
Des. Codes Cryptogr. (2015) 77:61–98
DOI 10.1007/s10623-014-9986-9

Verifiably encrypted signatures with short keys based
on the decisional linear problem and obfuscation
for encrypted VES

Ryo Nishimaki · Keita Xagawa

Received: 24 September 2013 / Revised: 12 May 2014 / Accepted: 25 May 2014 /
Published online: 24 June 2014
© Springer Science+Business Media New York 2014

Abstract Verifiably encrypted signatures (VES) are encrypted signatures under a public
key of a trusted third party. We can verify their validity without decryption. VES has use-
ful applications such as online contract signing and optimistic fair exchange. We propose a
VES scheme that is secure under the decisional linear (DLIN) assumption in the standard
model. We also propose new obfuscators for encrypted signatures (ES) and encrypted VES
(EVES) that are secure under the DLIN assumption. All previous VES schemes in the stan-
dard model are either secure under standard assumptions (such as the computational Diffie–
Hellman assumption) with large verification (or secret) keys or secure under non-standard
dynamic q-type assumptions (such as the q-strong Diffie–Hellman extraction assumption)
with short verification keys. Our scheme is the first VES scheme with short verification (and
secret) keys secure under the DLIN assumption (standard assumption). We construct new
obfuscators for ES/EVES as byproducts of our new VES scheme. They are more efficient
than previous obfuscators with respect to public key size. Previous obfuscators for EVES
are secure under non-standard assumption and use zero-knowledge (ZK) proof systems and
Fiat–Shamir heuristics to obtain non-interactive ZK, i.e., its security is considered in the
random oracle model. Thus, our scheme also has an advantage with respect to assumptions
and the security model. Our new obfuscator for ES is obtained from our new obfuscator for
EVES.

Communicated by C. Padro.

An extended abstract of this paper appeared in Public-Key Cryptography—PKC 2013—16th International
Conference on Practice and Theory in Public-Key Cryptography, LNCS 7778, pp 405–422. This is the full
version.

R. Nishimaki (B) · K. Xagawa
3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
e-mail: nishimaki.ryo@lab.ntt.co.jp

K. Xagawa
e-mail: xagawa.keita@lab.ntt.co.jp

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-014-9986-9&domain=pdf

62 R. Nishimaki, K. Xagawa

Keywords Verifiably encrypted signature · Obfuscation · Encrypted verifiably encrypted
signature · Decisional linear assumption

Mathematics Subject Classification 94A60 Cryptography

1 Introduction

1.1 Background

In verifiably encrypted signature (VES) schemes, we consider signers, verifiers, and a trusted
third party, called the adjudicator. A signer generates a signature, encrypts it under the public
key of the adjudicator, and adds extra content to make it verifiable without decryption. The
adjudicator can recover ordinary signatures from encrypted ones by using its decryption key.

The concept of VES was introduced by Boneh et al. [12], who proposed the first VES
scheme based on the Boneh-Lynn-Shacham signature scheme in the random oracle model
(ROM) [10]. VES schemes have useful and important applications such as online contract
signing and optimistic fair exchange [2,3]. Suppose a user, Alice, wants to buy digital goods
from a company online. Alice gives the company her VES for a contract instead of paying
money and the company returns the requested digital goods if it received a valid VES. Alice
sends an ordinary signature to the company if she receives the goods. If a malicious company
does not return the requested goods when it receives the VES, Alice can claim that the VES is
of no use for the contract since it is encrypted. If malicious Alice does not return an ordinary
signature when she receives the goods, the company sends the encrypted signature together
with the transcript to the adjudicator and the adjudicator extracts an ordinary signature from
the VES by using the secret key of the adjudicator and returns it to the company. The adju-
dicator is offline, that is, it should be active only when malicious Alice cheats the company.
Fuchsbauer used a certain kind of VES to construct delegatable anonymous credentials [30].
Anonymous credentials are useful for access control [5]. In some systemswith access control,
users must prove having the required credentials issued by an authority to use the system.
The authority may want to delegate its right to other entities to avoid centralization of power.

Lu et al. [45] proposed a VES scheme that is secure under the computational Diffie–
Hellman (CDH) assumption in the standard model, but the verification key is quite long.
Rückert and Schröder [48] proposed a VES scheme with short verification keys, but its
security relies on a non-standard q-type assumption, called the q-strong Diffie–Hellman
(q-SDH) extraction assumption. They did not prove its hardness in the generic group model
[50]. Thus, there is noVES scheme that achieves a constant size verification key and signature
based on standard assumptions.

Program obfuscation and encrypted signature/VES. An Encrypted VES (EVES) is an exten-
sion of an encrypted signature (ES) proposed by Hada [41]. The ES/EVES functionalities
output an encryption of a signature/VES. They do not encrypt messages, but can be used
as building blocks of signcryption functionalities, as pointed out by Hada [41]. In order to
show this application, Hada proposed the notion of Encrypted-Signature-then-Encryption
(EStE). In it, we first compute a signature for a message, then encrypt the signature. Finally,
we encrypt both the message and the encrypted signature. The combination of the first and
second steps is the ES functionality, so Hada claims that the ES functionality is useful for
signcryption although the situation is somewhat different (In EStE, a signature is doubly
encrypted).

123

Verifiably encrypted signatures with short keys 63

We explain how to use obfuscators (explained below) for ES/EVES functionalities in a
realistic scenario in this paragraph. If Alice uses freeweb-mail services to sendmail to Bob on
low computational power devices, such as smart-phones, and her web browsers do not have
enough resources to sign messages and encrypt them with Bob’s public key, then she would
want web-mail providers to carry out its process instead of her. However, she does not want
to reveal her signing key. The obfuscation for ES/EVES will provide a solution. A program
obfuscator is an algorithm that transforms a program into a completely unintelligible program
whose functionality is the same as the original one [4,40]. Informally speaking, obfuscators
should guarantee that what is efficiently computed given an obfuscated program is nothing
more than what is computed given black-box access to the original program. This means
that no adversary can obtain non-trivial information about the original program. If Alice
provides an obfuscated program for ES/EVES functionality, then she can securely delegate
her signing capability to web-mail providers. Moreover, in a situation in which president
Alice is on vacation wants to have vice president Carol sign contracts for Bob (only Alice to
Bob) instead of her, Alice can provide Carol an obfuscated program for EVES functionality.
In this scenario, Carol cannot obtain any information about the secret key of Alice due to
the property of obfuscation. This is a strong motivation of obfuscation for the ES/EVES
functionalities.

In Hada’s obfuscator for an ES, if a malicious party has access to Bob’s decryption key,
then Alice’s signing key is extracted from the obfuscated program [41]. However, in our
obfuscator for an EVES, even such a malicious party cannot extract Alice’s key due to the
existence of the adjudicator’s key. Thus, obfuscators for an EVES have useful applications.

The problem of program obfuscation is very attractive in the area of cryptology from
both the theoretical and practical points of view since program obfuscators completely hide
non-trivial information encoded into programs (for example, signing keys of signature/VES)
and have many cryptographic applications as pointed out in [4]. A few positive results are
shown for cryptographic functionalities [22,41–43].

Unfortunately, in the seminal work by Barak et al. [4], they showed the impossibility
result for general-purpose obfuscation. Many other impossibility results have been shown in
various settings [6,21,38–40,42,54]. There are a few positive results for very simple func-
tionalities, such as point functions [16–19,46,54], proximity testing [27], testing hyperplane
membership [20]. In order to sidestep broad impossibility results, Hohenberger et al. [43]
and Hofheinz et al. [42] independently proposed a new definition of secure obfuscation
for cryptographic purposes, average-case secure obfuscation of randomized functionalities.
Moreover, Hohenberger et al. [43] proposed the first (average-case secure) obfuscator for
a complicated cryptographic functionality, re-encryption functionality and Chandran et al.
[22] proposed an obfuscator for functional re-encryption functionality.

Hada [41] proposed a secure obfuscator for an ES functionality and its application to
signcryption. His scheme is secure under the decisional linear (DLIN) assumption in the
standardmodel, but the verification key size is quite large. Cheng et al. [23] proposed a secure
obfuscator for an EVES functionality at ProvSec’11. Their VES scheme and obfuscator for
EVES use zero-knowledge (ZK) proofs and Fiat–Shamir heuristics to crash the ZK proofs
into non-interactive zero-knowledge (NIZK) proofs. That is, their scheme and obfuscator
are secure in the ROM. Furthermore, they used a non-standard assumption, called exponent
3-weak DH assumption, to prove the unforgeability of their scheme and did not prove the
opacity (explained in the next section), which is required for secure VES schemes, of their
scheme.

In general, obfuscators for ES/EVES can be obtained from fully homomorphic encryp-
tion (FHE) schemes [33]. However, current FHE schemes are still inefficient, though many

123

64 R. Nishimaki, K. Xagawa

Table 1 Summary of previous schemes and ours for VES

Reference Key size (vk/sk) VES size Assumptions ROM

BGLS [12] 1G/1Zp 2G CDH Yes

ZSS [55] 2G/2Zp 1G CDH Yes

LOSSW [44] O(λ)G(> 160G)/1Zp 3G CDH No

RS [48] 4G/2Zp 2G + 1Zp q-strong DH extraction No

This work 16G + 1GT /3G 12G + 2Zp DLIN No

Table 2 Summary of previous obfuscators for encrypted ES/EVES

Reference ES/EVES Key size (vk) ROM Assumptions

Hada [41] ES O(λ) No DLIN

CZZ [23] EVES O(λ) Yes DLIN + Exponent 3-weak DH

This work ES O(1) No DLIN

This work EVES O(1) No DLIN

improvements have been proposed [13–15,24,26,34–37,51]. Therefore we do not rely on
expensive FHE schemes but directly construct obfuscators for ES/EVES.

Very recently, Garg et al. [32] proposed an indistinguishability obfuscator for all
polynomial-sized circuits by using multilinear maps [31]. The notion of indistinguishability
obfuscation was proposed by Barak et al. [4] and is a weaker notion than the black-box obfus-
cation. Their construction is quite elegant, but it is a generic construction and uses multilinear
maps and an ad hoc non-standard assumption. Thus, their obfuscator is not efficient.

1.2 Our contributions and constructions

We propose a VES scheme based on the DLIN assumption in the standard model. The main
advantages over previous VES schemes are as follows.

1. It is secure under a standard (i.e., not q-type) assumption in the standard model.
2. The verification key and signature size are small (constant).

As a by-product of our VES scheme, we construct secure obfuscators for an ES/EVES
functionality based on the DLIN assumption in the standard model. Main advantages of our
obfuscators for an ES/EVES over previous obfuscators for an ES/EVES are as follows. They
are secure under the DLIN assumption in the standard model with short verification keys.

Comparison and related work. Comparisons of our results with previous results of VES
schemes and obfuscators for a ES/EVES are shown in Tables 1 and 2, respectively. Let
λ denote the security parameter. The CDH assumption stands for the CDH assumption in
bilinear groups. There has been no VES scheme and obfuscator for ES/EVES that are secure
under standard assumptions in the standard model with short verification keys prior to ours.
TheVES scheme byLu et al. requires a large verification key but its signature size is small and
its security is based on a standard CDH assumption, so onemay believe that the scheme of Lu
et al. is better than ours in terms of signature size. However, we believe it is incomparable with
our new scheme and we showed a tradeoff between the verification key size and signature
size. Rückert proposed a VES scheme based on the full-domain hash RSA signature, but it is

123

Verifiably encrypted signatures with short keys 65

secure in the ROM [47]. Rückert et al. [49] proposed generic constructions for a VESwithout
NIZKs, pairings, and ROM. Their construction is very insightful, but their schemes use an
extra adjudication setup phase and Merkle trees, so they need to set-up large parameters and
have large keys (non-constant size).

Our construction technique. Loosely speaking, a VES scheme consists of a signature scheme
and an encryption scheme as Lu et al. and Rückert and Schröder stated [45,48]. We use
Waters’ signature scheme presented at CRYPTO’09 [53] as an underlying signature scheme.
We call it Waters’ dual signature in this paper to distinguish it from Waters’ signature at
Eurocrypt’05 [52]. Someone may believe that a combination of Waters’ dual signature and
ElGamal encryption easily yields a secure VES scheme under the DLIN assumption, but
this is not the case. The reason is as follows. We can prove unforgeability of a VES scheme
by relying on the unforgeability of the underlying signature scheme as in previous schemes
[12,45,48], but the opacity is non-trivial. The opacity means that it is difficult to extract
an ordinary signature from a VES, i.e., decrypt a VES. Moreover, it is highly non-trivial
whether we can prove opacity from standard assumptions. The reason is as follows. The VES
scheme of Lu et al. is a combination of Waters’ signature (Eurocrypt’05) [52] and ElGamal
encryption scheme, and they proved its opacity from the aggregate extraction assumption [12]
(fortunately, it is equivalent to the CDH assumption [25]). On the other hand, theVES scheme
ofRückert andSchröder [48] is a combination of theBoneh–Boyen signature [7] andElGamal
encryption schemes, but they proved its opacity from the q-strong DH extraction assumption,
which is a stronger assumption than that of the underlying Boneh–Boyen signature scheme.

Our construction is a combination of Waters’ dual signature and ElGamal encryption
schemes. We encrypt only signature elements related to signing keys. The security proof
of Waters’ dual signature is somewhat different from that of many known secure signature
schemes, such as Boneh–Boyen [7], and Waters [52], so we must use a somewhat different
proof strategy from that of Lu et al. and Rückert and Schröder. Waters’ dual signature has
two types of signatures, standard signature (Type A) and semi-functional signature (Type
B). Semi-functional signatures also pass the verification algorithm as standard ones and are
indistinguishable from them [53]. We extend the proof strategy of this dual form signature
technique to prove opacity. First, we use Type B signatures as normal signatures generated by
a normal signing algorithm and Type A signatures are used for simulation. Both Type A and
B signatures are valid signatures and there is no essential difference in terms of functionality
as long as a normal verification algorithm is used. We use this swapping of roles since we
do not know how to prove that an adversary cannot extract a valid Type A signature from a
given VES when the oracle answers Type A signatures.

In the experiment of the opacity explained in Sect. 2.4, an adversary can output a signature
and message pair such that the message is queried to an oracle which returns a VES for the
queried message. This causes the main difficulty in proving the opacity since the adversary
may output a re-randomized signature obtained using valid signatures from oracles. Unfor-
tunately, Waters’ dual signature is re-randomizable. Thus, we modify Waters’ dual signature
scheme and make it strongly unforgeable. Strong unforgeability guarantees that an adversary
cannot output a forgery even for a queried message, so it must hold that if the adversary
output valid signature for a queried message in the experiment of opacity, then the signature
is identical to the signature generated by the VES creation oracle (otherwise, contradict to
strong unforgeability). This fact can be used to prove the opacity of our scheme.

In the proof of opacity, we must simulate two oracles. One is the creation oracle, which
answers VESs for queried messages. The other is the adjudication oracle, which extracts
ordinary signatures from queried messages and VESs and returns them. When we answer

123

66 R. Nishimaki, K. Xagawa

only the encryption of Type B signature for VES creation queries of the adversary, we can
prove that the adversary cannot extract Type B signature from a VES under the aggregate
extraction assumption. This is why we swap the roles of Type A signatures for that of Type
B signatures. We have no way to prove that when we answer only the encryption of a Type
A signature for VES creation queries of an adversary, the adversary cannot extract a Type A
signature from a VES.

Thus, we can prove that no adversary can output a valid signature for a queried message
to the VES creation oracle. For non-queried messages, we can use the proof technique for
the unforgeability of dual form signatures. We prove that no adversary can output a Type A
signature when the oracle returns Type B signatures (VESs).

Next, we change the type of signatures used to generate VESs, which are answered by the
VES creation oracle. Answers from the adjudication oracle depend on the type of the VES
creation oracle. Thus, we prove that the view of the adversary is indistinguishable even if the
type of each answer is changed from Type B to Type A for each query. This order of change
is reverse to the original proof, but it is not a major difference. Finally, we prove that no
adversary can output a Type B signature when the oracle returns Type A signatures (VESs).

Secure obfuscations for ES and EVES based on Waters’ dual signature scheme are also
non-trivial because the signing keys of this scheme consist ofmultiple group elements, and the
signing algorithm computes exponentiation of the signing keys with randomness in contrast
toWaters’ signature presented at Eurocrypt’05, whose signing key is only one group element
and signing algorithm only multiplies it by other group elements [52]. We overcome this
hurdle by using the homomorphic property of the ElGamal and linear encryption schemes
[9]. Cheng et al. use the linear encryption scheme for not only encryption of a VES but also
the construction of the VES, so their VES scheme cannot check the validity of ciphertext
by using only the pairing technique and they need (NI)ZK. We do not need (NI)ZK because
our VES scheme uses the ElGamal encryption scheme and can verify the validity of VES by
using only pairings.

2 Preliminaries

Notations and conventions. For any n ∈ N\{0}, let [n] be the set {1, . . . , n}. When D is

a random variable or distribution, y
R← D denotes that y is randomly selected from D

according to its distribution. If S is a set, then x
U← S denotes that x is uniformly selected

from S. We denote y is a set, defined or substituted by z by y := z. When b is a fixed value,
A(x) → b (e.g., A(x) → 1) denotes the event in which machine (or algorithm) A outputs
b on input x . We say that positive function f : N → R is negligible in λ ∈ N if for every
constant c ∈ N there exists kc ∈ N such that f (λ) < λ−c for any λ > kc. Let X = {Xλ}λ∈N
and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by λ.

Definition 1 We say that X and Y are computationally indistinguishable if for every non-
uniform probabilistic polynomial-time (PPT) algorithm D,

|Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]|

is negligible in λ.

We write X c≈ Y to denote that X and Y are computationally indistinguishable.

123

Verifiably encrypted signatures with short keys 67

2.1 Cryptographic bilinear maps (or pairings)

We consider cyclic groupsG andGT of prime order p. A bilinear map is an efficient mapping
e : G × G → GT satisfying the following properties:

bilinearity: For all g ∈ G and a, b
U← Zp , e(ga, gb) = e(g, g)ab.

non-degeneracy: If g generates G, then e(g, g) �= 1.

Let Gbmp be a standard parameter generation algorithm that takes security parameter λ as

input and outputs parameters (p,G,GT , e, g). That is, Γ := (p,G,GT , e, g)
R← Gbmp(1λ)

and Γ is a description of groups G and GT of prime order p equipped with efficient bilinear
map e : G × G → GT . Here, g is a generator in G. We often omit common parameters Γ .

2.2 Complexity assumptions

We review several complexity assumptions that are used to prove the security of cryptographic
primitives.

Definition 2 (Discrete Logarithm (DL) assumption) The DL problem in bilinear groups is

to compute x , given Γ := (p,G,GT , e, g)
R← Gbmp(1λ) and gx for x

U← Zp . The advantage
is defined as follows.

AdvdlA(λ) := Pr[z = x | Γ
R← Gbmp(1

λ); x U← Zp; z R← A(Γ, gx)].
We say that the DL assumption holds in bilinear groups if the DL problem in bilinear groups
is hard, that is, for any PPT A, AdvdlA(λ) is negligible in λ.

Definition 3 (CDH assumption) The CDH problem in bilinear groups is to compute gxy ,

given Γ := (p,G,GT , e, g)
R← Gbmp(1λ) and (gx , gy) for x, y

U← Zp . The advantage is
defined as follows.

AdvcdhA (λ) := Pr[z = gxy | Γ
R← Gbmp(1

λ); x, y U← Zp; z R← A(Γ, gx , gy)].
We say that the CDH assumption holds in bilinear groups if the CDH problem in bilinear
groups is hard, that is, for any PPT A, AdvcdhA (λ) is negligible in λ.

Definition 4 (DLINassumption) TheDLINproblem in bilinear groups is to guessβ ∈ {0, 1},
given (Γ, g, f, ν, gx , f y, Qβ)

R← Gdlin
β (1λ), where Gdlin

β (1λ): Γ := (p,G,GT , e, g)
R←

Gbmp(1λ), f, ν
U← G, x, y

U← Zp , Q0 := νx+y , Q1
U← G, return (Γ, g, f, ν, gx , f y, Qβ).

The advantage is defined as follows.

AdvdlinA (λ) :=
∣
∣
∣Pr

[

A(I) → 1 | I R← Gdlin
0 (1λ)

]

− Pr
[

A(I) → 1 | I R← Gdlin
1 (1λ)

]∣
∣
∣ .

We say that the DLIN assumption holds if the DLIN problem is hard, that is, for any PPTA,
AdvdlinA (λ) is negligible in λ.

Definition 5 (Aggregate Extraction (AgExt) assumption) The AgExt problem in bilinear

groups is to compute gxy , given Γ := (p,G,GT , e, g)
R← Gbmp(1λ) and (gx , gy, gβ, gδ,

gxy+βδ) for x, y, β, δ
U← Zp [12,25]. The advantage is defined as follows.

AdvagextA (λ) := Pr

[

z = gxy

∣
∣
∣
∣
∣

Γ
R← Gbmp(1λ); x, y, β, δ

U← Zp;
z

R← A(Γ, gx , gy, gβ, gδ, gxy+βδ)

]

.

123

68 R. Nishimaki, K. Xagawa

We say that the AgExt assumption holds in bilinear groups if the AgExt problem in bilinear
groups is hard, that is, for any PPT A, AdvagextA (λ) is negligible in λ.

The AgExt assumption is equivalent to the CDH assumption, which is implied by the DLIN
assumption.

Theorem 1 (The CDH and AgExt are equivalent [25]) The AgExt and CDH problems are
Karp reducible to each other with O(1) computation.

2.3 Cryptographic primitives

Signature. Signature schemeSIG consists of three PPT algorithmsSIG = SIG.{Gen,Sign,

Vrfy} satisfying the following properties.

Key Generation: SIG.Gen takes as input security parameter 1λ and outputs a pair of keys,

that is, (vk, sk)
R← SIG.Gen(1λ). They are called the (public) verification key and the

(private) signing key, respectively.
Sign: SIG.Sign takes as input a signing key and a message and outputs signature σ . That is,

σ
R← SIG.Sign(sk,m), where m ∈ Mvk and Mvk is a message space defined by the

verification key.
Verification: SIG.Vrfy is deterministic, takes as input a verification key, a message, and a

signature, and outputs bit b. If b = 1, then the signature is valid. Else, it is invalid. That
is, SIG.Vrfy(vk, σ,m) → b.

It is required that ∀λ ∀(vk, sk)
R← SIG.Gen(1λ) ∀m ∈ Mvk SIG.Vrfy(vk,SIG.Sign(sk,

m),m) → 1. Signature scheme SIG = SIG.{Gen,Sign,Vrfy} is said to be existentially
unforgeable under adaptive chosen message attacks (EUF-CMA) if the advantage of the
following game is negligible.

1. Setup: A challenger generates (vk, sk)
R← SIG.Gen(1λ) and sends vk to an adversary.

2. Queries: The adversary sends message Mi ∈ Mvk to the challenger and answers σi
R←

SIG.Sign(sk, Mi). These queries are sent adaptively for i = 1 to n. Let Q be the set of
messages M1, . . . , Mk ∈ Mvk queried by the adversary.

3. Output: The adversary outputs (m∗, σ ∗). If it holds that SIG.Vrfy(vk, σ ∗,m∗) → 1 and
m∗ /∈ Q, then it is said that the adversary wins the game.

We define Adveuf-cma
A (λ) to be the probability that an adversary A wins in the game.

Definition 6 (Existentially Unforgeable against Adaptive Chosen Message Attacks) Signa-
ture scheme SIG is existentially unforgeable against adaptive chosen message attacks if for
any PPT A, Adveuf-cma

A (λ) is negligible in λ.

In the game of EUF-CMA, if we replace conditionm∗ /∈ Q with (m∗, σ ∗) �= (Mi , σi) for
any i , then we say that the security is strongly existentially unforgeable (sEUF). We define
Advseuf-cma

A (λ) to be the probability that A wins in the modified game.

Public key encryption. A public key encryption (PKE) scheme consists of three PPT algo-
rithms PKE.{Gen,Enc,Dec} satisfying the following properties.

KeyGeneration:PKE.Gen takes as input security parameter 1λ andoutputs a pair of keys, that

is, (pk, sk)
R← PKE.Gen(1λ). They are called the public key and secret (decryption)

key, respectively.

123

Verifiably encrypted signatures with short keys 69

Encryption: PKE.Enc takes as input pk and plaintext m and outputs ciphertext c. That is,

c
R← PKE.Enc(pk,m). If we express that we explicitly use randomness r , then we use

notation c := Enc(pk,m; r).
Decryption: PKE.Dec is deterministic, takes as input sk and c, and outputs plaintext m′.

That is, m′ := PKE.Dec(sk, c).

It is required ∀λ ∀(pk, sk)
R← PKE.Gen(1λ) ∀m m = PKE.Dec(sk,PKE.Enc(pk,m)).

We present indistinguishability against chosen plaintext attacks (IND-CPA), that is the
basic security of PKE.

Definition 7 (IND-CPA security) The model for proving the IND-CPA security of PKE
against A is given as follows.

1. PKE.Gen is run with input 1λ to generate keys pk and sk, and pk is given to A.
2. A outputs challenge plaintexts (m0,m1) such that |m0| = |m1|.
3. Uniformly random bit b is chosen. A is given c∗ R← Enc(pk,mb).
4. A outputs a bit b′ and wins if b′ = b.

The advantage ofA in the above game is defined as Advind-cpaA (λ) := ∣
∣2 Pr[b′ = b] − 1

∣
∣ for

any security parameter λ. A PKE scheme is IND-CPA secure if for any PPT adversary A, it
holds that Advind-cpaA (λ) is negligible in λ.

Collision resistant hash functions (CRHF). Let H := {Hk} be a keyed hash family of func-
tions Hk : {0, 1}∗ → {0, 1}n indexed by k ∈ Kλ where λ is a security parameter.

Definition 8 We say that H is (t, ε)-collision-resistant if for any A running in time t , we

have that AdvcrhfA,H(λ) := Pr[m0 �= m1 ∧ Hk(m0) = Hk(m1) | (m0,m1)
R← A(k)] < ε,

where the probability is over the random choice of k ∈ Kλ and random coins of A.

2.4 Verifiably encrypted signature (VES)

A VES scheme consists of seven PPT algorithms, {AdjGen,Gen,Sign,Vrfy,Create,

VesVrfy,Adj}, satisfying the following properties.

Adjudicator Key Generation: AdjGen takes as input security parameter 1λ and outputs a pair

of keys for an adjudicator, that is, (apk, ask)
R← AdjGen(1λ).

Key Generation: Gen takes as input 1λ and outputs a pair of keys for a signer, that is,

(vk, sk)
R← Gen(1λ). They are called the verification key and the signing key, respec-

tively.
Signing: Sign takes as input a signing key and a message and outputs signature σ . That is,

σ
R← Sign(sk, M), where M ∈ Mvk and Mvk is a message space defined by vk.

Verification: Vrfy is deterministic, takes as input vk, M , and σ , and outputs bit b. If b = 1
then the signature is valid. Else, it is invalid. That is, Vrfy(vk, σ,m) → b.

VES Creation: Create takes as input sk, apk, and M and outputs VES ω on M . That is,

ω
R← Create(sk, apk, M).

VES Verification: VesVrfy is deterministic, takes as input apk, vk, ω, and M , and outputs
bit b, that is, VesVrfy(apk, vk, ω, M) → b.

Adjudication: Adj takes as input ask, apk, vk, ω, and M . If ω is valid, it extracts an plain

signature σ on M and returns σ , that is σ
R← Adj(ask, apk, vk, ω, M) ifVesVrfy(apk,

vk, ω, M) → 1.

123

70 R. Nishimaki, K. Xagawa

It is required that ∀λ ∀(apk, ask)
R← AdjGen(1λ) ∀(vk, sk)

R← Gen(1λ) ∀m ∈ Mvk

VesVrfy(apk, pk,Create(sk, apk, M), M) → 1 and Vrfy(vk,Adj(ask, apk, vk,Create
(sk, apk, M), M), M) → 1.

A VES scheme is secure if it satisfies the unforgeability and the opacity [12]. In exper-
iments defined below, oracle CO(sk, apk, ·) returns VESs for queried messages, oracle
AO(ask, apk, vk, ·, ·) extracts and returns signature for queried message/VES pairs, and
QC and QA are sets of messages queried by the adversary to CO and AO, respectively.

Definition 9 (Unforgeability) Experiments ForgevesA (λ) is defined as follows.

Experiment ForgevesA (λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, ω∗) R← ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff VesVrfy(apk, vk, ω∗, M∗) → 1 and M∗ /∈ QC and M∗ /∈ QA.

We say that a VES scheme is unforgeable if for any PPT adversary A, Advves-ufA (λ) :=
Pr[ForgevesA (λ) → 1] is negligible in λ.

Definition 10 (Opacity) Experiment OpacA(λ) is defined as follows.

Experiment OpacA(λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, σ ∗) R← ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff Vrfy(vk, σ ∗, M∗) → 1 and M∗ /∈ QA.

We say that a VES scheme is opaque if for any PPTA, AdvopacA (λ) := Pr[OpacA(λ) → 1]
is negligible in λ.

More properties of VES. Rückert and Schröder [48] proposed several properties of a VES to
achieve a modular analysis for it. Rückert and Schröder [48,49] defined key-independence
and extractability of a VES to prove its unforgeability and collusion-resistance. Key-
independence means that a VES creation algorithm consists of a signature generation part
and a transformation (into a VES) part and they are independent. Extractability means that
if VES ω is valid, then the adjudicator can extract a valid (ordinary) signature σ except with
negligible probability. Collusion-resistance means that no adversary can forge a VES even
if the adjudicator is corrupted, i.e., the adversary obtains the secret decryption key of the
adjudicator. Formal definitions are as follows.

Definition 11 (Key-Independence of VES [48]) Let a signer’s private key sk consist of two
independent elements sk = (kisk, ssk) and let vk = (kivk, svk) be the corresponding
verification keypair.AVES scheme is key-independent if there exists an efficient (encryption)
algorithm KIEnc such that the distribution of KIEnc(apk, kivk, kisk,Sign(ssk, M), M) is
perfectly indistinguishable from that of Create(sk, apk, M) for all M ∈ Mvk .

Definition 12 (Extractability of VES [48]) Experiment ExtractvesA is as follows.

123

Verifiably encrypted signatures with short keys 71

Experiment ExtractvesA (λ)

(apk, ask)
R← AdjGen(1λ);

(M∗, ω∗, vk∗) R← AAO(ask,apk,vk,·,·)(apk);
σ ∗ R← Adj(ask, apk, vk∗, ω∗, M∗);
Return 1 iff VesVrfy(apk, vk, ω∗, M∗) → 1 and Vrfy(vk∗, σ ∗, M∗) → 0.

A VES scheme is extractable if for any PPT A, Pr[ExtractvesA (λ) → 1] is negligible in λ.

Definition 13 (Collusion-Resistance [48,49]) Experiment CollusionvesA is as follows.

Experiment CollusionvesA (λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, ω∗) R← ACO(sk,apk,·)(apk, ask, vk);
Return 1 iff VesVrfy(apk, vk, ω∗, M∗) → 1 and M∗ /∈ QC.

AVES scheme is collusion-resistant if for any PPTA, Pr[CollusionvesA (λ) → 1] is negligible
in λ.

Rückert and Schröder [48] called this notion “abuse-freeness”, but later Rückert, Schneider,
and Schröder [49] renamed it “collusion-resistance” to avoid confusion. If A is allowed to
select the public key in the above game, then we call it strong collusion-resistance.

Rückert and Schröder showed the following theorems.

Theorem 2 ([48]) Let a VES scheme be an extractable and key-independent verifiably
encrypted signature scheme. The VES scheme is unforgeable if and only if the underlying
signature scheme is unforgeable.

Theorem 3 ([48]) A key-independent, extractable, and secure VES scheme is collusion-
resistance if the underlying signature scheme is unforgeable.

In fact,we canprove strong collusion-resistance in the above theoremsince adversaries cannot
forge VESs due to the unforgeability of underlying signature schemes even if an adjudicator
public key is adversarially selected. Dodis, Lee, andYumconsider strong collusion-resistance
(though they did not use the name) to construct optimistic fair exchange protocols [28], thus
our VES scheme can be used to construct optimistic fair exchange protocols.

3 Strongly unforgeable Waters’ dual signature

In this section, we propose a strongly secure version of Waters’ dual signature scheme since
we use it as a building block of our VES scheme.

Waters’ dual signature scheme. We review a signature scheme proposed by Waters [53]
since we use it as an essential building block. However, we add a few minor changes to fit
the scheme to our VES scheme. We explain the differences between the original scheme and
ours.

123

72 R. Nishimaki, K. Xagawa

Wd.Gen(1λ, Γ): On input security parameter λ and Γ := (p,G,GT , e, g)
R← Gbmp(1λ)

(hereafter we often omit input 1λ), it selects generators v, v1, v2, w, u, h
U← G and

exponents a1, a2, b, α
U← Zp , computes τ1 := vv

a1
1 , τ2 := vv

a2
2 , and outputs

V K := (Γ, gb, ga1 , ga2 , gba1 , gba2 , v, v1, v2, τ1, τ2, τ
b
1 , τ b2 , w, u, h, e(g, g)αa1b)

SK := (V K , gα, gαa1 , ga1a2).

Wd.Sign(SK , M): On input message M ∈ Zp , it selects r1, r2, z1, z2, γ, stag
U← Zp , sets

r := r1 + r2, computes

σ0 := (uMwstagh)r1 σ1 := gαa1vr · g−a1a2γ σ2 := g−αvr1g
z1 · ga2γ

σ3 := (gb)−z1 σ4 := vr2g
z2 · ga1γ σ5 := (gb)−z2

σ6 := (gb)r2 σ7 := gr1 ,

and outputs sig := (σ0, σ1, . . . , σ7, stag).
Wd.Vrfy(V K , sig, M): On input V K , M , and sig, it outputs 1 if and only if it holds that

e(uMwstagh, σ7) = e(g, σ0)

e(gb, σ1) e(g
ba1 , σ2)e(g

a1 , σ3) = e(τ1, σ6) e(τ
b
1 , σ7)

e(gb, σ1) e(g
ba2 , σ4) e(g

a2 , σ5) = e(τ2, σ6) e(τ
b
2 , σ7) e(g, g)

αa1b.

The differences from the original scheme are as follows. In original Waters’ dual signature
scheme,

1. The verification equation is only one equation and probabilistic.
2. Values v, v1, v2 are included in secret keys.
3. Value ga1a2 is not included in the signing key.
4. The (normal) signing algorithm does not multiply g−a1a2γ , ga2γ , ga1γ in σ1, σ2, σ4,

respectively, that is, the signing algorithm outputs Type A signatures, as explained below.

First, note that there are two types of signatures in Waters’ dual signature scheme, type A
(if γ = 0) and Type B (if γ �= 0). Both types are valid signatures. The modified verification
equations were introduced by Abe et al. [1]. They proved that if a signature passes the
equations, then the signature is either Type A or B, so we use the modified equations.

The original verification equations use ciphertexts and the decryption procedure ofWaters’
dual encryption scheme, so it is probabilistic and has a semi-functional verification algorithm
that uses semi-functional ciphertexts [53]. Type A signatures are signatures with γ = 0
and pass both the normal and semi-functional verification equations. Type B signatures are
signatures with γ �= 0 and cannot pass the semi-functional verification equations.

As long as the verification equations are normal, both Type A and Type B signatures are
valid signatures and there is no essential difference. Thus, we use Type B signatures in the
normal signing algorithm.

Even if v, v1, v2 are disclosed, the adversary cannot compute vb2 (and semi-functional
ciphertexts of Waters’ dual system encryption [53]). Thus, we add (v, v1, v2) to the verifica-
tion key, which does not affect its security since gα and gαa1 (and vb2) are kept secret and are
essential secret signing keys. This was observed by Abe et al. [1].

For the slightly changed version above, the following theorem holds.

Theorem 4 ([53]) If the DLIN assumption holds, thenWdSig := Wd.{Gen,Sign,Vrfy} is
existentially unforgeable against adaptive chosen message attacks.

123

Verifiably encrypted signatures with short keys 73

Waters proposed the signature scheme at CRYPTO’09, but he presented only an outline
of the proof and did not write a full proof. We present a full proof for confirmation since we
slightly modified the scheme as explained above.

Proof There are two types of signature in Waters’ dual signature scheme [53].

Type A: γ = 0 for (σ0, σ1, . . . , σ7, stag)
R← Wd.Sign(SK , M).

Type B: γ �= 0. We can generate a Type B signature if we have the secret key and ga1a2 .

Both types of signatures pass the verification algorithm (we can check this by simple cal-
culation). Type B signatures correspond to semi-functional private keys of the dual system
encryption [53]. We can use the following lemma proved by Abe et al. in this proof.

Lemma 1 ([1]) Any signature that is accepted by the verification algorithm must be formed
either as a Type A or Type B signature.

To show that Waters’ dual signature scheme satisfies unforgeability, we introduce the fol-
lowing games.

1. We denote a game where the signing oracle answers Type A signatures for all signing
queries byGame-0. If adversaryA outputs a forgery of a Type B signature, then we can
construct algorithm B1 (simulator for A), which solves the DLIN problem (Lemma 2).
In this case, B1 generates a Type A signature for simulation of the signing oracle. Thus,
in the following games, we consider adversary A which outputs a forgery of a Type A
signature only.

2. We consider Game-i where the signing oracle returns a Type B signature for the first
i signing queries and Type A signature for the remaining q − i queries (i ∈ [q]). If
A detects the change (from Type A to Type B answer), we can construct algorithm B
(simulator for A) that solves the DLIN problem (Lemma 3). Thus, we can return a Type
B signature for all signing queries in Game-q .

3. Now, all answers for signing queries ofA are Type B signatures. We show thatA cannot
forge a Type A signature in this game (Game-q). If A outputs a forgery of a Type A
signature, then we can construct algorithm B2 that solves the CDH problem (Lemma 4).
Thus, if the DLIN assumption holds, the signature scheme is unforgeable (the CDH
assumption is implied by the DLIN assumption).

We can reverse the order of the game transitions, so we can use either type of signatures as a
signature generated by a normal signing algorithm. We denote AdvType-Ai as the advantage

of the adversary which outputs a Type A forgery in Game-i (similarly AdvType-Bi). It holds
that

Adveuf-cma
A (λ) = AdvType-A0 + AdvType-B0

≤ AdvType-A0 + AdvDLINB1

≤ qAdvDLINB + AdvType-Aq + AdvDLINB1

≤ qAdvDLINB + AdvCDHB2
+ AdvDLINB1

by Lemmas 2, 3, and 4. �

Lemma 2 If there exists adversary A that outputs a Type B forgery, then we can construct
algorithm B1 that solves the DLIN problem.

123

74 R. Nishimaki, K. Xagawa

Proof of lemma Algorithm B1 is given instance (Γ, g, f = ga1 , ν = ga2 , gx , f y, T) of the
DLIN problem and simulates the verification key and the signing oracle for the signature
scheme (B1 does not have value a1, a2, x, y).

B1 generates the verification key as follows. It selects exponents b, α, yv, yv1 , yv2
U← Zp

and generators u, w, h
U← G, computes

g := g ga1 := f ga2 := ν

gb := gb gba1 := f b gba2 := νb

v := gyv v1 := gyv1 v2 := gyv2

τ1 := vv
a1
1 = gyv f yv1 τ2 := vv

a2
2 = gyv ν yv2 e(g, g)αa1b := e(g, f)αb,

and sets V K := (Γ, gb, f, ν, f b, νb, τ1, τ2, τ b1 , τ b2 , w, u, h, e(g, f)αb) and SK := (V K ,

gα, f α, v, v1, v2).B1 can generate TypeA signatures by using the (normal) signing algorithm
since B1 has α and ga1 .

If adversary A outputs a Type B forgery σ1 := (gαa1vr) · g−a1a2γ , σ2 := (g−αvr1g
z1) ·

ga2γ , σ3 := (gb)−z1 , σ4 := (vr2g
z2) · ga1γ , σ5 := (gb)−z2 , σ6 := (gb)r2 , σ7 := gr1 , and

σ0 := (uMwstagh)r1 for some r1, r2, z1, z2, γ ∈ Zp (r = r1 + r2), then B1 can compute
(g−a1a2γ , ga1γ , ga2γ) from σ1, σ4, σ2, respectively. The reason is as follows.

B1 has b, so can compute gz1 , gz2 , gr1 , gr2 from σ3 = g−bz1 , σ5 = g−bz2 , σ7 = gr1 ,
σ6 = gbr2 , respectively, and obtains gr = gr1+r2 , vr = gryv , vr1 = gryv1 , vr2 = gryv2
(B1 has yv, yv1 , yv2). Thus, B1 can extract (g−a1a2γ , ga1γ , ga2γ) from σ1, σ2, σ4 and solve
the DLIN problem by checking whether e(gx , g−a1a2γ)−1 · e(f y, ga2γ) = e(ga1γ , T)

because e(gx , g−a1a2γ)−1 · e(ga1y, ga2γ) = e(g, g)a1a2γ x+a1a2γ y = e(g, g)a1a2γ (x+y). If
T = ga2(x+y) = νx+y , then the equation holds. Thus, B1 can solve the DLIN problem if the
adversary outputs a Type B forgery. �

Lemma 3 If there exists adversaryA that makes at most q queries and it holds that for some

k ∈ [q],
∣
∣
∣AdvType-Ak−1 − AdvType-Ak

∣
∣
∣ = ε, then we can construct algorithm B that solves the

DLIN problem with advantage ε.

Proof of lemma B is given instance (�, g, f = gb, ν, gx , f y, T) of the DLIN problem. B
generates the verification key as follows. It selects exponents α, a1, a2, yv1 , yv2 , yw, yu, yh,

A, B
U← Zp , computes

g := g ga1 := ga1 ga2 := ga2

gb := f gba1 := f a1 gba2 := f a2

v := ν−a1a2 v1 := νa2gyv1 v2 := νa1gyv2

τ1 := vv
a1
1 = gyv1a1 τ2 := vv

a2
2 = gyv2a2 τ b1 := (vv

a1
1)b = f yv1a1

τ b2 := (vv
a2
2)b = f yv2a2 w := f gyw u := f −Agyu

h := f −Bgyh

and e(g, g)αa1b := e(f, g)αa1 , and sets V K := (Γ, f, ga1 , ga2 , f a1 , f a2 , v, v1, v2, τ1, τ2,

τ b1 , τ b2 , w, u, h, e(f, g)αa1) and SK := (V K , gα, gαa1). B has ga1a2 since it has (a1, a2).
Thus, B can generate Type B signatures.

We define F(M) := AM + B. If vtag := F(M), then it holds (uMwvtagh) =
f vtag−AM−B · gMyu+vtagyw+yh = gMyu+vtagyw+yh .

B answers signing queries as follows. For the i-th signing query,

123

Verifiably encrypted signatures with short keys 75

Case i > k: Returns Type A signatures by using SK = (V K , gα, gαa1).
Case i < k: Returns Type B signatures by using SK and ga1a2 .
Case i = k: Embeds the instance as follows. For the k-th query M , B first generates a Type A

signature (σ ′
1, σ

′
2, σ

′
3, σ

′
4, σ

′
5, σ

′
6, σ

′
7, σ

′
0) by using tag stag := F(M) (with randomness

r ′
1, r

′
2, z

′
1, z

′
2

U← Zp , r ′ := r ′
1 + r ′

2). Next, it computes

σ1 := σ ′
1 · T−a1a2 = gαa1(νr−(x+y)T)−a1a2

σ2 := σ ′
2 · T a2(gx)yv1 = g−α(νr−(x+y)T)a2gryv1 gz1

σ3 := σ ′
3 · (f y)yv1 = (gb)−z1

σ4 := σ ′
4 · T a1(gx)yv2 = (νr−(x+y)T)a1gryv2 gz2

σ5 := σ ′
5 · (f y)yv2 = (gb)−z2

σ6 := σ ′
6 · f y = gr2b

σ7 := σ ′
7 · gx = gr1

σ0 := σ ′
K · (gx)Myu+yh+stagyw = (uMwstagh)r1 .

In this case, it implicitly holds that z1 := z′1 − yv1 y, z2 := z′2 − yv2 y, r1 := r ′
1 + x ,

r2 := r ′
2 + y. B can generate σK correctly since B set stag := F(M).

– If T = νx+y , the above signature is a Type A with randomness r1 := r ′
1 + x ,

r2 := r ′
2 + y.

– If T
U← G, the above signature is a Type B since T = νx+ygγ for some γ

U← Zp .

At some point,A outputs a signature σ ∗ = (σ ∗
0 , . . . , σ ∗

7 , stag∗) andmessageM∗.B2 verifies

e(σ ∗
0 , ν)e(νstag

∗−AM∗−B , σ ∗
6)

= e((σ ∗
1 /gαa1)

− 1
a1a2 , f stag

∗−AM∗−B)e(σ ∗
7 , νM∗ yu+stag∗yw+yh).

It holds that σ ∗
0 = (f stag

∗−AM∗−BgM
∗yu+stag∗yw+yh)r

∗
1 , σ ∗

1 = gαa1ν−a1a2r∗
g−a1a2γ ∗

, σ ∗
6 =

gbr
∗
2 , and σ ∗

7 = gr
∗
1 . Thus, the left-hand side is

e(f, ν)r
∗
1 (stag∗−AM∗−B)e(g, ν)r

∗
1 (M∗ yu+stag∗yw+yh)e(ν, f)r

∗
2 (stag∗−AM∗−B),

and the right-hand side is

e(ν, f)r
∗(stag∗−AM∗−B)e(g, f)γ

∗(stag∗−AM∗−B)e(g, ν)r
∗
1 (M∗yu+stag∗yw+yh).

A simplified equation is

1 = e(g, f)γ
∗(stag∗−AM∗−B).

It holds that stag∗ �= AM∗ + B without negligible probability because M∗ �= Mi for all
i ∈ [q] and A and B are information theoretically hidden from the adversary.

If signature σ ∗ is Type A, then the above equation holds and B2 outputs 1. On the other
hand, if σ ∗ is Type B, then it does not hold and B2 outputs 0.

Thus, if A can distinguish the two games, then B2 can solve the DLIN problem with the
same advantage. �

Lemma 4 If there exists adversary A that outputs a Type A forgery when all answers to
signing queries are Type B signatures, then we can construct algorithm B2 that solves the
CDH problem.

123

76 R. Nishimaki, K. Xagawa

Proof of lemma B2 is given instance (Γ, g, gx , gy) of the CDH problem. B2 generates the

verification key as follows. It selects exponents a1, b, yv, yv1 , yv2 , yw, yh, yu
U← Zp , com-

putes

g := g ga1 := ga1 ga2 := gy gb := gb gba2 := (gy)b gba1 := gba1

v := gyv v1 := gyv1 v2 := gyv2 w := gyw u := gyu h := gyh

τ1 := vv
a1
1 τ b1 := τ b1 τ2 := v(gy)yv2 τ b2 = τ b2

and e(g, g)αa1b := e(gx , gy)a1·b (it implicitly holds α = xy though B2 does not have α),
and sets V K := (Γ, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ b1 , τ b2 , w, u, h, e(g, g)αa1b). Note that
B2 does not have gα = gxy , so B2 cannot compute a Type A signature. B2 outputs Type

B signatures for signing query M as follows. It selects r1, r2, z1, z2, γ ′, stag U← Zp , sets
r := r1 + r2 (we want to set γ := x + γ ′), computes

σ1 := (gy)−γ ′a1 · vr = (gαa1vr) · g−a1a2γ (a2 = y, xy = α)

σ2 := (gy)γ
′
vr1g

z1 = (gαvr1g
z1) · ga2γ

σ3 := (gb)−z1

σ4 := (gx)a1ga1γ
′
vr2g

z2 = (vr2g
z2) · ga1γ

σ5 := (gb)−z2

σ6 := gr2b

σ7 := gr1

σ0 := (uMwstagh)r1 ,

and outputs signature (σ1, . . . , σ0, stag) for M .
At some point, A outputs a Type A forgery, σ ∗

1 = gαa1vr
∗
1 , σ ∗

2 = g−αvr
∗

1 gz
∗
1 , σ ∗

3 =
(gb)−z∗1 , σ ∗

4 = vr
∗

2 gz
∗
2 , σ ∗

5 = (gb)−z∗2 , σ ∗
6 = gr

∗
2 b, σ ∗

7 = gr
∗
1 , and σ ∗

0 = (uM∗
wstag∗

h)r
∗
1 for

some r∗
1 , r∗

2 , z∗1, z∗2, stag
∗ ∈ Zp .

By using these values, B2 can compute gr
∗
2 = (σ ∗

6)1/b, gr
∗
1 = σ ∗

7 , g
z∗1 = (σ ∗

3)−1/b,
vr

∗
1 = (gr

∗
1 · gr∗

2)yv1 since v1 = gyv1 . Thus, B2 can compute gz
∗
1 · vr

∗
1 /σ ∗

2 = gα = gxy . That
is, B2 can solve the CDH problem. �

Original Waters’ dual signature is not strongly unforgeable since it is re-randomizable.
“Strong” means that the adversary cannot forge a signature even for a queried message to the
signing oracle. To make our VES scheme satisfy opacity, we extend the technique by Boneh,
Shen, and Waters [11] and modify Waters’ dual signature. They introduced a property called
2-partitioned to convert unforgeable signature schemes into strongly unforgeable signature
schemes. We extend 2-partitioned to 3-partitioned.

Definition 14 A signature scheme is 3-partitioned if it satisfies the following two properties.

– The signing algorithm consists of three deterministic algorithms F1, F2, and F3.

1. It selects random R ∈ R (R is a space for randomness).
2. It computes Σ1 := F1(M, R, V K), Σ2 := F2(R, V K), Σ3 := F3(R, SK).
3. It outputs signature σ := (Σ1,Σ2,Σ3).

– GivenM andΣ2, there is atmost one (Σ1,Σ3) such that (Σ1,Σ2,Σ3) is a valid signature
on M under V K .

123

Verifiably encrypted signatures with short keys 77

A 2-partitioned signature is σ = (Σ ′
1,Σ

′
2) where Σ ′

1 = F ′
1(M, R, SK) and Σ ′

2 =
F ′
2(R, SK) [11]. Value Σ ′

2 binds all randomness R, so M and R fully determine Σ ′
1. For a

VES, signature elements related to the secret signing key (i.e., Σ3) should be encrypted, so
we cannot use such elements as inputs to hash functions (we will use hash functions to obtain
strongly secure signature) and want to isolate the secret signing key from Σ ′

2. Otherwise,
encrypted signatures are not verifiable. If Σ3 is not used as an input of a hash function,
then hash values are not changed even if Σ3 is encrypted. This is the reason we introduced
3-partitioned and Σ1 and Σ2 do not depend on the secret signing key.

Let Π := (Gen,Sign,Vrfy) be an existentially unforgeable signature scheme. The new
signature scheme Π ′ := (Gen′,Sign′,Vrfy′) is as follows.

Gen′(1λ): It generates (V K , SK)
R← Gen(1λ), selects h̄

U← G and random hash key k ∈ K,
and sets (V K ′, SK ′) := ((V K , h̄, k), SK).

Sign′(SK ′, M): On input messageM ∈ {0, 1}�, it selects exponent ϕ U← Zp and randomness
R ∈ R, computes

Σ2 := F2(R, V K) ϑ := Hk(M ‖ Σ2) m := Hk(g
ϑ h̄ϕ)

Σ1 := F1(m, R, V K)

Σ3 := F3(R, SK)

(we consider ϑ as an element inZp), and outputs sig := (Σ1,Σ2,Σ3, ϕ) as a signature.
Vrfy′(V K ′, sig, M): On input V K ′, M , and signature sig = (Σ1,Σ2,Σ3, ϕ), it computes

ϑ ′ := Hk(M ‖ Σ2) (view ϑ ′ as an element in Zp), m′ := Hk(gϑ ′
h̄ϕ), It outputs 1 if

and only if Vrfy(V K , (Σ1,Σ2,Σ3),m′) → 1.

Theorem 5 Signature scheme Π ′ is strongly existentially unforgeable if Π is existentially
unforgeable, the DL assumption holds in G, and H is collision-resistant. Specifically,

Advseuf-cma
F ′ ≤ 1

3
Adveuf-cma

F + 1

3
AdvdlB + 1

3
AdvcrhfC .

This is easily proved by extending the proof of Boneh et al. [11]. The essential point is
that given message M and partial signature Σ2, the randomness that is used to generate the
whole signature is determined and there is at most one (Σ1,Σ3) such that (Σ1,Σ2,Σ3) is
a valid signature on M under V K . Intuitively, in the construction of Π ′, we sign not only
message M but also randomness R to bind the randomness and prevent re-randomization.
Moreover, to prevent message m, which will be signed depending on randomness R, new
randomness ϕ is introduced and chameleon hash functions, gϑ h̄ϕ , are used.

Proof We assume that there is adversary A that breaks strong unforgeability of Π ′. A is
given (V K , g, h̄, k), queriesM1, . . . , Mq , and obtains (Σi,1,Σi,2,Σi,3, ϕi) for i = 1, . . . , q ,
ϑi := Hk(Mi ‖ Σi,2) and mi := Hk(gϑi h̄ϕi). At some point, A outputs forgery
(M∗, (Σ∗

1 ,Σ∗
2 ,Σ∗

3 , ϕ∗)) such that ϑ∗ := Hk(M∗ ‖ Σ∗
2) and m∗ := Hk(gϑ∗

h̄ϕ∗
). The

forgery is one of the following three types.

Type 1: For some i ∈ [q], m∗ = mi and ϑ∗ = ϑi .
Type 2: For some i ∈ [q], m∗ = mi and ϑ∗ �= ϑi .
Type 3: For all i ∈ [q], m∗ �= mi .

Type 1 breaks the collision-resistance of the hash function, Type 2 breaks the DL assumption,
and Type 3 breaks the existential unforgeability of the underlying signature scheme �. We
construct a simulator that breaks the one of them by usingA. First, we randomly guess which
type of forgery A outputs.

123

78 R. Nishimaki, K. Xagawa

Type 1 case. If A is a Type 1 forger, then we can construct algorithm B that breaks the

collision-resistance of H. B is given random key k, generates (V K , SK)
R← Gen(1λ),

selects g, h̄
U← G, and gives (V K , g, h̄, k) to A. If A queries Mi , then B generates

sigi
R← Sign′(SK , Mi) and returns sigi . If A outputs (M∗, sig∗ := (Σ∗

1 ,Σ∗
2 ,Σ∗

3))

such that (M∗, sig∗) /∈ {(M1, sig1), . . . , (Mq , sigq)}, m∗ = mi , and ϑ∗ = ϑi for some
i ∈ [q], then B outputs (M∗ ‖ Σ∗

2 , Mi ‖ Σi,2) as a collision on Hk . ϑ∗ = ϑi means that
Hk(M∗ ‖ Σ∗

2) = Hk(Mi ‖ Σi,2) and m∗ = mi means that Hk(gϑ∗
h̄ϕ∗

) = Hk(gϑi h̄ϕi) If
M∗ ‖ Σ∗

2 �= Mi ‖ Σi,2, then the output of B is a valid collision. Assume that M∗ = Mi and
Σ∗

2 = Σi,2 for a contradiction. If ϕ∗ �= ϕi , then B outputs (gϑ∗
h̄ϕ∗

, gϑi h̄ϕi) as a collision on
Hk since ϑ∗ = ϑi in this case. Else if it holds that ϕ∗ = ϕi , then m∗ = mi since ϑ∗ = ϑi .
Due to the second property of 3-partitioned signatures m∗ = mi and Σ∗

2 = Σi,2 implies that
Σ∗

1 = Σi,1 and Σ∗
3 = Σi,3. Such (M∗, (Σ∗

1 ,Σ∗
2 ,Σ∗

3)) is not a valid forgery of �′. Thus, it
should hold that M∗ ‖ Σ∗

2 �= Mi ‖ Σi,2 and B can output a valid collision.

Type 2 case. If A is a Type 2 forger, then we can construct algorithm B that breaks the

DL assumption. B is given (g, h̄) (Implicitly it holds h̄ = gη), generates (V K , SK)
R←

Gen(1λ), selects random k
R← K, and gives (V K , g, h̄, k) to A. If A queries Mi , then B

generates sigi
R← Sign(SK , Mi) and returns sigi . IfA outputs (M∗, sig∗ = (Σ∗

1 ,Σ∗
2 ,Σ∗

3))

such that Hk(gϑ∗
h̄ϕ∗

) = Hk(gϑi h̄ϕi) and ϑ∗ �= ϑi for some i ∈ [q], then it holds that
Hk(gϑ∗

(gη)ϕ
∗
) = Hk(gϑi (gη)ϕi). B computes η := (ϑi − ϑ∗)/(ϕ∗ − ϕi) and outputs it

as a solution of the DL problem. It holds that ϕ∗ �= ϕi since if ϕ∗ = ϕi (here, we assume
that ϑ∗ �= ϑi), then we can output (gϑ∗

h̄ϕ∗
, gϑi h̄ϕi) as a collision of Hk . Thus, η is a valid

solution.

Type 3 case. If A is a Type 3 forger, then we can construct algorithm B that breaks the

unforgeability of�. B is given V K , selects generator g ∈ G, exponent η
U← Zp , random key

k
R← K, and sets h̄ := gη. It gives (V K , g, h̄, k) to A as a verification key. If A queries Mi ,

thenB selectsw
U← Zp , setsmi := Hk(gw), queriesmi to the signing oracle of�, and obtains

signature sigi = (Σ1,Σ2,Σ3). It computes ϑi := Hk(Mi ‖ Σ2), sets ϕi := (w−ϑi)/η, and
returns (Σ1,Σ2,Σ3, ϕi). Note that it holds thatm = Hk(gw) = Hk(gηϕi+ϑi) = Hk(gϑi h̄ϕi).
If A outputs a Type 3 forgery (M∗, (Σ∗

1 ,Σ∗
2 ,Σ∗

3 , ϕ∗)), then B computes ϑ∗ := Hk(M∗ ‖
Σ∗

2), sets m∗ := Hk(gϑ∗
h̄ϕ∗

), and outputs (m∗, (Σ∗
1 ,Σ∗

2 ,Σ∗
3)). Now,A is a Type 3 forgery,

so m∗ /∈ {m1, . . . ,mq} and B succeeded in outputting a new signature for m∗. This breaks
the security of �. �

Theorem 6 Waters’ dual signature is 3-partitioned.

Proof LetR :=
{

(r1, r2, z1, z2, stag, γ)| r1, r2, z1, z2, stag, γ
U← Zp

}

, then functions F1,

F2, and F3 are defined as follows:

F1(M, R, V K) := σ0 = (uMwstagh)r1

F2(R, V K) := (σ3, . . . , σ7, stag) = (g−bz1 , vr2g
z2 · ga1γ , g−bz2 , gbr2 , gr1 , stag)

F3(R, SK) := (σ1, σ2) = (gαa1vr · g−a1a2γ , g−αvr1g
z1 · ga2γ),

where R
U← R. Here, γ is selected for Type B signatures. If the signature is Type A, then

γ := 0. We can interpret σ3, σ5, σ6, σ7 (these are outputs of F2) as g−bz1 , g−bz2 , gbr2 , gr1 ,

123

Verifiably encrypted signatures with short keys 79

respectively and it follows σ0 = (uMwstagh)r1 from the first verification equation, that is,
the output of F1 is fixed. If we interpret σ4 as vr2g

z2 · ga1γ , then by the second and third
equations, two unknowns σ1 and σ2 are fixed to gαa1vr · g−a1a2γ and g−αvr1g

z1 , respectively,
that is, the output of F3 is fixed. Therefore, if the output of F2, (σ3, . . . , σ7, stag), and M
are fixed, then the outputs of F1 and F3 are also fixed. �

We can see that even if (σ1, σ2) is encrypted by the ElGamal encryption, hash value
ϑ = Hk(M ‖ (σ3, . . . , σ7, stag)) is not changed, so it can be fitted to VES schemes. Note
that we assume that each element g ∈ G has a unique encoding. We can obtain a strongly
secure scheme sWdSig as follows:

sWd.Gen(1λ, Γ): It generates (V K ′, SK ′) R← Wd.Gen(1λ, Γ), selects h̄
U← G and random

hash key k ∈ K, and outputs (V K , SK) := ((V K ′, h̄, k), SK ′).
sWd.Sign(SK , M): On input message M ∈ Zp , it selects r1, r2, z1, z2, γ, stag, ϕ

U← Zp ,
sets r := r1 + r2, computes

σ1 := gαa1vr · g−a1a2γ σ2 := g−αvr1g
z1 · ga2γ σ3 := (gb)−z1

σ4 := vr2g
z2 · ga1γ σ5 := (gb)−z2 σ6 := (gb)r2

σ7 := gr1 �2 := (σ3, . . . , σ7, stag) ϑ := Hk(M ‖ �2)

m := Hk(g
ϑ h̄ϕ) σ0 := (umwstagh)r1

and outputs sig := (σ0, σ1, . . . , σ7, stag, ϕ).
sWd.Vrfy(V K , sig, M): On input V K , M , and signature sig = (σ0, σ1, . . . , σ7, stag, ϕ), it

computes ϑ ′ := Hk(M ‖ (σ3, . . . , σ7, stag)), m′ := Hk(gϑ ′
h̄ϕ), and Wd.Vrfy(V K ′,

sig′,m′) → b where sig′ := (σ0, . . . , σ7, stag), and outputs b.

Corollary 1 The scheme above is strongly unforgeable against adaptive chosen message
attacks if the DLIN assumption holds. That is, Advseuf-cma

F ′,sWdSig(λ) ≤ 1/3(Adveuf-cma
F,WdSig(λ) +

AdvcrhfC,H(λ) + AdvdlB(λ)) ≤ {(q + 3)/3}AdvdlinB′ + (1/3)AdvcrhfC,H. (The DL assumption is
implied by the DLIN assumption).

4 Construction of our VES

In this section, we present our VES scheme, sWdVES, based on the strongly secure version
of Waters’ dual signature scheme. The proposed scheme is essentially the same as strongly
unforgeable Waters’ dual signature scheme explained in Sect. 3 except that we encrypt
signature elements that include secret keys (gα, gαa1 , ga1a2) by using the ElGamal encryption
scheme. That is, in our creation algorithm, only σ1 and σ2 are encrypted. To verify an
encrypted signature, we add extra elements and cancel out group elements that are generated
by pairing computation of encrypted signature elements in the verification equations. Our
scheme, sWdVES, is as follows.

AdjGen(1λ): It selects β
U← Z

×
p and sets apk := ζ := gβ and ask := β.

Gen(1λ): It generates key pair (V K ′, SK ′) by using sWd.Gen(1λ), that is,

V K ′ := (g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ
b
1 , τ b2 , v, v1, v2, w, u, h, h̄, k, e(g, g)αa1b)

SK ′ := (gα, gαa1 , ga1a2)

and outputs vk := V K ′ and sk := (V K ′, SK ′).

123

80 R. Nishimaki, K. Xagawa

Sign and Vrfy: These are the same as sWd.Sign and sWd.Vrfy explained in Sect. 3, respec-
tively.

Create(sk, apk, M): It generates (σ0, σ1, . . . , σ7, stag, ϕ)
R← sWd.Sign(SK ′, M), selects

ρ1, ρ2
U← Zp , sets

K1 := σ1 · ζ ρ1 K ′
1 := gρ1 K̂1 := (gb)ρ1

K2 := σ2 · ζ ρ2 K ′
2 := gρ2 K̂2 := (gba1)ρ2

K3 := σ3 K4 := σ4 K5 := σ5 K6 := σ6 K7 := σ7 K0 := σ0,

and outputs ω := (K0, . . . , K7, K ′
1, K

′
2, K̂1, K̂2, stag, ϕ).

VesVrfy(apk, vk, ω, M): It parses ω = (K0, . . . , K7, K ′
1, K

′
2, K̂1, K̂2, stag, ϕ) and com-

putes ϑ ′ := Hk(M ‖ (K3, . . . , K7, stag)) and m′ := Hk(gϑ ′
h̄ϕ). It outputs 1 if and

only if it holds that

e(um
′
wstagh, K7) = e(g, K0)

e(gb, K1)

e(ζ, K̂1)
· e(g

ba1 , K2)

e(ζ, K̂2)
· e(ga1 , K3) = e(τ1, K6) e(τ

b
1 , K7)

e(gb, K1)

e(ζ, K̂1)
· e(gba2 , K4) e(g

a2 , K5) = e(τ2, K6) e(τ
b
2 , K7) e(g, g)

αa1b

e(K ′
1, g

b) = e(g, K̂1)

e(K ′
2, g

ba1) = e(g, K̂2).

Adj(ask, apk, vk, ω, M): It parses ω = (K0, . . . , K7, stag, ϕ) and computes σ1 := K1 ·
(K ′

1)
−β , σ2 := K2 · (K ′

2)
−β , σ3 := K3, σ4 := K4, σ5 := K5, σ6 := K6, σ7 := K7,

σ0 := K0. If VesVrfy(apk, vk, ω, M) → 1, then it outputs (σ0, . . . , σ7, stag, ϕ).

Intuitively, the scheme above is secure because the underlying signature scheme is strongly
unforgeable. The adversary has no choice but to decrypt a validVESgiven by oracles to output
a valid signature, but it contradicts the one-wayness of the ElGamal encryption scheme.

As a corollary of Theorem 2, sWdVES is unforgeable under the DLIN assumption since
we can easily show that sWdVES based on sWdSig is key-independent and extractable. See
Sect. 2.4 for the definitions and Theorem 2.

Key-independence. For sWdVES, we can set kisk = ∅, ssk = (gα, gαa1 , ga1a2), kivk =
(gb, gba1 , gba2), and svk = V K ′. Thus, sWdVES is key-independent.

Extractability.

Proof From VesVrfy, we have

e(um
′
wstagh, K7) = e(g, K0) (V1)

e(gb, K1)

e(ζ, K̂1)
· e(g

ba1 , K2)

e(ζ, K̂2)
· e(ga1 , K3) = e(τ1, K6)e(τ

b
1 , K7) (V2)

e(gb, K1)

e(ζ, K̂1)
· e(gba2 , K4) · e(ga2 , K5) = e(τ2, K6)e(τ

b
2 , K7)e(g, g)

αa1b (V3)

123

Verifiably encrypted signatures with short keys 81

e(K ′
1, g

b) = e(g, K̂1) (V4)

e(K ′
2, g

ba1) = e(g, K̂2). (V5)

For j = 0, 3, 4, 5, 6, 7, it holds that K j = σ j . For an extracted signature from ω by Adj, it
holds that (in the following calculation, we use the number of equations above.)

e(um
′
wstagh, σ7) = e(g, σ0) (V1),

and

e(gb, K1 · (K ′
1)

−β) · e(gba1 , K2 · (K ′
2)

−β) · e(ga1 , K3)

= e(gb, K1)e(g
ba1 , K2)e(g

a1 , K3) · e(gb, (K ′
1)

−β) · e(gba1 , (K ′
2)

−β)

= e(τ1, σ6)e(τ
b
1 , σ7) · e(ζ, K̂1) · e(ζ, K̂2) · e(gb, K ′

1)
−βe(gba1 , K ′

2)
−β (V2)

= e(τ1, σ6)e(τ
b
1 , σ7) · e(gb, K ′

1)
β · e(gba1 , K ′

2)
β · e(gb, K ′

1)
−βe(gba1 , K ′

2)
−β (V4, V5)

= e(τ1, σ6)e(τ
b
1 , σ7),

and

e(gb, K1 · (K ′
1)

−β) · e(gba2 , K4) · e(ga2 , K5)

= e(gb, K1)e(g
ba2 , K4)e(g

a2 , K5) · e(gb, (K ′
1)

−β)

= e(τ2, σ6)e(τ
b
2 , σ7) · e(g, g)αa1b · e(ζ, K̂1) · e(gb, K ′

1)
−β (V3)

= e(τ2, σ6)e(τ
b
2 , σ7) · e(g, g)αa1b · e(gb, K ′

1)
β · e(gb, K ′

1)
−β (V4)

= e(τ2, σ6)e(τ
b
2 , σ7)e(g, g)

αa1b.

This means that the extracted signature passes the verification algorithm of the underlying
signature scheme,Wd.Vrfy. �

As a corollary, sWdVES is unforgeable since sWdVES is key-independent and extractable
due to Theorem 2.

Corollary 2 sWdVES is unforgeable.

By Theorem 3, sWdVES is collusion-resistant under the DLIN assumption.
Next, we prove the opacity of our scheme.

Theorem 7 sWdVES is opaque if the DLIN assumption holds and there exists CRHF.

Proof If A outputs forgery σ ∗ = (σ ∗
0 , . . . , σ ∗

7 , stag∗, ϕ∗) and M∗ such that M∗ is not
queried to AO, then it means that A breaks the opacity of sWdVES. A directly forges a
signature of the underlying sWdSig or extracts a signature by breaking the one-wayness
of the ElGamal encryption scheme. To show that sWdVES satisfies opacity, we introduce
the following games. Let Game-(i) denote a game where the VES creation oracle answers
encrypted signatures of Type A signatures for the first i (i ∈ [qC] and qC is the number of
creation queries by A) and queries and encrypted signatures of Type B signatures for the
remaining qC − i queries, and the adjudication oracle answers signatures extracted from the
queried VES for all qA (the number of adjudication queries) queries. Let Advforge-Ai (resp.

Advforge-Bi) denote the advantage of the adversary inGame-(i) for outputting a TypeA (resp.

B) forgery for a non-queried message (a message that is not queried to CO). Let Advextract-B0
denote the advantage of the adversary in Game-0 for extracting a signature from a VES for
a queried message (a message that is queried to CO).

123

82 R. Nishimaki, K. Xagawa

1. InGame-(0), the VES creation oracle returns encrypted signatures of Type B signatures
and the adjudication oracle returns Type B signatures. First, we show Lemma 5: If A
outputs a valid Type B signature for message Mi that has been already queried to the
VES creation oracle, CO in Game-(0), then we can construct algorithm E that solves
the AgExt problem. Thus, in the remaining games, we only consider A which outputs a
forgery for message M∗ such that M∗ �= Mi for all i ∈ [q]. We can show Lemma 6: IfA
outputs a forgery of a Type A signature in Game-(0), then we can construct algorithm
B1 (simulator for A), which solves the CDH problem.

2. Next, we considerGame-(i). We can show Lemma 7: IfA detects the change of answers
by the VES creation oracle (from Type B answer to Type A answer), we can construct
algorithm B2 (simulator for A) that solves the DLIN problem.

3. Finally, we considerGame-(qC), where all answers for VES queries ofA are encrypted
signatures of Type A signatures. We can show Lemma 8: IfA outputs a forgery of a Type
B signature in Game-(qC), then we can construct algorithm B3 that solves the DLIN
problem.

Thus, if the DLIN assumption holds, the signature scheme is opaque since the AgExt assump-
tion is equivalent to the CDH assumption and the CDH assumption is implied by the DLIN
assumption. The core part is Lemma 5. By Lemmas 5, 6, 7, and 8, we can show

AdvOpac
A (λ) = Advforge-A0 + Advextract-B0 + Advforge-B0

≤ Advextract-B0 + Adveuf-cma
F,WdSig

≤ qCAdv
AgExt
E + Advseuf-cma

F ′,sWdSig + AdvcrhfC + Adveuf-cma
F,WdSig

≤ ((7/3)qC + 3)AdvdlinB + (4/3)AdvcrhfC .

Lemma 5 If there exists adversary A that outputs a Type B forgery for a queried message
Mi in Game-0, then we can construct algorithm E that solves the AgExt problem.

Proof of lemma E is given instance (Γ, gx , gy, gβ, gδ, gxy+βδ) of the AgExt problem and
generates the verification key as follows. It selects exponents a1, b, yv, yv1 , yv2 , yw, yh, yu,

η
U← Zp , and hash key k ∈ K, computes

g := g ga1 := ga1 ga2 := gy gb := gb gba1 := gba1 gba2 := (gy)b

v := gyv v1 := gyv1 v2 := gyv2 w := gyw u := gyu h := gyh

τ1 := vv
a1
1 τ b1 := τ b1 τ2 := v(gy)yv2 τ b2 := τ b2 h̄ := gη ζ := gβ

and e(g, g)αa1b := e(gx , gy)a1·b (it implicitly holds α = xy though E does not have α),
and sets V K := (g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ b1 , τ b2 , w, u, h, h̄, k, e(g, g)αa1b) and
apk := ζ = gβ . Note that E does not have gα = gxy , so E cannot directly compute a Type
B signature.

Simulation of creation oracle: E initializes listQList := ∅, selects random index j
U← [qC],

i.e., guesses whichVESA selects and outputs its extraction, and outputs encrypted signatures
of Type B signatures for the i-th VES creation query Mi as follows. If i �= j , E then selects

r1, r2, z1, z2, γ ′, stag, ϕi , ρ1, ρ2
U← Zp , sets r := r1 + r2 (we want to set γ := x + γ ′),

computes

123

Verifiably encrypted signatures with short keys 83

σi,1 := (gy)−γ ′a1 · vr = (gαa1vr) · g−a1a2γ

(where a2 = y and xy = α)

σi,2 := (gy)γ
′
vr1g

z1 = (gαvr1g
z1) · ga2γ

K1 := σi,1 · ζ ρ1 , K ′
1 := gρ1 , K̂1 := (gb)ρ1

K2 := σi,2 · ζ ρ2 , K ′
2 := gρ2 , K̂2 := (gba1)ρ2

K3 := σi,3 := (gb)−z1

K4 := σi,4 := (gx)a1ga1γ
′
vr2g

z2 = (vr2g
z2) · ga1γ

K5 := σi,5 := (gb)−z2 , K6 := σi,6 := gr2b, K7 := σi,7 := gr1

ϑi := Hk(Mi ‖ �i,2) where �i,2 := (σi,3, . . . , σi,7)

mi := Hk(g
ϑi h̄ϕi), K0 := σi,0 := (umi wstagh)r1 ,

stores (Mi , σi , Ri := (r1, r2, z1, z2, stag, γi := γ ′)) in QList where σi := (σi,0, . . . , σi,7,

stag, ϕi), and outputs ω := (K0, . . . , K7, K ′
1, K

′
2, K̂1, K̂2, stag, ϕi) for Mi . We can verify

σi is a correct Type B signature.

Embedding the instance: If i = j , then E selects r∗
1 , r∗

2 , z∗1, z∗2, γ ∗, stag∗, ϕ∗, ρ1, ρ2
U← Zp ,

sets r∗ = r∗
1 + r∗

2 , answers

K ∗
1 := (gxy+βδ)a1vr

∗
(gy)−a1γ ∗

ζ ρ1 = (gαa1vr
∗
)g−a1a2γ ∗

ζ ρ′
1

(where a2 = y, xy = α, ρ′
1 := a1δ + ρ1)

K ∗′
1 := (gδ)a1gρ1 = gρ′

1

K̂ ∗
1 := (gδ)ba1gbρ1 = (gb)ρ

′
1

K ∗
2 := (gxy+βδ)−1vr

∗
1 gz

∗
1 · (ga2)γ

∗
(gβ)ρ2 = (g−αvr

∗
1 gz

∗
1) · ga2γ ∗

ζ ρ′
2

(where ρ′
2 := −δ + ρ2)

K ∗′
2 := (gδ)−1gρ2 = gρ′

2

K̂ ∗
2 := (gδ)−ba1gba1ρ2 = (gba1)ρ

′
2

K ∗
3 := (gb)−z∗1 , K ∗

4 := vr
∗

2 gz
∗
2ga1γ

∗
, K ∗

5 := (gb)−z∗2 , K ∗
6 := gr

∗
2 b, K ∗

7 := gr
∗
1

ϑ∗ := Hk(K
∗
3 , . . . , K ∗

7 , stag∗), m∗ := Hk(g
ϑ∗
h̄ϕ∗

), K ∗
0 := (um

∗
wstag∗

h)r
∗
1 ,

and records (Mj , ω
∗ := (K ∗

0 , . . . , ϕ∗), j, γ ∗) as the challenge instance. It can be verified
that ω∗ is a correct encrypted signature of a Type B signature.

Simulation of adjudication oracle: When A makes the �-th adjudication query (M�, ω�),
we know that A must have queried M� to CO by the theorem of Rückert and Schröder
(Otherwise, it is a forgery. This is the same argument by Rückert and Schröder in [48]).
First, E verifies the query and returns ⊥ if it is invalid. Otherwise, E acts as follows. If
M� = Mj , that is, the guessed index ((Mj , . . .) /∈ QList), then E aborts. Otherwise, there
exists (Mi , σi , Ri) ∈ QList for some i �= j such that M� = Mi and the signature is Type
B. In this case (M� = Mi), for query (M�, ω = (K0, . . . , K7, K ′

1, K
′
2, K̂1, K̂2, stag, ϕ)), if

ϕ �= ϕi , then A breaks the strong unforgeability of our modified Waters’ dual signature. We
consider an intermediate game where if ϕ �= ϕi , then E aborts. The probability of E aborting
under this condition is at most the success probability of breaking the strong unforgeability

123

84 R. Nishimaki, K. Xagawa

of sWdSig. That is, it holds that ϕ = ϕi without negligible probability. If ϕ = ϕi , then it
holds that K3 = σi,3, K4 = σi,4, K5 = σi,5, K6 = σi,6, K7 = σi,7, and stag = stagi since
otherwise it meansA outputs (K3, . . . , K7, stag) such that Hk(σi,3, . . . , σi,7, stagi) = ϕi =
ϕ = Hk(K3, . . . , K7, stag) and (K3, . . . , K7, stag) �= (σi,3, . . . , σi,7, stagi). This is a col-
lision of the hash function and contradicts the collision-resistant property. We consider an
intermediate game where if Hk(σi,3, . . . , σi,7, stagi) = ϕi = ϕ = Hk(K3, . . . , K7, stag)

and (K3, . . . , K7, stag) �= (σi,3, . . . , σi,7, stagi), then E aborts. The probability of E abort-
ing under this condition is less than the success probability of breaking the CRHF. That is,
the randomness of (K3, . . . , K7, stag) is the same as that of (σi,3, . . . , σi,7, stagi) without
negligible probability.

By using K3 = g−bz1 , K5 = g−bz2 , K6 = gbr2 , and K7 = gr1 , E can compute gr2 =
(K6)

1/b, gr1 = K7, g
z1 = (K3)

−1/b, gz2 = (K5)
−1/b, vr = (gr1 · gr2)yv , vr1 = (gr1 ·

gr2)yv1 , and vr2 = (gr1 · gr2)yv2 since E has b, yv, yv1 , yv2 and it holds that v = gyv v1 =
gyv1 v2 = gyv2 . E can use the same computation procedure in the simulation of the VES
creation oracle above by using γi stored in QList. Therefore, E can return a valid Type B
signature (σ0, . . . , σ7, stag, ϕ) such that the randomness r in σ1, σ2 is the same as that in
K1, K2 by using stored information σi . That is, the adjudication oracle is perfectly simulated
by E .

Solving the problem: At some point, A outputs a Type B extraction, M∗ = Mj , stag∗,
σ ∗
1 = gαa1vr

∗
g−a1a2γ ∗

, σ ∗
2 = g−αvr

∗
1 gz

∗
1ga2γ

∗
, σ ∗

3 = (gb)−z∗1 , σ ∗
4 = vr

∗
2 gz

∗
2ga1γ

∗
, σ ∗

5 =
(gb)−z∗2 , σ ∗

6 = gr
∗
2 b, σ ∗

7 = gr
∗
1 , ϑ∗ = Hk(σ3, . . . , σ7, stag∗), m∗ = Hk(gϑ∗

h̄ϕ), and
σ ∗
0 = (um

∗
wstag∗

h)r
∗
1 (not queried to AO but CO) such that randomnesses are the same

as those used when B embedded the problem instance at the j-th query and (Mj , ω
∗, j, γ ∗)

is recorded as the challenge instance. This is guaranteed by the strong unforgeability and
collision-resistant property we discussed above. By using these values, E can compute gr

∗
2 =

(σ ∗
6)1/b, gr

∗
1 = σ ∗

7 , g
z∗1 = (σ ∗

3)−1/b, gz
∗
2 = (σ ∗

5)−1/b, vr
∗ = (gr

∗
1 ·gr∗

2)yv , vr
∗

1 = (gr
∗
1 ·gr∗

2)yv1 ,
vr

∗
2 = (gr

∗
1 · gr∗

2)yv2 since E has b, yv, yv1 , yv2 and it holds that v = gyv v1 = gyv1 v2 = gyv2 .
Thus, E can compute gz

∗
1 · vr

∗
1 ga2γ

∗
/σ ∗

2 = gα = gxy (where ga2 = gy) since E has a1 and
γ ∗ is recorded. That is, E can output solution gxy of the AgExt problem if the adversary
outputs a Type A extraction for queried message Mj to CO. E guesses index j , so its success
probability is degraded by a factor of 1/qC. However, it still breaks the AgExt problem with
non-negligible probability ε/qC, where ε is the success probability of A. �

Lemma 6 If there exists adversary A that outputs a Type A forgery when all answers to
signing queries are Type B signatures, then we can construct algorithm B1 that solves the
CDH problem.

Proof of lemma B1 is given instance (Γ, g, gx , gy) of the CDH problem and generates the

verification key as follows: It selects exponents a1, b, yv, yv1 , yv2 , yw, yh, yu, η, ζ
U← Zp ,

computes

g := g ga1 := ga1 ga2 := gy gb := gb gba1 := gba1 gba2 := (gy)b

v := gyv v1 := gyv1 v2 := gyv2 w := gyw u := gyu h := gyh

τ1 := vv
a1
1 τ b1 τ2 := v(gy)yv2 τ b2 h̄ := gη β := gζ

and e(g, g)αa1b := e(gx , gy)a1·b (implicitly α = xy though B1 does not have α), and sets
V K := (Γ, gb, ga1 , ga2 , gba1 , gba2 , v, v1, v2, τ1, τ2, τ

b
1 , τ b2 , w, u, h, h̄, k, e(g, g)αa1b) and

123

Verifiably encrypted signatures with short keys 85

apk := gβ . Note that B1 does not have gα = gxy , so B1 cannot directly compute a Type
A signature. B1 outputs encrypted signatures of Type B signatures for creation query M

as follows. It selects r1, r2, z1, z2, γ ′, stag, ϕ
U← Zp , sets r := r1 + r2 (we want to set

γ := x + γ ′), and computes

σ1 := (gy)−γ ′a1 · vr = (gαa1vr) · g−a1a2γ (a2 = y, xy = α)

σ2 := (gy)γ
′
vr1g

z1 = (gαvr1g
z1) · ga2γ

σ3 := (gb)−z1

σ4 := (gx)a1ga1γ
′
vr2g

z2 = (vr2g
z2) · ga1γ

σ5 := (gb)−z2

σ6 := gr2b

σ7 := gr1

ϑ := Hk(M ‖ σ3, . . . , σ7, stag)

m := Hk(g
ϑ h̄ϕ)

σ0 := (umwstagh)r1 .

B1 outputs VES for M by using signature (σ0, . . . , σ7, stag, ϕ) for M and algorithmCreate
with apk = β. For an adjudication query, B1 verifies its validity and returns the decrypted
value by using β if it is valid.

At some point, A outputs a Type A forgery sig∗ = (σ ∗
0 , . . . , σ ∗

7 , stag∗, ϕ∗). If sig∗ is a
valid Type A forgery, then it passes the verification equations and it should hold that σ ∗

1 =
gαa1vr

∗
1 , σ ∗

2 = g−αvr
∗

1 gz
∗
1 , σ ∗

3 = (gb)−z∗1 , σ ∗
4 = vr

∗
2 gz

∗
2 , σ ∗

5 = (gb)−z∗2 , σ ∗
6 = gr

∗
2 b, σ ∗

7 =
gr

∗
1 , ϑ∗ = Hk(M∗ ‖ σ ∗

3 , . . . σ ∗
7 , stag∗), m∗ = Hk(gϑ∗

h̄ϕ∗
), and σ ∗

0 = (um
∗
wstag∗

h)r
∗
1 , for

some r∗
1 , r∗

2 , z∗1, z∗2, stag
∗ ∈ Zp .

By using these values, B1 can compute gr
∗
2 = (σ ∗

6)1/b, gr
∗
1 = σ ∗

7 , g
z∗1 = (σ ∗

3)−1/b,
vr

∗
1 = (gr

∗
1 · gr∗

2)yv1 since v1 = gyv1 . Thus, B1 can compute gz
∗
1 · vr

∗
1 /σ ∗

2 = gα = gxy . That
is, B1 can solve the CDH problem. �

Lemma 7 If there existsA that makes at most qC creation and qA adjudication queries and

it holds
∣
∣
∣Advforge-Bk−1 − Advforge-Bk

∣
∣
∣ = ε for some k ∈ [qC], then we can construct algorithm

B2 that solves the DLIN problem with advantage ε.

Proof of lemma B2 is given instance (�, g, f = gb, ν, gx , f y, T) of the DLIN problem and
generates the verification key as follows. It selects exponents α, a1, a2, yv1 , yv2 , yw, yu, yh,

η, A, B, β
U← Zp , computes

g := g ga1 := ga1 ga2 := ga2

gb := f gba1 := f a1 gba2 := f a2

v := ν−a1a2 v1 := νa2gyv1 v2 := νa1gyv2

w := f gyw u := f −Agyu h := f −Bgyh

τ1 := vv
a1
1 = gyv1a1 τ2 := vv

a2
2 = gyv2a2 τ b1 := (vv

a1
1)b = f yv1a1

τ b2 := (vv
a2
2)b = f yv2a2 e(g, g)αa1b := e(f, g)αa1

h̄ := gη ζ := gβ

123

86 R. Nishimaki, K. Xagawa

and sets V K := (Γ, f, ga1 , ga2 , f a1 , f a2 , τ1, τ2, τ b1 , τ b2 , v, v1, v2, w, u, h, h̄, k, e(f, g)αa1),
SK := (V K , gα, gαa1 , ga1a2), and apk := ζ . B2 has ga1a2 since it has (a1, a2), thus, it
can generate a Type B signature. We define F(M) := AM + B. If stag := F(M), then
(uMwstagh) = f stag−AM−B · gMyu+stagyw+yh = gMyu+stagyw+yh . B2 generates signatures
as follows. For the i-th creation query,

Case i > k: Returns encrypted signatures of Type B signatures by using SK , ga1a2 and ζ .
Case i < k: Returns encrypted signatures of Type A signatures by using SK = (gα, gαa1)

and ζ .
Case i = k: Embeds the instance as follows. For the k-th creation query M , B2 first generates

a Type A signature as follows. It selects m0
U← Zp , sets m := Hk(gm0) and stag :=

F(m), and generates a Type A signature (σ ′
0, σ

′
1, σ

′
2, σ

′
3, σ

′
4, σ

′
5, σ

′
6, σ

′
7) for m by using

tag stag (with randomness r ′
1, r

′
2, z

′
1, z

′
2

U← Zp , r ′ := r ′
1 + r ′

2). Next, it computes

σ1 := σ ′
1 · T−a1a2 = gαa1(νr−(x+y)T)−a1a2

σ2 := σ ′
2 · T a2(gx)yv1 = g−α(νr−(x+y)T)a2gryv1 gz1

σ3 := σ ′
3 · (f x)yv1 = (gb)−z1

σ4 := σ ′
4 · T a1(gx)yv2 = (νr−(x+y)T)a1gryv2 gz2

σ5 := σ ′
5 · (f x)yv2 = (gb)−z2

σ6 := σ ′
6 · f y = gr2b

σ7 := σ ′
7 · gx = gr1

ϑ := Hk(M ‖ σ3, . . . , σ7, stag)

ϕ := (m0 − ϑ)/η m = Hk(g
ϑ h̄ϕ)

σ0 := σ ′
0 · (gx)myu+yh+stagyw = (umwstagh)r1 .

In this case, it implicitly holds that z1 := z′1 − yv1 y, z2 := z′2 − yv2 y, r1 := r ′
1 + x ,

r2 := r ′
2 + y. B2 can generate σ0 correctly since B2 sets stag := F(m).

– If T = νx+y , the above signature is Type A with randomness r1 := r ′
1 + x , r2 := r ′

2 + y.

– If T
U← G, the above signature is Type B since T = νx+ygγ for some γ

U← Zp .

For VES creation query M , B2 returns an encrypted signature of the above signature for
M by using ζ . For adjudication query (M, ω), if it is a valid VES, then B2 decrypts it by
using β and returns extracted signatures for M . That is, if T = νx+y (linear), then A is in
Game-(k − 1), otherwise A is in Game-(k).

At some point, A outputs a signature σ ∗ = (σ ∗
0 , . . . , σ ∗

7 , stag∗, ϕ∗) and message
M∗. Note that in this game, M∗ is not queried to CO. B2 computes ϑ ′ := Hk(M∗ ‖
(σ ∗

3 , . . . , σ ∗
7 , stag∗)), m′ := Hk(gϑ ′

h̄ϕ∗
) and verifies

e(σ ∗
0 , ν)e(νstag

∗−Am′−B , σ ∗
6)

= e((σ ∗
1 /gαa1)

− 1
a1a2 , f stag

∗−Am′−B)e(σ ∗
7 , νm

′ yu+stag∗yw+yh).

It holds that σ ∗
0 = (f stag

∗−Am′−Bgm
′ yu+stag∗yw+yh)r

∗
1 , σ ∗

1 = gαa1ν−a1a2r∗
g−a1a2γ ∗

, σ ∗
6 =

gbr
∗
2 , and σ ∗

7 = gr
∗
1 . Thus, the left-hand side is

e(f, ν)r
∗
1 (stag∗−Am′−B)e(g, ν)r

∗
1 (m′ yu+stag∗yw+yh)e(ν, f)r

∗
2 (stag∗−Am′−B),

123

Verifiably encrypted signatures with short keys 87

and the right-hand side is

e(ν, f)r
∗(stag∗−Am′−B)e(g, f)γ

∗(stag∗−Am′−B)e(g, ν)r
∗
1 (m′ yu+stag∗yw+yh).

A simplified equation is

1 = e(g, f)γ
∗(stag∗−Am′−B).

It holds that stag∗ �= Am′ + B without negligible probability because M∗ �= Mi for all
i ∈ [qC] and A and B are information theoretically hidden from the adversary. If signature
σ ∗ is Type A, then the above equation holds and B2 outputs 1. On the other hand, if σ ∗ is
Type B, then it does not hold and B2 outputs 0.

Thus, if A can distinguish the two games, then B2 can solve the DLIN problem with the
same advantage. �

Lemma 8 IfA outputs a Type B forgery, then we can construct algorithm B3 that solves the
DLIN problem.

Proof of lemma Algorithm B3 is given instance (Γ, g, f = ga1 , ν = ga2 , gx , f y, T) of the
DLIN problem and simulates the verification key and the signing oracle for the signature
scheme (B3 does not have values a1, a2, x, y).

B3 generates the verification key as follows. It selects exponents b, α, yv, yv1 , yv2 , β, η
U←

Zp and generators u, w, h
U← G, computes

g := g ga1 := f ga2 := ν

gb := gb gba1 := f b gba2 := νb

v := gyv v1 := gyv1 v2 := gyv2

τ1 := vv
a1
1 = gyv f yv1 τ2 := vv

a2
2 = gyv ν yv2 e(g, g)αa1b := e(g, f)αb

h̄ := gη ζ := gβ

and sets V K := (Γ, gb, f, ν, f b, νb, τ1, τ2, τ b1 , τ b2 , w, u, h, h̄, k, e(g, f)αb), SK := (V K ,

gα, f α, v, v1, v2), and apk := ζ . B3 can generate a Type A signature by using the (normal)
signing algorithm since it has α and ga1 . Thus, B3 can return valid encrypted signatures
under apk = ζ for queries to CO. It also has β, so it can decrypt all valid VESs and perfectly
simulate all queries to AO.

If adversaryA outputs a TypeB forgery σ1 := (gαa1vr)·g−a1a2γ , σ2 := (g−αvr1g
z1)·ga2γ ,

σ3 := (gb)−z1 , σ4 := (vr2g
z2) · ga1γ , σ5 := (gb)−z2 , σ6 := (gb)r2 , σ7 := gr1 , ϑ := Hk(M ‖

σ3, . . . , σ7), m := Hk(gϑ h̄ϕ), ϕ, and σ0 := (umwstagh)r1 for some r1, r2, z1, z2, γ ∈ Zp

(r = r1 + r2), then B3 can compute (g−a1a2γ , ga1γ , ga2γ) from σ1, σ4, σ2, respectively. The
reason is as follows.

B3 has b, so it can compute gz1 , gz2 , gr1 , gr2 from σ3 = g−bz1 , σ5 = g−bz2 , σ7 = gr1 ,
σ6 = gbr2 , respectively, and obtain gr = gr1+r2 , vr = gryv , vr1 = gryv1 , vr2 = gryv2
(B3 has yv, yv1 , yv2). Thus, B3 can extract (g−a1a2γ , ga1γ , ga2γ) from σ1, σ2, σ4 and can
solve the DLIN problem by checking whether e(gx , g−a1a2γ)−1 · e(f y, ga2γ) = e(ga1γ , T)

because e(gx , g−a1a2γ)−1 · e(ga1y, ga2γ) = e(g, g)a1a2γ x+a1a2γ y = e(g, g)a1a2γ (x+y). If
T = ga2(x+y) = νx+y , then the equation holds. Thus, B3 can solve the DLIN problem if A
outputs a Type B forgery. Note that in this game, A outputs M∗ �= Mi for all i ∈ [qC]. �

We complete the proof of Theorem 7 by using Lemmas 5, 6, 7, and 8. �

123

88 R. Nishimaki, K. Xagawa

5 Application to obfuscators for ES and EVES

sWdVES can be used to construct new obfuscators for an ES and EVES. Hada [41] con-
structed anobfuscator for anESby combiningWaters’ signature [52] and the linear encryption
scheme. The linear encryption scheme proposed by Boneh et al. [9] is as follows.

L.Gen(1λ): On input security parameter λ, it generates Γ := (p,G,GT , g, e)
R← Gbmp(1λ),

selects exponents xe, ye
U← Zp , and outputs pk := (fe, he) := (gxe , gye), dk :=

(xe, ye).

L.Enc(pke,m): On input m ∈ G and pk = (fe, he) it selects r, s
U← Zp and outputs

c := (f re , hse, g
r+sm).

L.Dec(dk, c): On input c = (c1, c2, c3) and dk, it outputs m := c3/(c
1/xe
1 c1/ye2).

Hada’s idea is as follows. Suppose that signature σ is computed as σ = sk · G(m) where
sk ∈ G is the signing key, m ∈ Zp is the message and G : Zp → G is an efficiently
computable function. Then, for ciphertext c = L.Enc(pke, sk), we can compute c̃ := c ·
G(m) = L.Enc(pke, sk · G(m)) by the homomorphic property of the linear encryption
scheme. This is exactly an encrypted signature. The ciphertext of sk can be seen as an
obfuscated circuit for encrypted signatures since the linear encryption scheme is semantically
secure and no information about sk is revealed. We extend Hada’s construction, that is,
we combine sWdVES based on strongly unforgeable Waters’ dual signature and the linear
encryption scheme. However, Waters’ dual signature is more complex thanWaters’ signature
at Eurocrypt’05, so it is non-trivial whether we can directly use Hada’s technique. In Waters’
signature at Eurocrypt’05, the signing algorithm does not exponentiate sk, but in Waters’
dual signature, it does. However, we can resolve this problem by using multiplicatively
homomorphic property of the linear encryption scheme, that is, we can compute cr ·G(m) =
L.Enc(pk, skr ·G(m)). Therefore, if we encrypt sk = (gα, gαa1 , ga1a2) by linear encryption,
then we can construct an obfuscator for an ES/EVES. We propose secure obfuscators for an
ES and EVES in the section.

5.1 Secure obfuscation

We review some definitions for secure obfuscators for ESs/EVESs.

Average-case secure obfuscation. We review an extended notion of the average-case virtual
black-box property (ACVBP) by Hohenberger et al. [43]. They proposed the definition to
overcome the impossibility results by Barak et al. [4].

Definition 15 (Average-Case SecureObfuscation [43]) An efficient algorithmObf that takes
as input a (probabilistic) circuit and outputs a new (probabilistic) circuit, is an average-case
secure obfuscator for the family C = {Cλ} where Cλ are the circuits in C with input length λ

if it satisfies the following properties:

Preserving Functionality: For any input length λ and C ∈ Cλ, it holds that

Pr
coins of Obf

[∃x ∈ {0, 1}λ : �(Obf(C)(x),C(x)) is not negligible in λ]

is negligible in λ.
The distributionsObf(C)(x) and C(x) are taken overObf(C)’s and C’s random coins,
respectively. � denotes statistical distance.

123

Verifiably encrypted signatures with short keys 89

Polynomial Blowup: There exists a polynomial p such that for sufficiently large input length
λ and any C ∈ Cλ, |Obf(C)| ≤ p(|C |).

Average-Case Secure Virtual Black-Box: For any efficient adversary A, there exists an effi-
cient simulator S such that for every efficient distinguisher D and every auxiliary input
z ∈ poly(λ) (where poly is any polynomial),

∣
∣
∣
∣
∣
Pr

[

DC (A(Obf(C), z), z) → 1 |
C

R← Cλ

]

− Pr

[

DC (SC (1λ, z), z) → 1 |
C

R← Cλ

]∣
∣
∣
∣
∣

is negligible in λ. The probability is over the selection of a random circuit C from Cλ,
and the coins of the distinguisher, simulator, oracle and obfuscator. Note that entities
with black-box access to C cannot set C’s random tape.

We review the ACVBP with respect to dependent oracles introduced by Hada [41] since
our obfuscator is secure in this sense. Hada proposed the definition to consider the security
of obfuscators for ES functionality. In the setting of ES functionalities, the adversary can
access a signing oracle and is given a public-key used for encrypted signatures. However,
the setting is not sufficient for meaningful security and a stronger security is required. That
is, the adversary should be given not only the public-key but also an obfuscated circuit of
an ES functionality (not black-box access). Hada showed that if an ES scheme satisfies the
weaker security requirement (the adversary is given only a public-key) and its obfuscator
satisfies ACVBP with respect to dependent oracles, then it also satisfies the stronger security
requirement (the adversary is given an obfuscated circuit).

Definition 16 (Average-Case SecureObfuscationw.r.t. DependentOracles [41])An efficient
algorithm Obf that takes as input a (probabilistic) circuit and outputs a new (probabilistic)
circuit, is an average-case secure obfuscator for the family C = {Cλ} if it satisfies the following
properties:

Preserving Functionality: This is the same as Definition 15.
Polynomial Blowup: This is the same as Definition 15.
Average Case Virtual Black-Box Property w.r.t. Dependent Oracles: Let T (C) be a set of

oracles dependent on the circuit C . A circuit obfuscatorObf for C satisfies the ACVBP
w.r.t. dependent oracle set T if the following condition holds. For any PPT A, there
exists a PPT S such that for any PPT D and every auxiliary input z ∈ {0, 1}poly(λ),

∣
∣
∣
∣
∣
Pr

[

DC,T (C)(A(Obf(C), z), z) → 1 |
C

R← Cλ

]

− Pr

[

DC,T (C)(SC (1λ, z), z) → 1 |
C

R← Cλ

]∣
∣
∣
∣
∣

is negligible in λ. Note that entities with black-box access to C and T (C) cannot set
C’s and T (C)’s random tapes, respectively.

5.2 Security of ES and EVES

We review the definitions proposed byHada [41]. In the following definitions,SO is a signing
oracle, that is, if a message M is queried by the adversary, then SO returns a valid signature
for M by using the secret key. First, we consider a weak security game where the adversary
can access the signing oracle and is given a public key for encrypted signature.

Definition 17 (Existential Unforgeability w.r.t. ES Functionality) Let PKE and SIG be a
pair of PKE and SIG schemes. SIG is existentially unforgeable w.r.t. ES functionality if the

123

90 R. Nishimaki, K. Xagawa

following condition holds. For every PPT A and every auxiliary input z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎢
⎣

SIG.Vrfy(vk, M∗, σ ∗) → 1
∧M∗ /∈ Q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Γ
R← Setup(1λ);

(vk, sk)
R← SIG.Gen(Γ);

(pke, dk)
R← PKE.Gen(Γ);

(M∗, σ ∗, Q)
R← ASO(sk,·)(Γ, vk, pke, z)

⎤

⎥
⎥
⎥
⎥
⎦

is negligible in λ.

Next, we consider a strong security game where the adversary is given an obfuscated circuit
of an ES functionality.

Definition 18 (Existential Unforgeability w.r.t. ES Obfuscator) Let PKE and SIG be a pair
of PKE and SIG schemes. Let ObfES be a circuit obfuscator for ESλ. SIG is existentially
unforgeable w.r.t.ObfES if the following condition holds. For any PPTA and every auxiliary
input z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

SIG.Vrfy(vk, M∗, σ ∗) → 1
∧M∗ /∈ Q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Γ
R← Setup(1λ);

(vk, sk)
R← SIG.Gen(Γ);

(pke, dk)
R← PKE.Gen(Γ);

C ′ R← ObfES(Csk,pke);
(M∗, σ ∗, Q)

R← ASO(sk,·)(Γ, vk, pke,C ′, z)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is negligible in λ.

We extend these definitions to consider EVES functionalities. We can easily achieve this
by adding a public-key of an adjudicator as input toA and giving the creation and adjudication
oracles (the signing oracle in the security game for ES functionality is replaced with a oracle
set that consists of those two oracles).

Definition 19 (Existential Unforgeability w.r.t. EVES Functionality) Let PKE and VES be
a pair of PKE and VES schemes. VES is existentially unforgeable w.r.t. EVES functionality
if the following condition holds. For any PPT A and every auxiliary input z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎣

VesVrfy(apk, vk, ω∗, M∗) → 1 ∧ M∗ /∈ QC ∧ M∗ /∈ QA |
Γ

R← Setup(1λ);
(apk, ask)

R← AdjGen(Γ); (vk, sk)
R← Gen(Γ); (pke, dk)

R← PKE.Gen(Γ);
(M∗, ω∗, QC, QA)

R← ACO(sk,apk,·),AO(ask,apk,vk,·,·)(Γ, vk, pke, apk, z)

⎤

⎥
⎥
⎥
⎦

is negligible in λ.

Definition 20 (Opacity w.r.t. EVES Functionality) Let PKE and VES be a pair of PKE and
VES schemes. VES is opaque w.r.t. EVES functionality if the following condition holds. For
any PPT A and every auxiliary input z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎣

Vrfy(vk, σ ∗, M∗) → 1 ∧ M∗ /∈ QA |
Γ

R← Setup(1λ);
(apk, ask)

R← AdjGen(Γ); (vk, sk)
R← Gen(Γ); (pke, dk)

R← PKE.Gen(Γ);
(M∗, σ ∗, QC, QA)

R← ACO(sk,apk,·),AO(ask,apk,vk,·,·)(Γ, vk, pke, apk, z)

⎤

⎥
⎥
⎥
⎦

is negligible in λ.

123

Verifiably encrypted signatures with short keys 91

Definition 21 (Existential Unforgeability w.r.t. EVES Obfuscator) Let PKE and VES be a
pair of PKE and VES schemes. Let ObfEVES be a circuit obfuscator for EVESλ. VES is
unforgeability w.r.t. ObfEVES if the following condition holds. For any PPT A and every
auxiliary input z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

VesVrfy(apk, vk, ω∗, M∗) → 1 ∧ M∗ /∈ QC ∧ M∗ /∈ QA |
Γ

R← Setup(1λ);
(apk, ask)

R← AdjGen(Γ); (vk, sk)
R← Gen(Γ); (pke, dk)

R← PKE.Gen(Γ);
C ′ R← ObfEVES(Csk,pke,apk);
(M∗, ω∗, QC, QA)

R← ACOl(sk,apk,·),AO(ask,apk,vk,·,·)(Γ, vk, pke, apk,C ′, z)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is negligible in λ.

Definition 22 (Opacityw.r.t. EVESObfuscator) LetPKE andVES be a pair of PKE andVES
schemes. Let ObfEVES be a circuit obfuscator for EVESλ. VES is opaque w.r.t. ObfEVES if
the following condition holds. For any PPT A and every auxiliary input z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vrfy(vk, σ ∗, M∗) → 1 ∧ M∗ /∈ QA |
Γ

R← Setup(1λ);
(apk, ask)

R← AdjGen(Γ); (vk, sk)
R← Gen(Γ); (pke, dk)

R← PKE.Gen(Γ);
C ′ R← ObfEVES(Csk,pke,apk);
(M∗, σ ∗, QC, QA)

R← ACO(sk,apk,·),AO(ask,apk,vk,·,·)(Γ, vk, pke, apk,C ′, z)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is negligible in λ.

Theorem 8 Let oracle set T (CΓ,sk,apk,pke) be {CO(sk, apk, ·),AO(ask, apk, vk, ·, ·)}
where CΓ,sk,apk,pke is a circuit for the EVES functionality. If Obf for EVES satisfies the
ACVBP w.r.t. dependent oracle set T , then the existential-unforgeability/opacity w.r.t. EVES
functionality implies existential-unforgeability/opacity w.r.t. the EVES obfuscator, respec-
tively.

The proof of this theorem is almost the same as that of Hada [41], but we write it for
confirmation.

Proof We show that if we assume that the existential-unforgeability/opacity w.r.t. an EVES
functionality is satisfied but there existsA that breaks existential-unforgeability/opacity w.r.t.
the EVES obfuscator, then Obf does not satisfy the ACVBP w.r.t. dependent oracle set T ,
that is, there exists a distinguisher D for ACVBP w.r.t. dependent oracle set T . We construct
D as follows.

1. It is given an auxiliary-input z and a target circuit Ĉ that is either a real obfuscated circuit
or a simulated circuit by a simulator.

2. It obtains keys (Γ, vk, apk, pke) by oracle access to CΓ,sk,apk,pke with input keys.
3. It gives keys (Γ, vk, apk, pke), Ĉ and auxiliary input z to A as inputs.
4. It simulates the creation and adjudication oracles by using oracle access to oracle set

T (CΓ,sk,apk,pke).
5. It outputs 1 if and only if the winning condition of the existential-unforgeability/opacity

w.r.t. the EVES obfuscator holds, respectively.

It holds that T (CΓ,sk,apk,pke) = {CO(sk, apk, ·),AO(ask, apk, vk, ·, ·)}, so the oracle sim-
ulation above is perfect. If the target circuit is the real obfuscated circuit, then the simula-
tion above perfectly simulates the experiment of existential-unforgeability/opacity w.r.t. the

123

92 R. Nishimaki, K. Xagawa

EVES obfuscator andA has a non-negligible advantage. If the target circuit is the simulated
one, then the distribution of inputs to A is not correct and it does not have a non-negligible
advantage. Therefore, D can distinguish two circuits by using A. �

5.3 Constructions of obfuscator for ES/EVES

To satisfy the virtual black-box property, we must construct simulator S that outputs an
indistinguishable view from the real one. S does not have sk, so it encrypts random dummy
elements over G instead of sk and sets them as an obfuscated circuit. Encrypted signa-
tures/VESs under semantic secure PKE are indistinguishable from ciphertexts of dummy
messages. By semantic security of the linear encryption, the view by S is indistinguishable
from the real one. Thus, we can achieve obfuscators for ESs/EVESs.

5.3.1 Obfuscator for EVES

A naive construction of an EVES is the sequential composition of the VES scheme discussed
in Sect. 4 and the linear encryption scheme (create-then-encrypt). We define the family of
circuits as

EVESλ :=

⎧

⎪⎨

⎪⎩

CΓ,sk,apk,pke

∣
∣
∣
∣
∣
∣
∣

(vk, sk)
R← Gen(Γ),

(apk, ask)
R← AdjGen(Γ),

(pke, dk)
R← L.Gen(Γ)

⎫

⎪⎬

⎪⎭

,

where each circuit CΓ,sk,apk,pke ∈ EVESλ (for notational convention, we often omit
Γ, sk, apk, pke and use just C if it is clear from the context) is a probabilistic circuit that
consists of the following two algorithms. EVESsk,apk,pke (M) takes M as input, generates

ω
R← Create(sk, apk, M), and computesCω := L.Enc(pk, ω);Keyssk,apk,pke (keys) takes

keys as input and outputs (Γ, vk, apk, pke).
We introduce a re-randomization algorithm for the linear encryptionReRand(pke, c1, c2,

c3) that takes as inputs pke = (fe, he) and a ciphertext of the linear encryption, selects

r ′, s′ U← Zp , and outputs (c1 · f r
′

e , c2 · hs′e , c3 · gr ′+s′).
Our obfuscator for an EVES is described in Fig. 1. We can see ctsk as a ciphertext of

signing key sk. It is encrypted by pke and apk = ζ . If we set ρ′
1 := �2 + γ �3 + ρ1 and

ρ′
2 := �1+ρ2, then, by using the homomorphic property of the linear andElGamal encryption

schemes, we can write

(c1,1, c1,2, �1)
R← L.Enc(pke, gαa1vr g−a1a2γ · ζ ρ′

1 = K1),

(K ′
1, K̂1) = (g�2+�3γ+ρ1 , (gb)�2+�3γ+ρ1) = (gρ′

1 , (gb)ρ
′
1),

(c2,1, c2,2, �2)
R← L.Enc(pke, g−αvr1g

z1ga2γ · ζ ρ′
2 = K2),

(K ′
2, K̂2) = (g�1+ρ2 , (gba1)�1+ρ2) = (gρ′

2 , (gba1)ρ
′
2)

by simple calculation. That is,we canwriteCi
R← Enc(pke, Ki) for not only i = 0, 3, 4, 5, 6,

7 but also i = 1, 2. Thus, we can verify that the output of ObfEVES(M) is identically
distributed to the output of Csk,apk,pke (M). We need the re-randomization procedure of the
linear and ElGamal encryption schemes to prove the security.

Remark The proposed obfuscator encrypts elements in Zp by using the linear encryption
scheme. The message space of the linear encryption scheme is G, so if we do not have an

123

Verifiably encrypted signatures with short keys 93

Our obfuscator ObfEVES takes C as input and proceeds as follows.

1. Reads (Γ, sk, apk, pke) from C parses sk = (gα, gαa1 , ga1a2) and apk = ζ.
2. Selects 1 2 3

U← p and computes

(cα,1, cα,2, cα,3)
R← L.Enc(pke, g−α)

cα := (cα,1, cα,2, cα,3 · ζ 1 , g 1 , gba1 1)

(cαa1,1, cαa1,2, cαa1,3)
R← L.Enc(pke, gαa1)

cαa1 := (cαa1,1, cαa1,2, cαa1,3 · ζ 2 , g 2 , g 2)

(ca1a2,1, ca1a2,2, ca1a2,3)
R← L.Enc(pke, g−a1a2)

ca1a2 := (ca1a2,1, ca1a2,2, ca1a2,3 · ζ 3 , g 3 , g 3).

3. Sets ctsk := (cα, cαa1 , ca1a2).
4. Constructs an obfuscated circuit as follows. (1) On input keys, outputs

(Γ, vk, apk, pke). (2) On input a message M ,
(a) Selects r1, r2, γ, ρ1, ρ2, stag, ϕ

U← p and sets r := r1 + r2.
(b) Computes

Ψ1 := cαa1,3 · vr · cγ
a1a2,3 · ζρ1 ,

K1 := cαa1,4 · cγ
a1a2,4 · gρ1 ,

K̂1 := cαa1,5 · cγ
a1a2,5 · (gb)ρ1

c1,1 := cαa1,1 · cγ
a1a2,1, c1,2 := cαa1,2 · cγ

a1a2,2

C1 := (c1,1, c1,2, c1,3)
R← ReRand(pke, (c1,1, c1,2, Ψ1))

C1
R← L.Enc(pke, K1)

Ĉ1
R← L.Enc(pke, K̂1).

(c) Computes

Ψ2 := cα,3 · vr
1 · gz1 · ga2γ · ζρ2 , K2 := cα,4 · gρ2 , K̂2 := cα,5 · (gba1)ρ2

c2,1 := cα,1, c2,2 := cα,2

C2 := (c2,1, c2,2, c2,3)
R← ReRand(pke, (c2,1, c2,2, Ψ2))

C2
R← L.Enc(pke, K2)

Ĉ2
R← L.Enc(pke, K̂2).

(d) Computes K3 := (gb)−z1 , K4 := vr
2gz2ga1γ , K5 := (gb)−z2 , K6 := (gb)r2 ,

K7 := gr1 , ϑ := Hk(M, K3, . . . , K7, stag), m := Hk(gϑh̄ϕ), K0 := (umwstagh)r1 ,
Ci

R← L.Enc(pke, Ki) (i = 0, 3, 4, 5, 6, 7), Ct
R← L.Enc(pke, stag), and Cϕ :=

L.Enc(pke, ϕ).
(e) Outputs (C0, . . . , C7, Ct, Cϕ, C1, C2, Ĉ1, Ĉ2).

Fig. 1 Obfuscator for EVES

encoding between Zp and G, then we cannot use the linear encryption scheme. If we use a
special elliptic curve defined by equation y2 = x3 + b, then we have such an encoding [8]
and our construction works. Moreover, if we encrypt elements in Zp′ such that p′ < p, then
we can use an injective encoding proposed by Fouque, Joux, and Tibouchi [29].

Theorem 9 Let T (Csk,apk,pke) be {CO(sk, apk, ·),AO(ask, apk, vk, ·, ·)}. If the DLIN
assumption holds, then ObfEVES satisfies ACVBP w.r.t. dependent oracle set T .

123

94 R. Nishimaki, K. Xagawa

Proof We construct a simulator,S. It does not have secret signing key sk, so it acts as follows.

1. Queries oracle C on keys to obtain (Γ, vk, pke, apk).
2. Parses vk = (g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ b1 , τ b2 , w, u, h, h̄, k, e(g, g)αa1b) and

apk = ζ .

3. Samples dummy elements Jα, Jαa1 , Ja1a2
U← G and exponents �1, �2, �3

U← Zp .

4. Generates (c′
α,1, c

′
α,2, c

′
α,3)

R← L.Enc(pke, Jα).

5. Sets cα := (c′
α,1, c

′
α,2, c

′
α,3 · ζ �1 , g�1 , gba1�1).

6. Generates (c′
αa1,1

, c′
αa1,2

, c′
αa1,3

)
R← L.Enc(pke, Jαa1).

7. Sets cαa1 := (c′
αa1,1

, c′
αa1,2

, c′
αa1,3

· ζ �2 , g�2 , gb�2).

8. Generates (c′
a1a2,1

, c′
a1a2,2

, c′
a1a2,3

)
R← L.Enc(pke, Ja1a2).

9. Sets ca1a2 := (c′
a1a2,1

, c′
a1a2,2

, c′
a1a2,3

· ζ �3 , g�3 , gb�3).
10. Sets ct J := (cα, cαa1 , ca1a2).
11. Outputs circuit (Γ, vk, apk, pke,CtJ).

We consider the following distributions.

Real-C(D, λ, z) :
Γ

R← Gbmp(1
λ); (pke, dk)

R← L.Gen(Γ); (vk, sk)
R← W.Gen(Γ);

β
U← Zp; (apk, ask) := (gβ, β);

(c′
α,1, c

′
α,2, c

′
α,3)

R← L.Enc(pke, g−α); cα := (c′
α,1, c

′
α,2, c

′
α,3 · ζ �1 , g�2 , gba1�1);

(c′
αa1,1, c

′
αa1,2, c

′
αa1,3)

R← L.Enc(pke, gαa1);
cαa1 := (c′

αa1,1, c
′
αa1,2, c

′
αa1,3 · ζ �2 , g�2 , gb�2);

(c′
a1a2,1, c

′
a1a2,2, c

′
a1a2,3)

R← L.Enc(pke, g−a1a2);
ca1a2 := (c′

a1a2,1, c
′
a1a2,2, c

′
a1a2,3 · ζ �3 , g�3 , gb�3);

ctsk := (cα, cαa1 , ca1a2);
b

R← DC (Γ, vk, pke, apk, ctsk, z).

Sim-C(D, λ, z) :
Γ

R← Gbmp(1
λ); (pke, dk)

R← L.Gen(Γ); (vk, sk)
R← W.Gen(Γ);

β
U← Zp; (apk, ask) := (gβ, β);

(c′
α,1, c

′
α,2, c

′
α,3)

R← L.Enc(pke, Jα); cα := (c′
α,1, c

′
α,2, c

′
α,3 · ζ �1 , g�1 , gba1�1);

(c′
αa1,1, c

′
αa1,2, c

′
αa1,3)

R← L.Enc(pke, Jαa1);
cαa1 := (c′

αa1,1, c
′
αa1,2, c

′
αa1,3 · ζ �2 , g�2 , gb�2);

(c′
a1a2,1, c

′
a1a2,2, c

′
a1a2,3)

R← L.Enc(pke, Ja1a2);
ca1a2 := (c′

a1a2,1, c
′
a1a2,2, c

′
a1a2,3 · ζ �3 , g�3 , gb�3);

ct J := (cα, cαa1 , ca1a2);
b

R← DC (Γ, vk, pke, apk, ct J , z).

123

Verifiably encrypted signatures with short keys 95

It holds that Real-C(D, λ, z) = DC (Obf(C), z) and Sim-C(D, λ, z) = DC (SC (1λ, z), z).
We let J1 := Jα, J2 := Jαa1 , J3 := Ja1a2 . We consider hybrid experiments HybCi , where

i ∈ [3] for j = 1, . . . , i , (c′
1,1, c

′
1,2, c

′
1,3)

R← L.Enc(pke, J j), and for j = i + 1, . . . , 3,

(c′
1,1, c

′
1,2, c

′
1,3)

R← L.Enc(pke, sk[j]), where (sk[1], sk[2], sk[3]) := (g−α, gαa1 , g−a1a2).

It holds that HybC0 = Real-C(D, λ, v, z) = DC (Obf(C), z) and HybC3 = Sim-C(D, λ, z)

= DC (SC (1λ, z), z). We can show HybCi−1
c≈ HybCi . If there exists distinguisher D that can

distinguish these two variables, then we can construct adversary A which breaks IND-CPA
security of the linear encryption scheme. A takes as input common parameter Γ , public key

pke, and auxiliary input z. It selects β
U← Zp , sets apk := gβ and ask := β, generates

(vk, sk)
R← sWd.Gen(1λ), selects Ji

U← G, sets m0 := sk[i] and m1 := Ji , and returns
(m0,m1, vk). If A receives target ciphertext c∗, then A uses D as follows.

1. Parses c∗ = (c∗
1, c

∗
2, c

∗
3).

2. For j = 1, . . . , i − 1, selects � j
U← Zp and sets (c′

i,1, c
′
i,2, c

′
i,3)

R← L.Enc(pke, J j) and

csk[j] := (c′
i,1, c

′
i,2, c

′
i,3 · ζ � j , g� j , g̃

� j
j).

3. For j = i , selects �
U← Zp and sets csk[j] := (c∗

1, c
∗
2, c

∗
3 · ζ �, g�, g̃�

j).

4. For j = i + 1, . . . , 3, selects � j
U← Zp and sets (c′

i,1, c
′
i,2, c

′
i,3)

R← L.Enc(pke, sk[j])
and csk[j] := (c′

i,1, c
′
i,2, c

′
i,3 · ζ � j , g� j , g̃

� j
j).

5. Sets ctsk := (csk[1], csk[2], csk[3]).
6. Gives (Γ, vk, pke, apk, ctsk) as inputs.
7. SimulatesDO(Γ, vk, pke, apk, ctsk, z), where oracle queries can be perfectly simulated

by using sk = (gα, gαa1 , ga1a2), apk = ζ , and pke.
8. Outputs the output of D.

Here, we set g̃1 := gba1 , g̃2 := gb, g̃3 := gb.
If c∗ is an encryption ofm0 = sk[i], then the distribution is the same asHybCi−1. If c

∗ is an
encryption of m1 = Ji , then the distribution is the same as HybCi . Thus, if D can distinguish
HybCi−1 from HybCi , then A can break semantic security of the linear encryption scheme.

By transitivity, it holds that Real-C(D, λ, z) = HybC1
c≈ HybC3 = Sim-C(D, λ, z) and the

theorem follows. �

5.3.2 Obfuscator for ES

A naive construction of an ES is the sequential composition of a signature scheme and
a encryption scheme (sign-then-encrypt), as Hada proposed [41]. We define the family of
circuits as

ESλ := {CΓ,sk,pke |(vk, sk) R← SIG.Gen(Γ), (pke, dk)
R← PKE.Gen(Γ)},

where each circuit Csk,pke ∈ ESλ is a probabilistic circuit that consists of the following

two algorithms: ESsk,pke (M) takes M as input, generates (σ0, σ1, . . . , σ7, stag, ϕ)
R←

sWd.Sign(sk, M), computes Ci
R← L.Enc(pke, σi), Ct

R← L.Enc(pke, stag), Cϕ
R←

L.Enc(pke, ϕ), and outputs Cσ := (C0, . . . ,C7,Ct ,Cϕ); Keyssk,pke (keys) takes keys as
input and outputs (Γ, vk, pke).

Our obfuscator for ES is easily obtained from our obfuscator for EVES and descried in
Fig. 2.

123

96 R. Nishimaki, K. Xagawa

Our obfuscator ObfES takes Csk,pke as input and proceeds as follows.

1. Reads (Γ, sk, pke) from Csk,pke , obtains vk using Keys, and parses sk = (gα, gαa1).

2. Computes (cα,1, cα,2, cα,3)
R← L.Enc(pke, g−α), (cαa1,1, cαa1,2, cαa1,3)

R←
L.Enc(pke, gαa1), and (ca1a2,1, ca1a2,2, ca1a2,3)

R← L.Enc(pke, g−a1a2).
3. Sets Ctsk := (cα, cαa1ca1a2).
4. Generates an obfuscated circuit as follows. (1) On input keys, outputs (Γ, vk, pke).

(2) On input a message M,
(a) Selects r1, r2, γ, z1, z2, stag, ϕ

U← p and sets r := r1 + r2.
(b) Computes Ψ1 := cαa1,3 ·vr ·cγ

a1a2,3, c1,1 := cαa1,1 ·cγ
a1a2,1, c1,2 := cαa1,2 ·cγ

a1a2,2,

C1 := (c1,1, c1,2, c1,3)
R← ReRand(pke, (c1,1, c1,2, Ψ1)).

(c) Computes Ψ2 := cα,3 · v1r · gz1 · ga2γ , c2,1 := cα,1, c2,2 := cα,2, C2 :=

(c2,1, c2,2, c2,3)
R← ReRand(pke, (c2,1, c2,2, Ψ2)).

(d) Computes σ3 := (gb)−z1 , σ4 := vr
2gz2ga1γ , σ5 := (gb)−z2 , σ6 := (gb)r2 , σ7 :=

gr1 , ϑ := Hk(M Σ2) where Σ2 := (σ3, . . . , σ7, stag), m := Hk(gϑh̄ϕ), σ0 :=
(umwstagh)r1 .

(e) Computes Ci
R← L.Enc(pke, σi) (i = 0, 3, 4, 5, 6, 7), Ct

R← L.Enc(pke, stag), Cϕ
R←

L.Enc(pke, ϕ), and outputs (C0, . . . , C7, Ct, Cϕ).

Fig. 2 Obfuscator for ES

It holds that

(c1,1, c1,2, �1)
R← L.Enc(pke, gαa1 · vr · g−a1a2γ)

(c2,1, c2,2, �2)
R← L.Enc(pke, g−α · vr1 · gz1 · ga2γ)

by simple calculation. Thus, we can write Ci
R← L.Enc(pke, σi) for not only i =

0, 3, 4, 5, 6, 7 but also i = 1, 2. We can easily verify that ESsk,pke (M) and ObfES(M)

are identically distributed.

Theorem 10 Let T (Csk,pke) be SO(sk, ·). If the DLIN assumption holds, thenObfES satis-
fies the ACVBP w.r.t. dependent oracle set T .

We can prove Theorem 10 by using the same proof technique as that of Theorem 9.

Acknowledgments The authors would like to thank Mehdi Tibouchi for his useful comments on encodings
betweenZp andG. The authorswould like to thank the anonymous reviewers of PKC2012, 2013, andDesigns,
Codes and Cryptography for their useful comments and suggestions.

References

1. AbeM., ChaseM.,DavidB.,KohlweissM.,NishimakiR.,OhkuboM.:Constant-size structure-preserving
signatures: generic constructions and simple assumptions. In: ASIACRYPT’12. Lecture Notes in Com-
puter Science, vol. 7658, pp. 4–24. Springer, Berlin (2012).

2. Asokan N., Shoup V., Waidner M.: Optimistic fair exchange of digital signatures (extended abstract). In:
EUROCRYPT’98. Lecture Notes in Computer Science, vol. 1403, pp. 591–606. Springer, Berlin (1998).

3. Bao F., Deng R.H., Mao W.: Efficient and practical fair exchange protocols with off-line TTP. In: IEEE
Symposium on Security and Privacy’98, pp. 77–85. IEEE Computer Society, Washington, DC (1998).

4. Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S.P., YangK.: On the (im)possibility
of obfuscating programs. J. ACM 59(2), 6 (2012).

5. BelenkiyM., Camenisch J., ChaseM., KohlweissM., LysyanskayaA., ShachamH.: Randomizable proofs
and delegatable anonymous credentials. In: CRYPTO’09. Lecture Notes in Computer Science, vol. 5677,
pp. 108–125. Springer, Berlin (2009).

123

Verifiably encrypted signatures with short keys 97

6. BitanskyN.,Canetti R.:On strong simulation and composable point obfuscation. In:CRYPTO’10. Lecture
Notes in Computer Science, vol. 6223, pp. 520–537 (2010).

7. BonehD., BoyenX.: Short signatures without random oracles and the SDH assumption in bilinear groups.
J. Cryptol. 21(2), 149–177 (2008).

8. Boneh D., Franklin M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3),
586–615 (2003).

9. Boneh D., Boyen X., Shacham H.: Short group signatures. In: CRYPTO’04. Lecture Notes in Computer
Science, vol. 3152, pp. 41–55. Springer, Berlin (2004).

10. Boneh D., Lynn B., Shacham H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319
(2004).

11. Boneh D., Shen E., Waters B.: Strongly unforgeable signatures based on computational Diffie–Hellman.
In: PKC’06. Lecture Notes in Computer Science, vol. 3958, pp. 229–240. Springer, Berlin (2006).

12. Boneh D., Gentry C., Lynn B., Shacham H.: Aggregate and verifiably encrypted signatures from bilinear
maps. In: EUROCRYPT’03. LectureNotes in Computer Science, vol. 2656, pp. 416–432. Springer, Berlin
(2003).

13. Brakerski Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In:
CRYPTO’12. Lecture Notes in Computer Science, vol. 7417, pp. 868–886. Springer, Berlin (2012).

14. Brakerski Z.,VaikuntanathanV.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS,
pp. 97–106. IEEE Press, New York, NY (2011).

15. Brakerski Z., Gentry C., Vaikuntanathan V.: (Leveled) fully homomorphic encryption without bootstrap-
ping. In: ITCS, pp. 309–325. ACM Press, New york, NY (2012).

16. Canetti R.: Towards realizing random oracles: Hash functions that hide all partial information. In:
CRYPTO’97. Lecture Notes in Computer Science, vol. 1294, pp. 455–469. Springer, Berlin (1997).

17. CanettiR.,DakdoukR.R.:Obfuscatingpoint functionswithmultibit output. In:EUROCRYPT’08.Lecture
Notes in Computer Science, vol. 4965, pp. 489–508. Springer, Berlin (2008).

18. Canetti R., Varia M.: Non-malleable obfuscation. In: TCC’09. Lecture Notes in Computer Science,
vol. 5444, pp. 73–90. Springer, Berlin (2009).

19. Canetti R., Micciancio D., Reingold O.: Perfectly one-way probabilistic hash functions (preliminary
version). In: STOC’98, pp. 131–140. ACM Press, New York, NY (1998).

20. Canetti R., RothblumG.N., VariaM.: Obfuscation of hyperplanemembership. In: TCC’10. Lecture Notes
in Computer Science, vol. 5978, pp. 72–89. Springer, Berlin (2010).

21. Canetti R., Kalai Y.T., Varia M., Wichs D.: On symmetric encryption and point obfuscation. In: TCC’10.
Lecture Notes in Computer Science, vol. 5978, pp. 52–71. Springer, Berlin (2010).

22. Chandran N., Chase M., Vaikuntanathan V.: Collusion resistant obfuscation and functional re-encryption.
In: TCC’12. Lecture Notes in Computer Science, vol. 7194, pp. 404–421. Springer, Berlin (2012).

23. Cheng R., Zhang B., Zhang F.: Secure obfuscation of encrypted verifiable encrypted signatures. In:
ProvSec’11. Lecture Notes in Computer Science, vol. 6980, pp. 188–203. Springer, Berlin (2011).

24. Cheon J.H., Coron J.S., Kim J., Lee M.S., Lepoint T., Tibouchi M., Yun A.: Batch fully homomorphic
encryption over the integers. In: EUROCRYPT’13. Lecture Notes in Computer Science, vol. 7881, pp.
315–335. Springer, Berlin (2013).

25. Coron J.S., Naccache D.: Boneh et al’.s k-element aggregate extraction assumption is equivalent to the
Diffie-Hellman assumption. In: ASIACRYPT’03. Lecture Notes in Computer Science, vol. 2894, pp.
392–397. Springer, Berlin (2003).

26. Coron J.S., Mandal A., Naccache D., Tibouchi M.: Fully homomorphic encryption over the integers
with shorter public keys. In: CRYPTO’11. Lecture Notes in Computer Science, vol. 6841, pp. 487–504.
Springer, Berlin (2011).

27. Dodis Y., Smith A.: Correcting errors without leaking partial information. In: STOC’05, pp. 654–663.
ACM Press, New York, NY (2005).

28. Dodis Y., Lee P.J., YumD.H.: Optimistic fair exchange in a multi-user setting. In: PKC’07. Lecture Notes
in Computer Science, vol. 4450, pp. 118–133. Springer, Berlin (2007).

29. Fouque P.A., Joux A., Tibouchi M.: Injective encodings to elliptic curves. In: ACISP’13. Lecture Notes
in Computer Science, vol. 7959, pp. 203–218. Springer, Berlin (2013).

30. Fuchsbauer G.: Commuting signatures and verifiable encryption. In: EUROCRYPT’11. Lecture Notes in
Computer Science, vol. 6632, pp. 224–245. Springer, Berlin (2011).

31. Garg S., Gentry C., Halevi S.: Candidate multilinear maps from ideal lattices. In: EUROCRYPT’13.
Lecture Notes in Computer Science, vol. 7881, pp. 1–17. Springer, Berlin (2013).

32. GargS.,GentryC.,Halevi S., RaykovaM., SahaiA.,WatersB.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: FOCS’13. IEEE press, New York, NY (2013).

33. Gentry C.: Fully homomorphic encryption using ideal lattices. In: STOC’09, pp. 169–178. ACM Press,
New York, NY (2009).

123

98 R. Nishimaki, K. Xagawa

34. Gentry C., Halevi S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits.
In: FOCS’11, pp. 107–116. IEEE Press, New York, NY (2011).

35. Gentry C., Halevi S.: Implementing Gentry’s fully-homomorphic encryption scheme. In: EURO-
CRYPT’11. Lecture Notes in Computer Science, vol. 6632, pp. 129–148. Springer, Berlin (2011).

36. Gentry C., Halevi S., Smart N.P.: Fully homomorphic encryption with polylog overhead. In: EURO-
CRYPT’12. Lecture Notes in Computer Science, vol. 7237, pp. 465–482. Springer, Berlin (2012).

37. GentryC., SahaiA.,WatersB.:Homomorphic encryption from learningwith errors: conceptually-simpler,
asymptotically-faster, attribute-based. In: CRYPTO’13 (1). LectureNotes inComputer Science, vol. 8042,
pp. 75–92. Springer, Berlin (2013).

38. Goldwasser S., Kalai Y.T.: On the impossibility of obfuscation with auxiliary input. In: FOCS’05, pp.
553–562. IEEE press, New York, NY (2005).

39. Goldwasser S., Rothblum G.N.: On best-possible obfuscation. In: TCC’07. Lecture Notes in Computer
Science, vol. 4392, pp. 194–213. Springer, Berlin (2007).

40. HadaS.: Zero-knowledge and code obfuscation. In:ASIACRYPT’00. LectureNotes inComputer Science,
vol. 1976, pp. 443–457. Springer, Berlin (2000).

41. Hada S.: Secure obfuscation for encrypted signatures. In: EUROCRYPT’10. Lecture Notes in Computer
Science, vol. 6110, pp. 92–112. Springer, Berlin (2010).

42. HofheinzD.,Malone-Lee J., StamM.:Obfuscation for cryptographic purposes. J. Cryptol. 23(1), 121–168
(2010).

43. Hohenberger S., Rothblum G.N., Shelat A., Vaikuntanathan V.: Securely obfuscating re-encryption. J.
Cryptol. 24(4), 694–719 (2011).

44. LuS.,OstrovskyR., SahaiA., ShachamH.,WatersB.: Sequential aggregate signatures andmultisignatures
without random oracles. In: EUROCRYPT’06. Lecture Notes in Computer Science, vol. 4004, pp. 465–
485. Springer, Berlin (2006).

45. Lu S., Ostrovsky R., Sahai A., Shacham H., Waters B.: Sequential aggregate signatures, multisignatures,
and verifiably encrypted signatures without random oracles. J. Cryptol. 26(2), 340–373 (2013).

46. Lynn B., PrabhakaranM., Sahai A.: Positive results and techniques for obfuscation. In: EUROCRYPT’04.
Lecture Notes in Computer Science, vol. 3027, pp. 20–39. Springer, Berlin (2004).

47. Rückert M.: Verifiably encrypted signatures from RSA without NIZKs. In: INDOCRYPT’09. Lecture
Notes in Computer Science, vol. 5922, pp. 363–377. Springer, Berlin (2009).

48. Rückert M., Schröder D.: Security of verifiably encrypted signatures and a construction without random
oracles. In: Pairing’09. Lecture Notes in Computer Science, vol. 5671, pp. 17–34. Springer, Berlin (2009).

49. RückertM., SchneiderM., Schröder D.: Generic constructions for verifiably encrypted signatures without
randomoracles or NIZKs. In: ACNS’10. LectureNotes in Computer Science, vol. 6123, pp. 69–86 (2010).

50. Shoup V.: Lower bounds for discrete logarithms and related problems. In: EUROCRYPT’97, LNCS, vol.
1233, pp. 256–266 (1997).

51. van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.: Fully homomorphic encryption over the integers.
In: EUROCRYPT’10. Lecture Notes in Computer Science, vol. 6110, pp. 24–43. Springer, Berlin (2010).

52. Waters B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT’05. Lecture
Notes in Computer Science, vol. 3494, pp. 114–127. Springer, Berlin (2005).

53. Waters B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In:
CRYPTO’09. Lecture Notes in Computer Science, vol. 5677, pp. 619–636. Springer, Berlin (2009). Full
version available from http://eprint.iacr.org/2009/385.

54. Wee H.: On obfuscating point functions. In: STOC’05, pp. 523–532. ACM Press, New York, NY (2005).
55. Zhang F., Safavi-Naini R., SusiloW.: Efficient verifiably encrypted signature and partially blind signature

from bilinear pairings. In: INDOCRYPT’03. Lecture Notes in Computer Science, vol. 2904, pp. 191–204.
Springer Berlin (2003).

123

http://eprint.iacr.org/2009/385

	Verifiably encrypted signatures with short keys based on the decisional linear problem and obfuscation for encrypted VES
	Abstract
	1 Introduction
	1.1 Background
	1.2 Our contributions and constructions

	2 Preliminaries
	2.1 Cryptographic bilinear maps (or pairings)
	2.2 Complexity assumptions
	2.3 Cryptographic primitives
	2.4 Verifiably encrypted signature (VES)

	3 Strongly unforgeable Waters' dual signature
	4 Construction of our VES
	5 Application to obfuscators for ES and EVES
	5.1 Secure obfuscation
	5.2 Security of ES and EVES
	5.3 Constructions of obfuscator for ES/EVES
	5.3.1 Obfuscator for EVES
	5.3.2 Obfuscator for ES

	Acknowledgments
	References

