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Abstract Packings of PG(3, q) are closely related to Kirkman’s problem of the 15 school-
girls from1850 and its generalizations:Fifteen young ladies in a school walk out three abreast
for seven days in succession: it is required to arrange them daily so that no two shall walk
twice abreast. The packings of PG(3, 2) give rise to two of seven solutions of Kirkman’s
problem. Here, we continue the problem of classifying packings of PG(3, q) by settling the
case q = 3. We find that there are exactly 73,343 packings of PG(3, 3).
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1 Introduction and statement of results

A spread of PG(3, q) is a set of q2 + 1 lines that are pairwise disjoint and hence partition the
set of points. A packing of PG(3, q) is a set of q2 + q + 1 spreads that are pairwise disjoint
and hence partition the set of lines. Two packings are isomorphic if they can be mapped
upon each other by a collineation of PG(3, q). For a survey of packings, see [12,13], or the
CRC handbook of combinatorial designs [4]. It is well-known that there are two packings of
PG(3, 2) (cf. [5]), each invariant under a group of order 168, and that one can be obtained
from the other by applying the polarity associated to the standard bilinear form on F

4
q . For

details, we refer to [10, Sect. 17.4]. The situation for PG(3, 3) is examined in the present
paper. Our result is the following:
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584 A. Betten

Table 1 Spreads in PG(3, q) for small q

q Spread S |SP�L(4,q)| |P�L(4, q)| # spreads

2 Desarguesian 360 20,160 56

3 Desarguesian 5760 12,130,560 2106

3 Hall 1920 12,130,560 6318

4 Desarguesian 81,600 1,974,067,200 24,192

4 Hall 1200 1,974,067,200 1,645,056

4 Semifield with kernel F4 576 1,974,067,200 3,427,200

Theorem 1 There are, up to isomorphism, 73,343 packings of PG(3, 3).

Some comments are in order: The packings in PG(3, 2) were first observed by Cayley [3]
and Kirkman [14], both in 1850, as solutions to Kirkman’s famous problem of the fifteen
schoolgirls [15]:

Fifteen young ladies in a school walk out three abreast for seven days in succession: it
is required to arrange them daily so that no two shall walk twice abreast.

The first time that all seven solutions of Kirkman’s problem appear in print seems to be
the 1922 paper by Cole [5], which also lists the automorphism groups of each object (but
still does not mention any connection to geometry). The adaptation of Kirkmans problem to
match packings in PG(3, q) for arbitrary q can be found in Hirschfeld [10]:

If (q2 + 1)(q + 1) schoolgirls go walking each day in q2 + 1 rows of q + 1, they can
walk for q2 + q + 1 days so that each girl has walked in the same row as has every
other girl and hence with no girl twice.

Of course, here we are only interested in those solutions whose underlying design is that of
points and lines in PG(3, q) and q = 3.

How difficult is this problem? The space PG(3, 2) has 15 points and 35 lines and there
is up to isomorphism only one spread. The space PG(3, 3) has 40 points and 130 lines, but
there are two spreads to consider. Next in line is PG(3, 4) with 85 points and 357 lines,
and with three isomorphism types of spreads (cf. [6]). This information is summarized in
Table 1. The three last columns of the table show the order of the stabilizer of the spread in
the group P�L(4, q), the order of P�L(4, q) and the number of (labelled) spreads of this
type. The number of labelled spreads is the quotient |P�L(4, q)|/|SP�L(4,q)|. As the table
shows, the number of labelled spreads increases rapidly, making the problem much harder
with increasing q . In this paper, we classify the packings of PG(3, 3). Considering that there
are over 5 million labelled spreads in PG(3, 4), we believe that the classification of packings
in PG(3, 4) is out of reach at present.

The packings in PG(3, 3) have an extra structure which is due to the fact that there are two
spreads in PG(3, 3). For this reason, the packings of PG(3, 3) can be classified by their type
( j, 13− j) where j is the number of Desarguesian spreads and 13− j is the number of Hall
spreads. Information about the packings for any given type is given in Table 2. Moreover,
information about the automorphism groups and their action on the set of spreads is presented
in Table 3. Information about the self-polar packings is listed in Table 4, while the polar pairs
are listed in Table 5.
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Table 2 The packings of
PG(3, 3)

Type Packings Distribution of automorphism
group orders

(13, 0) 0

(12, 1) 0

(11, 2) 6 10, 2, 14

(10, 3) 12 22, 110

(9, 4) 392 162, 82, 415, 285, 1288

(8, 5) 574 82, 254, 1518

(7, 6) 2406 248, 12358

(6, 7) 4190 10, 279, 14110

(5, 8) 9670 413, 2230, 19427

(4, 9) 14,391 84, 426, 332, 2311, 114018

(3, 10) 15,452 44, 278, 115370

(2, 11) 13,395 424, 2270, 113101

(1, 12) 9995 360, 2882, 482, 363, 322, 2412,
182, 1610, 128, 8104, 620, 54, 4369,
322, 21374, 18060

(0, 13) 2860 324, 164, 819, 4103, 2372, 12358

Total: 73,343 360, 2882, 482, 363, 326, 2412,
182, 1616, 128, 102, 8131, 620, 54,
4554, 354, 22904, 169622

Table 3 The groups of some of the packings of PG(3, 3)

ID Group order Orbits Group structure

73342 360 1, 62 A6
73321 288 1, 12 ((C3 × C3) : C8) : C2 (kernel of order 2)

73069 48 12, 3, 42 S4 (kernel of order 2)

72672 36 1, 62 (C3 × C3) : C4

73286 36 1, 32, 6 S3 × S3
73128 32 1, 4, 8 QD16

73142 32 1, 22, 8 C2 × D8

73203 32 1, 4, 8 (C8 : C2) : C2

73096 24 13, 32, 4 S4

73097 24 1, 2, 32, 4 S4

73101 24 12, 2, 3, 6 C2 × C2 × S3

73114 24 12, 2, 3, 6 C2 × C2 × S3

73215 24 13, 4, 6 S4

73322 24 12, 2, 3, 6 D12

72653 18 1, 34 (C3 × C3) : C2

The remainder of this paper is devoted to a proof of this result. The structure of the paper is
as follows. In Sect. 2, we give the theoretical underpinnings for our classification algorithm.
In Sect. 3, we describe the classification algorithm in the most basic form. A refinement is
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Table 4 The self polar packings
of PG(3, 3)

Type S.-P. packings Distribution of automorphism
group orders

(11, 2) 4 10, 2, 12

(10, 3) 0

(9, 4) 56 82, 4, 27, 146

(8, 5) 0

(7, 6) 134 22, 1132

(6, 7) 2 10, 2

(5, 8) 194 43, 218, 1173

(4, 9) 21 34, 2, 116

(3, 10) 238 26, 1232

(2, 11) 1 1

(1, 12) 203 360, 36, 84, 52, 49, 226, 1160

(0, 13) 4 8, 4, 22

Total: 857

Table 5 The pairs of packings of
PG(3, 3) that are polar to each
other

Type Polar pairs Distribution of automorphism
group orders

(11, 2) 1 1

(10, 3) 6 2, 15

(9, 4) 168 16, 47, 239, 1121

(8, 5) 287 8, 227, 1259

(7, 6) 1136 223, 11113

(6, 7) 2094 239, 12055

(5, 8) 4738 45, 2106, 14627

(4, 9) 7185 82, 413, 314, 2155, 17001

(3, 10) 7607 42, 236, 17569

(2, 11) 6697 412, 2135, 16550

(1, 12) 4896 288, 48, 36, 32, 246, 18, 165,
124, 850, 610, 5, 4180, 311, 2674,
13950

(0, 13) 1428 322, 162, 89, 451, 2185, 11179

Total: 36,243

presented in Sect. 4, using the lexicographic ordering. In Sect. 5, we discuss the way in which
packings are created from subobjects. In Sect. 6, we make some comments on the algorithm
and we compare our results with earlier work.

2 Methodology

Most classification algorithms proceed along a chain of “subobjects.” The subobjects serve as
a stepping stone towards the classification that one wishes to achive. The subobjects are clas-
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The packings of PG(3, 3) 587

sified and extended to larger subobjects. If this process is repeated sufficiently often, the target
objects will be classified eventually. Our approach is based on an old idea of Schmalz [23,24],
who introduces a data structure to store “local” isomorphisms. This eliminates the need for
backtracking. Our algorithm is explained in more detail and with more examples in [2].

To explain the method of classification used in this paper, let us start by fixing some
notation. Most of this is standard, but the presentation here is somewhat more detailed than
that of other sources.

Let Y denote the objects that we wish to classify (the target objects). Let G denote the
symmetry group, i.e., a group acting on Y , the orbits of which we call isomorphism classes.
Assume that there is a class of subobjects X , also acted upon by G, and that the relation
R ⊆ X × Y is G-invariant.

The idea is to choose subobjects in such a way that they are “easy” to classify but “suffi-
ciently large” so that the target objects related to a given subobject can be computed efficiently.
For terminology (and notation) regarding finite group actions, we refer to Wielandt [26].

If X ∈ X , let

Up(X) = {(Z , Y ) ∈ R | Z = X}
the up-set of X . If Y ∈ Y, let

Down(Y ) = {(X, Z) ∈ R | Z = Y }
the down-set of Y . Observe that both the up-set and the down-set consists of pairs of elements
from the relation R.

The group GX acts on Up(X), and the orbits are called up-orbits. Likewise, the group
GY acts on Down(Y ), and the orbits are called down-orbits. Now assume that we have
representatives P1, . . . , Pm of the G-orbits on X , as well as representatives Q1, . . . , Qn of
the G-orbits on Y, so that

X =
m⋃

i=1

PG
i and Y =

n⋃

j=1

QG
j .

Let Ti,1, . . . , Ti,mi be representatives for the orbits of GPi on Up(Pi ), with Ti,a = T
GPi
i,a .

These orbits are called the up-orbits associated with Pi . Let S j,1, . . . , S j,n j be representatives

for the orbits of GQ j on Down(Q j ), with S j,b = S
GQ j
j,b . These orbits are called the down-

orbits associated with Q j . Thus we have

Up(Pi ) =
mi⋃

a=1

Ti,a =
mi⋃

a=1

T
GPi
i,a and Down(Q j ) =

n j⋃

b=1

S j,b =
n j⋃

b=1

S
GQ j
j,b .

Let

Ti = {Ti,a | a = 1, . . . ,mi }
and

S j = {S j,b | b = 1, . . . , n j }.
Finally, let

T =
m⋃

i=1

Ti and S =
n⋃

j=1

S j .
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588 A. Betten

We have:

Lemma 2 ([1, Lemma1]) There is a canonical bijection ψ between the sets T and S. That
is, each orbit in T is paired with exactly one orbit fromS (and conversely). In particular, the
sets T and S have the same size.

We remark that the canonical bijectionψ comes from the action ofG on the flags (incident
pairs) of the relation R. The orbits of this action are in bijection to both the elements of T
and the elements ofS. For our purposes, Y is the set of packings of PG(3, q), G is the group
PGL(4, q), and X is the set of k pairwise line-disjoint spreads, where k is some parameter
that can be chosen. The up-set of a set of k disjoint spreads is the set of packings containing
these k spreads. The down-set of a packing consists of all k-subsets of spreads chosen from
the packing.

We define the classification graph

�X ,Y,G

to be the following bipartite multigraph on m + n vertices. The vertices are the elements of
the sets {P1, . . . , Pm} and {Q1, . . . , Qn}, with an edge between Pi and Q j whenever there
is a Ti,a ∈ Ti and an S j,b ∈ S j with ψ(Ti,a) = S j,b. This graph is a multigraph as there
may be multiple choices for (a, b) for a given (i, j).

Let us now look at the lifting and classification in some more detail. The setX is the set of
all subobjects. The setY is the set of target objects. The relationR is inclusion. The symmetry
group G acts on R. In the beginning, the classification of G-orbits on X is computed. This
means that the representatives P1, . . . , Pm are listed, together with their stabilizer groups.
In the next step, the lifting step, the sets Up(Pi ) are computed for i = 1, . . . ,m, and the
up-orbits Ti are determined using the action of the groups GPi . This means that we know

representatives Ti,a with Ti,a = T
GPi
i,a for a = 1, . . . ,mi . In the classification step, the

Q1, . . . , Qn are computed. This is done by establishing the pairing ψ. For more details on
the liftings, see Sect. 5. For more details on the classification, see Sect. 3, and its refinements
in Sect. 4.

The present problem requires us to look at the group G = PGL(4, q) acting on PG(3, q).

We define a partial packing of size k in PG(3, q) to be a set of k pairwise disjoint spreads.
Thus, a packing is a partial packing of size q2+q+1. Recall that we letX be the set of partial
packings of size k for some small value of k, and we let Y be the set of packings of PG(3, 3)
(i.e., the partial packings of size 13). The problem of computing the up-set Up(X) for a partial
packing X ∈ X will be addressed in Sect. 5. Computing Down(Y ) for a packing Y ∈ Y is

trivial: simply consider the
(q2+q+1

k

)
subsets of partial packings consisting of exactly k of

the spreads in Y .

3 The basic Schmalz algorithm

We use Lemma 2 to compute the transversal of G-orbits on Y, assuming that the transversal
P1, . . . , Pm of G-orbits on X has been computed. The algorithm is best described in terms
of the graph �X ,Y,G . Recall that this graph has two classes of vertices. The first class is
the orbits of G on X . The second class is the orbits of G on Y (as yet unknown). We often
identify the vertices with the orbit representatives Pi and Q j , respectively. The edges of the
graph correspond to pairs of elements from T and S that correspond under the bijection ψ

(which as yet is also unknown).
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The packings of PG(3, 3) 589

Underpinning the bijection ψ is a choice of group elements that realize the bijection
in the sense that they take orbit representatives to orbit representatives. This needs some
explanation:

If for some pairs (i, a) and ( j, b) we have

ψ
(
Ti,a

) = S j,b, (1)

then there exists an element g ∈ G with

T g
i,a = S j,b. (2)

While the bijectionψ is canonical, the choice of the element g in (2) is not. If u ∈ StabG(Ti,a)
and v ∈ StabG(S j,b) then ugv satisfies (2) whenever g does. However, this ambiguity does
not bother us. For our purposes, it is important that an element g as in (2) can be computed.

Since the edges in the classification graph �X ,Y,G correspond to pairs Ti,a and S j,b

corresponding under ψ as in (1), we can label each edge by the associated group element g
as in (2).

The idea to store these group elements goes back to Schmalz [23,24]. For this reason, we
decide to call the group element g ∈ G satisfying (2) the Schmalz isomorphism element.

Suppose we have computed the G-orbits on X . Suppose that P1, . . . , Pm are the repre-
sentatives of the orbits and that we know the stabilizer groups GPi for all i . Furthermore,
we assume that we have constructive recognition of these orbits: Given an arbitrary element
X ∈ X , we can compute an element g ∈ G such that Xg = Pi for some i (depending on X ).

Our classification algorithm is easily described. We have two main steps, called Lift and
Classify. Classify in turn invokes two algorithms, Define and Eliminate.

In Lift, we compute the sets Up(Pi ) for all i = 1, . . . ,m. Once this is done, we compute
the orbits of GPi on Up(Pi ) for all i = 1, . . . ,m. This gives representatives Ti,a for orbits
Ti,a for a = 1, . . . ,mi and all i = 1, . . . ,m. It also furnishes the stabilizer groups GPi ,Ti,a =
StabGPi

(Ti,a) for a = 1, . . . ,mi and all i = 1, . . . ,m. Thus, the sets Ti = {Ti,a | a =
1, . . . ,mi } and T = ⋃

i Ti are known.
In Classify, we loop over the set C = {�2(Ti,a) | i = 1, . . . ,m, a = 1, . . . ,mi },

where �2 is the projection onto the second component (recall that the Ti,a are pairs, one
element from X and one from Y). The strategy is to shrink the set C down to a transversal
Q1, . . . , Qn for the G-orbits on Y. This is achieved by invoking Define and Eliminate in
turn for elements from C. We set j = 1.

For Define, we pick the first element in C, call it Q j , and remove it from C. This defines
our next representative of a G-orbit on Y. We let i and a be so that �2(Ti,a) = Q j . At this
point, the group GPi ,Ti,a ≤ GQ j is known.

The algorithmEliminatewill remove all isomorphic copies of Q j fromC and compute the
groupGQ j from the subgroupGPi ,Ti,a . For each element (X, Q j ) ∈ Down(Q j ), perform the
following algorithm. Determine an element h1 ∈ G with Xh1 = Pk for some k ∈ {1, . . . ,m}
(depending on X ). This can be done by assumption. Then compute an element h2 ∈ GPk

such that (Pk, Q
h1
j )h2 = Tk,c for some c ∈ {a, . . . ,mk}. This element h2 can be computed

easily from the information stored by Lift. If k = i and c = a, we find that h1h2 is a coset
representative for the group GPi ,Ti,a in GQ j and we save it. Otherwise, we delete �2(Tk,c)
from C. Once all elements of Down(Q j ) have been processed, the coset representatives
saved form a complete set of coset representatives of GPi ,Ti,a in GQ j . Once all elements in
Down(Q j ) have been processed, Eliminate is done.

The algorithm Classify then replaces j by j + 1. Unless C is empty, another round
of Define and Eliminate is performed. Once C is empty, Classify sets n to j and the
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590 A. Betten

classification is completed. The sets Q1, . . . , Qn form a transversal of the G-orbits on Y. In
addition, the stabilizers GQ j have been computed for all j = 1, . . . , n.

We remark that constructive recognition is possible with the following little twist. The
idea is to label the edges of the classification graph � by the Schmalz isomorphisms. So, in
Classify, once the elements h1 and h2 have been computed, one simply stores (h1h2)−1

as a label of the edge leading from Tk,c to the appropriate down-orbit of Q j . Then we
can perform constructive recognition. Namely, if an object Y ∈ Y is given, the following
algorithmRecognize computes an element g ∈ G such that Y g = Q j for some j (depending
on Y ):

Recognize: Given Y ∈ Y, pick an arbitrary element (X, Y ) ∈ Down(Y ). Then compute
a group element g1 ∈ G such that Xg1 = Pi for some i (depending on X ). Using the data
stored by the algorithm Lift, compute another group element g2 ∈ GPi with Y g1g2 = Ti,c
for some c depending on Y g1 . Look up the label of the edge in the graph �X ,Y,G . This gives
a Schmalz isomorphism element g3 ∈ G such that Y g1g2g3 = Q j for some j depending on
Y . Output g := g1g2g3.

4 The lexicographic ordering

The graphs �X ,Y,G are often very large. In order to make them more useful, we reduce the
number of edges (following an idea of [1]). We have to be careful though: Each Q j needs to
have an edge to at least one Pi for some i . The lexicographic ordering of subsets can be used
to “weed out” edges of the graph. Let W be a totally ordered set. For subsets A and B of W
we write A ≺ B if A precedes B in the lexicographic ordering of subsets of W . We decide
to consider lexicographically least orbit representatives. Thus, we ask that Pi is lex-least in

PG
i , that Q j is lex-least in QG

j , and that Ti,a is lex-least in T
GPi
i,a . Similarly, we ask that

P1 ≺ P2 ≺ · · · ≺ Pm and likewise for all other orbit representatives that we consider.
Let H be a group acting on W. We observe that if Q ⊆ W is lex-least in its H -orbit then,

for s ≤ |Q|, the first s elements of Q form a set that is lex-least in its H -orbits also. Now, let
us consider again the situation of Lemma 2. The previous remark implies that for any orbit
representative Q j of a G-orbit on Y, the first s elements of Q j form a set that must be a Pi
for some i. This is true for any s ≤ |Q j |.

This leads us to consider the relation R∗ ⊆ X × Y with

(X, Y ) ∈ R∗ if (X, Y ) ∈ R and min yGX > max X ∀ y ∈ Y \ X. (3)

The set

Up∗(X) = {(Z , Y ) ∈ R∗ | Z = X}
is called special up-set. The group GX acts on Up∗(X), and the orbits are called special
up-orbits. For Y ∈ Y , the special down-set is the set

Down∗(Y ) = {(X, Z) ∈ R∗ | Z = Y }.
The orbits ofGY on Down∗(Y ) are called special down-orbits. Let T ∗

i,1, . . . , T
∗
i,m∗

i
be the spe-

cial up-orbits associated with Pi , with representatives T ∗
i,a for the orbit T

∗
i,a , a = 1, . . . ,m∗

i .
Also, let S∗

j,1, . . . ,S
∗
j,n∗

j
be the special down-orbits associated with Q j , with representatives

S∗
j,b for the orbit S

∗
j,b, b = 1, . . . , n∗

j . Thus we have
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The packings of PG(3, 3) 591

Up∗(Pi ) =
m∗
i⋃

a=1

T ∗
i,a =

m∗
i⋃

a=1

(
T ∗
i,a

)GPi

and

Down∗(Q j ) =
n∗
j⋃

b=1

S∗
j,b =

n∗
j⋃

b=1

(
S∗
j,b

)GQ j
.

Let

T∗
i = {T ∗

i,a | a = 1, . . . ,m∗
i }

and

S∗
j = {S∗

j,b | b = 1, . . . , n∗
j }.

Finally, let

T∗ =
m⋃

i=1

T∗
i and S∗ =

n⋃

j=1

S∗
j .

The canonical pairingψ between the elements ofT and the elements ofS induces a canonical
pairing between T∗ and S∗. Thus special up-orbits and special down-orbits are paired. In
particular |T∗| = |S∗|. Define the graph �∗

X ,Y,G as the subgraph of �X ,Y,G whose multi-
edges correspond to the paired orbits from T∗ and S∗.

Let us now go over the isomorph rejection procedure once more, considering the effect of
using the lexicographic ordering. Our emphasis is on working out the differences between
the algorithms using lex-least reduction and the algorithm described in Sect. 3.

The function Lift is modified to compute the orbits on Up∗(Pi ) (which is a subset of
Up(Pi )). The function Eliminate needs to be reworked a little:

At first, we still consider any element (X, Q j ) ∈ Down(Q j ) (no star here). We then

compute h1 ∈ G with Xh1 = Pk for some k. Then we check if (Xh1 , Qh1
j ) = (Pk, Q

h1
j ) ∈

R∗. If it is, we have no problem continuing as before to find an element h2 ∈ GPk such that
(Pk, Q

h1
j )h2 = Tk,c for some c ∈ {1, . . . ,m∗

k }. Otherwise, if (Pk, Q
h1
j ) /∈ R∗, we stop and

proceed with the next element in Down(Q j ).

5 The exact cover problem

There are exactly two isomorphism classes of spreads in PG(3, 3), namely theDesarguesian
spread and the Hall spread. Let us list these two spreads here. A spread in PG(3, 3) is a
collection of 10 lines. Taking a cue from coding theory, we represent lines in PG(3, q) by
2 × 4 matrices with entries in Fq (“generator matrices”). The associated line in PG(3, 3) is
the rowspan of the matrix. The Desarguesian spread and the Hall spread in PG(3, 3) can be
described by means of the following 15 lines, represented as 2×4 matrices over the field F3:
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592 A. Betten

Table 6 Classification of partial packings

i Partial packings with i
spreads

Distribution of stabilizer
orders

Average stabilizer order

0 1 12,130,560 12,130,560

1 2 5760, 1920 3840

2 17 240, 120, 96, 48, 322, 24, 162, 122, 10,
82, 6, 42

40 + 8
17 = 40.471

3 1274 240, 96, 72, 482, 322, 247, 168, 128, 102,
832, 612, 485, 312, 2341, 1760

2 + 578
1274 = 2.454

[
1000
0100

]

[
0010
0001

]

[
1010
0101

]

[
1020
0102

]

[
1001
0120

]

[
1011
0121

]

[
1021
0122

]

[
1002
0110

]

[
1012
0111

]

[
1022
0112

]

[
1011
0112

]

[
1021
0111

]

[
1002
0110

]

[
1012
0122

]

[
1022
0121

]

The Dearguesian spread is made up of the 10 lines associated to the matrices in the first
two columns. The Hall spread is made up of the 10 lines associated to the matrices in the
first and last columns. The Desarguesian spread has an automorphism group of order 5760
and the Hall spread has a group of order 1920. Since |PGL(4, 3)| = 12, 130, 560, we find
that there are 2106 copies of the Desarguesian spread and 6318 copies of the Hall spread in
PG(3, 3). Let S be the set of these 8424 = 2106 + 6318 spreads in PG(3, 3). The problem
of classifying all packings requires us to choose 13 of the 8424 spreads in S, pairwise (line-)
disjoint, and to classify these choices up to isomorphism under the group G = PGL(4, 3).
For the classification, we consider the action of G on the set Y of packings of PG(3, 3).
We apply the method of classifying suitable subobjects as stepping stone in solving the full
problem. As subobjects we choose the set X of partial packings of size 3.

In the first step, we classify the partial packings of size 3 under the action of the group G.
In Table 6, we show the number of nonisomorphic ways to choose i pairwise disjoint spreads
from the set S of 8424 spreads in PG(3, 3) for i = 1, 2, 3. There are 1274 isomorphism types
of partial packings in PG(3, 3). For later purposes, we record the fact that the number of all
partial packings of size three (i.e., packings not up to isomorphimsm) can be computed from
the data given in the table. Using the orbit stabilizer theorem and the stabilizer orders listed
in the table, we find that there are around 1.1 × 1010 partial packings of size 3.

In the next step, we consider the search for packings arising from these partial packings.
Consider a partial packing X . In order to compute the liftings of this partial packing, we
need to find all packings Y that contain X. We transform this problem into an instance of
an Exact Cover problem. Each line of PG(3, 3) that is not part of any of the spreads in the
partial packing X needs to be “covered” by exactly one of the 13 − 3 = 10 spreads that we
are going to select from S \ X to form Y \ X . The details of this step are as follows.
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We say that a spread s ∈ S is live with respect to X if no line of s is part of a spread from
the set X. That is, s ∩ x = ∅ for all x ∈ X. For each partial packing X = {x1, x2, x3} of size
three, we compute the set

SX = {s ∈ S | s is live for X}
of live spreads associated with it. Given a partial spread X , we define an instance of an exact
cover problem:

Let LX be the set of 130 − 30 = 100 lines that are not contained in any of the spreads
of X . We define an incidence matrix AX between the lines in LX and the live spreads in
SX as follows: Fix an ordering of the elements of LX and the elements of SX . The rows of
AX correspond to the elements of LX in the chosen order. The columns of AX correspond
to the elements of SX in the chosen order. For a line � ∈ LX and a live spread s ∈ SX , the
corresponding entry in AX is one if � ∈ s and zero otherwise. The problem of finding all
packings containing X is equivalent to solving the system

AX · x = 1 (4)

where 1 is the all-one vector of length |LX | and x is a zero/one vector of length |SX | with
exactly 13 − 3 = 10 ones and the rest zeros.

For each of the 1274 orbits of partial packings of size 3 from Table 6, we pick a repre-
sentative set X . For this partial packing X , the lifting process described above is performed.
The packings resulting from the liftings are stored.

The third and final step in the classification is invoked once the solutions of the system (4)
are determined. In this step, the orbits under the stabilizer GX in PGL(4, 3) are computed.
Then, the classification algorithm from Sect. 3 is applied to these packings. The orbits of GX

on the liftings are the Ti (here, i is the index of the orbit on partial packings associated with
X ). The algorithm computes the classification graph �X ,Y,G where X is the set of partial
packings of size 3 and Y is the set of packings of PG(3, 3). Of course, the set Y is never fully
considered. All that we need is the union of all Up(X) where X runs over a transversal of the
G-orbits on partial packings of size 3. This leads to the result described in Theorem 1.

The results of Table 3 were obtained using the system GAP [9].

6 Some final comments

The idea of Sect. 4 is applied to reduce the number of edges in the classification graph. To
do so, we rely on the relation R∗ between partial packings and live spreads. The condition
for a pair (X, Y ) ∈ R to lie inR∗ is the following: Let xmax := max X be the largest spread
in X in the lexicographic ordering. According to (3), a packing Y is in relationR∗ to X if for
each spread y ∈ Y \ X, the condition min yGX > xmax holds true. Thus, the lexicographic
order yields a condition which reduces the number of live spreads involved in the lifting of a
partial packing X, thereby reducing the size of the coefficient matrix AX . This reduction is
particularly effective if xmax is large.

In order to solve the equations (4), the algorithm Dancing Links (DLX) of Knuth [16] is
used. The size of the coefficientmatrix AX varies, but frequentlywe have around 800 columns
(and 100 rows). This is quite manageable for Knuth’s algorithm. All 1274 instances of the
exact cover problem can be created and solved in less than 20min, provided the lexicographic
ordering is used to reduce the size of the set of live spreads as described in Sect. 4. This leaves
us with 8,342,028 packings. The set T∗ of orbits under the respective stabilizer of the partial
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packing has size 7,272,182. Without imposing the lexicographic condition, the number of
packings arising from the lifts is 28,287,067, computed in roughly 30 minutes.

Mathon [17] presents various algorithms to search for spreads and packings, different from
our method. Denniston [8] reports having found 9 packings of PG(3, 3), and he estimates
that there are many more. In [19], Prince classifies the 7 packings of PG(3, 3) invariant under
a group of order 5. Our result confirms this: As we see from Table 2, there is one packing of
type (11, 2) invariant under a group of order 10, one further packing of type (6, 7) invariant
under a group of order 10, one packing of type (1, 12) invariant under a group of order 360
and four more packings of type (1, 12) invariant under a group of order 5.

In [20], Prince is interested in uniform packings. These are packings which are made up
solely from spreads of one type. A regular packing is a uniform packing made up from the
Desarguesian spread. He shows that there is no regular packing of PG(3, 3). The same result
was already very briefly mentioned in [8]. In our table, we see that there is no packing of
type (13, 0), confirming this result yet another time. Prince goes on to search for uniform
packings of type (0, 13). He finds at least 54 such packings. Our results show that there are
exacty 2860 such packings.

In [11], Johnson classifies the packings of PG(n, q) whose group acts doubly transitively
on the set of spreads. Only the two packings of PG(3, 2) have this property. Packings with
groups acting transitively on the set of spreads are more frequent. There are the regular
examples due to Penttila andWilliams [18] (this encompasses the example of Denniston [7])
and the 45 examples due to Prince [21] in PG(3, 5). As we can see from Table 2 (and also
from Table 3), there is no transitive packing in PG(3, 3). On a slightly different note, we
mention that Topalova and Zhelezova [25] determine that there are 92 transitive packings of
PG(5, 2) (transitive in the sense of transitive on spreads). A different notion of transitivity is
considered in [22].
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