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Abstract Indifferentiability security of a hash mode of operation guarantees the mode’s
resistance against all generic attacks. It is also useful to establish the security of protocols that
use hash functions as random functions. The JH hash function was one of the five finalists
in the National Institute of Standards and Technology SHA-3 hash function competition.
Despite several years of analysis, the indifferentiability security of the JHmode has remained
remarkably low, only at n/3 bits, while the two finalist modes Keccak and Grøstl offer a
security guarantee of n/2 bits. Note all these three modes operate with n-bit digest and 2n-
bit permutations. In this paper, we improve the indifferentiability security bound for the JH
mode to n/2 bits (e.g. from approximately 171 to 256 bits when n = 512). To put this into
perspective, our result guarantees the absence of (non-trivial) attacks on both the JH-256 and
JH-512 hash functionswith time less than approximately 2256 computations of the underlying
1024-bit permutation, under the assumption that the underlying permutations can bemodeled
as an ideal permutation. Our bounds are optimal for JH-256, and the best known for JH-512.
We obtain this improved bound by establishing an isomorphism of certain query-response
graphs through a careful design of the simulators and bad events. Our experimental data
strongly supports the theoretically obtained results.
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1 Introduction

1.1 Generic attacks

In a generic attack, an adversary attempts to break a property of the target crypto-algorithm
assuming that one ormore of its smaller components are ideal objects, such as randomoracles,
ideal permutations, or ideal ciphers. For example, suppose that the target crypto-algorithm
is a hash function H : {0, 1}∗ → {0, 1}n . Assume that for a given input M ∈ {0, 1}∗, H
invokes an ideal object, say a random oracle ro : {0, 1}m → {0, 1}n , one or multiple times,
to compute H(M). Informally, a generic attack breaks a property of the hash function H
utilizing less resources than would be required to break the same property of the big random
oracle RO : {0, 1}∗ → {0, 1}n .

Generic attacks against hash functions are plentiful in the literature. See, for example,
Joux’s multi-collision attack [19], the Kelsey–Schneier expandable-message second pre-
image attack1 [21], and the Kelsey–Kohno herding attack [20], all on the popular Merkle–
Damgård hash mode. Generic attacks have also been reported on hash modes other than the
plain Merkle–Damgård mode. A few of these are the 2nd pre-image attacks on the dithered
variants of the Merkle–Damgård construction [1], a pre-image attack on the JH mode [8],
pre-image, second pre-image, and multi-collision attacks on the Sponge construction when
the state-size is small [7], collision attacks on some concatenated hash functions [19], second
pre-image, multi-collision and herding attacks on some hash functions based on checksums
[13,16], multi-collisions in iterated concatenated and expanded hash functions [18], and
multi-collisions on some generalized sequential hash functions [24]. See also [14,15,17],
which analyze generic attacks on randomized hashing (a variant of Merkle–Damgård).

In each of the above examples, a common assumption was that the underlying basic prim-
itive of the hash function is an ideal object. Therefore, all of these attacks fit the definition of
a generic attack. Generic attacks have changed the outlook on the security of a cryptographic
hash function over the last few years. One naturally asks how to design a hash mode secure
against all generic attacks.

1.2 Indifferentiability security

The indifferentiability security framework was introduced by Maurer et al. [23] in 2004, and
was first applied to analyze hash modes of operation by Coron et al. [10] in 2005. A hash
mode proven secure in this framework is able to resist all generic attacks. More technically,
the indifferentiability framework measures the extent to which a hash function behaves as a
randomoracle under the assumption that the underlying small compression function is an ideal
object. The class of indifferentiability attacks includes more attacks [4,8,9] than just useful
generic attacks as above. Thus in some sense, an indifferentiable hash function can be viewed
as eliminating potential future attacks. We note the security of many cryptographic protocols
rely on the indifferentiability security of the underlying hash functions that the protocols use
as random oracles. In such a case, security of the hash functions against selected specialized
attacks—such as collision, pre-image attacks and second pre-image attacks—are inadequate

1 This generic attack is a generalized version of the second pre-image attack of Dean [11] which works on
Merkle–Damgård hash functions based on compression functions with fixed points.
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Table 1 The resistance of the JH mode against several attacks

Mode of
operation

Message
block-length

Permutation
size

First
preimage

Second
preimage

Collision
resistance

Indiff.
(old)

Indiff.
(new)

JH-n n 2n n/2 [3] n/2 [3] n/2∗ [22] n/3 [8] n/2

JH-512 512 1024 256 256 256* 171 256

JH-256 512 1024 256* 256* 128* 171 256*

Each number is in bits. The asterisk indicates the optimality of the bound

to guarantee the security of the overlying protocol. The notion of indifferentiability security
has also been applied to compression functions. See [5] for example. Some limitations of
the indifferentiability framework have recently been discovered in [12] and [26]: the first
paper shows how some hash modes can be attacked in the indifferentiability setting, even
if they are “practically secure”; the second paper points out how a certain protocol allows
for an attack by a multi-stage adversary when its underlying random oracle is replaced by
an indifferentiable hash function. These limitations do not apply to the indifferentiability
security of compression functions (i.e., [5]). Still, indifferentiability security has gradually
become a de-facto requirement for the adoption of a hash mode as a standard because it
guarantees security for hash function modes of operation against generic attacks.

1.3 Previous analysis of the JH mode

The JH hash function was one of the five finalist algorithms in the NIST SHA-3 hash function
competition [25]. The hash function uses an iterative mode which is novel in the sense
that it is based on a permutation [28]. Several popular hash functions—such as SHA-1 and
SHA-2—are constructed instead using a block cipher. Since its publication in 2007, the
JH mode of operation has undergone an extensive security analysis. The first published
analysis of the JH mode was done by Bhattacharyya, Mandal and Nandi, who showed that
the indifferentiability security of the basic version of the JH mode up to n/3 bits [8];2 they
have also shown a preimage attack on the JH-512 mode with approximately 2507 calls to the
underlying permutation. A year later, in [22], it was shown that the JH mode achieves the
optimal collision resistance of up to n/2 bits. Recently Andreeva, Mennink and Preneel have
improved the first and second pre-image resistance of the JH mode from n/3 to n/2 bits [3].
However, the improvement of the indifferentiability security of the JH mode beyond n/3 bits
has remained elusive. Table 1 gives an overview of the main results on the JH mode.

1.4 Our contribution

The usage of an ideal permutation, instead of a random oracle, in the JH mode allows the
adversary to use reverse queries in addition to forward queries. One of the main obstacles for
an improved indifferentiability security analysis of the JHmode is how to handle these reverse
queries. This additional privilege of the adversary makes challenging the construction of an
efficient simulator able to withstand adversaries using up to (approximately) 2n/2 queries. It
is important to note that these adversaries (working in the indifferentiability framework) are
distinguishing adversaries telling apart the pair of the JHmode and theunderlyingpermutation
from the pair of a random oracle and a simulator. Since the framework involves two pairs
of algorithms, the security guarantee obtained in this framework is at least as much as—

2 The basic version uses a 2n-bit permutation and n-bit digest. The chopped versions use a smaller digest.
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and most likely even better than—the guarantee obtained in a framework that distinguishes
output of one algorithm (e.g. JH mode) from that of the other (e.g random oracle) [23].
Another major challenge, which turns out to be quite hard, is to estimate the probability
of the events when a current query submitted by an arbitrary adversary matches an old but
unknown query. A somewhat easier task is to show that the probability of a node-collision

on the graph constructed by an efficient simulator, is at most σ 2

2n , where σ is the total number
of submitted queries. We overcome these hurdles by carefully designing a set of bad events.
Our construction is such that the absence of the bad events, (1) eliminates the possibility of a
reverse query being attached to the simulator graph, (2) allows the graph to grow only linearly
in the number of submitted queries, and most importantly (3) ensures the isomorphism of the
simulator graphs in two different games. Using this isomorphism result and the linear bound
on the number of nodes in the isomorphic graphs,we are able to improve the indifferentiability
security bound of JH to n/2 bits. Another feature of our work, which may be of independent
interest, is that the proof of our main theorem Theorem 1 requires only three games. The
smaller number of games (in stark comparison with the usual practice of tackling such
problems using a sequence of a large number of games) makes third-party verification of the
proof a great deal easier and also allows the application of probabilistic tools to find practical
security bounds [27] .

Our indifferentiability bound guarantees the absence of generic attacks on the JH hash
function (using a 2n-bit permutation) with work less than 2n/2. When the digest-size is 256
or 512 bits, the hash mode is resistant to all generic attacks up to (approximately) 2256

computations of the underlying 1024-bit permutation. This bound is optimal for JH-256 and
the best known for JH-512. Furthermore, we have performed a series of experiments with the
JH mode studying the effects of the bad events in our framework. Our experiments verify
the theoretically obtained results, and also exhibit optimal adversarial strategies. See Sect.
6 for more on the experiments. We caution the reader that our result on the JH mode says
nothing about the security of the underlying 1024-bit permutation, which is assumed to be
free from all structural weaknesses throughout the paper.

1.5 Notation and convention

Throughout the paper we let n be a fixed integer. We shall use the little-endian bit-ordering
system. The symbol | · | is used for both length of a message and the cardinality of a set. For
concatenation of fixed length strings a and b, we use a||b, or just ab if the meaning is clear.
Let SX denote the sample space of the discrete random variable X . The relation A ∼ B is
satisfied if and only if Pr

[
A = X

] = Pr
[
B = X

]
for all X ∈ S, where S = SA = SB . Let

T be an array or a table. Then Dom(T ) = {i | T [i] �=⊥} and Rng(T ) = {T [i] | T [i] �=⊥}.
We write A B ⇒ b to denote an algorithm A with oracle access to B outputting b. Finally,
let [c, d] be the set of integers between c and d inclusive, and a[x, y] the bit-string between
the x-th and y-th bit-positions of a. In algorithm descriptions, ‘=’ is used to denote the
assignment operation.

2 Indifferentiability framework for JH

2.1 Description of the JH mode

Suppose n ≥ 1. Let π : {0, 1}2n → {0, 1}2n be a 2n-bit ideal permutation used to build the
JH hash function JHπ : {0, 1}∗ → {0, 1}n . A pictorial description of the JH transform is
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m1
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m2 m3 mk
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Hash
output

y’1 y’’1
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⊕

⊕
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Fig. 1 Diagram for the JH mode. All rectangles denote the ideal permutation π on {0, 1}2n . JH takes as

input a message M ∈ {0, 1}∗, and performs the following four steps: M
pad→ m1m2 . . .mk−1mk ; y0 = I V ,

y′
0 = I V ′; yi y′

i = π
(
yi−1||(y′

i−1 ⊕ mi )
)

⊕ mi ||0 for all i ∈ {1, 2, . . . k}; return yk

given in Fig. 1. The semantics for the notation M
pad→ m1 · · ·mk−1mk is as follows: Using an

injective function pad : {0, 1}∗ → ∪i≥1{0, 1}ni , M is mapped into a string m1 · · ·mk−1mk

such that k =
⌈ |M|

n

⌉
+ 1, |mi | = n for 1 ≤ i ≤ k. The injective function pad(·) ensures

that distinct messages remain distinct after padding. In addition to the injectivity of pad(·),
we will also require that there exists a function dePad(·) that can efficiently compute M ,
given pad(M). Formally, the function dePad : ∪i≥1 {0, 1}in → {⊥} ∪ {0, 1}∗ is defined
as follows: dePad(pad(M)) = M , for all M ∈ {0, 1}∗, and otherwise dePad(·) returns a
special symbol⊥ denoting that the padded message was not generated from a valid message.
We note that the padding rules of all practical hash functions have the above properties. For
more details, the reader is referred to the original specificationwritten by the JH designer [28].

2.2 Introduction to the indifferentiability framework

We will frequently refer to the use of a random oracle. A random oracle is a function RO :
X → Y chosen uniformly at random from the set of all |Y ||X | functions that map X → Y .
In other words, a function RO : X → Y is a random oracle if and only if, for each x ∈ X ,
the value of RO(x) is chosen uniformly at random from Y .

We now define the indifferentiability security notion which is a slightly modified version
of the original definition provided in [10,23].

Indifferentiability security [10] An interactive Turing machine (ITM) T with oracle access
to an ideal primitive F is said to be (tA , tS, q, ε)-indifferentiable from an ideal primitive
G if there exists a simulator S such that, for any distinguisher A , the following equation is
satisfied:

|Pr[A T,F = 1] − Pr[A G ,S = 1]| ≤ ε.

The simulator S is an ITM which has oracle access to G and runs in time at most tS . The
distinguisher A – also known as an indifferentiability adversary—runs in time at most tA .
The number of queries used by A is at most q . Here ε is a real number in (0, 1).

Suppose, an ideal primitive G (e.g. a variable-input-length random oracle) is indifferen-
tiable from an algorithm T based on another ideal primitive F (e.g. a fixed-input-length
random oracle). Then any cryptographic system P based on G is as secure as P based on
TF (i.e., G replaces TF in P) [23]. For a more detailed explanation, we refer the reader
to [23].
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Distinguisher

H RO S/S-1

Option 1 Option 2

/π π -1

Fig. 2 Indifferentiability framework for a hash function based on an ideal permutation. An arrow indicates
the direction in which a query is submitted

A

JH

Game(JH, , )

A

RO S/S-1

A

JH1 S1/S1-1

G1 Game(RO, S, S-1)≡

/π π -1

/π π -1

π π -1 ≡
Fig. 3 Schematic diagrams of the security games used in the indifferentiability framework for JH. The arrows
show the directions in which the queries are submitted

Pictorial description of indifferentiability security framework In Fig. 2, the five algorithms
involved in the definition of indifferentiability security are shown: T ,F , G and S have been
replaced by a hash mode H , an ideal permutation π/π−1, a random oracle RO, and a pair
of simulators S/S−1. For the purposes of our paper, H is the JH hash mode based on the
ideal permutation π . In this setting, the definition of indifferentiability addresses the degree
to which any computationally bounded adversary is unable to distinguish between Option 1
and Option 2.

2.3 JH indifferentiability

To study the indifferentiability security of the JHmode, we use the ideal permutationπ/π−1 :
{0, 1}2n → {0, 1}2n as the basic primitive of JH. To obtain the indifferentiability security
bound, we follow the usual game-playing techniques [2,6]. The schematic diagrams of the
two gamesOption 1 andOption 2 (of Fig. 2) are Game(JH, π , π−1) and Game(RO,S,S−1)
as illustrated in Fig. 3. The other game G1 is an intermediate step, allowing us to more easily
compare pairs of games. The pseudocode for all the games are provided in Sect. 3. One of
the major challenges of the indifferentiability security analysis of JH is the construction of a
simulator-pair S/S−1 being able to withstand attacks by all adversaries limited by a total of
2n/2 queries to the underlying permutations. The construction techniques for designing such
a simulator-pair and their effectiveness are described in detail in Sect. 3.

A necessary part of our analysis is determining equivalences between pairs of games. We
define this notion formally.
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Security bound for the JH mode 243

Equivalence of games A game is a stateful probabilistic algorithm that takes an adversary-
generated query as input, updates the current state, and produces an output to the adversary.
Let (xi , yi ) denote the i-th query and response pair from the game G. The view of the game
G after j queries (with respect to the adversaryA ), is the sequence {(x1, y1), . . . , (x j , y j )}.

Denote the views of the games G1 and G2 after i queries by V i
1 and V i

2 . The games G1
and G2 are said to be equivalent (with respect to the adversaryA ) if and only if V i

1 ∼ V i
2 for

all i > 0. Equivalence between the games G1 and G2 is denoted by G1
A≡ G2, or simply

G1 ≡ G2, when the adversary is clear from the context.

3 Description of the security games for JH

In this section, we elaborate on the games Game(JH, π , π−1), G1, and Game(RO, S, S−1)
that are schematically presented in Fig. 3. The pseudocode for all the games is given in
Figs. 4 and 6.

JH, JH1, and RO are mappings from {0, 1}∗ to {0, 1}n . S is a mapping from {0, 1}2n
to {0, 1}2n . Also, π , π−1, S1, and S1−1 are all permutations on {0, 1}2n , while S−1 is a
mapping from {0, 1}2n to {0, 1}2n ∪{“INVALID”}. The mappingS−1 returns a special string
“INVALID” if it is not behaving like a permutation; more precisely, on input r , S−1 returns
“INVALID” if there exist at least two distinct images x1 and x2 such thatS(x1) = S(x2) = r .
A query submitted to JH, or JH1, or RO is called an l-query, short for long query. Likewise,
a query submitted to π of Game(JH, π , π−1), or to S1 of G1, or to S of Game(RO, S, S−1),
is called an s-query. A query submitted to π−1 of Game(JH, π , π−1), or to S1−1 of G1, or
to S−1 of Game(RO, S, S−1), is called an s−1-query. An s-, s−1-, π-, or π−1-query is also
called a short query.

The games will use several global and local variables. The global variables Dl and Ds

are two tables used to store query-response pairs: Dl for l-queries and responses, and Ds

for s/s−1-queries and responses. The table Dπ contains all π/π−1-queries and responses.
The tables Dl , Ds and Dπ , and all local variables are initialized with ⊥. The graphs Tπ and
Ts—built using elements of Dπ and Ds—are also global variables which initially contain
only a root node (I V, I V ′). The local variables are re-initialized every new invocation of the
game, while the global data structures maintain their states across queries.

The queries can also be divided into types according to the time of submission and the
location in the tables. The current query is the one that is submitted by the adversary at the
current time. A current query can be of two types: it is an old query if already present in the
query history; it is a fresh query if not present in the query history. Table 2 formally defines
an old and a fresh query in the various security games.

We assume that the adversary does not submit two identical l-queries, s-queries, or s−1

queries. This implies that every current l-query is fresh in all the games; however, every
current s-, s−1-, π-, or π−1-query is not necessarily fresh in all games. For example, the
current s-query in Game(JH, π , π−1) may accidentally match a query in Dom(Dπ ) that was
generated as an intermediate π -query from a previously submitted l-query. Later on, we shall
collect these accidents as BAD events, and use them to bound the indifferentiability security
of the JH mode (see Sects. 4 and 5).
Description of Game (JH, π , π−1) The pseudocode for this game is given in Fig. 4(a).
Following the definition provided in Sect. 2.3, the game Game(JH, π , π−1) implements the
JH hash function using the permutations π and π−1. The ideal permutation π/π−1 has been
implemented through lazy sampling. Lazy sampling is the postponement of sampling the
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(a)

(b)

Fig. 4 The main games Game(JH, π , π−1) and Game(RO, S, S−1). (a) Game(JH, π , π−1): global variable
is the table Dπ ; (b) Game(RO, S, S−1): Global variables are the tables Dl and Ds , and the graph Ts

Table 2 Definitions of old and fresh queries in various security games for JH

Current query Game(JH, π , π−1) G1 Game(RO, S, S−1)

Old Fresh Old Fresh Old Fresh

l-query ∈ Dom(Dl ) /∈ Dom(Dl ) ∈ Dom(Dl ) /∈ Dom(Dl ) ∈ Dom(Dl ) /∈ Dom(Dl )

s-query ∈ Dom(Dπ ) /∈ Dom(Dπ ) ∈ Dom(Dπ ) /∈ Dom(Dπ ) ∈ Dom(Ds ) /∈ Dom(Ds )

s−1-query ∈ Rng(Dπ ) /∈ Rng(Dπ ) ∈ Rng(Dπ ) /∈ Rng(Dπ ) ∈ Rng(Ds ) /∈ Rng(Ds )

π -query ∈ Dom(Dπ ) /∈ Dom(Dπ ) ∈ Dom(Dπ ) /∈ Dom(Dπ ) – –

π−1-query ∈ Rng(Dπ ) /∈ Rng(Dπ ) ∈ Rng(Dπ ) /∈ Rng(Dπ ) – –

Suppose, the current l-query in Game(RO, S, S−1) is fresh; then the entry in the table corresponding to
“current”, “l-query”, and “Game(RO, S, S−1)” is “/∈ Dom(Dl )”

random values until they are actually used for the first time. The query-response pairs for
π/π−1 are stored in the table Dπ .
Description of Game (RO,S,S−1) The pseudocode for this game is give in Fig. 4b. The func-
tions S and S−1 are the simulators of the indifferentiability framework for JH. Construction
of effective simulators is the most important part of the analysis of indifferentiability security
for a hash mode of operation. The purpose of the simulator-pair S/S−1 is two-fold: (1) to
output values that are indistinguishable from the output from the ideal permutation π/π−1,
and (2) to respond in such a way that J Hπ (M) andRO(M) are identically distributed. It will
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IV’
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Hash
output

y’1 y’’1

y1

y’2

y2

(ii)

S/ S/ S/πππ

Fig. 5 All arrows and dots are n bits each. (i) The directed graph Ts (or Tπ ) which is updated by the
subroutine FullGraph of Game(RO, S, S−1)(or PartialGraph of G1) (see Figs. 4b and 6). Example: The
edge (y1y

′
1,m2, y2y

′
2) is composed of the head node y1y

′
1, the arrow m2, and the tail node y2y

′
2. The left and

right coordinates of a node (ya y′
a) is ya and y′

a . (ii) JH mode with M
pad→ m1m2 · · ·mk . The shaded region

shows the generation of the edge (y1y
′
1,m2, y2y

′
2) in Ts using S (or in Tπ using π );

easily follow that as long as the simulator-pair S/S−1 is able to output values satisfying the
above conditions, no adversary can distinguish between Game(JH, π , π−1) and Game(RO,
S, S−1).

Our design strategy for S/S−1 is fairly intuitive and simple: Smaintains a graph Ts using
s-queries and responses, such that every path in Ts represents the execution of JH on some
message. Correspondingly, any “JH-mode-compatible” message that can be reconstructed
from the s-queries and responses is represented by some path on Ts . This helps S keep
track of all “JH-mode-compatible” messages at all times. This is accomplished by a special
subroutine FullGraph. The pictorial representation of Ts is given in Fig. 5. In addition,
whenever a new message M is found on Ts , Smakes a crucial adjustment using a subroutine
MessageRecon, so that the distributions of J Hπ (M) and RO(M) are close. The complete
description of S/S−1 is as follows.
Description of the simulator-pair S/S−1 We first describe two important subroutines used
by the simulator-pair.

– FullGraph This routine updates the graph Ts using the elements in Ds in such a way
that each path originating from the root (I V, I V ′) represents the execution of JHS(·) on
a prefix of some message. Additionally and more importantly, the graph Ts contains all
possible paths derived from the elements in Ds ; hence the name FullGraph. See Fig. 5
for the pictorial description of how several components of the graph Ts are built. For

example, suppose M
pad→ m1m2M ′. Then the path I V I V ′ m1→ y1y′

1
m2→ y2y′

2 represents
the first two-block execution of JHS(M) where, y1y′

1 = S(I V ||I V ′ ⊕ 0||m1) ⊕ m1||0
and y2y′

2 = S(y1||y′
1 ⊕ 0||m2) ⊕ m2||0.

– MessageRecon(x, Ts) The purpose of this routine is to reconstruct all messages M
such that the final input to S in JHS(M) is the current s-query x . Hence JHS(M) =
S(x)[0, n−1]⊕z, where z is the final message-block of M after padding. The subroutine
uses Ts to find all such M , by first calling the subroutine FindNode(y = x[0, n − 1])
to check whether there exist nodes in Ts with left-coordinate y. If present, then the
subroutine FindBranch(y) collects all paths between the root (I V, I V ′) and the nodes
yz′. A setM is returned, containing all the sequences of arrows on those paths—denoted
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Fig. 6 Game G1: Global variables are the tables Dl , Ds and Dπ , and the graphs Tπ and Ts

by X—concatenated with z = z′ ⊕ x[n, 2n − 1]. Notice that dePad(X ||z) = M . If no
such M �=⊥ is found, then the subroutine returns the empty set.

Using the above two subroutines, the simulator-pair S/S−1 works as follows.

– For an s-query x , S assigns a uniformly sampled 2n-bit value to r . The subroutine
MessageRecon(x, Ts) is then invoked, which returns a set of messagesM . If |M | = 1

then r [0, n − 1] is re-assigned the n-bit string RO(M) ⊕ z, where M ∈ M and M
pad→

m1m2 · · ·mk = X ||z. Finally, Ds and Ts are updated using FullGraph, and the value of
r is returned.

– For an s−1-query r , if there exist x1 �= x2 such that Ds[x1] = Ds[x2] = r , then a special
string “INVALID” is returned. If instead there exists a unique x ∈ Dom(Ds) such that
Ds[x] = r , then x is returned. The last possible case is if r /∈ Rng(Ds), and then x is
assigned a 2n-bit integer chosen according to the uniform distribution on [0, 22n − 1]. If
x /∈ Dom(Ds) then Ds[x] is assigned r . Finally x is returned.

Description of RO The oracle RO works as follows. Given an l-query M , RO first checks
whether M has already been queried by S. In such a case, M already belongs to Dom(Dl)

and the RO returns Dl [M]. Otherwise, Dl [M] is assigned a uniformly sampled n-bit value,
which is eventually returned.
Description of G1 The pseudocode for this game is given in Fig. 6. The description of G1
apparently looks a bit artificial in the sense that it was constructed as a hybridization of the
previous two games Game(JH, π , π−1) and Game(RO, S, S−1). The purpose of this game
is to be a transit point from Game(JH, π , π−1) to Game(RO, S, S−1) so that their difference
in execution can be understood.
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In the description of this game, we will ignore the bolded statements where the variable
BAD is set, since they do not impact the output and the global data structures. The variable
BAD is set when certain events occur in the global data structures. Those events will be

discussed, when we compute
∣
∣Pr

[
A G1 ⇒ 1

] − Pr
[
A RO,S,S−1 ⇒ 1

]∣∣ in Sect. 5.
Description of the simulator-pair S1/S1−1 The intuition behind the design of this simulator-
pair is similar to that of S/S−1 of Game(RO, S, S−1). The key difference is that rather than
building a graph representing all “JH-compatible-messages”, the graph in this game contains
a partial set of “JH-compatible-messages”. We will eventually see in Lemma 1, that if BAD
events do not occur, then both the graphs are isomorphic. We now describe S1/S1−1 in full
detail using the following two subroutines.

– PartialGraph(x, r) The subroutine builds the graph Tπ in such a way that each directed
path originating from the root (I V, I V ′) represents the execution of JHπ (·) on a prefix of
some message (see Fig. 5). In constrast with FullGraph, rather than building all possible
paths using the fresh pair (x, r) and the old pairs in Dπ , the PartialGraph augments the
Tπ by only one level; hence the name PartialGraph. The details are as follows.
First, the subroutine CreateCoset(yc = x[0, n − 1]) is invoked, which returns a set
Coset containing all nodes in Tπ whose left-coordinate is yc. The size of Coset deter-
mines the number of fresh nodes to be added to Tπ in the the current iteration. Using
the members of Coset and the new pair (x, r), new edges are constructed, stored in
EdgeNew, and added to Tπ using the subroutine AddEdge.

– MessageRecon(x, Ts). The current s-query is x , and the graph Ts is the maximally
connected subgraph (of Tπ ) with the root-node (I V, I V ′), generated by the s/s−1-
queries and responses stored in Ds . This subroutine has been described already in game
Game(RO, S, S−1).

Using the above two subroutines, the simulator-pair S1/S1−1 works as follows.

– For an s-query x , r is assigned the value ofπ(x). The ideal permutationπ is implemented
through lazy sampling. MessageRecon is called with (x, Ts), which returns a set of
messages M . If |M | = 1, and if M ∈ M is not a previous l-query then Dl [M] is
re-assigned the value of r [0, n − 1] ⊕ z, where M

pad→ Xz. Then the table Ds is updated.
If x is fresh then the routine PartialGraph is invoked on (x, r) to update the graph Tπ .
Finally, r is returned.

– For an s−1 query r , x is assigned the value of π−1(r), Ds[x] is updated, and x is returned.
Description of JH1 If an l-query M has already been queried by S1, then Dl [M] is returned.
Otherwise, JH1mimics JH, in addition to updating the graph Ts whenever a fresh intermediate
input is generated. Afterwards, Dl [M] is assigned the value of r [0, n − 1] ⊕ mk . Finally,
Dl [M] is returned.
With the above description of the games at our disposal, now we are well equipped to state
and prove an easy but important result.

Proposition 1 For any distinguishing adversary A , Game(JH, π , π−1) ≡ G1.

Proof From the description of S1, and S1−1, we observe that, for all x ∈ {0, 1}2n , S1(x) =
π(x), and S1−1(x) = π−1(x). Likewise, from the descriptions of JH1 and JH, for all
M ∈ {0, 1}∗, JH1(M) = JH(M). ��

A round of G1 and Game(RO ,S ,S −1) A round is defined based on the type of the submitted
query.
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– s- query In the gameG1, a round spans the lines 100 through 106 (Fig. 6). For the game
Game(RO, S, S−1), a round spans the lines 101 through 106 (Fig. 4b).

– s−1- query In the game G1, a round spans the lines 601 through 605. For Game(RO,
S, S−1) a round spans the lines 300 through 305.

– l - query Let M
pad→ m1m2 · · ·mk . For the game G1, the lines 004 through 007 form a

round for the message-blocks m1, m2, . . . and mk−1. For the last block, mk , the round
is between the lines 008 and 013. For the Game(RO, S, S−1), it is not specified how
the random oracle RO(·) processes the individual message-blocks m j (1 ≤ j ≤ k)
internally. We assume that it processes the message-blocks sequentially and the time
taken to process each block is equal.

Note that the sum of the numbers of message-blocks, s-queries and s−1-queries before the
i + 1st round is i .

Time complexity of the simulator-pair S/S−1 in Game(RO , S , S −1) Since there are at
most i short queries and responses after i rounds, the maximum number of distinct edges (or
distinct nodes) in Ts is i2 after i rounds. This follows because one edge (or one node) can be
constructed from a pair of short queries (and responses), and that there are at most i2 pairs
of short queries. Therefore, to construct Ts at the i-th round, the amount of time required is
O(i4), since the maximum number of distinct edges in a path of Ts is i2 and the maximum
number of distinct paths in Ts is also i2 (after i rounds). Now, if the adversary submits σ

queries, then the time complexity to construct Ts is O(σ 5), as
∑σ

1 i
4 = O(σ 5). Since the

time to construct Ts dominates over all the other steps, the simulator time complexity is also
O(σ 5) in the worst case.

The events Type1, Type2, Type3, and Type4 of G1 are still not defined. These events are
used to tell apart the game G1 from the game Game(RO, S, S−1). We describe them in the
next section.

4 Definition of the BAD events

Events GOOD i and BAD i BADi denotes the event when the variable BAD is set during
round i ofG1. Let the symbolGOODi denote the event¬∨i

j=1 BADi . The symbolGOOD0

denotes the event when no queries are submitted.
From a high level, the intuition behind the construction of the BADi event is straight-

forward: we will show that if BADi does not occur, and if GOODi−1 did occur, then the
views of G1 and Game(RO,S,S−1) (after i rounds) are identically distributed for any
attacker A . Using the above facts, we will show

∣∣∣Pr
[
A G1 ⇒ 1

] − Pr
[
A RO,S,S−1 ⇒ 1

]∣∣∣ ≤
σ∑

i=1

Pr
[
BADi | GOODi−1

]
. (1)

We will then establish a concrete upper bound for this inequality in Sect. 5. In the next few
subsections, we define the Type1, Type2, Type3 and Type4 events of the gameG1 (see Fig. 6).

4.1 Type1 events: collision on Tπ

Let (x, r) be a fresh pair of π -query and response generated at round i . Observe that such a
fresh pair always invokes the subroutine PartialGraph. Type1 events—which are due to π-
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(n bits)
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(n bits)

Type1-a Type1-b Type1-c

Fig. 7 Type1 events of game G1 defined in Fig. 6. All arrows are n bits each. Red arrow denotes fresh n bits
of output from the ideal permutation π/π−1. The symbol “=” denotes n-bit equality (Color figure online)

query and its response—are shown in Fig. 7. We divide this type into two subcases. Suppose
(yc y′

c,m, yy′) is a new edge generated from a new π -query/response (x, r).

• Event Type1-a (Fig. 7(Type1-a)) This event occurs if y collides with the least-significant
n bits (or the left-coordinate) of a node already in Tπ .

• Event Type1-b (Fig. 7(Type1-b)) This event occurs if y collides with the least-significant
n bits of a query already in Dπ .

• Event Type1-c (Fig. 7(Type1-c)) This event occurs, if the least-significant n bits of output
of a fresh π−1-query matches with the left-coordinate of a node already in Ts .

4.2 Events Type2, 3 and 4: current short query is old

Before we define these events, we first classify all the query-response pairs stored in Dπ prior
to the submission of the current query, according to their known and unknown parts. The
known part of a query-response pair is the part that is present in the view of the game G1,
while the unknown part is not present in the view. We observe that there are seven types of
such a pair, and we denote them by Q0, Q1, Q2, Q3, Q4, Q5 and Q6 in Fig. 8a(i) and (ii); the
head and tail nodes in each type denote the input and output, each of size 2n bits. Down, up
and two-sided arrows indicate π -query, π−1-query and any of the two, respectively. The red
and green circles denote the unknown and the known parts of size n bits each. The queries
of type Q0 have no red circles, since they are s/s−1 queries. The remaining six types are
generated due to the intermediate π calls during the processing of l-queries; these queries
have at least one red circle. The Q5 type can be further divided into two subtypes Q5-1 and
Q5-2 according to its position in the graph Tπ . If all the query-response pairs preceding the
Q5 query are of type Q0 then it is Q5-1, otherwise it is type Q5-2. We cannot have any other
type beyond Q0, Q1, Q2, Q3, Q4, Q5, Q6 because in any given node we cannot have the
leftmost n bits of input or output be unknown while the rightmost n bits are known; this
fact is readily clear by observing the XOR operations between the message-blocks, queries
and responses occurring in the JH mode. Note that the message-blocks are always known.

• Event Type2 (Fig. 8a) A Type2 event occurs when the current s-query is equal to an old
query of type Q1, Q2, Q3, or Q4.

• Event Type3 (Fig. 8b(i)–(iii)) Let M be the current l-query such that M
pad→ m1m2 · · ·mk

was already present as a branch in Tπ , but not in Ts ; such a branch is called a red branch
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Fig. 8 Pictorial description of Type2, Type3 and Type4 events of the game G1 (Fig. 6). Green circle, or
green arrow denotes n bits of information present in the view of the game. Red circle or red arrow denotes
n bits of information not present in the view. Black arrow is not used to denote any information; it denotes
the transition from input to output. The symbol “=” and “==” denote events representing n-bit and 2n-bit
equality respectively. (a) (i) and (ii): Q0, Q1, Q2, Q3, Q4, Q5 and Q6 denote seven types of π/π−1-query
and response; Type Q5 has further been divided into Q5-1 and Q5-2. The corresponding Type2 events are also
shown; (b) Different types of a branch in the graph Tπ . (i)—(iii) are called red branches since they exist in
Tπ , but not in Ts ; the corresponding Type3 events associated with red branches are described in Sect. 4.2.
(iv) A green branch is a branch in the graph Ts . The final input to π is denoted by yk−1y

′′
k−1 in all cases; (c)

Type4 events of game G1 (Color figure online)
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since it has at least n bits of unknown part. A Type3 event occurs if the current π-query
is the final π-query of a red branch.

• Event Type4 (Fig. 8c) The Type4 event occurs, if the current s−1-query is equal to an old
query of type Q1, Q2, Q3, Q4, Q5, or Q6.

4.3 Computational paradigm

To prove the inequality 1, we will need the following lemma.

Lemma 1 (Graph Isomorphism Lemma) Given GOODi and V i
1 = V i

2 , the graphs Ts for
the games G1 and Game(RO,S,S−1) are isomorphic after i rounds.

Proof For each fresh π/π−1-query, the graph Tπ for game G1 is augmented in one phase
(see the subroutine PartialGraph of Fig. 6). In that phase, all possible nodes generated from
a fresh π-query are added to the graph Tπ . A straightforward analysis of the Type1-a, b and c
events shows that if these events do not occur then no nodes can be added beyond this phase.
In other words, if Type1-a , b and c events do not occur in i rounds then the graph Tπ contains
all possible paths generated from all elements stored in the table Dπ in i rounds with root
(I V, I V ′). Note that the graph Ts is the maximally connected subgraph of Tπ rooted at
(I V, I V ′), generated only by the s-queries and responses stored in Ds . Also recall that, due
to absence of a Type-c event, no s−1 query can be added to the graph Tπ . This implies that the
graph Ts of the game G1 contains all paths generated from all s/s−1-queries and responses
with root (I V, I V ′).
Observe that the graph Ts for Game(RO,S,S−1) also contains all paths generated from all
s/s−1-queries and responses with root (I V, I V ′). Since V i

1 = V i
2 , the graphs Ts for G1 and

Game(RO,S,S−1) are isomorphic after i rounds. ��

With the help of the events described in Sects. 4.1 and 4.2 we are equipped to prove

Theorem 1 Let A be an indifferentiability adversary interacting with the games G1 and
Game(RO,S,S−1). If A is limited by σ queries, then

∣∣∣Pr
[
A G1 ⇒ 1

] − Pr
[
A RO,S,S−1 ⇒ 1

]∣∣∣

≤
σ∑

i=1

Pr
[
BADi | GOODi−1

]
.

Proof The event GOODi− 1
2
is defined as GOODi−1 in addition to the BAD events Type2,

Type3, and Type 4 having not occured in the i-th round. For brevity, GOOD(i+1)− 1
2
will be

denoted by GOODi+ 1
2
. We need to show two things:

∣∣∣Pr
[
A G1 ⇒ 1

] − Pr
[
A RO,S,S−1 ⇒ 1

]∣∣∣ ≤ Pr
[¬GOODσ− 1

2

]
, (2)

Pr
[¬GOODσ− 1

2

] ≤
σ∑

i=1

Pr
[
BADi | GOODi−1

]
. (3)
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The proof of 3 is straight-forward. To prove 2, we proceed in the following way. Observe

∣
∣
∣Pr

[
A G1 ⇒ 1

] − Pr
[
A RO,S,S−1 ⇒ 1

]∣∣
∣

=
∣
∣
∣
(
Pr

[
A G1 ⇒ 1 | GOODσ− 1

2

]

− Pr
[
A RO,S,S−1 ⇒ 1 | GOODσ− 1

2

]) · Pr[GOODσ− 1
2

]

+
(
Pr

[
A G1 ⇒ 1 | ¬GOODσ− 1

2

]

− Pr
[
A RO,S,S−1 ⇒ 1 | ¬GOODσ− 1

2

]) · Pr[¬GOODσ− 1
2

]∣∣
∣. (4)

If we can show that

Pr
[
A G1 ⇒ 1 | GOODσ− 1

2

] = Pr
[
A RO,S,S−1 ⇒ 1 | GOODσ− 1

2

]
, (5)

then 4 reduces to 2, since
∣
∣
∣Pr

[
A G1 ⇒ 1 | ¬GOODσ− 1

2

] − Pr
[
A RO,S,S−1 ⇒ 1 |

¬GOODσ− 1
2

]∣∣∣ ≤ 1. As a result, we focus on establishing 5.

Let V i
1 and V i

2 denote the views of the games G1 and Game(RO,S,S−1) respectively,
after i queries have been processed. To prove 5, it suffices to show that given GOODσ− 1

2
,

the views V σ
1 and V σ

2 are identically distributed. We do this by induction on the number of
queries i = σ . When i = 0, then no query has been made; therefore the views are identical.
We now assume the induction hypothesis holds, where the hypothesis is: given GOODi− 1

2
,

then V i
1 and V

i
2 are identically distributed. We have to show that ifGOODi+ 1

2
occurred, then

V i+1
1 and V i+1

2 are identically distributed. We do so by examining all possible cases based
on a set of conditions for the gameG1. The details are quite technical, however the main idea
is that if no BAD events have occurred, then the graphs Ts in G1 and Game(RO, S, S−1) are
isomorphic, from the Graph Isomorphism Lemma 1. The identical distribution of the views
is an easy consequence of the isomorphism.

Let (I i+1
1 , Oi+1

1 ) and (I i+1
2 , Oi+1

2 ) denote the input-output pairs for the games G1 and
Game(RO,S,S−1) respectively in the i + 1st round.

Notice that if V i
1 = V i

2 , then the input views I
i+1
1 and I i+1

2 are identically distributed. We
also have Lemma 1 which shows that the graphs Ts in two games are isomorphic.

A little reflection shows that proving the induction step is now equivalent to showing that
if I i+1

1 = I i+1
2 then the output-views Oi+1

1 and Oi+1
2 are identically distributed. Let I i+1

denote the shared query input I i+1
1 = I i+1

2 .
We continue by considering all possible cases based on a set of conditions for the game

G1 in the i + 1st round; cases 1 through 9 consider when Ii+1 is an s-query, cases 10 and 11
consider Ii+1 to be an s−1-query, while cases 12 through 17 consider when Ii+1 is part of
an l-query. Our decision tree produced the above 17 cases, which have been derived from a
sequence of questions (see Fig. 9). The reader is invited to verify that all cases are considered.
Case 1 s- query, |M | = 0, and Fresh
Implication The condition implies that Oi+1

1 follows the uniform distribution on [0, 22n −
1] \ Rng(Dπ ). (Fig. 6. Since the graphs Ts are isomorphic in both games G1 and
Game(RO,S,S−1) by Lemma 1, |M | = 0 for Game(RO,S,S−1) (Fig. 4b). This implies
that Oi+1

2 follows the uniform distribution on [0, 22n − 1] \ Rng(Ds) (Fig. 4b).
Case 2 s-query, |M | = 0, not Fresh, and type Q6
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Implication The event GOODi+ 1
2
implies that Type2 event did not occur for G1 in the

current i + 1th round; therefore, since |M | = 0, Oi+1
1 follows the uniform distribution on

[0, 22n − 1] \ Rng(Dπ ). As the graphs Ts of the games G1 and Game(RO,S,S−1) are
isomorphic by Lemma 1, |M | = 0 for Game(RO,S,S−1). This implies that Oi+1

2 = r
follows the uniform distribution on [0, 22n − 1] \ Rng(Ds).
Case 3 s-query, |M | = 0, not Fresh, and type Q5-1
Implication This case is impossible since |M | = 0 and I i+1 being of type Q5-1 contradict
each other.
Case 4 s-query, |M | = 0, not Fresh, and type Q1, Q2, Q3, Q4, or Q5-2
Implication This case is impossible sinceGOODi+ 1

2
implies that Type2 event did not occur

for G1 in the current i + 1st round. The given conditions create a Type2 event.
Case 5 s-query, |M | > 1
Implication If |M | > 1 thenwewould have a node-collision in Ts . However, this is impossible
since GOODi+ 1

2
ensures that a Type1 event did not occur for G1 in the previous i rounds,

and a node-collision in Ts is a Type1 event.
Case 6 s-query, |M | = 1, and Fresh
Implication Since I i+1 is fresh, Oi+1

1 follows the uniform distribution on [0, 22n − 1] \
Rng(Dπ ). Now, for G1, M ∈ M implies that M /∈ Dom(Dl) in the first i rounds, since the
current s-query I i+1 is fresh. Also note that, because V 1

i = V 2
i and the Ts’s are isomorphic,

we have that the Dl ’s in both games are identical. Therefore, for Game(RO,S,S−1), M /∈
Dom(Dl) in the first i rounds. This implies that Oi+1

2 follows the uniform distribution on
[0, 22n − 1] \ Rng(Ds).
Case 7 s-query, |M | = 1, not Fresh, and type Q6
Implication The event GOODi+ 1

2
implies that a Type2 event did not occur in the i + 1st

round of G1; therefore, Oi+1
1 follows the uniform distribution on [0, 22n − 1] \ Rng(Dπ ).

In G1, M ∈ M implies that M /∈ Dom(Dl) in the first i rounds, since the current s-query
I i+1 is either of type Q3 or Q4, while the final π -query of any l-query cannot be of type Q3
or Q4. As in the previous case, V 1

i = V 2
i and the isomorphic Ts’s together imply that the Dl

in both games are identical. Therefore, for Game(RO,S,S−1), M /∈ Dom(Dl) in the first i
rounds. This implies that Oi+1

2 follows the uniform distribution on [0, 22n − 1] \ Rng(Ds).
Case 8 s-query, |M | = 1, not Fresh, and type Q5-1
Implication The eventGOODi+ 1

2
implies that Type2 event did not occur in the i +1st round

ofG1; therefore, Oi+1
1 [n, 2n−1] follows the uniform distribution on [0, 2n −1]\ Rng(Dπ ),

andOi+1
1 [0, n−1] is a fixed value.Now, forG1,M ∈ M implies thatM ∈ Dom(Dl) after the

first i rounds, since the current s-query I i+1 is of type Q5-1; also note that Oi+1
1 [0, n− 1] =

Dl [M]⊕ z, where z is final block of M after padding. As in the previous case, V 1
i = V 2

i and
the isomorphism of Ts’s together imply that the Dl are identical in both games. Therefore,
Oi+1
2 [0, n−1] = Dl [M]⊕ z (line 103 of Fig. 4b); also note that Oi+1

2 [n, 2n−1] follows the
uniform distribution on [0, 2n −1] \ Rng(Ds). In conclusion, O

i+1
1 and Oi+1

2 are identically
distributed.
Case 9 s-query, |M | = 0, not Fresh, and type Q1, Q2, Q3, Q4, or Q5-2
Implication This case is impossible since event Type2 did not occur in the current i + 1st
round, and, therefore, I i+1 cannot be of type Q1, Q2, Q3, Q4.
Case 10 s−1-query and Fresh
Implication The condition implies that Oi+1

1 follows the uniform distribution on [0, 22n −
1] \ Rng(Dπ ). Because V i

1 = V i+1
2 , we have that the s−1-query is also a fresh query for
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Game(RO,S,S−1). Also note that the tables Ds of both games are an identical permuta-
tion.Therefore, Oi+1

2 follows the uniform distribution on [0, 22n − 1] \ Rng(Ds).
Case 11 s−1-query and not Fresh
Implication A Type4 event and the above condition contradict each other.
Case 12 l-query and not Final Block
Implication If V 1

i+1 = V 2
i+1 then Oi+1

1 = Oi+1
2 = λ, where λ is the empty string.

Case 13 l-query, Final Block, l-query not in Tπ

ImplicationLetM be the l-query in question. Since the eventGOODi+ 1
2
implies that a Type1

event did not occur in the previous i rounds of G1, there are no node-collisions in the graph
Tπ . Therefore, the final π -query is fresh, and so Oi+1

1 follows the uniform distribution on
[0, 2n − 1] \ Rng(Dπ ). Now notice, the tables Dl in both games were identical when the l-
queryM was submitted; therefore, at that time of submission,M /∈ Dom(Dl) for both games.
This ensures that Oi+1

2 = RO(M) follows the uniform distribution on [0, 2n −1]\ Rng(Ds).
Case 14 l-query, Final Block, l-query in Tπ , l-query in Ts
Implication The graphs Ts in both games are isomorphic by Lemma 1. It follows that Oi+1

1 =
Oi+1
2 .

Cases 15, 16 and 17 l-query, Final Block, l-query in Tπ , l-query not in Ts I i+1 is the final
message-block of the current l-query (denoted by M) which forms a red branch. Let the final
π-query while processing the l-query M be denoted by yk−1y′′

k−1.

Case 15 Final π-query is type Q1, Q2, or Q5
Implication The above condition implies the occurrence of Type3-1 event in the i+1st round;
therefore, we arrive at a contradiction.
Case 16 Final π-query is type Q3, Q4, or Q6
Implication Since a Type3-2 event did not occur in the i+1st round, Oi+1

1 follows the uniform
distribution on [0, 2n − 1] \ Rng(Dπ ). Also observe, for G1, the l-query M did not belong
to Dom(Dl) (when M was submitted), since the final π-query of any l-query cannot be of
type Q3, Q4 or Q6. As the tables Dl of both games are identical, then for Game(RO,S,S−1)

we have that M /∈ Dom(Dl) (when M was submitted). Therefore, Oi+1
2 = RO(M), which

follows the uniform distribution on [0, 2n − 1] \ Rng(Ds).
Case 17 Final π-query is type Q0 and an intermediate query is type Q1, Q2, Q3, Q4, Q5, or
Q6
Implication This case is impossible since Type3-3 in the i + 1st round did not occur.
In summary, for each of the 17 cases above we have shown that the outputs Oi+1

1 and Oi+1
2

are identically distributed if the variable BAD is not set. This completes the proof of the
induction step of Theorem 1. ��

5 Estimation of
∣
∣
∣Pr

[

A G1 ⇒ 1
] − Pr

[

A RO,S,S−1 ⇒ 1
]
∣
∣
∣

We individually compute the probabilities of each of the events described in Sects. 4.1 and 4.2.
We need the help of the following lemma to provide a rigorous analysis for the upper-bounds
we compute in this section.

Lemma 2 (Correction factor) If the advantage of an indifferentiability adversary A distin-
guishing between the games G1 and Game (RO,S), when limited by σ queries, is bounded
by ε,
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then

Pr
[
GOODi

] ≥ 1

C

for some constant C > 0, for all 0 ≤ i ≤ σ .

Proof Since ε < 1, Pr
[
A sets BAD in G1

] ≤ ε ≤ 1 − 1
C for some constant C > 0. Noting

that Pr
[
GOODi

]
is a decreasing function in i , the result follows. ��

TheType1-a event guarantees that ifTπ isGOODi−1, then it has atmost i nodes.Assuming
i ≤ 2n/2, from Fig. 7 we obtain,

Pr
[
Type1i | GOODi−1

]
≤ 3i/(2n − i),

= 6Ci

2n
, (6)

since for i ≤ 2n/2, then (2n − i) ≥ 1
22

n .
Using the definition of Type2, Type3, and Type4 events in Sect. 4, it is straightforward to

deduce:

Pr
[
Type2i | GOODi−1

] ≤ 2Ci

2n
,

Pr
[
Type3i | GOODi−1

] ≤ 2Ci

2n
,

Pr
[
Type4i | GOODi−1

] ≤ 2Ci

2n
.

We conclude by combining the above bounds into the following inequality which holds
for 1 ≤ i ≤ σ :

Pr
[
BADi | GOODi−1

] ≤ Pr
[
Type1i | GOODi−1

]

+ Pr
[
Type2i | GOODi−1

]

+ Pr
[
Type3i | GOODi−1

]

+ Pr
[
Type4i | GOODi−1

]

≤ 12Ci

2n
. (7)

Therefore, by Theorem 1, for all A ,

∣∣∣Pr
[
A G1 ⇒ 1

] − Pr
[
A Game(RO,S,S−1 ⇒ 1

]∣∣∣ ≤
σ∑

i=1

Pr
[
BADi | GOODi−1

]

≤ 12C
σ∑

i=1

i

2n

= O
(σ 2

2n

)
. (8)

Using 8 and that the advantage ε is less than 1, we see that the adversary must use at least
2n/2 queries to distinguish between the games G1 and Game(RO, S, S−1) (or between
the games Game(JH, π , π−1) and Game(RO, S, S−1), since G1 ≡ Game(JH, π , π−1) by
Proposition 1). This yields the indifferentiability bound of n/2 bits for the JH mode.
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Fig. 10 Plot of experimental data of value of n versus the normalized logarithm of σ , log2(σ )/n, for the
game G1 with various values of R, the proportion of reverse queries allowed

6 Experimental results

We performed a series of experiments verifying our theoretical framework. The motivation
for doing experiments was three-fold: the first was to do a sanity check that the probability
computed from experiments did not cross the theoretically obtained upper bound. Second,
we wanted to identify the likely adversarial strategies that made our analysis tight. The final
goal was to explore the possibility of the existence of a shorter proof for the bound obtained
in Eq. 8. On all counts, we obtained useful results.

Our simple C implementation of the game G1 simulated the ideal permutation, π , with
randomness supplied by cstdlib>rand(), by maintaining a database of input/output pairs,
assuring that π is a permutation. The experiments were performed allowing varying propor-
tions of reverse queries to determine the optimal adversarial strategy.

For each of these experiments, we collected data providing accurate estimates for the
values of the probabilities of Type1 events, Pr

[
Type1i | GOODi−1

]
, described in Sect. 4. Our

experiments included as a parameter the proportion of reverse queries, R, allowed in the hopes
that if an optimal adversarial strategy including reverse queries uses a positive proportion of
reverse queries that we may discover a spike in performance near this proportion. Compiling
these data we conclude that, as one would expect, when the proportion, R, approaches zero,
the Type1-a event becomes dominant; whereas, when R approaches 1, the Type1-c event
dominates.

In addition to these event probabilities, we calculated security bounds for several values of
n and R. The computationwas achieved by randomly generating a large number of graphs, Ts ,
and determining the number of queries,σ , required to cause

∑σ
i=1 Pr

[
Type1i | GOODi−1

] ≥
0.5.

We did not consider the Type2, Type3, and Type4 events, since, their probabilities are
bounded by that of the Type1 events, for any efficient adversary. We found that choosing the
values at which to place the first query uniformly at random from among all possible nodes
was the most advantageous strategy for an adversary.

The results of the experiments following this method are summarized in Fig. 10. The data
support the theoretically obtained bound of σ = �(2n/2) (see 8). Some of the values in
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the graph are slightly lower than 1/2, due to the effect of constants. We expect the data to
asymptotically approach 1/2.

The data indicate that the optimal adversarial strategy does not include the use of reverse
queries. For each fixed R < 1, however, we observe that the data asymptotically approach
1/2. Although it is the case that for R = 1, σ has an expected value of 2n−1, the data
support our result that, for our definition of Type1 bad events and any fixed value of R < 1,
σ = �(2n/2).

Based on the experimental results, it seems likely that removing the Type2 to Type4 events,
as well as the reverse queries from the JH indifferentiability framework may lead to the same
upper bound. The only difference in such a case would be that the proof becomes much
shorter. However, a theoretical argument to accomplish this is still an open problem.

7 Conclusion and open problems

The JH hash function was one of the finalist algorithms in the NIST SHA-3 hash function
competition. In this paper we improve the indifferentiability security bound of the JH hash
mode of operation from n/3 bits to n/2 bits, when it is used with a 2n-bit permutation. This
bound is optimal for JH-256, and the best, so far, for JH-512.We believe that the bound could
be further improved, likely closer to n bits.

Our work leaves room for more research into the JH mode. It is somewhat remarkable
that despite the absence of generic attacks with work-factor significantly lower than n bits,
the proven pre-image, second pre-image and indifferentiability bounds for the JH mode are
only up to n/2 bits. In future work we plan to use the proof technique from this paper to
narrow the exponential gap between the upper and lower bounds of JH’s indifferentiability
security. It would be very interesting to find an attack that matches the indifferentiability
bounds derived in this paper. Also, the complexity for the simulator could be improved.
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