
and mD denotes the pixel expansion of as shown in Table 1 of [17]
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Theorem 4.3 For any meaningful triplet (t, n − 1, n) such that (0, n − 1− t, n − t) is also
meaningful, there exists a t-(n − 1, n)∗-VCS having reduced pixel expansion

mred =

⎧⎪⎪⎨
⎪⎪⎩

2t n−t
4

(
n − t
n−t
2

)
, if n − t is even

2t n−t
2

(
n − t
n−t−1

2

)
, if n − t is odd

and relative contrast 1
mred

.

4.4 Some features of the basis matrices of (n − 1, n)-VCS with even n

We analyze the structures of the basis matrices S0 and S1 for (n − 1, n)-VCS, with even
n, obtained by the process described so far. In this case (n − 1) becomes odd and we have
already observed in Lemma 4 that the n-tuple (1, 1, 1, . . . , 1) is a particular solution to each
of the system of equations (as in Sect. 4.1)

fB2 j−1 = 1
fB2 j = 1

}

for all j such that 1 ≤ j ≤ n
2 .

Now let us consider the initial basis matrix S0in . We observe that once the first block S01 is
constructed the rest of the blocks S02 , S

0
3 ,…, S0n/2 can be constructed by suitable permutations

of rows. More explicitly, recall that the block S01 contains, as its columns, the solution vectors
of the system {

x1 + x2 + · · · + xn−2 + xn−1 = 0

x1 + x2 + · · · + xn−2 + xn = 0
(25)

In the above system of equations observe that the variables xn−1 and xn are dependent on the
rest of the variables. Thus all possible 2n−2 binary column vectors occur in the (n − 2) × n
submatrix and the last two rows (which represent the values of xn−1 and xn) are obtained
from them. For constructing the second block S02 we solve the following system:

{
x1 + x2 + · · · + xn−4 + xn−3 + xn−1 + xn = 0

x1 + x2 + · · · + xn−4 + xn−2 + xn−1 + xn = 0
(26)

In this system xn−3 and xn−2 are dependent on the rest of the variables. Thus S02 can be
easily obtained from S01 by interchanging (n − 1)-th row with (n − 3)-th row and row n
with row n − 2 and keeping all other rows fixed. In the similar manner we can construct
S03 , S

0
4 , . . . , S

0
n/2.

Following the exact same steps we can construct the matrix S1in from its first block S11 . As
we have noted that the n-tuple (1, 1, . . . , 1) is a particular solution of the system{

x1 + x2 + · · · + xn−2 + xn−1 = 1

x1 + x2 + · · · + xn−2 + xn = 1
(27)

therefore the solutions of this system can be obtained by adding (modulo 2) the particular

solution (1, 1, . . . , 1) to each of the solutions of the system (25). Hence, S0i = S1i for all

i such that 1 ≤ i ≤ n
2 . Thus S

0
in = S1in . It is immediate that if c is a column appearing in
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S0in then it must belong to S0i , for some i and thus S1i contains c̄ as one of its columns. The
following lemma summarizes the above discussion.

Lemma 16 Suppose S0in and S1in denote the basis matrices of an (n−1, n)-VCS constructed
by the linear algebraic method where n ≥ 4 is even. Then the frequency with which a column
c appears in Sbin equals the frequency with which c̄ occurs in S1−b

in for b ∈ {0, 1}.
Recall that we delete the common columns from S0in and S

1
in to construct the reduced basis

matrices S0red and S1red . In this process, suppose that a column v gets deleted. Thus v occurs
as a column in both S0in and S1in . Therefore v occurs in some block S0r for some r and also
occurs in some block S1t for some t where r �= t . Now

• v ∈ S0r ⇒ v̄ ∈ S1r and
• v ∈ S1t ⇒ v̄ ∈ S0t

Hence v̄ also is a common column and hence gets deleted. We now have the following
theorem.

Theorem 4.4 Let n ≥ 4 be even. Then for an (n − 1, n)-VCS constructed using linear
algebraic method number of times a column c appears in Sbred is equal to the number of times

the column c̄ occurs in S1−b
red for b ∈ {0, 1}.

5 On (n − 2, n)-VCS

In this sectionwe focus our attention on the construction of an (n−2, n)-VCS. Themotivation
of this section is two-fold. First, we resolve an open issue posed in [1]where the author pointed
out [Remark 4, Sect. 3] that for some specific access structures one may take three equations
at a time to reduce pixel expansion. In this section we first show by providing concrete
examples that taking three equations at a time works better than taking two equations at a
time. Thenwe go on providing an algorithm, for an (n−2, n)-VCS, that takes three equations
at a time to construct the systems of linear equations. We further show that using this simple
algorithm we can always have less initial pixel expansion than the initial pixel expansion
while taking two equations at a time. The second motivation is to provide a closed form
formula of the pixel expansion for any (n − 2, n)-VCS and thereby provide a closed form
of any t-(n − 2, n)∗-VCS, with meaningful triplet (t, n − 2, n). The closed form of the
pixel expansion of any (n − 2, n)-VCS as provided in Theorem 5.3 gives much better pixel
expansion than the closed forms of the schemes as posed in [1,7].We further show that further
reduction in pixel expansion may be possible by deleting the common columns of the basis
matrices. More precisely, in Sect. 5.1 we first discuss the difficulties of taking three equations
at a time and then give algorithms overcoming the difficulties, separately for odd and even
n, to collect three minimal qualified subsets at a time to form groups. In Sect. 5.2 we provide
upper bounds iteratively, for initial and reduced pixel expansions of any (n − 2, n)-VCS
constructed by the algorithm in Sect. 5.1. Lastly, in Sect. 5.3 we give the exact form of the
initial pixel expansion of any (n − 2, n)-VCS and prove that taking three equations together
always works better than taking two equations at a time. Numerical evidence shows that
our algorithm provides almost optimal pixel expansion. Further numerical evidence shows
that for (n − 2, n)-VCS, the reduced pixel expansion obtained using our proposed algorithm
provides much less pixel expansion compared to the reduced pixel expansion obtained by
taking two equations at a time.

Before starting the formal discussion, let us first fix up certain notations that will be used
throughout this section.
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Notation Let m(2)
in (k, n)(m(3)

in (k, n)) and m(2)
red(k, n)(m(3)

red(k, n)) denote respectively the
initial pixel expansion and the reduced pixel expansion of the (k, n)-VCS obtained by con-
sidering two (three) equations at a time.

Remark From Theorem 2.5 of [1], it follows that

m(2)
in (n − 2, n) =

{
n(n − 1)2n−5, if n ≡ 0, 1 (mod 4)
(n(n − 1) + 2)2n−5, if n ≡ 2, 3 (mod 4)

(28)

Hence we can now find the pixel expansion of t-(n − 2, n)∗-VCS using Theorem 3.2.

To get the motivation why three equations taken at a time may provide better pixel expan-
sion than two equations taken at a time, let us first consider the following example where we
first consider two equations at a time.

Example 5.1 Consider a (3, 5)-VCSwhere thegroups areG1={{1, 2 , 3 } , {1, 2, 4}} ,G2=
{{1, 2 , 5} , {1, 4, 5}} ,G3 = {{1, 3, 4 } , {1, 3, 5 }} ,G4 = {{2, 3 , 4 } , {2, 3, 5}} ,G5 =
{{2, 4 , 5 } , {3, 4, 5 }}. Then the initial basis matrices are given by

S0in =

⎡
⎢⎢⎢⎢⎣

0011 0011 0011 0000 0000
0101 0110 0000 0011 0110
0110 0000 0101 0101 0110
0110 0110 0110 0110 0011
0000 0101 0110 0110 0101

⎤
⎥⎥⎥⎥⎦ and

S1in =

⎡
⎢⎢⎢⎢⎣

0011 0011 0011 0000 0000
0101 1001 0000 0011 1001
1001 0000 0101 0101 1001
1001 1001 1001 1001 0011
0000 0101 1001 1001 0101

⎤
⎥⎥⎥⎥⎦ .

Here, m(2)
in (3, 5) = 20. However, we may further reduce the pixel expansion by deleting

the following common columns:

• 16th column of S0in and 17th column of S1in .• 20th column of S0in and 13th column of S1in .

Thus m(2)
red(3, 5) = 20 − 2 = 18.

5.1 Reducing the pixel expansion: taking three equations at a time

By considering the Example 5.1, we shall illustrate further that if we can choose the equa-
tions suitably by taking three equations at a time, then the pixel expansion may be reduced
significantly.

Example 5.2 Let us regroup the minimal qualified sets for (3, 5)-VCS as follows: G1 =
{{1, 2, 3} , {1, 2, 4} , {2, 4, 5} , {2, 3, 5}}, G2 = {{1, 2 , 5} , {1, 3, 5} , {1, 4, 5}} ,G3 =
{{1, 3, 4 } , {2, 3, 4 } , {3, 4, 5}}.

Note that forG1, the first three equations, corresponding to the first threeminimal qualified
subsets of G1, give rise (addition modulo 2) to the last equation corresponding to the last
minimal qualified subset {2, 3, 5}, i.e.,
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x1 + x2 + x3 = b
x1 + x2 + x4 = b
x2 + x4 + x5 = b
x2 + x3 + x5 = b

(29)

where b ∈ {0, 1}.
Thus considering the three groups we have the following initial basis matrices:

S0in =

⎡
⎢⎢⎢⎢⎣

0011 0011 0110
0101 0110 0110
0110 0110 0011
0110 0110 0101
0011 0101 0110

⎤
⎥⎥⎥⎥⎦ and S1in =

⎡
⎢⎢⎢⎢⎣

0011 0011 1001
0101 1001 1001
1001 1001 0011
1001 1001 0101
0011 0101 1001

⎤
⎥⎥⎥⎥⎦ .

After deleting the common columns, we have the reduced basis matrices as follows:

S0red =

⎡
⎢⎢⎢⎢⎣

00 001 011
01 011 011
01 011 001
01 011 010
01 010 011

⎤
⎥⎥⎥⎥⎦ and S1red =

⎡
⎢⎢⎢⎢⎣

01 011 001
11 001 001
01 001 011
01 001 101
01 101 001

⎤
⎥⎥⎥⎥⎦ .

Thus by choosing suitably three equations at a time, we have m(3)
red(3, 5) = 8, a significant

reduction in pixel expansion from 18 to 8.

Example 5.2 shows that if we carefully collect three equations at a time then the pixel
expansion is reduced drastically. We now describe an algorithm for constructing the groups
such that each group contains at least three equations. In other words, we try to collect
three minimal qualified subsets of participants such that all minimal qualified subsets are
exhausted and solving the corresponding simultaneous linear equations we construct the
basis matrices corresponding to any (n − 2, n)-VCS. While developing the algorithm we
must take care of the fact that collecting three minimal qualified sets (three equations at a
time) together admits, in each group, a fourth subset of participants whichmay be a forbidden
subset of participants and in this process this forbidden subset becomes a qualified one. For
example, while constructing (3, 5)-VCS, if we take the following three equations at a time
corresponding to the minimal qualified sets {1, 2, 3}, {1, 2, 4} and {2, 3, 4}:

x1 + x2 + x3 = b
x1 + x2 + x4 = b
x2 + x3 + x4 = b

x2 = b

where b ∈ {0, 1}, the set {2} becomes qualified. We do not want that. So we should take care
of the fact that the fourth subset of participants, obtained as above, must be a qualified set.

The algorithm we are now going to discuss makes sure that the fourth subset is a qualified
one. Two things may happen in this process. Firstly, if three equations are added modulo 2
then the resulting equation may contain all the n variables (which obviously corresponds to
a qualified set {1, 2, . . . , n}). Secondly, the resulting equation may contain exactly (n − 2)
variables which corresponds to a minimal qualified set of (n − 2, n)-VCS. To describe the
algorithm, we define these two different types of groups.
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Definition 5.1 When three minimal qualified sets are collected to form a group and the
resulting fourth qualified set is the full set of participants then the group is called a X -type
group.

Definition 5.2 When three minimal qualified sets are collected to form a group and the
resulting fourth qualified set is another distinct minimal qualified set then the group is called
a Y -type group.

Example 5.3 If we consider the (3, 5)-VCS as described in Example 5.2, the group G1 is a
Y -type group while G2 and G3 are X -type groups.

We are now in a position to describe an algorithm for making the groups of minimal
qualified subsets of the (n − 2, n)-VCS, taking three equations at a time. We divide the
algorithm for two case, namely n even and odd. First let us describe the algorithm for odd
n ≥ 5.
Grouping algorithm when n(≥ 5) is odd: In this case, n − 2 is also odd and there are(

n

n − 2

)
many minimal qualified sets, B1,B2, . . . ,B( n

n−2

), arranged in a lexicographic order.
We then form � n−2

2 � that is, n−1
2 many X -type groups say, X1, X2, . . . , X n−1

2
. Corresponding

to each Xm , except the last one, we form m many Y -type groups say, Ym,1, Ym,2, . . . , Ym,m .
Thus there are in all (n−1)(n−3)

8 many Y -type groups.
The grouping algorithm is as follows:

for m = 1 to n−1
2

Xm ← {Bm(2m−1), B(m+1)(2m−1), Bm(2m+1)}
for m = 1 to n−1

2 − 1
for j = 1 to m
Ym, j ← {Bm(2m+1)+2 j−1, B(m+1)(2m+1)+2 j , Bm(2m+1)+2m+2 j , Bm(2m+1)+2m+2 j+1}

Remark Observe that the linear equation corresponding to the last element of Ym, j arises
from the first three. Now, as usual we construct the linear equations for each Xm and each
Ym, j and solving them we get the initial basis matrices of the (n − 2, n)-VCS.

Let us now illustrate the above algorithm through the following example.

Example 5.4 Let us consider a (7, 9)-VCS. Let �0 = {Bi : i = 1, 2, . . . , 36} be the set of
all minimal qualified sets arranged in the lexicographic order. Then

X1 = {B1,B2,B3},
Y1,1 = {B4,B5,B7,B8},
X2 = {B6,B9,B10},

Y2,1 = {B11,B12,B16,B17},
Y2,2 = {B13,B14,B18,B19},
X3 = {B15,B20,B21},

Y3,1 = {B22,B23,B29,B30},
Y3,2 = {B24,B25,B31,B32},
Y3,3 = {B26,B27,B33,B34},
X4 = {B28,B35,B36}.

Solving the corresponding simultaneous linear equations we get the basis matrices of the
(7, 9)-VCS. In this case, m(3)

in (7, 9) = 640 and m(3)
red(7, 9) = 256.
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Grouping algorithm for the casewhen n(> 4) is even: In this case the list (L) of allminimal
qualified sets, arranged in the lexicographic order, is divided into 2 separate sublists, L1, L2,
where:

L1 = {B ∈ L : 1 ∈ B} and
L2 = {B ∈ L : B /∈ L1}

It is easy to see that |L1| =
(
n − 1

n − 3

)
and |L2| =

(
n − 1

n − 2

)
.

Now observe that in the list L1 if we ignore the participant 1 then the list is essentially the list
of all minimal qualified sets of an (n−3, n−1)-VCS on the participant setP = {2, 3, . . . , n}.
Since (n − 1) is odd, we may use the grouping algorithm for odd n (as described above) to
exhaust the sublist for L1. Now for the sublist L2 it is nothing but the list of all minimal
qualified sets of an (n − 2, n − 1)-VCS on the participant set P = {2, 3, . . . , n}. We can
collect two minimal qualified sets at a time as described in Sect. 4.1 to form the groups.
Let us illustrate the above algorithm through an example.

Example 5.5 Let us now consider the (8, 10)-VCS. Let Let {Ci : i = 1, 2, . . . , 45} be the
all minimal qualified sets arranged in the lexicographic order. Then the first 36 subsets C1
through C36 are grouped as the (7, 9)-VCS, that is, just replace Ci in place of Bi for all i=
1, 2, . . . , 36. For the 9 subsets, C37 to C45, group as follows:
G1= {C37, C38},G2= {C39, C40},G3= {C41, C42},G4= {C43, C44} and G5= {C45}.

Remark The above algorithms hold when n ≥ 5. For the (2, 4)-VCS we directly construct
the basis matrices by considering the following groups: G1 = {{1, 2}, {1, 3}, {1, 4}},G2 =
{{2, 3}, {2, 4}} and G3 = {{3, 4}} and then solving the corresponding systems of linear
equations.

5.2 Bounds and numerical evidence of betterment of pixel expansion

It is immediate from the Example 5.5 that if m(l)
red(k, n) denotes the reduced pixel expansion

of a (k, n)-VCS constructed by considering l equations at a time, then

m(3)
red(8, 10) ≤ 2m(3)

red(7, 9) + m(2)
red(8, 9).

This can be very easily generalized to the following theorem.

Theorem 5.1 Let m(l)
red(k, n) denote the reduced pixel expansion of a (k, n)-VCS after delet-

ing the common columns. Then for all even n > 4

m(3)
red(n − 2, n) ≤ 2m(3)

red(n − 3, n − 1) + m(2)
red(n − 2, n − 1).

In a similar way we can give (in a recursive manner) an upper bound for the case when
n ≥ 5 is odd. For this we break the list of all minimal qualified sets of an (n−2, n)-VCS into
two parts namely, L1 which contains all those subsets containing 1 and L2 which contains
all other minimal qualified subsets that are not in L1. Now it is easy to see that L1 can
be identified as the minimal qualified sets for a 1-(n − 2, n)∗-VCS with 1 as the essential
participant. Again, L2 can be identified as the minimal qualified sets of an (n−2, n−1)-VCS
on the participant set {2, 3, . . . , n − 1}. Hence we have the following theorem.
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Table 2 Comparison of pixel expansions for different (n − 2, n)-VCSs of various values of n

(n − 2, n)-VCS m(3)
red mBDSS mK mS mD

(2,4)-VCS 4 6 6 4 4

(3,5)-VCS 8 8 8 8 8

(4,6)-VCS 24 36 36 23 24

(5,7)-VCS 48 48 48 48 48

(6,8)-VCS 128 198 198 120 128

(7,9)-VCS 256 252 252 252 256

(8,10)-VCS 640 1020 590 590 640

In the following table, m(3)
red stands for the reduced pixel expansion of our scheme obtained by considering

three equations at a time, mBDSS denotes the pixel expansion as shown in Appendix B of [12], mK denotes
the pixel expansion as shown in Table 1, Sect. 3.2 of [19],mS denotes the optimal pixel expansion as obtained
in Table 2, Sect. IV of [23] and mD denotes the pixel expansion of as shown in Table 1 of [17]. The value of
mK for (8,10)-VCS is collected from [23]

Theorem 5.2 Let m(l)
red(k, n) denote the reduced pixel expansion of a (k, n)-VCS after delet-

ing the common columns. Then for all odd n ≥ 5

m(3)
red(n − 2, n) ≤ m(2)

red(1 − (n − 2, n)∗) + m(2)
red(n − 2, n − 1)

that is,

m(3)
red(n − 2, n) ≤ 2m(2)

red(n − 3, n − 1) + m(2)
red(n − 2, n − 1).

Actually the above upper bound of the pixel expansion is far from being tight. The exact
pixel expansion comes out to be much less than the upper bound. It is an interesting problem
to find the exact reduced pixel expansion of an (n−2, n)-VCS. Numerical evidence, as shown
in Table 2, shows that our algorithm provides almost optimal pixel expansion compared with
the optimal pixel expansion as obtained in [23].

5.3 Comparison of pixel expansions while taking two and three equations at a time

We further deal with the (n − 2, n)-VCS and resolve an open issue, as posed in [1]. In [1]
the author pointed out [Remark 4, Sect. 3] that for some specific access structure one may
take three equations at a time to reduce pixel expansion. In this section we resolve this issue
by showing that our grouping algorithm for taking three equations at a time always provides
less initial pixel expansion than the initial pixel expansion while taking two equations at a
time.

We have already observed in Eq. (28) the exact value of initial pixel expansion of an
(n − 2, n)-VCS constructed using linear algebraic technique when two equations are taken
at a time. Our bound in this matter (when taking three equations at a time) is a recursive one,
viz. Theorems 5.1 and 5.2. We now find the exact value of the initial pixel expansion when
the grouping of the minimal qualified sets are done using the grouping algorithm described
in the last section.
Let us first consider the case when n ≥ 5 is odd. Our algorithm for constructing the groups,
taking at least three minimal qualified sets at a time, guarantees the following: there are n−1

2
many X -type groups and 1

8 (n − 1)(n − 3) many Y -type groups. In any system of linear
equations corresponding to a X -type group there are (n − 3) many independent variables.
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Table 3 Numerical evidence of getting significantly less pixel expansion for (n− 2, n)-VCS different values
of n

(n − 2, n)-VCS (2, 4) (3, 5) (4, 6) (5, 7) (6, 8) (7, 9) (8, 10)

m(2)
red 6 18 48 126 312 754 1766

m(3)
red 4 8 24 48 128 256 640

Therefore, the total pixel expansion contributed by all X -type groups is n−1
2 2n−3, that is,

(n − 1)2n−4. Similarly in any system of linear equations corresponding to a Y -type group
there are (n−3)many independent variables and hence the total pixel expansion contributed
by all Y -type groups is (n − 1)(n − 3)2n−6.
Therefore initial pixel expansion

m(3)
in (n − 2, n) = (n2 − 1)2n−6 ∀ odd n ≥ 5.

Now it not hard to see that m(2)
in (n − 2, n) > m(3)

in (n − 2, n) for all odd n ≥ 5.
If n is even then as per our algorithm the initial pixel expansion becomes

m(3)
in (n − 2, n) = 2m(3)

in (n − 3, n − 1) + m(2)
in (n − 2, n − 1) ∀ even n > 4.

Observe that (n − 1) is odd and therefore the right hand side becomes 2n−6(n2 + 2n)

after some algebra. Now for n > 4 with n even it is not hard to see that m(2)
in (n − 2, n) >

m(3)
in (n − 2, n). Thus we have calculated the initial pixel expansion m(3)

in (n − 2, n) for even
n > 4, in terms of the pixel expansions of the (n − 3, n − 1)-VCS and (n − 2, n − 1)-VCS.
However, for the (2, 4)-VCS, constructed directly [SeeRemark followingExample 5.5] using
the linear algebraic technique, the initial pixel expansion equals 2n−6(n2 + 2n) with n = 4.
In this case m(2)

in (2, 4) = m(3)
in (2, 4). Thus we have the following theorem.

Theorem 5.3 Let m(l)
in (k, n) denote the initial pixel expansion of a (k, n)-VCS taking l equa-

tions at a time. Then m(2)
in (n − 2, n) ≥ m(3)

in (n − 2, n), where

m(3)
in (n − 2, n) =

{
(n2 − 1)2n−6, for all odd n ≥ 5
2n−6(n2 + 2n), for all even n ≥ 4.

Moreover the equality m(2)
in (n − 2, n) = m(3)

in (n − 2, n) holds if and only if n = 4.

Further numerical evidence, as shown in Table 3, shows that for (n − 2, n)-VCS, the
reduced pixel expansion obtained using our proposed algorithm provides much less pixel
expansion compared to the reduced pixel expansion obtained by taking two equations at a
time.

6 Conclusion and open issues

In this paper we have put forward a construction and analysis, based on linear algebraic
technique, of a t-(k, n)∗-VCS for monochrome images in which t participants are essential
in a (k, n)-VCS. We grouped the minimal qualified sets, taken two at a time, to form systems
of linear equations solving which we constructed the initial basis matrices. We then, applied

123



Constructions and analysis of some efficient t-(k, n)∗-VCS 195

the technique of deleting the common columns occurring in the initial basismatrices to reduce
the pixel expansion. We completely characterize the case of t-(n− 1, n)∗-VCS by deriving a
closed form of the reduced pixel expansion and hence a closed form for the relative contrast
too. We further investigated the case of an (n − 2, n)-VCS and provided an algorithm to
collect at least three minimal qualified sets at a time for grouping in such a way that the
resulting basis matrices, in their reduced forms, have almost optimal pixel expansions. An
interesting open issue would be to compute exact values of the reduced pixel expansions of
any t-(n − 2, n)∗-VCS and more generally of any t-(k, n)∗-VCS and derive a closed form
for it.
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