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Abstract We present a new practical identity-based encryption (IBE) system that can be
another candidate for standard IBE techniques. Our construction is based on a new framework
for realizing an IBE trapdoor from pairing-based groups, which is motivated from the ‘two
equation’ revocation technique suggested by Lewko et al. (IEEE Symposium on Security
and Privacy, 2010). The new framework enables our IBE system to achieve a tight security
reduction to the Decisional Bilinear Diffie–Hellman assumption in the random oracle model.
Due to its the tightness, our system can take as input the shorter size of security parameters
than the previous practical BF, SK, and BB1 systems, which provides better efficiency to our
system in terms of computational cost.

Keywords Identity based encryption · Bilinear maps · Tight reduction

Mathematics Subject Classification 68P25 · 94A60

1 Introduction

Identity-based encryption (IBE) [45] is a special type of public key encryption where a public
key canbe any string that carries its ownmeaning to a user’s identity, such as an e-mail address.
As such a meaningful string can be naturally associated with a user, an IBE system does not
need a certifying mechanism to ensure that a public key (as the meaningful string) is bound
to a user (as the owner of the public key). As opposed to an IBE system, a traditional public
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key encryption system needs the certifying mechanism to securely distribute public keys,
and indeed it must run on a complex architecture called ‘public key infrastructure’.

By virtue of the advantage over the public key encryption, IBE had received considerable
interest to cryptographic researchers since Shamir [45] posed the initial question about the
existence of such an IBE system. In 2001, Boneh and Franklin [13] proposed the first practical
IBE system based on groups with efficiently computable bilinear maps (i.e., paring), along
with a formal security definition of IBE. Since then, a large body of work [10,20–22,29,
38,39,43,46,47] has been devoted to constructing pairing-based IBE systems to improve in
terms of security and efficiency. Among the previous IBE systems, three of them have been
perceived as practical constructions, which are works by Boneh and Franklin [13], Sakai and
Kasahara [20,22,43], and Boneh and Boyen [10] (denoted as ‘BB1’), and thereafter they have
been submitted to the IEEE P1363.3 standard for “Identity-Based Cryptographic Techniques
using Pairings”.

1.1 Our contribution

In this work we present a new practical IBE system that can be another candidate for standard
IBE techniques. Our IBE system results from a new framework for realizing the IBE trapdoor,
which is motivated by the ‘two equation’ technique recently suggested by Lewko et al. [40].
One notable advantage of the new framework is that our construction is also pairing-based
like BF, SK, and BB1 systems, yet it has a tight security reduction to the standard decision
bilinear Diffie–Hellman (DBDH) assumption. In order to encrypt arbitrary-length messages,
we also suggest a new identity-based key encapsulationmechanism (IBKEM) combinedwith
one-time symmetric-key encryption. Our IBE systems are all proven to be fully secure against
chosen ciphertext attacks in the random oracle model. In particular, one-time symmetric-key
encryption secure against passive attacks is sufficient for the latter IBE system without the
need of the ‘encrypt-then-MAC’ or ‘authenticated symmetric encryption’ paradigm.

None of the three practical BF, SK, and BB1 systems provided tightness in their respec-
tive security analysis, and in fact there existed significant security gaps between security
assumptions and their IBE systems. Later, Attrapadung et al. [5] presented a variant of the
BF system that is tightly secure under the DBDH assumption, using the Katz and Wang
[33,36] key generation technique. One might wonder what the benefit from such tightness
in security reduction is. The benefit is that we can achieve security of our system straight-
forwardly from that of the underlying DBDH assumption at the same security level. This
means that if we want to instantiate our IBE system at current 80-bit security level, we can
use a DBDH-hard group at the same security level. However, this is not the case in BF,
SK, and BB1 systems where security is loosely reduced to each security assumption by a
factor of (at least) 250 if we consider a reasonable number of adversarial hash queries as
250. The loose security reduction forces us to choose a larger security parameter (regarding
DBDH-hard groups) than the 80-bit one even if we want to instantiate them at the 80-bit
security level. Importantly, the larger security parameter tends to have an unfavorable effect
on computational cost of resulting IBE systems [16]. For instance, when comparing BF, SK,
and BB1 systems at 128-bit security level with our system at 80-bit security level, ours has
about at least 10 times faster decryption than the three systems, and about 22 times faster
encryption than the BF system. Also, when compared to Attrapadung et al.’s IBE system
(denoted by ‘AFG+’) at 80-bit same security level, ours requires 1.2 times longer size of
ciphertext, but instead ours achieves about 8.6 times faster encryption and 1.6 times faster
decryption under groups with symmetric bilinear maps. To add credence to these results, we
give more concrete performance comparison in terms of security and efficiency in Sect. 5.
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IBE scheme with tight security reduction 65

1.2 Overview of our new technique

BF, SK, and BB1 systems have their unique frameworks to realize IBE trapdoors from paring-
based groups, respectively. Following Boyen’s naming in [16], each framework is called
‘full-domain-hash’ (for BF), ‘exponent-inversion’ (for SK), and ‘commutative-blinding’ (for
BB1). Each framework determines both the distinct structure of a private key and different
kinds of security assumptions. Also, most of the subsequent paring-based IBE systems fall
into one of the three paradigms.

To build our new IBE system, we also come upwith a new framework for realizing the IBE
trapdoor. As wementioned before, our framework is motivated by the two equation technique
of Lewko et al. [40]. Roughly speaking, the original LSW technique is to use private key
elements (gr , (g1uID)r ) and ciphertext elements (gs, (g1uID′

)s) to compute a pairing value
e(g, u)sr . Here, g, g1, and u are from public parameters. The value e(g, u)sr is then used
to recover a message blinding factor e(g, g)αs by pairing gs with an additional key element
gαur . The point is that such a pairing value can be obtained only if ID �= ID′, and this
gives the revocation system [40] where only users whose identities are different from ID′ are
able to compute the pairing value. On the other hand, our two equation technique is slightly
changed in a way that computing the value e(g, u)sr is possible only if ID = ID′. This can
be done by setting private key elements as (gr , (H(ID)utagk )r ) and ciphertext elements as
(gs, (H(ID′)utagc )s), where H is a cryptographic hash function and (as we explain below)
the probability that tagk = tagc is negligible.

As in the BF system, our framework requires a cryptographic hash function H that maps
an identity string ID ∈ {0, 1}∗ to a group element H(ID), but unlike the BF system a private
key for an identity ID is not uniquely determined. A private key skID consists of three
groups (gαur , gr , (H(ID)utagk )r ), which differs by a randomly-chosen exponent r in Zp .
Here, α is the master secret key known only to a key generation center. At this moment,
one may wonder how the value tagk is decided. Indeed, we have that tagk = h(gαur , gr ) ∈
Zp by introducing another cryptographic hash function h. Similarly, when encrypting a
message M , a ciphertext under ID is constructed as

(
Me(g, g)αs, gs, (H(ID)utagc )s

)
using

the hash value tagc = h(Me(g, g)αs, gs). In case of our IBKEM, an arbitrary length message
M is encrypted as

(EK (M), gs, (H(ID)utagc )s
)
using a one-time symmetric-key encryption

algorithm E , where K = e(g, g)αs and tagc = h(EK (M), gs). If we use a collision-resistant
hash function h, the correctness error caused by the equality tagk = tagc becomes acceptable
in practice. Another characteristic of our framework is to use the hash function h to protect the
ciphertext element Me(g, g)αs or EK (M) related to M . Indeed, the distinct usage of h enables
our system to directly obtain chosen ciphertext security without resorting to other methods
such as ‘encrypt-then-MAC’ or ‘authenticated symmetric encryption’ or Fujisaki-Okamoto
transform [27].

We now explain how our IBE system can achieve a tight security reduction under the
DBDH assumption. In our security proofs, the two hash functions H and h are modeled as
random oracles. Somewhat surprisingly, being able to use two hash functions in generating
one group element enables our reduction algorithm to generate private keys for all identities
and use any identity as a challenge identity ID∗. Nevertheless, a private key for ID∗ is not
helpful to decrypt the challenge ciphertext (that can be constructed under ID∗), which is nec-
essary for solving the so-called ‘self-decryption’ paradox. Notice that similar reductions can
be found in [29,47] that provided full security without random oracles. Let (g, ga, gb, gc, T )

be aDBDH instance. Given an identity IDi , the random oracleH outputsH(IDi ) = (ga)γi gπi

for two randomly-chosen exponents γi and πi in Zp . The important point is that the value γi
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per each identity can be information-theoretically hidden from an adversary’s view and later
used for an output value of another random oracle h. When creating a private key for IDi ,
our reduction algorithm is able to generate the key as

(
gαur̃ , gr̃ , (H(IDi )utagk )̃r

)
by setting

tagk = h(gαur̃ , gr̃ ) = γi and r̃ = b + r for a random r in Zp . The validity of the private key
is checked under the condition that α = ab and u = g−a gδ for a random δ ∈ Zp . A similar
manipulation is taken when generating the challenge ciphertext under ID∗. As skID∗ must not
be asked, the value γ ∗ embedded intoH(ID∗) will be hidden until the challenge phase (with
overwhelming probability) and thus can be reserved for setting tagc = γ ∗ (as well as s = c
for the DBDH problem). In case when trying to decrypt the challenge ciphertext using skID∗ ,
it should be the case that tagk = γ ∗ that was already embedded into H(ID∗). Therefore, the
decryption is not possible because tagk = tagc, and this explains how the self-decryption
paradox can be solved.

To achieve the chosen ciphertext security, our reduction algorithm needs to deal with
adversarial decryption queries. In our security analysis, this is not a big problem as private
keys for all identities can be generated and ill-formed ciphertexts are detected via consistency
check using pairing. The only problem is that in the event that tagk = tagc happens, normal
decryption cannot be performed. However, as an output of h as a random oracle is determined
by choosing a random value in Zp and p is exponentially large (e.g., p is a 160-bit prime),
our reduction can avoid such a troublesome case in all decryption queries with overwhelming
probability.

1.2.1 Comparison to the Katz–Wang technique

As in the BF system and ours, the Katz–Wang technique is based on a cryptographic
hash function H that maps an identity string ID ∈ {0, 1}∗ to a group element H(ID) is
required. The key idea is that two public keys H(IDi , 0) and H(IDi , 1) both are used in
encrypting a message for one identity IDi , but a private key corresponding to one of two
public keys is given to a user with IDi . In security analysis, H(IDi , b) is programmed to
extract a private key for a randomly chosen b ∈ {0, 1}, whereas the other H(IDi , b) is
programmed to calculate a CDH value. Therefore, a reduction algorithm can only create a
private key for H(IDi , b), which is enough to answer a private key query. If IDi is cho-
sen as the challenge identity, the other H(IDi , b) will be used to deal with the DBDH
problem. This shows that the reduction algorithm can answer private key queries for all
identities and use any identity as the challenge ID∗. The self-decryption paradox is then
resolved from the fact that the reduction algorithm cannot generate a private key forH(IDi , b)

itself.
Compared to our new framework, the Katz–Wang technique causes inefficiency in terms

of encryption and decryption costs. In case of the AFG+ system, for instance, two par-
ing computations corresponding to both H(IDi , 0) and H(IDi , 1) should be performed in
every encryption, which makes encryption cost a lot more expensive than ours. Moreover,
decryption algorithm requires more computation to determine whether ciphertext elements
corresponding to H(IDi , b) is well formed. This is because each user is given a private
key for one H(IDi , b) for a random b ∈ {0, 1} and thus ciphertext elements for H(IDi , b)

cannot be decrypted directly. In case of the AFG+ system, a variant of Fujisaki–Okamoto
transform is used, so that decrypting ciphertext elements for H(IDi , b) can yield a random
value and message that are then used to re-generate ciphertext elements corresponding to
H(IDi , b).
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1.2.2 Comparison to the Coron technique

A similar technique to our key generation framework was previously used by Coron [24],
where a private key for ID is generated as ((H(ID)u−y)a, y) using the (fixed) master secret
key a and a newly chosen random y. The idea behind their security proof was also similar
to ours by manipulating the hash output H(ID) as (ga)y gr for two randomly-chosen y and
r , which leads to a tight security reduction. However, there are several differences between
them: in terms of security, Coron-IBE system relies on the square-DBDH assumption1 [37]
whereas our system relies on the DBDH assumption. Obviously, the square-DBDH assump-
tion [37] is stronger than the standard DBDH assumption. In terms of efficiency, Coron-IBE
system provides faster decryption than ours, but instead slower encryption and longer size
of ciphertexts than ours when comparing both schemes at the same security level. We notice
that a variant of Coron-IBE systemwas also suggested in [24], which achieves a tight security
reduction under the DBDH assumption. As the variant provides almost the same efficiency
as the original Coron’s system, it has slower encryption and faster decryption, compared to
ours. In Sect. 5, we will give an efficiency comparison between the variant and ours in more
detail.

1.3 Related work

Boneh and Franklin [13] presented the first practical IBE system based on groups with
efficiently computable pairings and defined the formal security notion for IBE known as full
security against chosen ciphertext attacks. Most of the subsequent IBE systems followed
the notion depending on different kinds of security assumptions. Until now, BF [13], SK
[20,22,43], and BB1 [10] systems have been considered as practical constructions and their
security was all demonstrated in the random oracle model.

In an attempt to prove security without random oracles, Canetti et al. [18] suggested
a weaker security notion for IBE, known as selective-ID security. Following the weaker
notion, Boneh and Boyen [10] proposed two efficient IBE systems, one of which was the
basis for BB1. Many IBE systems [21,29,38,39,46,47] were later suggested to achieve full
security without random oracles, but they all become less efficient than the random oracle
constructions in practical aspects such as public parameter size or achieving chosen ciphertext
security.

Regarding tight security reduction,Attrapadung et al. [5] proposed aKatz–Wang variant of
the BF systemwhose security is tightly reduced to the DBDH assumption. Their construction
is fully secure against chosen ciphertext attacks in the random oracle model, but less efficient
than our IBE system in terms of both encryption and decryption costs (see Sect. 5 for concrete
performance comparison). On the other hand, Gentry IBE [29] achieved the full security
without random oracles. Tightness in its security reduction was achieved by relying on a
(non-standard) q-type assumption where q depends on the number of private key queries that
an adversary makes.

The notion of IBE has been extended in two flavors. In a vertical (and hierarchical) exten-
sion, IBE can provide a ‘delegation’mechanism [31,35] bywhich private keys for lower-level
identities are created from an upper-level identity but the reverse is not possible. Many works
[10,11,17,30,31,44,46,47] have been suggested to realize such a delegationmechanism, also
known as hierarchical IBE (HIBE). In a horizontal extension, IBE becomes the special case

1 The square-DBDH assumption is defined from the following problem: given (g, ga , gb, T ) as input, deter-

mine T = e(g, g)a2b or random.
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of the attribute-based encryption (ABE) [9,34,42], where attributes (instead of a single iden-
tity) are associated with private keys and ciphertexts, respectively, and decryption works only
if attributes satisfy a function depending on each ABE system. Furthermore, when attributes
(an identity) embedded into ciphertexts are encrypted, ABE (IBE) can also be extended for
providing searchable techniques [1,12] on encrypted data. Recently, the horizontal extensions
are conceptually united under the notion of functional encryption (FE) [15].

Finally, we notice that there exist other approaches to build IBE trapdoorswithout pairings.
Cocks [23] and Boneh et al. [14] constructed IBE systems based on the quadratic-residuosity
problem and Gentry et al. [32] demonstrated how to build an IBE system based on lattice.
Recently, lattice-based IBE can also be extended toward HIBE [2,3,19] and FE [4] construc-
tions.

2 Preliminaries

2.1 Identity-based encryption

An IBE system consists of four algorithms:

– Setup(k) takes a security parameter k as input and outputs a public parameter PP and a
master secret keymsk.

– KeyGen(msk,PP, ID) takes a master secret key msk, a public parameter PP and an
identity ID ∈ ID as inputs, where ID is an identity space. It outputs skID, a private key
for ID.

– Encrypt(PP, M, ID) takes a public parameter PP, a message M ∈ M, and an identity
ID ∈ ID as inputs, where M is a message space. It outputs CT under ID, a ciphertext
under ID.

– Decrypt(CT,PP, skID) takes a ciphertext CT under ID, a public parameter PP, and a
private key skID as inputs. It outputs a message M or a random message.

Correctness For all ID ∈ ID and all M ∈ M, let (PP,msk) ← Setup(k), skID ←
KeyGen(msk,PP, ID),CT ← Encrypt(PP, M, ID). We have M ← Decrypt(skID,PP,

CT).
We next define chosen ciphertext security [13] of an IBE system. The security is defined

via the following game interacted by a challenger C and an adversary A:

– Setup: C runs the setup algorithm to obtain a public parameter PP and a master secret
key msk. C gives PP to A.

– Query Phase 1: A adaptively issues a number of queries where each query is one of:

– Private key query on ID: C runs the key generation algorithm to obtain a private key
for ID and gives the key skID to A.

– Decryption query on (CT, ID): C runs the key generation algorithm to obtain skID to
A and then runs the decryption algorithm using CTID and skID. It gives the resulting
message to A.

– Challenge: A outputs two equal-length messages M0, M1 and an identity ID∗ on which
it wishes to be challenged. The only restriction is that ID∗ is not queried in Query Phase
1. C flips a coin σ ∈ {0, 1}. C gives CT∗ ← Encrypt(PP, Mσ , ID∗) as a challenge
ciphertext to A.

– Query Phase 2:A adaptively issues a number of additional queries where each query is
one of:
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IBE scheme with tight security reduction 69

– Private key query on ID, where ID �= ID∗: C responds as in Query Phase 1.
– Decryption query on (CT, ID), where (CT, ID) �= (CT∗, ID∗): C responds as in

Query Phase 1.

– Guess: A outputs a guess σ ′ ∈ {0, 1}. A wins if σ ′ = σ .

The advantage of the adversaryA in breaking the chosen ciphertext security of an IBE system
IBE is defined as AdvCCAIBE,A = ∣

∣Pr[b′ = b] − 1/2
∣
∣.

Definition 1 We say that an IBE system is (t, ε, qK , qD)-IND-ID-CCA secure ifAdvCCAIBE,A
< ε for any adversary A that runs in time at most t , issues at most qK private key queries,
and issues at most qD decryption queries in chosen ciphertext security games.

2.2 One-time symmetric-key encryption

A one-time symmetric-key encryption scheme consists of two algorithms: a deterministic
encryption algorithm E takes a message M ∈ {0, 1}∗ and a key K ∈ K as inputs and outputs
a ciphertext C = EK (M). Here, K is a key space that is determined by a security parameter
k ∈ Z

+. Another deterministic algorithm D is a decryption algorithm that takes a ciphertext
C and a key K as inputs and outputs a message M = DK (C).

We define security for a one-time symmetric-key encryption scheme SKE = (E,D),
which is security against passive attacks [25]. The security is defined via the following game
interacted by a challenger C and an adversary A:

– Setup: C chooses a random key K in key space K(k).
– Challenge: A outputs two equal-length messages M0 and M1. C flips a coin σ ∈ {0, 1}

and gives C∗ ← EK (Mσ ) as a challenge ciphertext to A.
– Guess: A outputs a guess σ ′ ∈ {0, 1}. A wins if σ ′ = σ .

The advantage of the adversary A in breaking the passive security of a one-time symmetric-
key encryption scheme SKE is defined as AdvOT-INDSKE,A = ∣∣Pr[b′ = b] − 1/2

∣∣.

Definition 2 We say that a one-time symmetric-key encryption scheme is (t, ε)-secure
against passive attacks if AdvOT-INDSKE,A < ε for any adversary A that runs in time at most
t in passive attack games.

2.3 Bilinear maps and complexity assumptions

2.3.1 Bilinear maps

Our schemes will be parameterized by a pairing parameter generator. This is an algorithm
G that on input k ∈ N returns the description of multiplicative cyclic groups G1 and G2 of
prime order p, the description of a multiplicative cyclic group GT of the same order, and a
non-degenerate bilinear pairing e : G1 ×G2 → GT . We assume that g1 is a generator of G1

and g2 is a generator of G2. Following the standard notation in [10,13], we assume that the
function e has the following three properties.

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g1, g2) �= 1.
3. Computable: there is an efficient algorithm to compute the map e.
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2.3.2 The asymmetric decisional bilinear Diffie–Hellman (DBDH) problem

The asymmetric DBDH problem [41] is defined as follows: given (g1, ga
1 , gb

1 , gc
1, g2, ga

2 , gb
2 ,

gc
2, T ) ∈ G

4
1 × G

4
2 × GT as input, output 1 if T = e(g1, g2)abc and 0 otherwise. For our

security analysis, it suffices to consider a slightly weaker problem that does not need to take
ga
1 as input. Hereafter, we refer to the asymmetric DBDH problem as the weaker one. We

say that an algorithm A that outputs σ ∈ {0, 1} has an advantage AdvADBDH
G,A = ε in solving

the asymmetric DBDH problem in G if
∣
∣∣Pr

[A(g1, gb
1 , gc

1, g2, ga
2 , gb

2 , gc
2, e(g1, g2)

abc) = 0
]

− Pr
[A(g1, gb

1 , gc
1, g2, ga

2 , gb
2 , gc

2, R) = 0
]∣∣
∣ ≥ ε,

where the probability is taken over the random choice of a, b, c ∈ Zp , the random choice of
R ∈ GT , and the random bits used by A.

Definition 3 We say that the (t, ε)-asymmetric DBDH assumption holds inG1 andG2 if no
polynomial time adversary A that runs in time at most t has at least advantage ε in solving
the asymmetric DBDH problem in G1 and G2.

3 Our IBE system

3.1 Construction

Setup(k):Given a security parameter k ∈ Z
+, the setup algorithm runs G(k) to obtain a tuple

(p,G1,G2,GT , e). The algorithm selects a random generator g1 ∈ G1, a random generator
g2 ∈ G2, a random group element u ∈ G2, and a random exponent α ∈ Zp . The algorithm
sets A = e(g1, g2)α and chooses two cryptographic hash functions H1 : {0, 1}∗ → G2 and
H2 : {0, 1}∗ → Zp . The public parameters PP (with the description of (p,G1,G2,GT , e))
and the master secret key msk are generated as

PP = (
g1, u, A, H1, H2

)
, msk = gα

2 .

KeyGen(msk,PP, ID): To create a private key skID for an identity ID ∈ ID, the key
generation algorithm does the following:

1. Pick a random exponent r ∈ Zp .
2. Compute d0 = gα

2 ur ∈ G2, d1 = gr
1 ∈ G1, and tagk = H2(d0, d1) ∈ Zp .

3. Compute d2 = (
H1(ID)utagk

)r ∈ G2.
4. Output a private key skID = (d0, d1, d2, tagk) ∈ G2 × G1 × G2 × Zp .

Encrypt(PP, ID, M): To encrypt a message M ∈ GT under an identity ID ∈ ID, the
encryption algorithm does as follows:

1. Pick a random exponent s ∈ Zp .
2. Compute C0 = As M ∈ GT , C1 = gs

1 ∈ G1, and tagc = H2(C0, C1) ∈ Zp .
3. Compute C2 = (

H1(ID)utagc
)s ∈ G2.

4. Output a ciphertext CT = (C0, C1, C2) ∈ GT × G1 × G2.

Decrypt(PP,CT, skID): To decrypt a ciphertext (C0, C1, C2) using a private key skID =
(d0, d1, d2, tagk) for ID, the decryption algorithm does as follows:
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IBE scheme with tight security reduction 71

1. Compute tagc = H2(C0, C1) ∈ Zp and check if e
(
C1, H1(ID)utagc

) ?= e(g1, C2).
2. If the equality above fails, output a random M̂ ∈ GT .

3. Otherwise, check if tagc
?= tagk in Zp .

4. If the equality above holds, output ⊥.
5. Otherwise, compute

M = C0

/
e(C1, d0) ·

(
e(d1, C2)

e(C1, d2)

) −1
tagc−tagk

. (1)

3.1.1 Correctness

If tagc = tagk in Zp , the decryption algorithm does not work, so that it has the correctness
error 1/p on each decryption. Otherwise, we can verify that the decryption algorithm works
correctly for well-formed ciphertexts as follows:

e(C1, d0) ·
(

e(d1, C2)

e(C1, d2)

) −1
tagc−tagk = e

(
gs
1, gα

2 ur ) ·
(

e
(
gr
1, (H1(ID)utagc )s

)

e
(
gs
1, (H1(ID)utagk )r

)
) −1

tagc−tagk

= e(g1, gα
2 )se(g1, u)sr · e

(
gsr
1 , utagc−tagk

) −1
tagc−tagk

= As .

3.1.2 Encryption and decryption costs

In encryption, the three exponentiations As, gs
1, and utagc ·s can be calculated in fixed bases

A ∈ GT , g1 ∈ G1, and u ∈ G2, respectively. Instead, the hashing H1(ID) and its exponen-
tiation H1(ID)s in G2 will be done separately without precomputation in usual situations.
Thus, the encryption cost becomes one fixed-base exponentiation in each groupG1,G2,GT ,
respectively, one hashing into G2, and one general exponentiation in G2.

Upon decryption, it seems that the decryption algorithm requires computing five pairings,
but these can be saved into two parings. We first can change the above formula (1) into:

e(C1, d0) ·
(

e(d1, C2)

e(C1, d2)

) −1
tagc−tagk =

e
(

d
−1

tagc−tagk
1 , C2

)

e
(

C1, d−1
0 d

−1
tagc−tagk
2

) .

Next, by using the implicit consistency check [38], we do not need to perform the pair-
ing consistency test explicitly. Instead, the decryption algorithm randomizes two elements
H1(ID)utagc and g1 by raising a randomly chosen exponent r̃ ∈ Zp and performs the follow-
ing computation:

e
(

d
−1

tagc−tagk
1 gr̃

1, C2

)

e
(

C1, d−1
0 d

−1
tagc−tagk
2 (H1(ID)utagc )̃r

) . (2)

If the pairing test passes, the output of the above equation becomes the same as that of the
original decryption algorithm. Otherwise, the fresh random value r̃ chosen by the decryption
algorithm survives and thus prevents an adversary from gaining any information on an ill-
formed ciphertext. As a consequence, the decryption cost is determined by the computation
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in the Eq. 2 that shows five exponentiations and two pairing computations. All the exponen-
tiations can be done in fixed bases such as g1, d1 ∈ G1 and d2, u, H1(ID) ∈ G2. Notice that a
user with identity ID can compute H1(ID) ∈ G in advance and prepare for fixed bases related
to it, regardless of any received ciphertext. Thus, the decryption cost is concluded with two
fixed-base exponentiations in G1, three fixed-base exponentiations in G2, and two parings.

3.1.3 Achieving perfect correctness

Upon decryption, our decryption algorithm cannot proceed in the event that tagc = tagk
occurs. Obviously, the probability that the event happens is negligible when the value tag
is in Zp and p is represented by approximately 160 bits. However, in order to avoid even
the negligible correctness error, we can employ an approach suggested in a recent tag-based
dual system encryption [47]. A possible solution is to simply run an efficient selectively
(chosen-ciphertext) secure IBE system [10] in parallel. When a message is encrypted under
ID with tagc, an encryptor also encrypts the message under the tagc (as an identity) in the
second selective system. When tagc �= tagk , we can use our original IBE system. In the
unlikely event that tagc = tagk , we can use the second ciphertext. An alternative approach
in [47] such as giving two private keys for an identity ID seems to not be applicable to our
system, because our security analysis shows that a hash value H1(ID) should be assigned to
only one tagk .

3.1.4 Stateful key generation algorithm

According to our security analysis, the KeyGen algorithm should be stateful, in that the
algorithm stores a random exponent r ∈ Zp used to generate a private key for an identity and
later the exponent should be used again when the same identity is requested for a private key
generation.

3.2 Security

Theorem 1 Let H1 and H2 be modeled as random oracles. Suppose the (t ′, ε′)-asymmetric
DBDH assumption holds in G1 and G2. Then our IBE system is (t, ε, qK , qD)-IND-ID-CCA
secure, where

ε ≤
(
1 − qH2

p
− 2qD

p

)
· ε′,

t ≥ t ′ − O((qK + qD + qH1) · te) − O(qD · tp).

Here, {qH1 , qH2} is the number of {H1, H2} oracle queries issued by an adversary, te is the
cost of an exponentiation in G1 or G2, and tp is the cost of a pairing computation.

Proof Suppose that there exists an adversary A which can break the CCA security of our
IBE system. We can then build an algorithm B which usesA to solve an asymmetric DBDH
problem inG. On input (g1, gb

1 , gc
1, g2, ga

2 , gb
2 , gc

2, T ) ∈ G
3
1×G

4
2×GT ,B attempts to output

1 if T = e(g1, g2)abc and 0 otherwise. B interacts with A as follows.
Setup B selects a random element δ ∈ Zp and sets u = g−a

2 gδ
2 and A = e(gb

1 , ga
2 ).

Note that α = ab ∈ Zp , which is unknown to B. Then, A is given the public key
PK = (g1, u, A, H1, H2), where H1 and H2 are modeled as random oracles.
Query Phase 1A issues H1, H2, private key, and decryption queries. B responds as follows:
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H1 queries To respond to H1 queries,Bmaintains a list of tuples< IDi , γi , πi , H1(IDi ) >

as explained below. We refer to this list as the Hlist
1 . When B is given an identity IDi as

an input to H1,B first scans through the Hlist
1 to see if the input IDi appears in a tuple

< IDi , γi , πi , H1(IDi ) >. If it does, B responds with H1(IDi ). Otherwise, B picks two
random exponents γi , πi ∈ Zp and sets H1(IDi ) = (ga

2 )
γi gπi

2 ∈ G2. B adds the new tuple
< IDi , γi , πi , H1(IDi ) > to the Hlist

1 and responds with H1(IDi ). Recall that the values {γi }
are information-theoretically hidden to A’s view.

H2 queries To respond to H2 queries, B maintains a list of tuples < Wi , Qi , μi > as
explained below. We refer to this list as the Hlist

2 . When B is given values (Wi , Qi ), which is
in eitherG2×G1 orGT ×G1, as an input to H2,B first scans through the Hlist

2 to see if the input
(Wi , Qi ) appears in a tuple < Wi , Qi , μi >. If it does, B responds with H2(Wi , Qi ) = μi .
Otherwise, B picks a random exponent μi ∈ Zp and sets H2(Wi , Qi ) = μi . B adds the new
tuple < Wi , Qi , μi > to the Hlist

2 and responds with H2(Wi , Qi ).
Key queries When B is given an identity IDi ∈ ID as an input to a private key query,

B selects a random exponent r ∈ Zp and (implicitly) sets r̃ = b + r ∈ Zp . B generates
key elements (d0,i , d1,i ) as d0,i = (ga

2 )
−r (gb

2)
δgδr

2 and d1,i = gb
1gr

1. The validity of those
elements can be verified as follows:

d0,i = (ga
2 )

−r (gb
2)

δgδr
2 = gab

2 (g−a
2 gδ

2)
b+r = gα

2 ur̃ ,

d1,i = gb
1gr

1 = gr̃
1.

Next, B refers to the Hlist
1 to find out the tuple < IDi , γi , πi , H1(IDi ) >. At this moment,

B’s goal is to set H2(d0,i , d1,i ) = γi . Thus, if there is a tuple< d0,i , d1,i , γi > in the Hlist
2 ,B

can continue the key query process.
In fact, B can make such a (favorable) tuple always exist in the Hlist

2 as follows: whenever
B adds a new tuple < IDi , γi , πi , H1(IDi ) > to the Hlist

1 ,B generates skIDi by choosing a
random r , constructing key elements (d0,i , d1,i ) as above, setting H2(d0,i , d1,i ) = γi , and
adding the tuple< d0,i , d1,i , γi > to the Hlist

2 . On the other hand, if H2(d0,i , d1,i ) has already
be set to μi , then B simply adds a new tuple < IDi , μi , πi , H1(IDi ) > to the Hlist

1 .
Without loss of generality, let the tuple H2(d0,i , d1,i ) = γi (where γi is from the tuple in

the Hlist
1 above) be in the Hlist

2 . B generates the element d2,i as d2,i = (gb
2)

πi +γi δg(πi +γi δ)r
2 .

The validity of d2,i can be verified as follows:

d2,i = (gb
2)

πi +γi δg(πi +γi δ)r
2 = (

(ga
2 )

γi gπi
2 · (g−a+δ

2 )γi
)b+r

= (
H1(IDi )u

H2(d0,i ,d1,i )
)̃r

.

Then, B responds with a private key skIDi = (d0,i , d1,i , d2,i , tagk = γi ) for the requested
identity IDi . Since the key generation algorithm is stateful, B keeps the random exponent r
used for generating skIDi .

Decryption queries When B is given a ciphertext CTi = (C0,i , C1,i , C2,i ) (as well as
an identity IDi ) as an input to a decryption query, B first refers to the Hlist

1 to find out
the tuple < IDi , γi , πi , H1(IDi ) >. (If no tuple exists, B can run the H1-query process in
advance as explained above.) Next, B generates a private key skIDi = (d0,i , d1,i , d2,i , tagk)

for the identity IDi or uses the private key skIDi that was generated before. Recall that
H2(d0,i , d1,i ) = γi = tagk .

To check whether H2(C0,i , C1,i ) = tagc
?= tagk = H2(d0,i , d1,i ),B refers to the Hlist

2
to search for a tuple < C0,i , C1,i , μ̃i >. If such a tuple regarding (C0,i , C1,i ) does not
exist, B sets H2(C0,i , C1,i ) = μ̃i by choosing a random μ̃i ∈ Zp and adds the new tuple
< C0,i , C1,i , μ̃i > to the Hlist

2 .
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[Case 1] If μ̃i = γi ,B aborts. (We refer to this event as abort1.) Notice that γi is from
the tuple < IDi , γi , πi , H1(IDi ) > in the Hlist

1 . In the real decryption, the equality means
that tagc = tagk and thus the normal decryption is expected to output ⊥, but B simply aborts
in our simulation. We will give the reason below. Fortunately, the probability that the event
abort1 happens is negligible while H2 acts like a random oracle.

[Case 2] If μ̃i �= γi ,B performs the normal decryption using skIDi and replies with the
resulting message.
Challenge A outputs two messages M0, M1 ∈ GT and an identity ID∗ on which it wishes
to be challenged. If necessary, B runs the algorithm for responding to H1 query on ID∗. Let
< ID∗, γ ∗, π∗, H1(ID∗) > be the tuple in the Hlist

1 regarding the challenged identity ID∗.
Notice that A cannot query a private key for ID∗. This means that the exponent γ ∗ in the
tuple is not revealed to A (with overwhelming probability) until the Challenge phase.

B picks a random bit σ ∈ {0, 1} and sets C∗
0 = Mσ T and C∗

1 = gc
1. It sets H2(C∗

0 , C∗
1 ) =

γ ∗. If the tuple < C∗
0 , C∗

1 , γ j > are already in the Hlist
2 and γ j �= γ ∗, then B aborts. (We

refer to this event as abort2.) Otherwise, B generates the ciphertext CT∗ = (C∗
0 , C∗

1 , C∗
2 ) =(

Mσ T, gc
1, (g

c
2)

π∗+δγ ∗)
. B (implicitly) sets s = c. The validity of C∗

2 can then be verified as
follows:

(gc
2)

π∗+δγ ∗ = (
(ga

2 )
γ ∗

gπ∗
2 · (g−a+δ

2 )γ
∗)c

= (
H1(ID∗)u H2(C∗

0 ,C∗
1 )

)s
.

Query Phase 2A issuesmore {Hi }i=1,2, private key, and decryption queries.B responds as in
Query Phase 1. At this phase, however, there are challenging decryption queriesB has to deals
with. That happens whenA issues valid ciphertexts such asCTi = (C0,i , C∗

1 , C2,i ) on either
ID or ID∗, where C∗

1 is the same as inCT∗. We call a ciphertextCT = (C0, C1, C2) under an
identity ID valid if the pairing test upon decryption holds, i.e., e

(
C1, H1(ID)u H2(C0,C1)

) =
e(g1, C2). Notice that when a queried ciphertext is CTi = (C0,i , C1,i , C2,i ) on either ID or
ID∗ where C1,i �= C∗

1 ,B can simply respond as in Query Phase 1. Regarding the challenging
decryption queries, there are four possible cases:

[Case 1] CTi = (C∗
0 , C∗

1 , C2,i ) on ID∗, where C2,i �= C∗
2 . As the ciphertext is valid,

it passes the pairing test upon decryption. Thus, B has that e
(
C∗
1 , H1(ID∗)u H2(C∗

0 ,C∗
1 )

) =
e(g1, C2,i ). Since C∗

1 = gc
1, the equation shows C2,i = (H1(ID∗)u H2(C∗

0 ,C∗
1 ))c, in which case

C2,i = C∗
2 . This means that such a valid ciphertext in the form of (C∗

0 , C∗
1 , C2,i ) such that

C2,i �= C∗
2 is not possible.

[Case 2] CTi = (C0,i , C∗
1 , C∗

2 ) on ID∗, where C0,i �= C∗
0 . This case can happen only if

B sets H2(C0,i , C∗
1 ) = γ ∗ ∈ Zp . In this case, B aborts. (We refer to this event as abort3.)

This is because otherwise, i.e., B returns ⊥ as the normal decryption result and this gives
the information of γ ∗ (as tagk) in the skID∗ . γ ∗ (as tag∗

c ) is already used for the challenge
ciphertext, which gives the knowledge that γ ∗ is used two times in both skID∗ and CT∗.
Naturally, such an unusual leakage can cause A to distinguish between the simulation and
the real attack.

[Case 3] CTi = (C0,i , C∗
1 , C2,i ) on ID∗, where C0,i �= C∗

0 and C2,i �= C∗
2 . As the

ciphertext is valid, B has that e
(
C∗
1 , H1(ID∗)u H2(C0,i ,C∗

1 )
) = e(g1, C2,i ). Since C∗

1 = gc
1, the

equation shows that C2,i = (H1(ID∗)u H2(C0,i ,C∗
1 ))c. Also, since C2,i �= C∗

2 , we know that
H2(C0,i , C∗

1 ) �= γ ∗. Then, B has that

C2,i = (
H1(ID∗)u H2(C0,i ,C∗

1 )
)s

= (
(ga

2 )
γ ∗

gπ∗
2 · (g−a+δ

2 )H2(C0,i ,C∗
1 )

)c
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= (gac
2 )γ

∗−H2(C0,i ,C∗
1 )(gc

2)
π∗+δH2(C0,i ,C∗

1 ),

in which case B can obtain gac
2 by computing

[
C2,i/(C∗

1 )
π∗+δH2(C0,i ,C∗

1 )
]1/(γ ∗−H2(C0,i ,C∗

1 )).
It follows that B can solve the asymmetric DBDH problem immediately.

[Case 4] CTi = (C0,i , C∗
1 , C2,i ) on ID(�= ID∗). Let < ID, γ, π, H1(ID) > be the tuple in

the Hlist
1 regarding ID. From the pairing test equation,B has that e

(
C∗
1 , H1(ID)u H2(C0,i ,C∗

1 )
) =

e(g1, C2,i ). Since C∗
1 = gc

1, the equation shows that C2,i = (H1(ID)u H2(C0,i ,C∗
1 ))c. If

H2(C0,i , C∗
1 ) = γ,B outputs ⊥ as the result of normal decryption.2 Otherwise, B has that

C2,i = (
H1(ID)u H2(C0,i ,C∗

1 )
)s

= (
(ga

2 )
γ gπ

2 · (g−a+δ
2 )H2(C0,i ,C∗

1 )
)c

= (gac
2 )γ−H2(C0,i ,C∗

1 )(gc
2)

π+δH2(C0,i ,C∗
1 ),

in which case B can obtain gac
2 by computing

[
C2,i/(C∗

1 )
π+δH2(C0,i ,C∗

1 )
]1/(γ−H2(C0,i ,C∗

1 )). It
follows that B can solve the asymmetric DBDH problem immediately.
Guess A outputs a guess σ ′ ∈ {0, 1}. B then outputs its guess σ ′ ∈ {0, 1} as the solution to
the asymmetric DBDH problem.
Comment The reason why B aborts in the event abort1 is that the equality can leak
the information on the tagk such that H2(d0,i , d1,i ) = γi = tagk , where γi is from
the tuple < IDi , γi , πi , H1(IDi ) > and (d0,i , d1,i ) are from the private key skIDi =
(d0,i , d1,i , d2,i , tagk = γi ). That is, A is able to know that the value tagk(= γi ) is used
in skIDi , even though all key elements in skIDi are not revealed to A. The problem can then
happen in the Challenge phase whereA can select such IDi as the challenge identity. Then, B
has no choice but to use the same γi as the tag∗

c in constructing the challenge ciphertext such
that H2(C∗

0 , C∗
1 ) = γi . This gives the information that γi is used two times in both skIDi and

CT∗. As mentioned above, such an unusual leakage can cause A to distinguish between the
simulation and the real attack.
Analysis The dominated additional computation that B requires is both the exponentiations
for handling qK private key queries and the pairings for handling qD decryption queries.
Thus, the inequality about computational time can easily be obtained.

Next, we assume Cases 3 and 4 described in the Query Phase 2 do not happen (which
would rather increase B’s success probability to solve the asymmetric DBDH problem). To
analyze B’s advantage, we first prove the following claim that argues that the probability that
B aborts in the simulation is at most

qH2
p + 2qD

p , which is negligible. ��

Claim 1 Pr[abort] = Pr[abort1∨abort2∨abort3] in the simulation is at most
qH2

p + 2qD
p .

Proof The event abort1 happens if B sets H2(C0,i , C1,i ) = γi for any queried ciphertext
CTi = (C0,i , C1,i , C2,i ), where γi is from the tuple< IDi , γi , πi , H1(IDi ) > in the Hlist

1 . γi

is a pre-determined value and the output of H2 query is just set by choosing a random value
in Zp . Thus, the probability that the event abort1 happens is at most 1/p on each decryption
query. Since B has to handle qD decryption queries, the probability that the event abort1
occurs throughout the simulation becomes at most qD/p.

The event abort2 can occur if the value (Mσ T, gc) already exists in the Hlist
2 as the input

value queried by A. There are p possibilities in picking a value as an input to the H2 query,
because it is determined by a randomly chosen exponent c ∈ Zp . This gives the probability

2 After the Challenge phase, we do not need to consider the event abort1 in the case of ID(�= ID∗), since the
distribution of tag values regarding ID(�= ID∗) is statistically identical to that in the real attack.
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at most qH2/p that the event abort2 happens. (If we consider the possible cases from the
selection of a value in GT , then the probability will be much smaller.)

Regarding the event abort3, the event happens if B sets H2(C0,i , C∗
1 ) = γ ∗ for any

queried ciphertextCTi = (C0,i , C∗
1 , C∗

2 ) on ID
∗, where C0,i �= C∗

0 . Here, the value γ ∗ is the
pre-determined value and the output of H2 query is just set by choosing a random value in
Zp . Thus, the probability that the event abort3 happens is at most 1/p on each decryption
query. Since B has to handle qD decryption queries, the probability that the event abort3
occurs throughout the simulation becomes at most qD/p.

We know that all the events that B aborts are relatively independent. As a result, the
probability Pr[abort1 ∨ abort2 ∨ abort3] in the simulation is at most

qH2
p + 2qD

p .
From Claim 1, we can see that the probability that B aborts in the simulation is negligible

(under the appropriate selection of security parameters). We argue that as long as B does not
abort,B providesAwith a perfect simulationwhose distribution is identical to the distribution
in a real attack. This is because (1) the simulation of H1 and H2 oracles are obviously perfect
as the output values are determined by randomly chosen values in G2 and Zp , respectively,
and (2) the simulation of private key oracles is also perfect as each key on an identity IDi is
generatedwith a randomly chosen exponent r ∈ Zp such that r̃ = b+r , and (3) the simulation
of decryption oracles is also perfect as it is done via normal decryption using private keys,
and (4) the values {γi } in the Hlist

1 are uniformly distributed and information-theoretically
hidden from A’s view until private keys and CT∗ are given to A.

As long as B does not abort in the simulation, B can use the A’s advantage to break
the chosen ciphertext security straightforwardly. This can be checked as follows: if T =
e(g1, g2)abc, then the challenge ciphertext CT∗ is a valid encryption of Mσ under ID∗.
Otherwise, i.e., if T is random in GT , then Mσ T is independent of the bit σ . Thus, if A
distinguishes between the two ciphertexts, then B can distinguish between the two possible
values of T with the same advantage. Therefore, unless B does not abort, we have the
following result:

AdvCCAIBE,A(k) ≤
(
1 − qH2

p
− 2qD

p

)
· AdvADBDH

G,B (k),

as required. This concludes the proof of Theorem 1. ��
3.3 Hash-BDH and BDH construction

Our IBE system can be slightly modified to encrypt arbitrary n-bit message strings such as
M ∈ {0, 1}n . To do this, we consider a family of hash functions of the form H3 : GT →
{0, 1}n (where n ∈ Z

+ is determined by the security parameter). A resultant ciphertext is then
computed as C0 = H3(As) ⊕ M ∈ {0, 1}n, C1 = gs

1 ∈ G1, and C3 = (
H1(ID)utagc

)s ∈ G2

where tagc = H2(C0, C1) ∈ Zp . Decryption can be performed by hashing the pairing value
in the equation (2) and XOR-ing the result with C0.

The security of the modified system can be proven in two flavors: if H3 is a random
selection of the (appropriate) hash family, then the modified system is IND-ID-CCA secure
under the asymmetric Hash-BDH assumption3 and the security reduction becomes tight.
The proof is almost identical to that of Theorem 1. On the other hand, if H3 is modeled as a
random oracle, then the modified system is IND-ID-CCA secure under the asymmetric BDH
assumption4 and the security loss becomes O(qH3). In this case, B maintains additional

3 This is the asymmetric version of the Hash-BDH assumption [10].
4 This is the asymmetric version of the BDH assumption [13].

123



IBE scheme with tight security reduction 77

Hlist
3 with respect to H3, and the challenge ciphertext is constructed as CT∗ = (C∗

0 =
R, C∗

1 = gc
1, C∗

2 = (
H1(ID∗)utag∗

c
)c

) where R is a randomly chosen string in {0, 1}n and
tag∗

c = H2(C∗
0 , C∗

1 ). C∗
0 is not relevant to any of two challenged messages, and B just wants

to employ the adversary’s advantage to issue the correct answer of an asymmetric BDH
problem as the input of H3 query. At the end of the simulation, B selects a random input
value among tuples in the Hlist

3 as its answer to the BDH problem, which causes the security
loss of O(qH3). We notice that CCA security using a similar proof strategy was already used
to prove IND-ID-CPA security of ‘BasicIdent’ in [13]. The rest of the proof can be completed
based on the proof of the BasicIdent as well as Theorem 1.

4 Extension for arbitrary length messages

We extend our IBE system to deal with arbitrary length messages. Our extended system is
based on thewell-known framework using the key encapsulationmechanism (KEM) and data
encapsulation mechanism (DEM). Identity-based KEM (IBKEM) encrypts a symmetric key
under which an arbitrarily long message is encrypted under a symmetric-key cipher DEM.
Usually, to achieve CCA security of an entire IBE system, both IBKEM and DEM should be
CCA-secure respectively [8] or DEM should be an authenticated symmetric-key encryption
[39]. However, a slight difference resides in our extended IBE system where it is sufficient
for DEM to be a one-time symmetric-key encryption secure against passive attacks [25]. In
practice, such a weak DEM can easily be instantiated with a block cipher using a so-called
‘counter mode’. The difference is because our IBE system is able to provide a consistency
check (using pairing) to see if ciphertext elements including the DEM part are the same as
what an encryptor constructed. Such a weak DEM when achieving CCA security can also
be seen in the CCA-secure BF-IBE system [13].

4.1 Construction

Setup(k): As in the previous IBE system. Additionally, the setup algorithm chooses a one-
time symmetric-key encryption scheme SKE = (E,D). The public parameters PP and the
master secret keymsk are generated as

PP = (
g1, u, A, H1, H2,SKE)

, msk = gα
2 .

KeyGen(msk,PP, ID): As in the previous IBE system.
Encrypt(PP, ID, M): To encrypt an arbitrary length message M ∈ {0, 1}∗ under an identity
ID ∈ ID, the encryption algorithm does as follows:

1. Pick a random exponent s ∈ Zp .
2. Compute a key K = As ∈ GT .
3. Compute C0 = EK (M), C1 = gs

1 ∈ G1, and tagc = H2(C0, C1) ∈ Zp .
4. Compute C2 = (

H1(ID)utagc
)s ∈ G2.

5. Output a ciphertext CT = (C0, C1, C2) ∈ {0, 1}|M| × G1 × G2.

Decrypt(PP,CT, skID): To decrypt a ciphertext (C0, C1, C2) using a private key skID =
(d0, d1, d2, tagk) for ID, the decryption algorithm does as follows:

1. Compute tagc = H2(C0, C1) and check whether or not e
(
C1, H1(ID)utagc

) ?= e(g1, C2).
2. If the equality above fails, choose a random key K̃ from GT and output DK̃ (C0).

3. Otherwise, check if tagc
?= tagk .
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4. If the equality above holds, output ⊥.
5. Otherwise, compute a key

K = e(C1, d0) ·
(

e(d1, C2)

e(C1, d2)

) −1
tagc−tagk

.

6. Output a message M = DK (C0).

Remark The efficiency of the IBE system above is almost the same as that in the previous
section. Notice that the KEM part in a ciphertext is not expanded and the DEM part C0 =
EK (M) is also hashed and embedded into the ciphertext element C3. We can check the
consistency of ciphertext elements including the DEM part and therefore avoid to use an
authenticated encryption scheme with the help of a secure message authentication code
(MAC). In practice, a one-time symmetric-key encryption scheme SKE with key-space K ∈
{0, 1}k can be implemented by AES with a counter mode, and a real symmetric key for E
can be obtained via a key-derivation function [25] that maps an element from GT into 2k-bit
strings.

4.2 Security

Theorem 2 Let H1 and H2 be modeled as random oracles. Suppose the (t ′, ε′)-asymmetric
DBDH assumption holds in G1 and G2 and the one-time symmetric-key encryption scheme
SKE is (t ′′, ε′′)-secure against passive attacks. Then our IBE system is (t, ε, qK , qD)-IND-
ID-CCA secure, where

ε ≤
(
1 − qH2

p
− 2qD

p

)
· (ε′ + ε′′),

t ≥ t ′ + t ′′ − O((qK + qD + qH1)te) − O(qD(tp + tsym D)).

Here, {qH1 , qH2} is the number of {H1, H2} oracle queries issued by an adversary, te is the
cost of an exponentiation in G1 or G2, tp is the cost of a pairing computation, and tsym D is
the cost of symmetric-key decryption in the SKE .

Proof The proof of Theorem 2 is almost similar to that of Theorem 1. For clarity, we recon-
struct the entire proof by creating a sequence of hybrid games. If necessary, we will adapt
several notations that appeared in the proof of Theorem 1 without explicit explanation.

Let A be an adversary on the chosen ciphertext security of our IBE system above. We
will consider two games, Game 0 and Game 1, each game interacting with A. Let Xi (for
i = 0, 1) be the event that in Game i,A wins the game.
Game 0 The game is a real attack game of chosen ciphertext security, so that (for a security
parameter k) we have

|Pr[X0] − 1/2| = AdvCCAIBE,A(k). (3)

Game 1 The game is the same as Game 0, except that the value K ∗ used for a symmetric
key in CT∗ is replaced by a random value K ∈ GT . Unless the events abort1 and abort2
and abort3 (defined in the proof of Theorem 1) occur in Game 1, we have

|Pr[X1] − Pr[X0]| = AdvADBDH
G,B1

(k), (4)

where B1 is an algorithm whose goal is to solve the asymmetric DBDH problem.
Theproof of (4) is almost the sameas that ofTheorem1.Onan input (g1, gb

1 , gc
1, g2, ga

2 , gb
2 ,

gc
2, T ), we describe how B1 constructs CT∗: when A outputs two messages M0, M1 ∈
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{0, 1}∗ of the same length and an identity ID∗,B1 picks a random bit σ ∈ {0, 1}. Let <

ID∗, γ ∗, π∗, H1(ID∗) > be the tuple in the Hlist
1 regarding ID∗.B1 setsC∗

0 = ET (Mσ ), C∗
1 =

gc
1, and H2(C∗

0 , C∗
1 ) = γ ∗. If the tuple< C∗

0 , C∗
1 , γ j > are already in the Hlist

2 and γ j �= γ ∗,
then B1 aborts. (In the proof of Theorem 1 (and thus Game 1 above), the event has already
been taken into consideration under the event abort2.) Otherwise, the challenge ciphertext
is generated as CT∗ = (C∗

0 , C∗
1 , C∗

2 ) = (ET (Mσ ), gc
1, (g

c
2)

π∗+δγ ∗)
. Other slight differences

exist in handling decryption and H2 queries. Answering decryption queries needs to run D
of SKE , and inputs (Wi , Qi ) to H2 queries are in either G2 ×G1 or {0, 1}∗ ×G1 (instead of
G2 ×G1 orGT ×G1). However, the way of answering H2 queries is the same as in the proof
of Theorem 1. Thus, the probability that the events abort1 and abort2 and abort3 happen
in proving the Eq. 4 is the same as that in Theorem 1.

Finally, inGame 1 we have the following relation that directly comes from the definition
of ciphertext indistinguishability for SKE unless the event abort3 occurs in Game 1:

|Pr[X1] − 1/2| = AdvOT-INDSKE,B2
(k), (5)

where B2 is an algorithm whose goal is to break SKE .
One thing we want to clarify is that B2 does not need to deal with any decryption query

regarding the one-time symmetric-key encryption scheme SKE . To prove the Eq. 5, B2

relays the two messages M0, M1 ∈ {0, 1}∗ to its challenger and is given a challenge cipher-
text EK ∗(Mσ ) for a random (unknown) key K ∗ ∈ GT . B2 then reconstructs its challenge
ciphertext CT∗ as explained above and gives it to A. Whenever A requests any decryp-
tion query on CTi ,B2 can use private keys (generated by B2) to perform normal decryp-
tion. The only troublesome queries are possible when A issues decryption queries on valid
CTi = (C0,i , C∗

1 , C2,i ), in which case B2 would have to decrypt CTi with the unknown
symmetric-key K ∗. Fortunately, those troublesome queries can be handled as in Query Phase
2 of Theorem 1. More precisely, there are four possible cases:

[Case 1] CTi = (C∗
0 , C∗

1 , C2,i ) on ID∗, where C2,i �= C∗
2 . As before, it is impossible to

generate a valid ciphertext (C∗
0 , C∗

1 , C2,i ) such that C2,i �= C∗
2 .

[Case 2] CTi = (C0,i , C∗
1 , C∗

2 ) on ID∗, where C0,i �= C∗
0 . This happens only if B sets

H2(C0,i , C∗
1 ) = tag∗

c ∈ Zp . In this case, B aborts. (This event has already been referred to
as abort3.)5

[Case 3] CTi = (C0,i , C∗
1 , C2,i ) on ID∗, where C0,i �= C∗

0 and C2,i �= C∗
2 . We have

shown that the A’s ability to issue such a valid ciphertext can be used to compute gac
2 in the

previous Query Phase 2.
[Case 4] CTi = (C0,i , C∗

1 , C2,i ) on ID(�= ID∗). B generates skID and performs normal
decryption. If H2(C0,i , C∗

1 ) = tagk where tagk is from skID, then B outputs⊥ as the result of
normal decryption. Otherwise, we also have shown that the A’s ability to issue such a valid
ciphertext can be used to compute gac

2 in the previous Query Phase 2.
Analysis It is easy to see that time complexity is obviously achieved as argued in Theorem 2.
As long as the eventsabort1 andabort2 andabort3 do not happen throughout the simulation,
the Eqs. 4 and 5 hold. As a result, by putting the results of all relations 3, 4, and 5 above
together, we gain a bound on the A’s advantage as follows:

AdvCCAIBE,A(k) ≤
(
1 − qH2

p
− 2qD

p

)
· (
AdvADBDH

G,B1
(k) + AdvOT-INDSKE,B2

(k)
)
,

which concludes the proof of Theorem 2. ��
5 Notice that B can handle this ciphertext if the one-time symmetric-key encryption scheme SKE is CCA-
secure. However, we simply consider SKE as being secure against passive attacks by adding qD/p into the
probability that B2 aborts.
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Table 1 Security comparison between the previous IBE systems and ours

Assumptiona Security Security reduction

Asymptotic bound Concrete lossb

BF [13] DBDH IND-ID-CCA qK qH >250

BB1 [10]c DBDH IND-ID-CCA qH 250

SK [20] q-DBDHI IND-ID-CCA q2H >250

AGF+ [5] DBDH IND-ID-CCA 1 1

CorFO [24] DBDH IND-ID-CCA 1 1

Ours DBDH IND-ID-CCA 1 1

q ≈ qH + qK in [20]
qH the number of (random-oracle) hash queries, qK the number of private key queries
a All the assumptions are considered in asymmetric setting
b Estimated with qH = 250 and qK = 225
c We borrow the CCA-secure variant of BB1 system from [16]

5 Comparison to previous IBE systems

In this section we compare our IBE system with the previous practical IBE systems such
as BF [13], SK [20,22,43], the CCA-secure variant [16]6 of BB1, Attrapadung et al.’s IBE
system [5] (denoted as ‘AFG+’), and the CCA-secure variant7 of [24] (denoted as ‘CorFO’)
in terms of security and efficiency. Following Bellare and Rogaway [6,39], we estimate
the number of (random oracle) hash queries as qH = 250 and the number of private key
queries as qK = 225. For a fair comparison we consider the asymmetric decisional type
of security assumptions in each system, so that BF, BB1,AFG+, and CorFO systems are
based on the asymmetric DBDH assumption and the SK system relies on the asymmetric
version of q-decisional bilinear Diffie–Hellman inversion (DBDHI) assumption [10]. We
also refer to [28] for correcting a flawed security analysis of BF system. Table 1 presents
the comparison result with respect to security assumptions and reductions, which was also
addressed by [16,24,39]. The ‘asymptotic bound’ in the security reduction means that the
advantage of breaking the CCA security of an IBE system is larger than that of solving a
security assumption in comparable time, by a factor of each bound. In other words, the larger
the bound is, the bigger the security loss (i.e., gap) is between an IBE system and a security
assumption. In Table 1, a concrete bound at each IBE system is estimated when considering
the reasonable number of adversarial queries qH and qK as 250 and 225, respectively. The
respective bound tells us that, roughly speaking,

AdvCCAIBE,A ≤ (bound) · AdvAssumption
B (6)

for algorithms A and B. When the bound is quite large, we have to choose a larger security
parameter k for a security assumption so that we can make (bound) ·AdvAssumption

B small and
consequentlyAdvCCAIBE,A small enough at a desired security level. This is the reason why one
has to choose a larger system security parameter than an idealized security level when a large

6 We are not sure that the CCA security proof about the variant is correct because we cannot find any security
proof for the variant. Boyen [16] stated that the proof of CCA security was adapted by [10], but in any part of
[10] there exists no security proof related to the variant.
7 The variant was proven to be chosen-plaintext secure under the DBDH assumption, but we consider the
CCA-secure version by applying the Fujisaki–Okamoto transform [27].
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Table 2 Efficiency comparison between the previous IBE systems and ours

PP CT KGen Enc Dec

BF [13] 2G1 1G1, 1h 1H2, 1E2 1H2, 2Ef1, 1P 1Ef1, 1P

BB1 [10]a 3G1, 1GT 2G1, 1|p| 2Ef2 3Ef1, 1EfT 1Ef1, 1EfT, 2P�

SK [20] 2G1, 1GT 1G1, 1h 1Ef2 2Ef1, 1EfT 2Ef1, 1P

AGF+ [5] 2G1 1G1, 2h 1H2, 1E2 2H2, 2Ef1, 2P 2Ef1, 2P

CorFO [24] 2G1, 1GT 1G1, 1GT, 1h 1H2, 1E21Ef2 1H2, 2Ef1, 1EfT, 1P 1Ef1, 1P, 1EfT, 1ET

Ours 1G1, 1G2,

1GT
1G1, 1G2 1H2, 1E2,

1Ef1, 2Ef2

1H2, 1E2, 1Ef1,

1Ef2, 1EfT

2Ef1, 3Ef2, 2Pb

{G1,G2,GT} element size in {G1,G2,GT }, respectively, h output size of hash function, p group order, H2
map-to-point hash into G2, {E2,ET} exponentiation in {G2,GT }, {Ef1,Ef2,EfT} fixed-base exponentiation in
{G1,G2,GT }, respectively, P pairing
a Two parings can be optimized into about 1.2 pairing
b We borrow the CCA-secure variant of BB1 system from [16].

Table 3 Representation sizes and estimated calculation times for various algebraic operations

Curves / security
level

Representation sizes (bits) Relative timingsa

Zp G1 G2 GT G1 G2 GT

Ef E H Ef E H Ef E P Pr

SS / 80 160 512 512 1024 2 10 10 2 10 10 2 10 100 120

MNT / 80 160 171 1026 1026 0.2 1 1 8 40 40 2 10 100 120

MNT / 128 256 512 3072 3072 3 15 15 100 500 500 30 150 1500 1800

Ef fix-base exponentiation, E general exponentiation, H map-to-point hashing, P pairing, Pr a ratio of two
pairings
a The time unit is defined as the cost of a general exponentiation (i.e., point multiplication) on a randomMNT
curve at the 80-bit security level

security loss arises at reduction. In contrast to the BF, SK, and BB1 systems, AFG+,CorFO

and our systems have tight security reductions to the asymmetric DBDH assumption and
thus we can say that the latter IBE systems are as secure as the hardness of the asymmetric
DBDH assumption. We notice that security of all the compared IBE systems above is proven
in the random oracle model.

Table 2 presents an efficiency comparison between the previous IBE systems and ours,
considering the space overheads of the various data types and the number of group operations.
To give more detailed comparison based on the security loss, we employ Boyen’s work [16]
that investigates relatively estimated calculation times for various operations and represen-
tation sizes for group elements. Table 3 shows the values when considering SS curves at the
80-bit security level and MNT curves at security levels 80 and 128. Especially, following
[16], we consider that a ratio of two pairings can be optimized into about 1.2 pairing in all
the three cases. We focus on the 80-bit security as a desired security level of IBE system. As
mentioned above, BF, SK, and BB1 systems all have concrete security loss of at least 250,
so that they must have a larger system security parameter than 80 bits. Obviously, it will be
unfair to straightforwardly compare ours with the three systems at the same security level.
As a warm-up case, however, we give an efficiency comparison when considering supersin-
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Table 4 Estimated calculation times for CCA-secure IBE systems at 80-bit security level (not considering
security loss)

Curves / k Overheads (bits) Relative timingsa

PP CTb KGen Enc Dec

BF SS/80 1024 672 20 114 102

BB1 SS/80 2560 1184 4 8 204 (124b)

SK SS/80 2048 672 2 6 104

AFG+ SS/80 1024 832 20 224 204

CorFO SS/80 2048 1696 22 116 114

Ours SS/80 2048 1024 26 26 210 (130c)

k security parameter (or security level)
a The time unit is defined as the cost of a general exponentiation (i.e., point multiplication) on a randomMNT
curve at the 80-bit security level
b Only KEM part is considered and the output size of hash function is calculated as 160 bits
c Obtained when a ratio of two pairings is calculated as 1.2 pairing

gular (SS) curves at the 80-bit security level. Table 4 shows the comparison result, which
demonstrates that our system is comparable to the other IBE systems in terms of all effi-
ciency respects even when not considering security losses caused by the security reductions.
In particular, compared to AFG+ and CorFO systems, ours has a remarkable advantage in
terms of encryption, which is about 8.6 times faster than AFG+ and about 4.5 times faster
than CorFO.

For a fairer comparison, we try to compensate for such security losses by boosting the
security parameter of the underlying assumptions. There is no general rule of such compen-
sation, but we might be able to use conjectures that were made by Bellare and Rogaway [7]
for advantage functions of various block ciphers. For instance, the advantage of DES with
128-bit keys was conjectured as (roughly speaking) AdvCPAAES ≤ c/2128 for some constant c.
A similar approach can be made for advantages of IBE systems, so that we want to make
AdvCCAIBE,A ≤ c/280 at the 80-bit security level. In that case, Eq. 6 tells us that we have tomake

AdvAssumption
B ≤ c/2130 when considering that the security loss is bounded under 250. For

simplicity, we assume that the reduction bounds in both BF and SK systems are 250 (although
they are much larger than it). Under these assumptions, the actual security parameter must
be of 130 bits in size (approximately) to gain the real system security of an IBE system at
the desired 80-bit security level. To accomplish this, we consider that the BF, BB1, and SK
systems are instantiated in MNT curves at the 128-bit security level, whereas AFG+,CorFO,
and ours are based on MNT curves at the 80-bit security level. Also, we assume that the
output length of all hash functions (except the MapToPoint hash) is 160 bits and the MapTo-
Point hash function necessary for BF, AFG+,CorFO, and ours maps an identity to a group
element in G2. Table 5 shows the comparison result between those CCA-secure IBE sys-
tems. Compared to BF, SK, and BB1 at the 128-bit security level, ours gives an advantage in
terms of decryption, because decryption in ours is at least 6 times faster than those systems.
Compared to AFG+ and CorFO systems at the 80-bit security level, our IBE system provides
at least about 1.6 times faster encryption than the others. However, AFG+ system gives at
least about 2.4 times shorter size of ciphertext (considering only KEM part) than CorFO and
ours, and CorFO system provides at least about 1.8 times faster decryption than AFG+ and
ours (when a ratio of two pairings is considered as 2 pairings). It is therefore unclear which
of the (asymmetric) DBDH-based IBE systems with tight security reduction must be chosen
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Table 5 Estimated calculation times for CCA-secure IBE systems at corrected 80-bit security level

Curves / k Overheads (bits) Relative timingsa

PP CTb KGen Enc Dec

BF MNT/128 1024 768 1000 2006 1503

BB1 MNT/128 4608 1280 200 39 3033 (1833c)

SK MNT/128 4096 768 100 36 1506

AFG+ MNT/80 342 491 80 280.4 200.4

CorFO MNT/80 1368 1357 88 142.4 112.2

Ours MNT/80 2223 1197 96.2 90.2 224.4 (144.4c)

k security parameter (or security level)
a The time unit is defined as the cost of a general exponentiation (i.e., point multiplication) on a randomMNT
curve at the 80-bit security level
b Only KEM part is considered and the output size of hash function is calculated as 160 bits
c Obtained when a ratio of two pairings is calculated as 1.2 pairing

in general. It depends on the context of which efficiency factor out of encryption, decryption,
and ciphertext size is taken into account significantly.

6 Discussion

6.1 On extension for hierarchical IBE system

In a hierarchical IBE (HIBE) system [31,35], a user’s identity ID can be hierarchically
scalable by delegating a private key skID to lower-level identities. For instance, a user with
identity ID1 can generate a private key skID′ for a lower-level identity ID′ = (ID1, ID2) using
its own private key skID1 . The reverse of key generation (i.e., from lower level to upper level)
is not possible. This is called the ‘delegation mechanism’. Using it, an HIBE system can be
used for several applications including forward-secure encryption [18] and conversion for
public key broadcast encryption [26]. In a security analysis for HIBE, an adversary is given
the capability to request either private keys generated by a key generation center or ones
delegated from upper-level identities of its choice.

One may wonder if our IBE system can be extended for supporting hierarchical identities.
As far aswe know, the answer is no. Since the private key structure of our systemhas similarity
to that of Waters’ tag-based dual system encryption [47], it may seem possible that a similar
extensionmethod can be applied to ours.However, the problemoccurs because of the ‘locked’
tag values associatedwith upper-level identities. In the security analysis of the resultingHIBE
system, an adversary requests a private key for an identity ID = (ID1, . . . , ID	). In order
to generate a private key skID, we have to use one of the hidden values8 that are embedded
into {Hi (IDi )} for i = 1, . . . , 	. Assume we use a hidden value in Hk(IDk) for k ≤ 	. In
that case, the tag values corresponding to j for j < k are chosen at random and mapped
to H2-query outputs in an appropriate sense. However, those random tag values are locked
and cannot be changed into other different values. The adversary can still query private keys
for upper-level identities, e.g., ID′ = (ID1, . . . , IDk−1), in which skID′ should be generated
using those locked tags. Unfortunately, such a private key cannot be generated. One solution

8 Those are γi values that appear in the Hlist
1 in the proof of Theorems 1 and 2.
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would be to use hidden values for each level of hierarchy, but instead it can reveal all hidden
tag values that must be secretly reserved for challenge ciphertext. We leave it as an open
problem to build a hierarchical version from our IBE system.
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