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Abstract Differential and linear cryptanalyses are powerful techniques for analysing the
security of a block cipher. In 1994 Langford and Hellman published a combination of dif-
ferential and linear cryptanalysis under two default independence assumptions, known as
differential-linear cryptanalysis, which is based on the use of a differential-linear distin-
guisher constructed by concatenating a linear approximation with a (truncated) differential
with probability 1. In 1995 Langford gave a general version of differential-linear cryptanaly-
sis, so that a differential with a probability smaller than 1 can also be used to construct a
differential-linear distinguisher; the general versionwas published in 2002byBiham,Dunkel-
man and Keller with an elaborate explanation using an additional assumption. In this paper,
we introduce a new methodology for differential-linear cryptanalysis under the original two
assumptions, without using the additional assumption of Biham et al. The new methodology
is more reasonable and more general than Langford and Biham et al.’s methodology; and
apart from this advantage it can lead to some better cryptanalytic results than Langford and
Biham et al.’s methodology and Langford and Hellman’s methodology. As examples, we
apply it to 13 rounds of the DES block cipher, 10 rounds of the CTC2 block cipher and 12
rounds of the Serpent block cipher. The new methodology can be used to cryptanalyse other
block ciphers, and block cipher designers should pay attention to this newmethodologywhen
designing a block cipher.
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1 Introduction

The block cipher is an important primitive in secret-key cryptography. A block cipher is an
algorithm that transforms a fixed-length data block, called a plaintext block, into another
data block of the same length, called a ciphertext block, under the control of a secret user
key. One main purpose of a block cipher is to provide confidentiality for data transmitted
in insecure communication environments. A block cipher can be used to build other secret-
key cryptographic primitives, such as hash functions, message authentication codes and
cryptographic pseudorandom number generators. Block ciphers are also often used as a
component in various security areas. In practice, almost all block ciphers are constructed
by iterating a simple function many times, known as the iterated method, and the repeated
function is called the round function. Most block ciphers are examples of one of two special
types of iterated ciphers, known as Feistel ciphers and Substitution-Permutation Networks
(SPNs). In a Feistel cipher, the plaintext is split into two halves. The round function is applied
to one half, and the output of the round function is bitwise exored with the other half; finally,
the two halves are swapped, and become the two halves of the next round. In an SPN cipher,
the round function is applied to the whole block, and its output becomes the input of the next
round. The Data Encryption Standard (DES) [44] block cipher is an example of a Feistel
cipher, and the CTC2 [16] and Serpent [1,2] block ciphers are examples of an SPN. DES has
a 64-bit block size, a 56-bit user key, and a total of 16 rounds; CTC2 has a variable block
size, a variable length key and a variable number of rounds; and Serpent has a 128-bit block
size, a variable length user key of up to 256 bits, and a total of 32 rounds.

Differential cryptanalysiswas introduced in 1990 byBihamandShamir [5],which is based
on the use of one or more so-called differentials. Linear cryptanalysis was introduced in 1992
by Matsui and Yamagishi [43], which is based on the use of one or more so-called linear
approximations. Both the cryptanalyticmethodswere used to attack the full DES cipher faster
than exhaustive key search [7,41,42]. In the field of block cipher cryptanalysis, a cryptanalytic
attack is commonly regarded as effective if it is faster (i.e. it has lower time complexity) than
exhaustive key search and requires a smaller memory than the dictionary attack.

In 1994 Langford and Hellman [37] published a combination of differential and lin-
ear cryptanalysis under two default independence assumptions, known as differential-linear
cryptanalysis, and they applied it to break 8-round DES; and later Langford applied it to
attack greater numbers of rounds of DES [36]. Such an attack is constructed on a so-called
differential-linear distinguisher; a differential-linear distinguisher treats a block cipher as a
cascade of two sub-ciphers, and it uses a linear approximation for a sub-cipher and, for the
other sub-cipher it uses a differential (or a truncated differential [31]) with a one probability
that does not affect the bit(s) concerned by the input mask of the linear approximation. In
1995 Langford [36] gave a general version of differential-linear cryptanalysis, so that a dif-
ferential with a probability smaller than 1 can also be used to construct a differential-linear
distinguisher. Langford did not give much explanation to this general version, and did not
describe any application. The general version was published in 2002 by Biham et al. [10]
with an elaborate explanation using an additional assumption, and they applied it to break
9-round DES and mentioned that it could attack DESwith up to 10 rounds. Below we refer to
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Differential-linear cryptanalysis 13

this general version as Langford and Biham et al.’s methodology. Differential-linear crypt-
analysis has been used to yield the best currently published cryptanalytic results for a number
of state-of-the-art block ciphers [10,12,22,23], and is thus clearly of importance.

In this paper, we present a new methodology for differential-linear cryptanalysis under
the two default assumptions implicitly used by Langford and Hellman, without using the
additional assumption due to Biham et al. The new methodology is more reasonable and
more general than Langford and Biham et al.’s methodology, and it can lead to some better
cryptanalytic results than Langford and Biham et al.’s and Langford and Hellman’s method-
ologies. As examples, we apply the new methodology to mount differential-linear attacks
on 10-round CTC2 with a 255-bit block size and key, 13-round DES and 12-round Serpent.
In particular, in terms of the numbers of attacked rounds, the 10-round CTC2 attack is the
first published cryptanalytic result on this version of CTC2, and the 12-round Serpent attack
matches the best previously published cryptanalytic result for Serpent, that was obtained
under Langford and Biham et al.’s methodology. Table 1 summarises both our and previous
main cryptanalytic results on CTC2, DES and Serpent.

The remainder of the paper is organised as follows. In the next section we give the nota-
tion used throughout the paper and briefly describe differential and linear cryptanalysis.
In Sect. 3 we review Langford and Hellman’s and Langford and Biham et al.’s method-
ologies and give our methodology for differential-linear cryptanalysis. In Sects. 4–6 we
present our cryptanalytic results on DES, CTC2 and Serpent, respectively. In Sect. 7 we
discuss a few possible extensions and variants of our methodology. Section 8 concludes this
paper.

2 Preliminaries

In this section we describe the notation, differential and linear cryptanalysis.

2.1 Notation

In the following descriptions, we assume that a numberwithout a prefix is in decimal notation,
and a number with prefix 0x is in hexadecimal notation, unless otherwise stated. The bits of
a value are numbered from right to left, the leftmost bit is the most significant bit, and the
rightmost bit is the least significant bit, except in the case of DES, where we use the same
numbering notation as in FIPS-46 [44]. We use the following notation.

⊕ Bitwise logical exclusive OR (XOR) of two bit strings of the same length
� Dot product of two bit strings of the same length
|| String concatenation
� Left shift of a bit string
≪ Left rotation of a bit string
◦ Functional composition. When composing functions X and Y, X ◦ Y denotes the

function obtained by first applying X and then applying Y
e j A 255-bit value with zeros everywhere except for bit position j , (0 ≤ j ≤ 254)
ei0,··· ,i j The 255-bit value equal to ei0 ⊕ · · · ⊕ ei j , (0 ≤ i0, · · · , i j ≤ 254)
E An n-bit block cipher when used with a specific user key
Φ(·) The cumulative distribution function of the standard normal distribution
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14 J. Lu

Table 1 Our and previous main cryptanalytic results on CTC2, DES and Serpent

Cipher Attack technique Rounds Data Memory Time Success rate Source

CTC2 Algebraic [17] 6 4CP a 2253Enc. a [16,22]

(255-bit Differential 8b 260CP a 260Enc.c a [22]

version) Differential-linear 8b 237CP 212 237Enc.c 70% [22]

10 2144.84CP 254.4 2207Enc. 99% Sect. 5.4

DES Differential Full 247.2CP 214 247.2Enc. 60% [7]

Linear Full 243KP 214.3 243Enc. 85% [42]

Full 242CP 215.2 242Enc. 86% [32]

Davies’ attack [19,20] Full 250KP 230 250Enc. 51% [4]

Full 245CP 236 245Enc. 50% [34]

Differential-linear 8 768CP 211 214.6Enc.c 95% [37]

9 215.75CP 219.75 229.17Enc.c 89% [10,21]

10 229.46CP 211.9 246Enc. 99% Sect. 4.4

12 230CP 230 230.8Enc.c 73% [36]

13 252.1CP 227.4 254.2Enc. 99% Sect. 4.5

Serpent Differential 8 284CP 288 2213MA a [8]

Amplified boomerang [28] 9 2110CP 2212 2252Enc. a [33]

Boomerang [48] 10 2128KP 2100 2165.3Enc. a [11]

Rectangle [8] 10 2126.3CP 2130.3 2165.3Enc. a [11]

Linear 11 2118KP 288 2178Enc. a [14]

Differential-linear 11 2113.7CP 299 2137.7MA 93% [23]

12 2123.5CP 2128.5 2249.4Enc. 84% [23]

12 2124.5CP 2129.5 2244.9Enc. 99% Sect. 6.3

CP chosen plaintexts, KP known plaintexts, MA memory accesses, Memory unit bytes, Enc. encryption
operations of the relevant version of CTC2, DES or Serpent
a This term was not specified
b There is a flaw (see Sect. 5.2)
c The complexity is for retrieving only a portion of the full key bits

2.2 Differential cryptanalysis

Differential cryptanalysis [5] takes advantage of how a specific difference in a pair of inputs
of a cipher can affect a difference in the pair of outputs of the cipher, where the pair of
outputs are obtained by encrypting the pair of inputs using the same key. The notion of
difference can be defined in several ways; the most widely discussed is with respect to the
XOR operation. The difference between the inputs is called the input difference, and the
difference between the outputs of a function is called the output difference. The combination
of the input difference and the output difference is called a differential. The probability of a
differential is defined as follows.

Definition 1 (from [38]) If α and β are n-bit blocks, then the probability of the differential
(α, β) for E, written �α → �β, is defined to be

PrE(�α → �β) = Pr
P∈{0,1}n(E(P) ⊕ E(P ⊕ α) = β).
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Differential-linear cryptanalysis 15

The following result follows trivially from Definition 1:

Proposition 1 ( from [38]) If α and β are n-bit blocks, then

PrE(�α → �β) = |{x |E(x) ⊕ E(x ⊕ α) = β, x ∈ {0, 1}n}|
2n

.

For a random permutation, the expected probability of a differential for any pair (α, β)

is 2−n . Therefore, if PrE(�α → �β) is larger than 2−n , we can use the differential to
distinguish E from a random permutation, given a sufficient number of chosen plaintext
pairs.

2.3 Linear cryptanalysis

Linear cryptanalysis [41,43] exploits correlations between a particular linear function of
the input blocks and a second linear function of the output blocks. The combination of the
two linear functions is called a linear approximation. The most widely used linear function
involves computing the bitwise dot product operation of the block with a specific binary
vector (the specific value combined with the input blocks may be different from the value
applied to the output blocks). The value combined with the input blocks is called the input
mask, and the value applied to the output blocks is called the output mask. The probability
of a linear approximation is defined as follows.

Definition 2 (from [38]) If α and β are n-bit blocks, then the probability of the linear
approximation (α, β) for E, written Γ α → Γβ, is defined to be

PrE(Γ α → Γβ) = Pr
P∈{0,1}n(P � α = E(P) � β).

We refer to below the dot product P �α as the input parity, and the dot product E(P)�β

as the output parity. The following result follows trivially from Definition 2:

Proposition 2 (from [38]) If α and β are n-bit blocks, then

PrE(Γ α → Γβ) = |{x |x � α = E(x) � β, x ∈ {0, 1}n}|
2n

.

For a random permutation, the expected probability of a linear approximation for any pair
(α, β) is 1

2 . The bias of a linear approximation Γ α → Γβ, denoted by ε, is defined to be
ε = |PrE(Γ α → Γβ) − 1

2 |. Thus, if the bias ε is sufficiently large, we can use the linear
approximation to distinguish E from a random permutation, given a sufficient number of
matching plaintext-ciphertext pairs.

It is particularly worthy to note that in 2008 Selçuk [46] formulated the success probability
of a linear cryptanalysis attack, as follows.

Theorem 1 (interpreted from [46]) For a linear attack on m key bits that uses a linear
approximation with probability p and N known plaintexts and ranks the correct m-bit key
value among the top r out of the 2m possible key values, if m and N are sufficiently large,
then under the assumption that the linear approximation’s probability to hold is independent
for each key tried and is equal to 1

2 for all wrong key values, the success probability of the
linear attack, denoted by PS, is

PS = Φ
(
|2p − 1|√N − Φ−1

(
1 − r

2m+1

))
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.
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2.4 General assumptions used in practice

Propositions 1 and 2 give the accurate probability values of a differential and a linear approx-
imation from a theoretical point of view. However, it is usually hard to apply them in practice
to a block cipher with a large block size, for example, n = 64 or 128 which is currently being
widely used in reality, and even harder when the differential or linear approximation operates
on many rounds of the cipher. In practice, for a Markov block cipher [35], a multi-round
differential characteristic (or linear approximation) is usually obtained by concatenating a
few one-round differential characteristics (respectively, linear approximations), and the prob-
ability of the multi-round differential (or linear approximation) is regarded as the product
(respectively, the piling-up function [41]) of the probabilities of the one-round differential
characteristics (respectively, linear approximations) under the following Assumption 1.

Assumption 1 (interpreted from [35]) The inputs as well as the subkeys to the involved
rounds are independent and uniformly distributed, and the probability of a differential or
linear approximation is approximately identical for almost all subkey values.

We refer the reader to [35] for a mathematical description of Assumption 1 with respect
to differential cryptanalysis, (in particular, the second part of Assumption 1 is known as
the stochastic equivalence assumption [35]). We note that one may argue the correctness of
Assumption 1 and may use a different assumption, for the round keys are actually dependent
generally, being generated from a global user key under the key schedule algorithm of the
cipher. Anyway, all such assumptions require us to treat the involved rounds as independent.
As mentioned in [25], this is “most often not exactly the case, but as often it is a good
approximation”.

Differential and linear cryptanalyses generally treat a basic unit of input (i.e. a chosen-
plaintext pair for differential cryptanalysis; a known-plaintext for linear cryptanalysis) as a
random variable, and assume that given a set of inputs of the basic unit, the inputs that satisfy
the required property can be approximated by an independent distribution, as followed in
[6,41].

3 Differential-linear cryptanalysis: previous and our methodologies

In this section we first review previous methodologies on differential-linear cryptanalysis,
namely Langford andHellman’s methodology and Langford and Biham et al.’s methodology,
and then give our new methodology, followed by a few implications. First observe that for
simplicity we assume that the probability for a linear approximation with bias ε is 1

2 + ε in
all the following descriptions; but the same results can be obtained when the probability is
1
2 − ε.

3.1 Langford and Hellman’s methodology

In 1994 Langford and Hellman [37] introduced differential-linear cryptanalysis as a combi-
nation of differential and linear cryptanalysis, which is based on the use of a differential-linear
distinguisher. To construct a differential-linear distinguisher, they treated E as a cascade of
two sub-ciphers E0 and E1, where E = E0 ◦ E1. A differential-linear distinguisher uses a
(truncated) differential �α → �β with probability 1 for E0 and a linear approximation
Γ γ → Γ δ with bias ε for E1, where the output difference β of the (truncated) differential
has a zero value in the bit positions concerned by the input mask of the linear approximation
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Differential-linear cryptanalysis 17

(thus β �γ = 0 holds). Let P be a plaintext chosen uniformly at random from {0, 1}n . Thus,
we have E0(P) � γ = E0(P ⊕ α) � γ with probability 1, where E0(P) and E0(P ⊕ α) are
the results of encrypting P and P ⊕ α with E0, respectively. The differential-linear distin-
guisher is concerned with the event δ � E(P) = δ � E(P ⊕ α); and under Assumption 1
and the following Assumption 2 it has a probability of Pr(δ � E(P) = δ � E(P ⊕ α)) =
( 12 + ε) × ( 12 + ε) + ( 12 − ε) × ( 12 − ε) = 1

2 + 2ε2.

Assumption 2 (interpreted from [37]) The two inputs E0(P) and E0(P ⊕ α) of the linear
approximation for E1 behave as independent inputs with respect to the linear approximation.

Note that E(P) = E1(E0(P)) and E(P ⊕α) = E1(E0(P ⊕α)) in the above descriptions.
Assumption 2 is somewhat like assuming an independent distribution for plaintext pairs gen-
erated from a particular plaintext structure with certain property in differential cryptanalysis.

By contrast, for a random permutation, the expected probability of a differential-linear
distinguisher is 1

2 . Therefore, if the bias |Pr(δ � E(P) = δ � E(P ⊕ α)) − 1
2 | = 2ε2 is

sufficiently large, we can distinguish E from a random permutation.

3.2 Langford and Biham et al.’s methodology

In 1995 Langford [36] gave a general version of differential-linear cryptanalysis, where a
differential-linear distinguisher could be built on a differential with a probability smaller than
1; specifically, she wrote: “Suppose that we have a differential characteristic which occurs
with probability pD and a linear relation which hold with probability pL = 1/2 + εL . Then
the probability that two texts with the correct input pattern will have output parities which
agree is pDL = 1/2 + 2pDε2L .” This probability formula is exactly the same as that Biham,
Dunkelman and Keller published in 2002, except that different symbols were used. Langford
did not give much explanation to this general version, and did not describe any application.
The general version was published in 2002 by Biham et al. [10] with an elaborate explanation
using an additional assumption, plus a few applications. As mentioned earlier, we refer to
this general version as Langford and Biham et al.’s methodology.

Langford and Biham et al.’s general version includes the case when the (truncated) dif-
ferential �α → �β has a smaller probability than 1, p say, with β meeting the condition
β � γ = 0.1 A slightly revised version was given in [21]. Biham et al. applied Langford and
Hellman’s analysis described above when E0(P) ⊕E0(P ⊕ α) = β, and used the following
Assumption 3 for the cases where E0(P) ⊕ E0(P ⊕ α) 
= β:2

Assumption 3 (interpreted from [10]) The output parities δ�E(P) and δ�E(P⊕α) have a
uniform and independent distribution in {0, 1} for the cases where E0(P)⊕E0(P ⊕α) 
= β.

As a result, underAssumptions 1, 2 and 3, Biham et al. got Pr(δ�E(P) = δ�E(P⊕α)) =
p × ( 12 + 2ε2) + (1 − p) × 1

2 = 1
2 + 2pε2.

Finally, Biham et al. concluded that if the bias 2pε2 is sufficiently large, the distinguisher
can be used as the basis of a differential-linear attack to distinguish E from a random permu-
tation. Roughly, the attack has a data complexity of about O(p−2ε−4).

1 A more general condition is β � γ = c, where c ∈ {0, 1} is a constant. Without loss of generality, we
consider the case with c = 0 throughout this paper.
2 We note that Biham et al. used a different assumption when reviewing the enhanced version in a few other
papers, [13] say, where they assumed that E0(P)�γ = E0(P ⊕α)�γ holds with half a chance for the cases
where E0(P) ⊕ E0(P ⊕ α) 
= β, yielding the same probability value 1

2 + 2pε2 as under Assumption 3. We
treat this assumption as Assumption 3, though they are different.
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3.3 Our methodology

In summary, the differential-linear distinguishers described above are concerned with the
correlation between a pair of output parities, where the pair of output parities are obtained
by applying a linear function (e.g. bitwise dot product with δ) to the outputs of a pair of input
blocks with difference α (under the same key). The combination of the input difference and
the linear function is called a differential-linear distinguisher. More formally, we define the
probability of the differential-linear distinguisher as follows.

Definition 3 If α and δ are n-bit blocks, then the probability of the differential-linear distin-
guisher (α, δ) for E, written �α → Γ δ, is defined to be

PrE(�α → Γ δ) = Pr
P∈{0,1}n(E(P) � δ = E(P ⊕ α) � δ).

The following result follows trivially from Definition 3:

Proposition 3 If α and δ are n-bit blocks, then

PrE(�α → Γ δ) = |{x |E(x) � δ = E(x ⊕ α) � δ, x ∈ {0, 1}n}|
2n

.

For a random permutation, the expected probability of a differential-linear distinguisher
for any combination (α, δ) is 1

2 . The bias of the differential-linear distinguisher �α → Γ δ

is defined to be |PrE(�α → Γ δ) − 1
2 |. Thus, if the bias is sufficiently large, we can use

the differential-linear distinguisher to distinguish E from a random permutation, given a
sufficient number of chosen plaintext pairs.

In practice, it is usually infeasible to compute the accurate probability of a differential-
linear distinguisher �α → Γ δ by Proposition 3, and we have to make use of some assump-
tions to approximate it, like Langford and Biham et al.’s methodology described in Sect. 3.2.
However, Langford and Biham et al.’s methodology uses the three assumptions as hypothe-
ses and works only when Assumption 3 holds; otherwise it may give probability values that
are highly inaccurate in some situations; for example, let’s intuitively consider the naive
situation where the differential �α → �β has probability 1

2 and meets β � γ = 0, and
all the other possible differentials {�α → �β̂} meet β̂ � γ = 1. Such an example can be
easily built for a practical block cipher, DES say. The differential �α → �β contributes
1
2 [( 12 +ε)×( 12 +ε)+( 12 −ε)×( 12 −ε)] = 1

4+ε2 to the probability of the distinguisher, and the
other differentials {�α → �β̂} contribute 1

2 [( 12 +ε)×( 12 −ε)+( 12 −ε)×( 12 +ε)] = 1
4 −ε2,

which also cause a bias, but in a negative way, canceling the bias due to �α → �β. So the
real bias of the distinguisher is 0, that is, the distinguisher has no cryptanalytic significance
(in the sense of Langford and Biham et al.’s methodology). But if we applied Langford and
Biham et al.’s methodology in this situation, the distinguisher would seem to have a bias of
2 × 1

2 × ε2 = ε2, and thus the distinguisher would be useful (if ε2 is large enough); but it is
useless in fact. Notice that this case is not truly a counterexample to Langford and Biham et
al.’s methodology, for it is clear that Assumption 3 does not hold for it, and one cannot apply
Langford and Biham et al.’s methodology, but it suggests that we should be cautious about
using Assumption 3 and actually, we should be careful with using any assumption, and it is
preferable to use as few assumptions as possible.

Biham, Dunkelman and Keller used a heuristic way to approximate the probability of a
differential-linear distinguisher. We make an analysis for the probability of a differential-
linear distinguisher from a mathematical point, and obtain a new methodology under only
Assumptions 1 and 2. Our result is given as Theorem 2, followed by a proof.
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Differential-linear cryptanalysis 19

Theorem 2 An n-bit block cipher E is represented as a cascade of two sub-ciphers E0

and E1, where E = E0 ◦ E1. If α (
= 0) is an input difference for E0, Γ γ → Γ δ is a linear
approximation with bias ε forE1, and the sum of the probabilities for the differentials {�α →
�β|PrE0(�α → �β) > 0, γ � β = 0, β ∈ {0, 1}n} is p̂ (= ∑

β∈{0,1}n ,γ�β=0 PrE0(�α →
�β)), then under Assumptions 1 and 2 the probability of the differential-linear distinguisher
�α → Γ δ is

Pr
P∈{0,1}n(E(P) � δ = E(P ⊕ α) � δ) = 1

2
+ 2(2 p̂ − 1)ε2.

Proof Given the input difference α for E0, there are one or more possible output differences
{β|PrE0(� α → �β) > 0, β ∈ {0, 1}n}; these output differences can be classified into
two sets: one is {β|γ � β = 0,PrE0(�α → �β) > 0, β ∈ {0, 1}n}, and the other is
{β|γ � β = 1,PrE0(�α → �β) > 0, β ∈ {0, 1}n}.

Let P be a plaintext chosen uniformly at random from {0, 1}n . Then, under Assumptions 1
and 2 we have

Pr(E(P) � δ = E(P ⊕ α) � δ|E0(P) ⊕ E0(P ⊕ α) = β, γ � β = 0)

= Pr(E0(P) � γ = E(P) � δ,E0(P ⊕ α) � γ = E(P ⊕ α) � δ|
E0(P) ⊕ E0(P ⊕ α) = β, γ � β = 0)

+Pr(E0(P) � γ 
= E(P) � δ,E0(P ⊕ α) � γ 
= E(P ⊕ α) � δ|
E0(P) ⊕ E0(P ⊕ α) = β, γ � β = 0)

=
(
1

2
+ ε

)
×

(
1

2
+ ε

)
+

[
1 −

(
1

2
+ ε

)]
×

[
1 −

(
1

2
+ ε

)]

= 1

2
+ 2ε2,

and

Pr(E(P) � δ = E(P ⊕ α) � δ|E0(P) ⊕ E0(P ⊕ α) = β, γ � β = 1)

= Pr(E0(P) � γ = E(P) � δ,E0(P ⊕ α) � γ 
= E(P ⊕ α) � δ|
E0(P) ⊕ E0(P ⊕ α) = β, γ � β = 1)

+Pr(E0(P) � γ 
= E(P) � δ,E0(P ⊕ α) � γ = E(P ⊕ α) � δ|
E0(P) ⊕ E0(P ⊕ α) = β, γ � β = 1)

=
(
1

2
+ ε

)
×

[
1 −

(
1

2
+ ε

)]
+

[
1 −

(
1

2
+ ε

)]
×

(
1

2
+ ε

)

= 1

2
− 2ε2.

Next, under Assumptions 1 and 2 we can compute the probability of the differential-linear
distinguisher as follows.

Pr(E(P) � δ = E(P ⊕ α) � δ)

=
∑

β∈{0,1}n ,Y∈{0,1}
Pr(E(P) � δ = E(P ⊕ α) � δ,E0(P) � γ ⊕

E0(P ⊕ α) � γ = Y,E0(P) ⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n ,Y∈{0,1}
Pr(E(P) � δ = E(P ⊕ α) � δ|E0(P) � γ ⊕

E0(P ⊕ α) � γ = Y,E0(P) ⊕ E0(P ⊕ α) = β) ×
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Pr(E0(P) � γ ⊕ E0(P ⊕ α) � γ = Y,E0(P) ⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n
Pr(E(P) � δ = E(P ⊕ α) � δ|E0(P) � γ ⊕ E0(P ⊕ α) � γ = 0,

E0(P) ⊕ E0(P ⊕ α) = β) × Pr(E0(P) � γ ⊕ E0(P ⊕ α) � γ = 0,

E0(P) ⊕ E0(P ⊕ α) = β) +∑
β∈{0,1}n

Pr(E(P) � δ = E(P ⊕ α) � δ|E0(P) � γ ⊕ E0(P ⊕ α) � γ = 1,

E0(P) ⊕ E0(P ⊕ α) = β) × Pr(E0(P) � γ ⊕ E0(P ⊕ α) � γ = 1,

E0(P) ⊕ E0(P ⊕ α) = β) (1)

=
(
1

2
+ 2ε2

)
×

∑
β∈{0,1}n ,γ�β=0

Pr(E0(P) ⊕ E0(P ⊕ α) = β) +
(
1

2
− 2ε2

)
×

∑
β∈{0,1}n ,γ�β=1

Pr(E0(P) ⊕ E0(P ⊕ α) = β)

= 1

2
+ 2(2 p̂ − 1)ε2.

��
Consequently, the bias of the differential-linear distinguisher �α → Γ δ is

∣∣∣∣ Pr
P∈{0,1}n(E(P) � δ = E(P ⊕ α) � δ) − 1

2

∣∣∣∣ = 2 |2 p̂ − 1| ε2.
��

3.4 Implications

Langford andBiham et al.’smethodology requiresAssumptions 1, 2 and 3,while ourmethod-
ology requires only Assumptions 1 and 2. Thus, our methodology is more reasonable than
Langford and Biham et al.’s methodology.

Langford and Biham et al.’s methodology holds only whenAssumption 3 holds, and under
the situation we have p̂ = p+(1− p) 12 = 1

2 + p
2 , meaning that the probability value obtained

using Langford and Biham et al.’s methodology equals that obtained using our methodology.
Thus, when Langford and Biham et al.’s methodology holds, our methodology always holds.
However, our methodology holds under some situations where Langford and Biham et al.’s
methodology does not hold, for example, it works for the naive situation discussed in Sect. 3.3
where p̂ = p = 1

2 . Therefore, our methodology is more general than Langford and Biham
et al.’s methodology. (When Langford and Hellman’s methodology holds, our methodology
always holds as well).

Our methodology still requires Assumptions 1 and 2. In practice, Assumption 1 is exten-
sively used in differential and linear cryptanalysis and is commonly regarded as necessary.
Assumption 2 seems irremovable to get such a simple and practical probability formula;
otherwise, the formula could not be so simple, but a more accurate version can be easily
obtained from our above reasonings, for instance, from Eq. 1, though it is complicated and
appears to be hardly applicable in practice. The assumptions mean that, in some cases, the
probability of a differential-linear distinguisher may be overestimated or underestimated, and
so is the success probability of the attack; however, computer experiments [12,32,37,41,42]
have shown that the assumptions work well in practice for some block ciphers. Anyway, it
seems reasonable to take the worst case assumption from the point of the user of a cipher.
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We suggest that if possible an attacker should check the validity of these assumptions when
applying them to a specific cipher.

Our result shows that using only one (truncated) differential satisfying β � γ = 0 is
insufficient in most situations, and it is likely to be not sufficient in the general situation; we
should use all the differentials satisfying β � γ = 0 instead. This makes the distinguisher
harder and even impossible to construct in practice, due to a large number of possible output
differences. Anyway, we should use at least those differentials with a significant contribu-
tion to reduce the deviation if we are able to do so, (which means there is a mathematical
approximation in this scenario).

Langford and Biham et al.’s methodology suggests that if the bias of the linear approx-
imation keeps constant, the larger p is, the bigger is the bias of the distinguisher. Now, we
know that may be not true in the general situation: A differential with a bigger probability
will not necessarily result in a distinguisher with a bigger bias.

When constructing a differential-linear distinguisher, in Langford and Biham et al.’s
methodology the attacker first chooses a (truncated) differential that meets the condition
(as followed in [10,12,22,23], in practice the output difference of the differential usually has
zeros in the bit positions concerned by the input mask of the linear approximation, so that
β � γ = 0; a rare case is from Biham et al.’s attack [10] on the full COCONUT98 [47]
block cipher, where β � γ is unknown but constant), then calculates the probability of the
differential, and finally takes this probability as the value of p. Our new methodology sug-
gests a different format, that is, computing p̂. Once the linear approximation and the input
difference of the differentials are chosen, that how many rounds can be constructed for a
distinguisher depends to some extent on the computational power available for the attacker.
Thus, our methodology is more computationally intensive in some situations.

Our newmethodology can lead to some better differential-linear cryptanalytic results than
Langford and Biham et al.’s methodology as well as Langford and Hellman’s methodology,
as to be demonstrated by its applications to the block ciphers DES, CTC2 and Serpent in the
following sections. Before further proceeding, observe that DES would be a Markov cipher
under the XOR difference notion [35], and similarly we can learn that both CTC2 and Serpent
would be Markov ciphers under the XOR difference notion, if the subkeys of each cipher
were independent.

It is worthy to note that Langford and Biham et al.’s methodology may be applicable in
some situations where it is impossible to compute the output difference β, so it is infeasi-
ble to apply our new methodology; and such an example is Biham et al.’s attack [10] on
COCONUT98, where β � γ is unknown but constant.

At last, to be conservative, we would like to suggest that one should pay attention to
all these methodologies, for a real situation is usually hard to predict, and it may make
Assumption 3 for Langford and Biham et al.’s methodology hold.

4 Application to the DES block cipher

The DES block cipher is well known to both academia and industry, which has a 64-bit
block size, a 56-bit user key, and a total of 16 rounds. We refer the reader to [44] for the
specifications of DES.

In 1994, under the two default Assumptions 1 and 2 Langford and Hellman [37] used
their methodology to obtain a 6-round differential-linear distinguisher of DES, and finally
applied it to break 8-round DES; the attack recovers 16 key bits with a time complexity of
214.6 8-round DES encryptions, so it would take 240 encryptions to recover the remaining
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40 key bits with an exhaustive search, meaning that a total of approximately 240 8-round
DES encryptions are required to recover the whole 56 key bits (Note that there might exist
a more efficient way to obtain the remaining key bits). In 1995, Langford [36] applied it to
greater numbers of DES, in particular, 12-round DES was breakable with a data complexity
of 230 chosen plaintexts. In 2002, under Assumptions 1, 2 and 3, Biham, Dunkelman and
Keller [10] described a 7-round differential-linear distinguisher of DES using their enhanced
methodology, and finally gave differential-linear attacks on 8- and 9-round DES; (besides,
theymentioned that Langford andBiham et al.’s methodology could attackDESwith up to 10
rounds). An improved version of the 9-round attack appeared in pages 108–111 of [21]. Their
attack recovers 18 key bits with a time complexity of 229.17 9-round DES encryptions, the
remaining 38 key bits would take 238 encryptions to recover with a key exhaustion, and thus
it has a total of approximately 238 9-round DES encryptions to recover the whole 56 key bits.

In this section, we show that our new methodology enables us to construct 7- and 8-round
differential-linear distinguishers of DES based on the 3-round linear approximation used
in previous differential-linear cryptanalysis of DES [10,37]; and the 8-round distinguisher
allows us to break 10-round DES. More importantly, we are able to construct an 11-round
differential-linear distinguisher of DES, and finally use it as the basis of a differential-linear
attack on 13-round DES. Below we describe these new differential-linear cryptanalytic
results for DES. We write the subkey used in the Sl S-box of Round m as Km,l , where
1 ≤ m ≤ 16, 1 ≤ l ≤ 8.

4.1 A 7-round differential-linear distinguisher with bias 2−7.94

We choose the input difference for the 7-round differential-linear distinguisher to be
�α = 0x4000000000000000, so that there is a one probability in the first round, thus
making things easier by reducing the number of possible output differences after 4-round
DES. As mentioned earlier, we use the same 3-round linear approximation Γ γ → Γ δ as
used in Langford and Hellman’s and Biham et al.’s differential-linear cryptanalytic results of
DES [10,37]: 0x21040080000080 00 → 0x0000800021040080 with bias 0.195, (an illus-
tration of the linear approximation without the last swap was given in Fig. 2 of [10]). Let’s
compute the probability of the new 7-round differential-linear distinguisher. The 7-round
differential-linear distinguisher as well as the following computation is partially depicted in
Fig. 1.

After the expansion E operation of the second round, 0x4 in the input difference becomes
0x8, which enters the S1 S-box of the second round and generates 11 differences after the S-
box: {ω|ω = 0x3, 0x5, 0x6, 0x7, 0x9, 0x A, 0x B, 0xC, 0xD, 0x E, 0x F}; the probabilities
for these output differences are given in the second column of Table 2. We represent ω as a
concatenation of four one-bit variables a||b||c||d , where a, b, c, d ∈ {0, 1}. Thus, the right
half of the third round has the input difference 00000000a0000000b00000c0000000d0 in
binary notation, and this input difference can make at most 6 S-boxes of the third round
active: S2,S3,S4,S5,S6,S8. After a simple analysis, we know that the left half of the input
mask Γ γ concerns the four bits of the output difference of the S5 S-box of the third round,
and we denote the four-bit output difference as e|| f ||g||h, where e, f, g, h ∈ {0, 1}. The
right half of the input mask concerns the second most significant bit of the output difference
of the S1 S-box of the fourth round plus b. The input difference of the S1 S-box of the fourth
round depends on:

– The second least significant bit of the output difference of the S2 S-box of the third round,
and we label the bit m;
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Fig. 1 A 7-round differential-linear distinguisher of DES

Table 2 Probabilities for the eleven output differences in {ω}, where A denotes the event �0x8 → �ω

(under the S1 S-box)

ω PrS1 (A) Pr(�βω � Γ γ = 0|A) Pr(�β̂ω � Γ γ = 0|A) Pr(�β̃ω � Γ γ̃ = 0|A)

0x3 12
64 0.55859375 0.50328584527596831 0.49779944866895676

0x5 8
64 0.50439453125 0.49747781828045845 0.49595199525356293

0x6 8
64 0.51708984375 0.50507303327322006 0.50433863041689619

0x7 4
64 0.50457763671875 0.49877615783771034 0.50256029706542904

0x9 6
64 0.578125 0.50051539158448577 0.50855094581311278

0x A 2
64 0.537109375 0.50116461620200425 0.50591027818154544

0x B 8
64 0.56123046875 0.49983475663202626 0.50239421910760029

0xC 8
64 0.4735107421875 0.49967876038863324 0.49929085310759547

0xD 2
64 0.4891510009765625 0.49995220528766993 0.49968796220765910

0xE 2
64 0.50665283203125 0.50015277066222552 0.50061782109781916

0x F 4
64 0.50272369384765625 0.50010005129477086 0.50005227406592345

– The least significant bit of the output difference of the S4 S-box of the third round, and
we label the bit n;

– The least significant bit (i.e., h) of the output difference of the S5 S-box of the third round;
– The most significant bit of the output difference of the S6 S-box of the third round, and

we label the bit p;
– The most significant bit of the output difference of the S8 S-box of the third round, and

we label the bit q; and
– The one-bit difference in �α.
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Table 3 Conditional probabilities PrS1 (�t = 0|�(0||n||(m ⊕ 1)||h||p||q) = ξ)

ξ 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0x A 0x B 0xC 0xD 0xE 0x F
Pr 1 32

64
28
64

36
64

20
64

28
64

28
64

36
64

28
64

28
64

32
64

32
64

24
64

40
64

36
64

24
64

ξ 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

Pr 24
64

36
64

32
64

32
64

32
64

32
64

40
64

32
64

32
64

32
64

20
64

28
64

36
64

28
64

36
64

36
64

In summary, the five bits of the output difference concerned by the input mask Γ γ depend on
a total of 12 indeterminate one-bit differences: a, b, c, d, e, f, g, h,m, n, p, q . And the input
difference of the S1 S-box of the fourth round is 0||n||(m ⊕ 1)||h||p||q in binary notation.

In the third round, the S2 S-box has an input difference 00000a in binary notation, the S4
S-box has an input difference 00000b in binary notation, the S5 S-box has an input difference
0b0000 in binary notation, the S6 S-box has an input difference 000c00 in binary notation, and
the S8 S-box has an input difference 000d00 in binary notation. By the difference distribution
tables of the S-boxes (see [6]), we compute the possible values as well as their probabilities
for m, n, (e|| f ||g||h), p, q , as follows:

PrS2
(m = 0|a = 0) = 1, PrS2

(m = 0|a = 1) = 28
64 ,

PrS2
(m = 1|a = 1) = 36

64 , PrS4
(n = 0|b = 0) = 1,

PrS4
(n = 0|b = 1) = 32

64 , PrS4
(n = 1|b = 1) = 32

64 ,

PrS6
(p = 0|c = 0) = 1, PrS6

(p = 0|c = 1) = 16
64 ,

PrS6
(p = 1|c = 1) = 48

64 , PrS8
(q = 0|d = 0) = 1,

PrS8
(q = 0|d = 1) = 24

64 , PrS8
(q = 1|d = 1) = 40

64 ,

PrS5
((e|| f ||g||h) = 0x0|b = 0) = 1, PrS5

((e|| f ||g||h) = 0x5|b = 1) = 4
64 ,

PrS5
((e|| f ||g||h) = 0x6|b = 1) = 4

64 , PrS5
((e|| f ||g||h) = 0x7|b = 1) = 12

64 ,

PrS5
((e|| f ||g||h) = 0x9|b = 1) = 2

64 , PrS5
((e|| f ||g||h) = 0x A|b = 1) = 8

64 ,

PrS5
((e|| f ||g||h) = 0x B|b = 1) = 10

64 , PrS5
((e|| f ||g||h) = 0xC |b = 1) = 4

64 ,

PrS5
((e|| f ||g||h) = 0xD|b = 1) = 6

64 , PrS5
((e|| f ||g||h) = 0x E |b = 1) = 12

64 ,

PrS5
((e|| f ||g||h) = 0x F |b = 1) = 2

64 .

We denote by t the second most significant bit of the output difference of the S1 S-box of
the fourth round, and by the difference distribution table of the S1 S-box we compute the
probability of t = 0 and 1 for all the input differences of the S-box; and the conditional
probabilities PrS1

(�t |�(0||n||(m ⊕ 1)||h||p||q)) are given in Table 3. Note that PrS1
(�t =

1|�(0||n||(m ⊕ 1)||h||p||q) = ξ) = 1 − PrS1
(�t = 0|�(0||n||(m ⊕ 1)||h||p||q) = ξ).

For each difference ω, we denote by βω the output difference(s) of the 4-round DES,
and now we can compute the probability that the XOR of the concerned five bits of βω

(whose values are e, f, g, h, b ⊕ t) is zero (i.e., Pr(�βω � Γ γ = 0|�0x8 → �ω)) by
performing a computer program on all the possible (truncated) differential characteristics.
These probabilities are given in the third column of Table 2. The largest number of possible
differential characteristics happens when ω = 0x F , which is 10×2×2×2×2×2 ≈ 211.3,
and a straightforward implementation takes a few seconds on a (general) personal computer.

Finally, we have p̂ = ∑
ω PrS1

(�0x8 → �ω) × Pr(�βω � Γ γ = 0|�0x8 → �ω) =
0.526823616027832015625. As a result, by Theorem 2 we know that the probability of the
7-round distinguisher�α → Γ δ is 1

2 +2×0.1952×(2×0.526823616027832015625−1) ≈
1
2 + 2× 0.1952 × 2−4.22 ≈ 1

2 + 2−7.94. Therefore, the 7-round distinguisher �α → Γ δ has
a bias of 2−7.94.
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Fig. 2 Concerned differences in the S-boxes of the 5-round differentials for the 8-round differential-linear
distinguisher of DES

4.2 An 8-round differential-linear distinguisher with bias 2−12.83

Further, appending one more round at the end of the four rounds covered by the differentials
{�α → βω} in the above 7-round distinguisher can lead to an 8-round differential-linear
distinguisher of DES. We depict the concerned differences in the S-boxes of the 5-round
differentials in Fig. 2 when computing the probability of the 8-round differential-linear dis-
tinguisher.

A detailed analysis reveals that the left half of the input mask Γ γ concerns the four bits
of the output difference of the S5 S-box of the fourth round, and the right half of the input
mask concerns the second most significant bit of the output difference of the S1 S-box of the
fifth round. Let y0, y1, y2, y3, z ∈ {0, 1} be one-bit variables; we denote by y0||y1||y2||y3
the output difference of the S5 S-box of the fourth round, and denote by z the second most
significant bit of the output difference of the S1 S-box of the fifth round. The input difference
of the S1 S-box of the fifth round depends on:

– The second least significant bit of the output difference of the S2 S-box of the fourth
round, and we label the bit y4;

– The least significant bit of the output difference of the S4 S-box of the fourth round, and
we label the bit y5;

– The least significant bit (i.e., y3) of the output difference of the S5 S-box of the fourth
round;

– The most significant bit of the output difference of the S6 S-box of the fourth round, and
we label the bit y6;

– The most significant bit of the output difference of the S7 S-box of the fourth round, and
we label the bit y7; and

– The most significant bit of the output difference of the S8 S-box of the fourth round, and
we label the bit y8.

The input difference of the S2 S-box of the fourth round is x0||x1||x2||0||x3||0 (in binary
notation), where x0 denotes the most significant bit of the output difference of the S6 S-
box of the third round, x1 denotes the most significant bit of the output difference of the
S8 S-box of the third round, x2 denotes the least significant bit of the output difference
of the S3 S-box of the third round, and x3 denotes the most significant bit of the output
difference of the S5 S-box of the third round. The input difference of the S4 S-box of the
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fourth round is 0||x4||x5||x6||x7||0, where x4 denotes the most significant bit of the output
difference of the S2 S-box of the third round, x5 denotes the second most significant bit
of the output difference of the S5 S-box of the third round, x6 denotes the second least
significant bit of the output difference of the S8 S-box of the third round, and x7 denotes
the second most significant bit of the output difference of the S3 S-box of the third round.
The input difference of the S5 S-box of the fourth round is x7||0||x8||x9||x10||x11, where x8
denotes the least significant bit of the output difference of the S2 S-box of the third round,
x9 denotes the least significant bit of the output difference of the S6 S-box of the third
round, x10 denotes the second most significant bit of the output difference of the S4 S-box
of the third round, and x11 denotes the least significant bit of the output difference of the
S8 S-box of the third round. The input difference of the S6 S-box of the fourth round is
x10||x11||0||0||x12||x13, where x12 denotes the most significant bit of the output difference of
the S3 S-box of the third round, and x13 denotes the second least significant bit of the output
difference of the S5 S-box of the third round. The input difference of the S7 S-box of the
fourth round is x12||x13||x14||x15||x16||x17, where x14 denotes the most significant bit of the
output difference of the S4 S-box of the third round, x15 denotes the second most significant
bit of the output difference of the S8 S-box of the third round, x16 denotes the second most
significant bit of the output difference of the S2 S-box of the third round, and x17 denotes
the second most significant bit of the output difference of the S6 S-box of the third round.
The input difference of the S8 S-box of the fourth round is x16||x17||x18||0||0||x19, where x18
denotes the second least significant bit of the output difference of the S3 S-box of the third
round, and x19 denotes the least significant bit of the output difference of the S4 S-box of the
third round.

The differential characteristics for the first two rounds are the same as in the
7-round distinguisher. In summary, the five bits of the output difference concerned
by the input mask Γ γ depend on a total of 33 indeterminate one-bit differences:
a, b, c, d, x0, x1, · · · , x19, y0, y1, · · · , y8. For each differenceω, we denote by β̂ω the output
difference(s) of the 5-round DES. Now, similar to that described for the 7-round distinguisher
we can compute the probability that the XOR of the concerned five bits of β̂ω (whose val-
ues are y0, y1, y2, y3, z) is zero (i.e., Pr(�β̂ω � Γ γ = 0|�0x8 → �ω)) by performing a
computer program on all the possible (truncated) differential characteristics. These proba-
bilities are given in the fourth column of Table 2. The largest number of possible differential
characteristics happens also when ω = 0x F , which is roughly 7 × 10 × 4 × 6 × 6 ×
10 × 24 × 2 × 2 × 2 × 2 × 2 ≈ 225.6; and it takes a few seconds to check on a personal
computer.

As a result, we have p̂ = ∑
ω PrS1

(�0x8 → �ω) × Pr(�β̂ω � Γ γ = 0|�0x8 →
�ω) = 0.500891897847608796875, and thus by Theorem 2 the probability of the 8-round
distinguisher �α → Γ δ is 1

2 + 2 × 0.1952 × (2 × 0.500891897847608796875 − 1) ≈
1
2 + 2 × 0.1952 × 2−9.11 ≈ 1

2 + 2−12.83. Therefore, the 8-round distinguisher �α → Γ δ

has a bias of 2−12.83.
We have checked the possibility of extending the 8-round distinguisher �α → Γ δ to a 9-

round distinguisher by appending one more round at the end of the five rounds covered by the
differentials {�α → β̂ω}. Now the five bits of the output difference concerned by the input
mask Γ γ depend on a total of 65 indeterminate one-bit differences, and there are roughly
255.6 possible differential characteristics for ω = 0x F . This is computationally infeasible
for a general personal computer.
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Fig. 3 Concerned differences in the S-boxes of the 5-round differentials for the 11-round differential-linear
distinguisher of DES

4.3 An 11-round differential-linear distinguisher with bias 2−24.05

More importantly, the new methodology enables us to construct an 11-round differential-
linear distinguisher of DES. The 11-round differential-linear distinguisher is made up of a
6-round linear approximation Γ γ̃ → Γ δ̃ with bias 1.95 × 2−9 ≈ 2−8.04 and all the 5-
round differentials {�α → �β̃} with �α = 0x4000000000000000. The 6-round linear
approximation Γ γ̃ → Γ δ̃ is 0x0000000001040080 → 0x0000800021040080, (which is
the best 6-round linear approximation given in [41], where the last swap is not included).
Below we compute the probability of the 11-round differential-linear distinguisher using the
newmethodology, where the concerned differences in the S-boxes of the 5-round differentials
are depicted in Fig. 3.

We first consider the 5-round differentials {�α → �β̃}. There is a one probability in the
first round, meaning that the first round is bypassed by the differential characteristic with
probability 1. After the E expansion operation of the second round, 0x4 in�α becomes 0x8,
which enters the S1 S-box of the second round and generates 11 differences after the S-box:
{ω|ω = 0x3, 0x5, 0x6, 0x7, 0x9, 0x A, 0x B, 0xC, 0xD, 0x E, 0x F}; the probabilities for
these output differences are given in the second column of Table 2. We represent ω as a
concatenation of four one-bit variables a||b||c||d , where a, b, c, d ∈ {0, 1}. Thus, the right
half of the third round has the input difference 00000000a 0000000b00000c0000000d0 in
binary notation, and this input difference can make at most 6 S-boxes of the third round
active: S2,S3,S4,S5,S6,S8.

In the third round, the S2 S-box has an input difference 00000a in binary notation, the
S3 S-box has an input difference 0a0000 in binary notation, the S4 S-box has an input
difference 00000b in binary notation, the S5 S-box has an input difference 0b0000 in binary
notation, the S6 S-box has an input difference 000c00 in binary notation, and the S8 S-box
has an input difference 000d00 in binary notation. We denote respectively by x0, x1, x2
the most significant bit, the second most significant bit and the second least significant bit
of the output difference of the S2 S-box, by x3||x4||x5||x6 the output difference of the S3
S-box, by x7, x8, x9 the second most significant bit, the second least significant bit and
the least significant bit of the output difference of the S4 S-box, by x10||x11||x12||x13 the
output difference of the S5 S-box, by x14, x15, x16 the most significant bit, the second most
significant bit and the second least significant bit of the output difference of the S6 S-box,
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and by x17, x18, x19 the most significant bit, the second least significant bit and the least
significant bit of the output difference of the S8 S-box.

In the fourth round, the S1 S-box has the input difference 0||x9||(x2 ⊕ 1)||x13||x14||x17,
and we denote by y0 the second most significant bit of its output difference; the S2 S-box
has the input difference x14||x17||x6||0||x10||0, and we denote by y1 the least significant bit
of its output difference; the S3 S-box has the input difference x10||0||x8||x16||0||x0, and we
denote by y2 the second most significant bit of its output difference; the S4 S-box has the
input difference 0||x0||x11||x18||x4||0, and we denote by y3 the second most significant bit
of its output difference; the S6 S-box has the input difference x7||x19||0||0||x3||x12, and we
denote by y4 the least significant bit of its output difference; the S8 S-box has the input
difference x1||x15||x5||0||0||x9, and we denote by y5 the least significant bit of its output
difference. Thus, we have that the input difference of the S5 S-box of the fifth round is
y2||(y0 ⊕ b)||y1||y4||y3||y5.

A simple analysis reveals that the three bits concerned by the input mask Γ γ depend on:

– x10, x11 and x12; and
– The three most significant bits of the output difference of the S5 S-box of the fifth round;

and we denote the XOR of the three bits by z.

For each differenceω, we denote by β̃ω the output difference(s) of the 5-round DES. Now, by
the difference distribution tables of the S-boxes (see [6]) we can compute the probability that
the XOR of the concerned three bits of β̃ω (i.e., x10 ⊕ x11 ⊕ x12 ⊕ z) is zero by performing
a computer program on all the possible (truncated) differential characteristics. These proba-
bilities are given in the fifth column of Table 2. The largest number of possible differential
characteristics happens alsowhenω = 0x F , which is 7×10×4×10×6×7×26×2 ≈ 223.9;
and it takes a few seconds to check on a personal computer.

Finally, we have p̂ = ∑
ω PrS1

(�0x8 → �ω) × Pr(�β̃ω � Γ γ = 0|�0x8 → �ω) =
0.500993547648294625. As a result, by Theorem 2 we have that the probability of the 11-
round distinguisher �α → Γ δ̃ is 1

2 + 2× (2−8.04)2 × (2× 0.500993547648294625− 1) ≈
1
2 + 2× (2−8.04)2 × 2−8.97 = 1

2 + 2−24.05. Therefore, the 11-round distinguisher �α → Γ δ̃

has a bias of 2−24.05.

4.4 Differential-linear attack on 10-round DES

The 8-round distinguisher �α → Γ δ enables us to construct a differential-linear attack
breaking 10 rounds of DES. We assume that the attacked rounds are the first ten rounds from
Rounds 1 to 10. A simple analysis on the key schedule of DES reveals that K1,1 and K10,1

overlap in 2 bits (i.e. bits 17 and 51 of the user key), and thus given K1,1 we know 2 bits of
K10,1. The attack procedure is as follows.

1. Choose 224.46 structures Si , (i = 1, 2, . . . , 224.46), where a structure is defined to be a
set of 24 plaintexts Pi, j with bits (9, 17, 23, 31) of the left half taking all the possible
values, bit (2) of the right half fixed to 0 and the other 59 bits fixed, ( j = 1, 2, . . . , 24).
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 24 plaintexts in
each of the 224.46 structures; we denote by Ci, j the ciphertext for plaintext Pi, j .

2. Choose 224.46 structures Ŝi , (i = 1, . . . , 224.46), where a structure Ŝi is obtained by
setting 1 to bit (2) of the right half of all the plaintexts Pi, j in Si . In a chosen-plaintext
attack scenario, obtain all the ciphertexts for the 24 plaintexts in each Ŝi .

3. Initialize 210 counters to zero, which correspond to all the possible values of the subkey
(K1,1, K10,1).

4. Guess a value for K1,1, and do as follows.
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(a) Partially encrypt every plaintext Pi, j with the guessed K1,1 to get its intermediate
value immediately after Round 1 ; we denote it by εi, j .

(b) Partially decrypt εi, j ⊕0x4000000000000000 with the guessed K1,1 to get its plain-
text, and find the plaintext in Ŝi ; we denote it by P̂i, j , and denote by Ĉi, j the corre-
sponding ciphertext for P̂i, j . Store (Ci, j , Ĉi, j ) in a table.

5. Guess a value for the remaining 4 bits of K10,1, and do as follows for every ciphertext
pair (Ci, j , Ĉi, j ).

(a) Partially decrypt Ci, j and Ĉi, j with K10,1 to get bit (17) of the left half of their
intermediate values immediately before Round 10.

(b) Check whether the XOR of the five bits for Ci, j — bit (17) of the left half and bits
(3,8,14,25) of the right half of its intermediate value immediately before Round 10
— is equal to the XOR of the corresponding five bits for Ĉi, j . If yes, add one to the
counter corresponding to the guessed (K1,1, K10,1).

6. Output the guess for (K1,1, K10,1) with the highest deviation from 227.46.

The attack requires 229.46 chosen plaintexts. We start to collect another pair of structures
of plaintexts only after testing a pair of structures of plaintexts, so that we can reuse the
memory for storing the pair of structures of plaintexts, hence the required memory of the
attack is dominated by the storage of the 210 counters, which is 210 × 28.46

8 ≈ 211.9 bytes
of memory. (If we would like to collect all the plaintexts at once, then it would require a
storage of 229.46 × 8 × 2 = 233.46 bytes.) Step 4 has a time complexity of approximately
2× 228.46 × 26 × 1

8×10 ≈ 229.14 10-round DES encryptions. Step 5 has a time complexity of

approximately 2×228.46 ×210 × 1
8×10 ≈ 233.14 10-round DES encryptions. There are 228.46

plaintext pairs (Pi, j , P̂i, j ) for a guess of (K1,1, K10,1). Following Theorem 1, we learn that

the attack has a success probability of aboutΦ(|2( 12+2−12.83)−1|√228.46−Φ−1(1− 1
210

)) ≈
Φ(5.28−Φ−1(0.99902)) ≈ Φ(5.28−3.1) ≈ 99%.3 Hence, the attack has a time complexity
of 229.46 + 229.14 + 233.14 ≈ 233.33 10-round DES encryptions to recover 10 key bits.

A slightly more efficient attack, which is similar to the 13-round DES attack given in the

next subsection, has a time complexity of 229.46 + 2× 228.46 × 26 × 1
8×10 + 228.46×26

10 + 2×
26 × 24 × 220 × 1

8×10 ≈ 231.78 10-round DES encryptions to recover the 10 key bits.
The remaining 46 key bits can be found by exhaustive search, which means that it takes

a total time complexity of 246 10-round DES encryptions to recover the full 56-bit user
key. We note that it may be possible to recover the full key with a lower time complexity by
exploiting one or more differential-linear attacks to recover the remaining 46 key bits, instead
of exhaustive search on them. Anyway, the attack shows that our methodology enables us to
break 10-round DES when using the same 3-round linear approximation as in those previous
differential-linear cryptanalysis of DES.

4.5 Differential-linear attack on 13-round DES

The 11-round distinguisher �α → Γ δ̃ can be used to break 13-round DES. We assume that
the attacked rounds are the first thirteen rounds from Rounds 1 to 13. A simple analysis on
the key schedule of DES reveals that K1,1 and K13,1 overlap in 2 bits (i.e. bits 17 and 34

3 Note that here a differential-linear distinguisher is treated as a linear approximation, so that we can use
Theorem 1 for a differential-linear attack, but here we can replace m + 1 in Theorem 1 with m, (since the
term on the XOR of concerned key bits is cancelled in a differential-linear distinguisher). The same statement
applies to the subsequent attacks, although we do not make any further explicit statements.
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of the user key), and thus given K1,1 we know 2 bits of K13,1. The attack procedure is as
follows.

1. Choose 247.1 structures Si , (i = 1, 2, . . . , 247.1), where a structure is defined to be a set
of 24 plaintexts Pi, j with bits (9, 17, 23, 31) of the left half taking all the possible values,
bit (2) of the right half fixed to 0 and the other 59 bits fixed, ( j = 1, 2, . . . , 24). In a
chosen-plaintext attack scenario, obtain all the ciphertexts for the 24 plaintexts in each
of the 247.1 structures; we denote by Ci, j the ciphertext for plaintext Pi, j .

2. Choose 247.1 structures Ŝi , (i = 1, . . . , 247.1), where a structure Ŝi is obtained by setting
1 to bit (2) of the right half of all the plaintexts Pi, j in Si . In a chosen-plaintext attack
scenario, obtain all the ciphertexts for the 24 plaintexts in each Ŝi .

3. Guess a value for K1,1, and do as follows.

(a) Initialize 220 counters to zero, which correspond to the 220 possible pairs consisting
of the possible values for a couple of the 10 ciphertext bits: bit (17) of the left half
and bits (1, 2, 3, 4, 5, 8, 14, 25, 32) of the right half.

(b) Partially encrypt every plaintext Pi, j with the guessed K1,1 to get its intermediate
value immediately after Round 1; we denote it by εi, j .

(c) Partially decrypt εi, j ⊕0x4000000000000000 with the guessed K1,1 to get its plain-
text, and find the plaintext in Ŝi ; we denote it by P̂i, j , and denote by Ĉi, j the corre-
sponding ciphertext for P̂i, j . Store (Ci, j , Ĉi, j ) in a table.

(d) For every ciphertext pair (Ci, j , Ĉi, j ), add one to the counter corresponding to the
pair of the above-mentioned 10 ciphertext bits from (Ci, j , Ĉi, j ).

(e) Guess a value for the unknown 4 bits of K13,1, and do as follows.

(i) For each of the 220 pairs of the concerned 10 ciphertext bits, partially decrypt it
with the guessed K13,1 to get the pair of the 5 bits concerned by the output mask
Γ δ, and compute the XOR of the pair of the 5 bits (concerned by the output mask).

(ii) Count the number of the ciphertext pairs (Ci, j , Ĉi, j ) such that the XOR of the pair
of the 5 bits concerned by Γ δ is zero, and compute its deviation from 250.1.

(iii) If the guess for (K1,1, K13,1) is the first guess for (K1,1, K13,1), then record the
guess and the deviation computed in Step 3(e)(ii); otherwise, record the guess and
its deviation only when the deviation is larger than that of the previously recorded
guess, and remove the guess with the smaller deviation.

4. For the (K1,1, K13,1) recorded in Step 3(e)(iii), exhaustively search for the remaining 46
key bits with two known plaintext-ciphertext pairs. If a 56-bit key is suggested, output it
as the user key of the 13-round DES.

The attack requires 252.1 chosen plaintexts. Steps 1 and 2 have a time complexity of 252.1

13-round DES encryptions. Steps 3(b) and 3(c) have a time complexity of 2 × 251.1 × 26 ×
1

8×13 ≈ 251.4 13-roundDESencryptions. Step 3(d) has a time complexity of 251.1×26 = 257.1

memory accesses. Roughly, an extremely conservative estimate from a theoretical viewpoint
is: 13 memory accesses equal a 13-round DES encryption in terms of time, assuming that
the 13-round DES is implemented with 8 parallel S-box lookups per round and one round
is equivalent to one memory access. So the time complexity of Step 3(d) is equivalent to
257.1
13 ≈ 253.4 13-round DES encryptions. The time complexity of Step 3(e) is dominated by
the time complexity of Step 3(e)(i), which is 2×26×24×220× 1

8×13 ≈ 224.3 13-round DES
encryptions. Step 4 has a time complexity of 246 13-round DES encryptions. Therefore, the
attack has a total time complexity of approximately 254.2 13-round DES encryptions, faster
than exhaustive key search.
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If wewould like to collect all the plaintexts at once, then the requiredmemory for the attack
is dominated by the storage of the plaintexts and ciphertexts, which is 252.1 × 16 = 256.1

bytes; however, we can implement the attack procedure in an optimised way: We initialize
226 counters, which correspond to the possible values of the combination of K1,1 and the
couple of the 10 ciphertext bits described in Step 3(a); and we start to collect another pair of
structures of plaintexts only after testing a pair of structures of plaintexts. Thus, the required
memory of the optimised attack is dominated by the storage of the 226 counters, which is
226 × 20

8 ≈ 227.4 bytes of memory.
There are 251.1 plaintext pairs (Pi, j , P̂i, j ) for a guess of (K1,1, K13,1), and thus following

Theorem 1, we have that the attack has a success probability of about Φ(|2( 12 + 2−24.05) −
1|√251.1 − Φ−1(1 − 1

210
)) ≈ Φ(5.66 − Φ−1(0.99902)) ≈ Φ(2.56) ≈ 99%.

5 Application to the CTC2 block cipher

TheCTC2 [16] block cipherwas designed to show the strength of algebraic cryptanalysis [17]
on block ciphers by the proposer of algebraic cryptanalysis, who described an algebraic attack
on 6 rounds of the version of CTC2 that uses a 255-bit block size and a 255-bit key.

In 2009, using Langford and Biham et al.’s methodology Dunkelman and Keller [22]
described 6- and 7-round differential-linear distinguishers for the version of CTC2, and
finally presented differential-linear attacks on 7 and 8 rounds of CTC2 (with a 255-bit block
size and key). The 8-round attack is known as the best previously published cryptanalytic
result on the version of CTC2 in terms of the numbers of attacked rounds.

In this section, we show a flaw in the previous differential-linear cryptanalytic results
for CTC2. Then, under the new methodology we construct an 8.5-round differential-linear
distinguisherwith bias 2−69.42 for the CTC2with a 255-bit block size and key, and finally give
a differential-linear attack on 10-round CTC2 with a 255-bit block size and key. Notice that

in this section, sometimes we simply write �α
T→ �β to denote the differential �α → �β

for some operation T, and write Γ α
T→ Γβ to denote the linear approximation Γ α → Γβ

for T. We first briefly describe the CTC2 block cipher.

5.1 The CTC2 block cipher

The CTC2 [16] block cipher has a variable block size, a variable length key and a variable
number of rounds. As in [22], we only consider the version of CTC2 that uses a 255-bit block
size and a 255-bit key. CTC2 uses the following two elementary operations to construct its
round function.

– S is a non-linear substitution operation constructed by applying the same 3×3-bit bijective
S-box 85 times in parallel to an input.

– D is a linear diffusion operation, which takes a 255-bit block Y = (Y254, . . . , Y1, Y0) as
input, and outputs a 255-bit block Z = (Z254, . . . , Z1, Z0), computed as defined below,
where i = 0, 1, 3, 4, · · · , 254.

{
Z151 = Y2 ⊕ Y139 ⊕ Y21
Z(i×202+2)mod255 = Yi ⊕ Y(i+137)mod 255

CTC2 takes as input a 255-bit plaintext block P , and its encryption procedure for Nr rounds
is, where Z0, Xi , Yi , Zi , XNr , YNr , ZNr are 255-bit variables, and K0, Ki , KNr are round
keys generated from a user key K as K j = K ≪ j in our notation, (0 ≤ j ≤ Nr ).
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1. Z0 = P .
2. For i = 1 to Nr − 1:

– Xi = Zi−1 ⊕ Ki−1,
– Yi = S(Xi ),
– Zi = D(Yi ).

3. XNr = ZNr−1 ⊕ KNr−1, YNr = S(Xi ), ZNr = D(YNr ).
4. Ciphertext = ZNr ⊕ KNr .

To keep in accordance with [16], the i th iteration of Step 2 in the above description is referred
to as Round i , (1 ≤ i ≤ Nr − 1), and the transformations in Steps 3 and 4 are referred to as
Round Nr . We number the 85 S-boxes in a round from 0 to 84 from right to left.

5.2 A flaw in previous differential-linear cryptanalysis of CTC2

Observe that Dunkelman and Keller used the 0.5-round differential e30,151
D→ e2 with prob-

ability 1 in their differential-linear attacks presented in [22]. However, we find that this

0.5-round differential e30,151
D→ e2 is not correct: For theD operation, given the input differ-

ence e30,151, we cannot get the output difference e2; and the correct output difference should
be e25,63,159,197. On the other hand, for the D operation, given the output difference e2, the
input difference has over fifty non-zero bits, much more than the number two in e30,151. As
a consequence, the differential-linear cryptanalytic results are flawed.

Note that Dunkelman andKeller also described differential attacks on 5-, 6- 7- and 8-round

CTC2 in [22], and the 0.5-round differential e30,151
D→ e2 with probability 1 was also used

and played a very important role in the differential results; thus they are flawed, too.
An anonymous referee pointed out that the flaw on CTC2might be because a wrong linear

operationwas used and thus theremight also exist a flaw in the 3.5-round linear approximation

given in [22]: e14,104,134,241
S→ e14,104,132,241

D→ e38,154
S→ e36,154

D→ e0
S→ e2

D→
e30,151

S→ e32,151. We checked this 3.5-round linear approximation and found that the input
mask e14,104,132,241 for the first D operation was not correct, which should be e26,33,163,170;
and thus the input mask e14,104,134,241 for the first S operation is not correct, either, but the

remaining 2.5-round linear approximation e38,154
S→ e36,154

D→ e0
S→ e2

D→ e30,151
S→

e32,151 is correct, in particular it is correct for the part e2
D→ e30,151 corresponding to the

part e30,151
D→ e2 concerned by the flaw in the above mentioned differential and differential-

linear cryptanalysis results. We can easily obtain a correct 3.5-round linear approximation
with the same bias by correcting the first round of the above 3.5-round linear approximation
from [22]. In the next subsection we build a 8.5-round differential-linear distinguisher with
bias 2−69.42 based on a corrected 3.5-round linear approximation.

5.3 An 8.5-round differential-linear distinguisher with bias 2−69.42

The 8.5-round differential-linear distinguisher ismade up of a 5.5-round linear approximation
Γ γ → Γ δ with bias 2−33 and all the 3-round differentials {�α → �β} with �α = e0. The
5.5-round linear approximation Γ γ → Γ δ is e3,42,46,66,78,98,102,140,141,160,164,196,203,235,239
S→ e3,4,42,46,66,78,98,102,140,141,160, 164,196,203,235,239

D→ e45,69,74,98,163,192,206,235
S→

e45,69,74,98,163,192,206,235
D→ e26, 33,163,170

S→ e26,33,163,170
D→ e38,154

S→ e36,154
D→ e0

S→
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Fig. 4 Concerned differences in the S-boxes of the 3-round differentials for the 8.5-round differential-linear
distinguisher of CTC2

e2
D→ e30,151

S→ e32,151. The input difference α is chosen so that there are only 16 active bit
positions after being applied D−1. This enables us to conduct a differential-linear attack on
10-round CTC2 that will be presented in Sect. 5.4. For any other one-bit difference except
e0, there are more than 50 active bit positions after applying D−1 to it, and thus the resulting
distinguisher cannot be used to break 10-round CTC2, because too many subkey bits are to
be guessed.

We now compute the probability of the 8.5-round differential-linear distinguisher, and
Fig. 4 depicts the concerned differences in the S-boxes of the 3-round differentials for the 8.5-
round differential-linear distinguisher.Without loss of generality, we assume that the 3-round
differentials {�α → �β} operate on Rounds 1 to 3, and the 5.5-round linear approximation
Γ γ → Γ δ operates on Rounds 4 to 9 (just before the D operation of Round 9). By the D
operation, we learn that the input mask Γ γ concerns the following 30 bit positions of the
output difference of the S operation of Round 3: Bits 3, 7, 13, 21, 46, 54, 60, 64, 74, 78, 84,
87, 107, 111, 117, 140, 144, 150, 158, 164, 172, 178, 182, 205, 211, 215, 221, 235, 244 and
248. The 30 concerned bit positions are covered in 30 S-boxes of Round 3: S-boxes 1, 2, 4,
7, 15, 18, 20, 21, 24, 26, 28, 29, 35, 37, 39, 46, 48, 50, 52, 54, 57, 59, 60, 68, 70, 71, 73, 78,
81 and 82; let Ω be the set of the 30 S-boxes.

On the other direction, the input difference �α generates 4 possible differences after the
S operation of Round 1: {ω|ω = e0, e1, e2, e0,1,2}, each with probability 2−2 as shown in the
second row of Table 4. We represent the least significant three bits of ω as a concatenation
of three one-bit variables c||b||a, where a, b, c ∈ {0, 1}. After the D operation of Round 1, a
difference ω causes at most 6 active S-boxes of Round 2: S-boxes 0, 5, 23, 41, 50 and 68; the
input difference for S-box 0 is a||0||0 in binary notation, the input difference for S-box 5 is
c||0||0 in binary notation, the input difference for S-box 23 is 0||b||0 in binary notation, the
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Table 4 Probabilities for the
four output differences in {ω} Difference (ω) e0 e1 e2 e0,1,2

PrS(�α → �ω) 2−2 2−2 2−2 2−2

Pr(�βω � Γ γ = 0|�α → �ω) 0.46875 0.5 0.625 0.5

input difference for S-box 41 is 0||0||a in binary notation, the input difference for S-box 50 is
0||c||0 in binary notation, and the input difference for S-box 68 is 0||0||b in binary notation.
The 18-bit output difference of the 6 active S-boxes of Round 2 gets involved in a total of 34
bits of the input difference of the S-box operation of Round 3: Bits 2, 7, 17, 21, 25, 36, 40,
49, 60, 64, 70, 78, 93, 102, 106, 113, 117, 121, 123, 128, 151, 155, 159, 170, 174, 181, 185,
204, 212, 223, 227, 234, 238 and 242. Among the 34 bits, only 13 bits are involved in the
30 S-boxes in Ω: Bits 7, 21, 60, 64, 78, 106, 113, 117, 151, 181, 204, 212 and 234; and they
are for S-boxes 2, 7, 20, 21, 26, 35, 37, 39, 50, 60, 68, 70 and 78. The values for the 13 bits
depend on 10 bits of the output difference of 5 active S-boxes of Round 2:

– The most significant two bits of the output difference of S-box 0, and we denote them by
e||d;

– The most significant two bits of the output difference of S-box 23, and we denote them
by g|| f ;

– The three bits of the output difference of S-box 41, and we denote them by n||m||h;
– The most and least significant bits of the output difference of S-box 50, and we denote

them by u||q; and
– The least significant bit of the output difference of S-box 68, and we label the bit v.

As a result, we have the following results in Round 3: S-box 2 has an input difference 0||n||0,
and the second least significant bit, labeled by x0, of its output difference is concerned by
Γ γ ; S-box 7 has an input difference 0||0||v, and the least significant bit, labeled by x1, of
its output difference is concerned by Γ γ ; S-box 20 has an input difference 0||0||m, and
the least significant bit, labeled by x2, of its output difference is concerned by Γ γ ; S-box
21 has an input difference 0||g||0, and the second least significant bit, labeled by x3, of its
output difference is concerned by Γ γ ; S-box 26 has an input difference 0||0||q , and the
least significant bit, labeled by x4, of its output difference is concerned by Γ γ ; S-box 35
has an input difference 0||u||0, and the most significant bit, labeled respectively by x5, of its
output difference is concerned by Γ γ ; S-box 37 has an input difference h||0||0, and the least
significant bit, labeled by x6, of its output difference is concerned by Γ γ ; S-box 39 has an
input difference 0||0|| f , and the least significant bit, labeled by x7, of its output difference
is concerned by Γ γ ; S-box 50 has an input difference 0||e||0, and the least significant bit,
labeled by x8, of its output difference is concerned by Γ γ ; S-box 60 has an input difference
0||m||0, and the most significant bit, labeled by x9, of its output difference is concerned by
Γ γ ; S-box 68 has an input difference 0||0||d , and the second least significant bit, labeled by
x10, of its output difference is concerned by Γ γ ; S-box 70 has an input difference q||0||0,
and the second least significant bit, labeled by x11, of its output difference is concerned by
Γ γ ; and S-box 78 has an input difference 0||0||h, and the second least significant bit, labeled
by x12, of its output difference is concerned by Γ γ .

Now, whether β � γ = 0 is equivalent to whether
⊕12

i=0 xi = 0.
By the difference distribution table of the S-box, we get the possible values for

(e||d), (g|| f ), (n||m||h), (u||q), v, x0, x1, . . . , x12 and the conditional probabilities, as fol-
lows:
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Pr((e||d) = 0|a = 0) = 1, Pr((e||d) = 0|a = 1) = 0.25,
Pr((e||d) = 1|a = 1) = 0.25, Pr((e||d) = 2|a = 1) = 0.25,
Pr((e||d) = 3|a = 1) = 0.25, Pr((g|| f ) = 0|b = 0) = 1,
Pr((g|| f ) = 1|b = 1) = 0.5, Pr((g|| f ) = 3|b = 1) = 0.5,
Pr((n||m||h) = 0|a = 0) = 1, Pr((n||m||h) = 1|a = 1) = 0.25,
Pr((n||m||h) = 2|a = 1) = 0.25, Pr((n||m||h) = 4|a = 1) = 0.25,
Pr((n||m||h) = 7|a = 1) = 0.25, Pr((u||q) = 0|c = 0) = 1,
Pr((u||q) = 0|c = 1) = 0.25, Pr((u||q) = 1|c = 1) = 0.25,
Pr((u||q) = 2|c = 1) = 0.25, Pr((u||q) = 3|c = 1) = 0.25,
Pr(v = 0|b = 0) = 1, Pr(v = 0|b = 1) = 0.5,
Pr(v = 1|b = 1) = 0.5, Pr(x0 = 0|n = 0) = 1,
Pr(x0 = 1|n = 1) = 1, Pr(x1 = 0|v = 0) = 1,
Pr(x1 = 0|v = 1) = 0.5, Pr(x1 = 1|v = 1) = 0.5,
Pr(x2 = 0|m = 0) = 1, Pr(x2 = 0|m = 1) = 0.5,
Pr(x2 = 1|m = 1) = 0.5, Pr(x3 = 0|g = 0) = 1,
Pr(x3 = 1|g = 1) = 1, Pr(x4 = 0|q = 0) = 1,
Pr(x4 = 0|q = 1) = 0.5, Pr(x4 = 1|q = 1) = 0.5,
Pr(x5 = 0|u = 0) = 1, Pr(x5 = 0|u = 1) = 0.5,
Pr(x5 = 1|u = 1) = 0.5, Pr(x6 = 0|h = 0) = 1,
Pr(x6 = 1|h = 1) = 1, Pr(x7 = 0| f = 0) = 1,
Pr(x7 = 0| f = 1) = 0.5, Pr(x7 = 1| f = 1) = 0.5,
Pr(x8 = 0|e = 0) = 1, Pr(x8 = 0|e = 1) = 0.5,
Pr(x8 = 1|e = 1) = 0.5, Pr(x9 = 0|m = 0) = 1,
Pr(x9 = 0|m = 1) = 0.5, Pr(x9 = 1|m = 1) = 0.5,
Pr(x10 = 0|d = 0) = 1, Pr(x10 = 0|d = 1) = 0.5,
Pr(x10 = 1|d = 1) = 0.5, Pr(x11 = 0|q = 0) = 1,
Pr(x11 = 0|q = 1) = 0.5, Pr(x11 = 1|q = 1) = 0.5,
Pr(x12 = 0|h = 0) = 1, Pr(x12 = 0|h = 1) = 0.5,
Pr(x12 = 1|h = 1) = 0.5.

For each difference ω, we denote by βω the output difference(s) immediately after Round 3,
and using the above conditional probabilities we compute the probability of

⊕12
i=0 xi = 0

by performing a program on all the possible (truncated) differential characteristics, which
takes a few seconds on a personal computer. These probabilities are given in the third row of
Table 4.

Thus, we have p̂ = ∑
ω PrS(�0x1 → �ω) × Pr(�βω � Γ γ = 0|�0x1 → �ω) =

0.5234375. By Theorem 2 we have that the probability of the 8.5-round distinguisher is
1
2 + 2× (2−33)2 ×[2× 0.5234375− 1] ≈ 1

2 + 2× 2−66 × 2−4.42 ≈ 1
2 + 2−69.42. Therefore,

the 8.5-round differential-linear distinguisher �α → Γ δ has a bias of 2−69.42.

5.4 Differential-linear attack on 10-round CTC2 with a 255-bit block size and key

The above 8.5-round distinguisher enables us to construct a differential-linear attack breaking
the CTC2 when used with 10 rounds under a 255-bit block size and a 255-bit key.

We assume that the attacked rounds are the first ten rounds from Rounds 1 to 10; and we
use the distinguisher from Rounds 2 until before theD operation of Round 10. As mentioned
earlier, we learn that the input difference α propagates to 16 bit positions after the inverse of
the D operation of Round 1: Bits 17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158, 177, 196,
215, 234 and 253. The 16 active bits correspond to 16 S-boxes of Round 0: S-boxes 5, 7, 13,
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19, 26, 32, 38, 45, 46, 51, 52, 59, 65, 71, 78 and 84; letΘ be the set of the 16 S-boxes, and KΘ

be the 48 bits of K0 corresponding to the 16 S-boxes in Θ . Another observation is that we
do not need to guess the subkey bits from K10, because the output mask Γ δ of the 8.5-round
distinguisher concerns the intermediate value immediately after the S operation of Round
10, and for a pair of ciphertexts (C, Ĉ) the value of δ �D−1(C ⊕ K10)⊕ δ �D−1(Ĉ ⊕ K10)

equals δ � D−1(C ⊕ Ĉ), which is independent of K10. The attack procedure is as follows.

1. Choose 296.84 structures Si , (i = 0, 1, . . . , 296.84 − 1), where a structure is defined to be
a set of 248 plaintexts Pi, j with the 48 bits for the S-boxes in Θ taking all the possible
values and the other 207 bits fixed, ( j = 0, 1, . . . , 248 − 1). In a chosen-plaintext attack
scenario, obtain all the ciphertexts for the 248 plaintexts in each of the 296.84 structures;
we denote by Ci, j the ciphertext for plaintext Pi, j .

2. Initialize 248 counters to zero, which correspond to all the possible values for KΘ .
3. For every structures Si , guess a value for KΘ , and do as follows.

(a) Partially encrypt every (unpaired) plaintext Pi, j with the guessed KΘ to get its inter-
mediate value immediately after the S operation of Round 1; we denote it by εi, j .

(b) Take bitwise complements to bits (17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158,
177, 196, 215, 234, 253) of εi, j , and keep the other bits of εi, j invariant; we denote
the resulting value by ε̂i, j .

(c) Partially decrypt ε̂i, j with the guessed KΘ to get its plaintext, and find the plaintext
in Si ; we denote it by P̂i, j , and denote by Ĉi, j the corresponding ciphertext for P̂i, j .

(d) For every ciphertext pair (Ci, j , Ĉi, j ), compute the XOR of bits 32 and 151 of
D−1(Ci, j ⊕ Ĉi, j ). If the XOR is zero, add one to the counter corresponding to the
guessed KΘ .

4. Output the guess for KΘ with the highest deviation from 2142.84.

The attack requires 2144.84 chosen plaintexts. Note that we start to collect another structure
of plaintexts only after testing a structure of plaintexts, so that we can reuse the memory
for storing the structure of plaintexts, hence the required memory of the attack is dominated
by the storage of the 248 counters and a structure of 248 plaintext-ciphertext pairs, which
is 248 × 143.84

8 + 2 × 248 × 255
8 ≈ 254.4 bytes of memory. The time complexity of Step 3

is dominated by the time complexity of Steps 3(a), 3(c) and 3(d), which is approximately
2×2143.84×248× 16

85×10+2143.84×248× 1
10 ≈ 2188.98 10-roundCTC2 encryptions. There are

2143.84 plaintext pairs (Pi, j , P̂i, j ) for a guess of KΘ . Following Theorem 1, we learn that the

attack has a success probability of aboutΦ(|2( 12 +2−69.42)−1|√2143.84−Φ−1(1− 1
248

)) ≈
99%. Therefore, the attack has a time complexity of about 2188.98 10-roundCTC2 encryptions
to find the 48 key bits.

The remaining 207 key bits can be found with exhaustive search, which means that it
takes a total time complexity of approximately 2207 10-round CTC2 encryptions to find the
full user key. We note that it may be possible to recover the whole key with a lower time
complexity by exploiting one or more differential-linear attacks to recover the remaining 207
key bits, instead of exhaustive search on them.

6 Application to the Serpent block cipher

The Serpent [1,2] block cipher is one of the five Advanced Encryption Standard (AES)
finalists, second to the Rijndael [18] cipher that was selected as the AES [45]. It has a 128-bit
block size, a variable length user key of up to 256 bits, and a total of 32 rounds. Serpent
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was designed in a rather conservative way, and it was included in the GNU project [24] for
possible use in real-world cryptographic applications.

In 2003, Biham et al. [12] described a 9-round differential-linear distinguisher of Serpent,
and finally gave a differential-linear attack on 11-round Serpent (with a 256-bit key). In 2008
Dunkelman, Indesteege and Keller [23] presented an improved 9-round differential-linear
distinguisher of Serpent, and finally used it as the basis for a differential-linear attack on
12-round Serpent. All these attacks are based on Langford and Biham et al.’s methodology,
more or less. The 12-round attack is known as the best previously published cryptanalytic
result on Serpent in terms of the numbers of attacked rounds.

In this section, we construct a 9-round differential-linear distinguisher with bias 2−59.41

under our new methodology, which can be used to break 12-round Serpent (with a 256-bit
key) slightly faster than Dunkelman et al.’s attack at a higher success rate. We first briefly
describe the Serpent block cipher.

6.1 The Serpent block cipher

The Serpent [1,2] block cipher has a 128-bit block size, a variable length key of up to 256
bits, and a total of 32 rounds; a shorter key can be used by appending one “1” bit to the
most significant bit end, followed by as many “0” bits as required. Serpent uses the following
elementary operations:

– IP/FP is the initial/final permutation; see [2] for their specifications.
– Si is a non-linear substitution operation constructed by applying the same4×4-bit bijective

Simod8 S-box 32 times in parallel to an input, (0 ≤ i ≤ 31). Refer to [2] for specifications
of the S-boxes S0,S1, . . . ,S7.

– L is a linear diffusion operation, which takes as input a 128-bit block of four 32-bit
words X = (X3, X2, X1, X0), and outputs a 128-bit block of four 32-bit words Y =
(Y3, Y2, Y1, Y0), computed as follows.

– X0 = X0 ≪ 13,
– X2 = X2 ≪ 3,
– X1 = X0 ⊕ X1 ⊕ X2,
– X3 = X3 ⊕ X2 ⊕ (X0 � 3),
– X1 = X1 ≪ 1,
– X3 = X3 ≪ 7,
– X0 = X0 ⊕ X1 ⊕ X3,
– X2 = X2 ⊕ X3 ⊕ (X1 � 7),
– X0 = X0 ≪ 5,
– X2 = X2 ≪ 22,
– Y = (X3, X2, X1, X0).

Serpent takes as input a 128-bit plaintext block P , and its encryption procedure is, where
B̂0, B̂1, . . . , B̂32 are 128-bit variables, and K0, K1, . . . , K32 are round keys.

1. B̂0 = IP(P).
2. For i = 0 to 30:

–B̂i+1 = L(Si (B̂i ⊕ Ki )).

3. B̂32 = S31(B̂31 ⊕ K31) ⊕ K32.
4. Ciphertext = FP(B̂32).

The i th iteration of Step 2 in the above description is referred to below as Round i ,
(0 ≤ i ≤ 30), and the transformation in Steps 3 and 4 is referred to below as Round 31; this is
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in accordancewith [2].Wenumber the 32S-boxes of a round from0 to 31 from right to left. For
simplicity, we describe a state S in a Serpent encryption as four 32-bit words (s3, s2, s1, s0),
and write it as (s3,31||s2,31||s1,31||s0,31)|| · · · ||(s3,1||s2,1||s1,1||s0,1)||(s3,0||s2,0||s1,0||s0,0),
where s j,l is the lth bit of s j , (0 ≤ j ≤ 3, 0 ≤ l ≤ 31). We write Ki,m for the 4-bit
subkey of Ki that corresponds to S-box m of Round i , (0 ≤ m ≤ 31). As the IP and FP
operations are simply linear diffusion transformations, we omit them in our analysis.

6.2 A 9-round differential-linear distinguisher with bias 2−59.41

The 9-round differential-linear distinguisher with bias 2−59.41 is made up of a 6-round linear
approximation Γ γ → Γ δ with bias 2−27 for Rounds 5 to 10 and all the 3-round differentials
{�α → �β} for Rounds 2 to 4 with �α = 0x000000A0000000000000000000000000. The
6-round linear approximation Γ γ → Γ δ is 0x00400000000000000000000000000002 →
0x000B0000B 000030000B0200E00000010, which is from the S5 operation until imme-
diately before the last S3 operation of the 9-round linear approximation given in [9], with
only the input mask slightly changed.4 The input difference and linear approximation used
in our 9-round differential-linear distinguisher are different from those for previous 9-round
differential-linear distinguishers described in [12,23]. Belowwe use the newmethodology to
compute the probability of the 9-round differential-linear distinguisher, where the concerned
differences in the S-boxes of the 3-round differentials for the 9-round differential-linear
distinguisher are depicted in Fig. 5.

By theL operation we know that the input mask Γ γ concerns a total of 3 bits of the output
differences of three S4 S-boxes in Round 4:

– The most significant bit of the output difference of S-box 0, and we label it x0;
– The second most significant bit of the output difference of S-box 4, and we label it x1;

and
– The second most significant bit of the output difference of S-box 29, and we label it x2.

Given the input difference �α, there is only one active S-box among the 32 S2 S-boxes of
Round 2, which generates 6 possible output differences: {ω|ω = 0x2, 0x4, 0x6, 0x8, 0x A,

0x E}; the probabilities for these output differences are given in the second column of Table 5,
and the difference distribution tables of the eight S-boxes were presented in [49]. We write
ω as d||c||b||a in binary notation, where a, b, c, d ∈ {0, 1}.

The 6 possible output differences {ω} may affect at most 18 S-boxes of Round 3, and a
simple analysis reveals that only fifteen of them relate to the input differences of the three
S-boxes of Round 4 concerned by the input mask. We now focus on the fifteen S3 S-boxes
in Round 3. S-box 0 has an input difference d000 in binary notation, and we denote the
most significant bit and the second most significant bit of its output difference by y0, y1,
respectively. S-box 2 has an input difference 000c in binary notation, and we denote the
second least significant bit of its output difference by y2. S-box 3 has an input difference
c000 in binary notation, andwe denote themost significant bit, the secondmost significant bit
and the second least significant bit of its output difference by y3, y4, y5, respectively. S-box
4 has an input difference 0a00 in binary notation, and we denote the second most significant
bit and the least significant bit of its output difference by y6, y7, respectively. S-box 6 has an
input difference 0a00 in binary notation, and we denote the second least significant bit and
the least significant bit of its output difference by y8, y9, respectively. S-box 7 has an input
difference 00a0 in binary notation, andwe denote themost significant bit and the secondmost

4 Note that there is a typo in the input mask of Round 7 of the 9-round linear approximation in [9], where the
input mask should be 0x00000010000A00000000000000000000.
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Fig. 5 Concerned differences in the S-boxes of the 3-round differentials for the 9-round differential-linear
distinguisher of Serpent

Table 5 Probabilities for the six output differences in {ω}
Difference (ω) PrS2 (�0x A → �ω) Pr(�βω � Γ γ = 0|�0x A → �ω)

0x2 2−3 0.453125

0x4 2−3 0.502197265625

0x6 2−2 0.5

0x8 2−3 0.49609375

0x A 2−2 0.500732421875

0xE 2−3 0.5

significant bit of its output difference by y10, y11, respectively. S-box 8 has an input difference
000c in binary notation, and we denote the least significant bit of its output difference by y12.
S-box 11 has an input difference 000a in binary notation, and we denote the second most
significant bit and the least significant bit of its output difference by y13, y14, respectively. S-
box 18 has an input difference 0c00 in binary notation, and we denote the least significant bit
of its output difference by y15. S-box 21 has an input difference 000a in binary notation, and
we denote the second most significant bit and the least significant bit of its output difference
by y16, y17, respectively.S-box 22 has an input difference 0d00 in binary notation, and we
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denote the most significant bit, the second most significant bit and the least significant bit of
its output difference by y18, y19, y20, respectively. S-box 25 has an input difference 0c00 in
binary notation, and we denote the most significant bit, the second most significant bit and
the least significant bit of its output difference by y21, y22, y23, respectively. S-box 26 has an
input difference 00b0 in binary notation, and we denote the second most significant bit and
the second least significant bit of its output difference by y24, y25, respectively. S-box 29 has
an input difference 00c0 in binary notation, and we denote the most significant bit and the
second most significant bit of its output difference by y26, y27, respectively. S-box 31 has an
input difference 000b in binary notation, and we denote the second most significant bit and
the second least significant bit of its output difference by y28, y29, respectively.

As a result, we get the input differences of the concerned three S4 S-boxes of Round 4:

– The input difference for S-box 0 is (y19 ⊕ y21)||(y1 ⊕ y2 ⊕ y3 ⊕ y11 ⊕ y17 ⊕ y28)||(y15 ⊕
y29)||(y7 ⊕ y25);

– The input difference for S-box 4 is (y24 ⊕ y26)||(y4 ⊕ y6 ⊕ y8 ⊕ y10 ⊕ y13 ⊕ y23)||(y1 ⊕
y5 ⊕ y20)||(y12 ⊕ y15 ⊕ y16); and

– The input difference for S-box 29 is (y9 ⊕ y18)||(y0 ⊕ y6 ⊕ y15 ⊕ y27 ⊕ y29)||y22||y14.

By the difference distribution table of the S3 S-box, we get all the possible values for (y0||y1),
y2, (y3||y4||y5), (y6||y7), (y8||y9), (y10||y11), y12, (y13||y14), y15, (y16||y17), (y18||y19|| y20),
(y21||y22||y23), (y24||y25), (y26||y27) and (y28||y29) as well as their probabilities, as follows.

Pr((y0||y1) = 0x0|d = 1) = 0.125, Pr((y0||y1) = 0x1|d = 1) = 0.125,
Pr((y0||y1) = 0x2|d = 1) = 0.125, Pr((y0||y1) = 0x3|d = 1) = 0.625,
Pr(y2 = 0x0|c = 1) = 0.5, Pr(y2 = 0x1|c = 1) = 0.5,
Pr((y3||y4||y5) = 0x1|c = 1) = 0.125, Pr((y3||y4||y5) = 0x3|c = 1) = 0.125,
Pr((y3||y4||y5) = 0x4|c = 1) = 0.125, Pr((y3||y4||y5) = 0x6|c = 1) = 0.375,
Pr((y3||y4||y5) = 0x7|c = 1) = 0.25, Pr((y6||y7) = 0x0|a = 1) = 0.125,
Pr((y6||y7) = 0x1|a = 1) = 0.125, Pr((y6||y7) = 0x2|a = 1) = 0.375,
Pr((y6||y7) = 0x3|a = 1) = 0.375, Pr((y8||y9) = 0x0|a = 1) = 0.125,
Pr((y8||y9) = 0x1|a = 1) = 0.125, Pr((y8||y9) = 0x2|a = 1) = 0.375,
Pr((y8||y9) = 0x3|a = 1) = 0.375, Pr((y10||y11) = 0x1|a = 1) = 0.25,
Pr((y10||y11) = 0x2|a = 1) = 0.5, Pr((y10||y11) = 0x3|a = 1) = 0.25,
Pr(y12 = 0x0|c = 1) = 0.25, Pr(y12 = 0x1|c = 1) = 0.75,
Pr((y13||y14) = 0x1|a = 1) = 0.25, Pr((y13||y14) = 0x2|a = 1) = 0.25,
Pr((y13||y14) = 0x3|a = 1) = 0.5, Pr(y15 = 0x0|c = 1) = 0.5,
Pr(y15 = 0x1|c = 1) = 0.5, Pr((y16||y17) = 0x1|a = 1) = 0.25,
Pr((y16||y17) = 0x2|a = 1) = 0.25, Pr((y16||y17) = 0x3|a = 1) = 0.5,
Pr((y18||y19||y20) = 0x2|d = 1)=0.25, Pr((y18||y19||y20) = 0x3|d = 1)=0.25,
Pr((y18||y19||y20) = 0x4|d = 1)=0.125,Pr((y18||y19||y20) = 0x5|d = 1)=0.125,
Pr((y18||y19||y20) = 0x6|d = 1)=0.125,Pr((y18||y19||y20) = 0x7|d = 1)=0.125,
Pr((y21||y22||y23) = 0x2|c = 1)=0.25, Pr((y21||y22||y23) = 0x3|c = 1)=0.25,
Pr((y21||y22||y23) = 0x4|c = 1)=0.125,Pr((y21||y22||y23) = 0x5|c = 1)=0.125,
Pr((y21||y22||y23) = 0x6|c = 1)=0.125,Pr((y21||y22||y23) = 0x7|c = 1)=0.125,
Pr((y24||y25) = 0x0|b = 1) = 0.125, Pr((y24||y25) = 0x1|b = 1) = 0.375,
Pr((y24||y25) = 0x2|b = 1) = 0.125, Pr((y24||y25) = 0x3|b = 1) = 0.375,
Pr((y26||y27) = 0x1|c = 1) = 0.25, Pr((y26||y27) = 0x2|c = 1) = 0.5,
Pr((y26||y27) = 0x3|c = 1) = 0.25, Pr((y28||y29) = 0x1|b = 1) = 0.25,
Pr((y28||y29) = 0x2|b = 1) = 0.5, Pr((y28||y29) = 0x3|b = 1) = 0.25.
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Table 6 Probabilities for S4

Difference (ω) 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0x A 0x B 0xC 0xD 0xE 0x F

Pr(x0 = 0|ω) 1 0.25 0.5 0.5 0.5 0.25 0.5 0.5 0.25 0.75 0.5 0.5 0.25 0.75 0.5 0.5

Pr(x1 = 0|ω) 1 0.25 0.25 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.5 0.75 0.25

Pr(x2 = 0|ω)

By the difference distribution table of S4, we compute the conditional probability that for
every possible input difference, the concerned bit of the output difference of each concerned
S4 S-box in Round 4 is 0 or 1; the probabilities are given in Table 6, and Pr(x0 = 1|ω) =
1−Pr(x0 = 0|ω), Pr(x1 = 1|ω) = 1−Pr(x1 = 0|ω), and Pr(x2 = 1|ω) = 1−Pr(x2 = 0|ω).

For each difference ω, we denote by βω the output difference(s) of the 3-round Serpent.
Subsequently, we compute the probability that the XOR of the concerned 3 bits of βω is
zero (i.e., Pr(�βω � Γ γ = 0|�0x A → �ω)) by performing a program on all the possible
(truncated) differential characteristics. These probabilities are given in the third column of
Table 5. A straightforward implementation takes several seconds on a personal computer.

Hence, by Theorem 2 we have p̂ = ∑
ω PrS2

(�0x A → �ω) × Pr(�βω � Γ γ =
0|�0x A → �ω) = 0.494110107421875, and the probability of the 9-round differential-
linear distinguisher �α → Γ δ is 1

2 + 2 × (2−27)2 × (2 × 0.494110107421875 − 1) ≈
1
2 − 2 × 2−54 × 2−6.41 = 1

2 − 2−59.41. Thus, the 9-round differential-linear distinguisher
�α → Γ δ has a bias of 2−59.41.

We use several strategies to find the 9-round distinguisher.

– First, 9 rounds are the most that we can build for a differential-linear distinguisher on a
personal computer. As shown in [14,15], the best currently known 7-round linear approx-
imation has bias 2−30. Thus, if we aim to build a useful distinguisher operating on 10
(or more) rounds by using such a 7-round linear approximation, then the bias for the
distinguisher is 2× |2 p̂ − 1| × (2−30)2 = |2 p̂ − 1| · 2−59, so the margin for the value of
|2 p̂ − 1| is tough for using 3-round differentials. Alternatively, we may choose to use 4-
round differentials, instead of using a 7-round linear approximation, however, there are a
large number of possible differential characteristics for which calculating the probability
of β � γ = 0 is beyond the computational power of a personal computer.

– Second, to use a 9-round distinguisher to attack 12-round Serpent, we should use such an
input difference for the distinguisher that makes a small number of active S-boxes for the
two rounds preceding the distinguisher, ideally less than 32, meaning that a small number
of unknown key bits are required to guess; another way is to append two more rounds
after the distinguisher, however this usually requires us to guess more subkey bits.

– Third, some 3-round differentials should involve as few as possible active bits, and the
inputmask should concern as fewas possible output bits of theSoperation of the preceding
round. After having checked the biases of a number of 9-round distinguishers, we find:
Generally speaking, the more active or concerned bits are involved, the smaller is the bias
of the distinguisher, and the distinguisher is more likely to be ineffective.

The above 9-round differential-linear distinguisher is the best we have found under these
strategies, where the inputmask concerns only three output bits of the preceding S4 operation,
and either of the two values 0x2 and 0x8 of ω makes only two active S3 S-boxes in the
following round.
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6.3 Differential-linear attack on 12-round Serpent

We can use the 9-round differential-linear distinguisher as the basis for a differential-
linear attack breaking 12-round Serpent (with a 256-bit key). We attack Rounds 0 to
11, and use the distinguisher from Rounds 2 to 10. The input difference α becomes
0x000000A2040008000000000000000000 after being applied the inverse of the L oper-
ation of Round 1, and the 5 active bits correspond to S-boxes 18, 22, 24 and 25 of Round 1.
It makes 27 active S-boxes of Round 0: S-boxes 0, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, . . .,
29 and 31; let Θ be the set of the 27 S-boxes, and KΘ be the 108 bits of K0 corresponding
to the 27 S-boxes in Θ . The 16 bits concerned by the output mask correspond to S-boxes 1,
8, 11, 13, 18, 23 and 28 of Round 11. The attack procedure is as follows, where the values
of parameters λ and φ will be specified in the subsequent analysis.

1. Choose λ structures Si , (i = 0, 1, . . . , λ − 1), where a structure is defined to be a set
of 2108 plaintexts Pi, j with the 108 bits for the 27 S-boxes in Θ taking all the possible
values and the other 20 bits fixed, ( j = 0, 1, . . . , 2108 − 1). In a chosen-plaintext attack
scenario, obtain all the ciphertexts for the 2108 plaintexts in each of the λ structures; we
denote by Ci, j the ciphertext for plaintext Pi, j .

2. Guess a value for (KΘ, K1,18, K1,22, K1,24, K1,25), and do as follows.

(a) Initialize 256 counters to zero, which correspond to the 256 possible pairs of the 28
ciphertext bits corresponding to S-boxes 1, 8, 11, 13, 18, 23 and 28 of Round 11.

(b) Partially encrypt every (unpaired) plaintext Pi, j with the guessed (KΘ, K1,18, K1,22,

K1,24, K1,25) to get its intermediate value immediately after the S operation of Round
1; we denote it by εi, j .

(c) Compute εi, j⊕0x000000A2040008000000000000000000, andwedenote the result-
ing value by ε̂i, j .

(d) Partially decrypt ε̂i, j with the guessed (KΘ, K1,18, K1,22, K1,24, K1,25) to get its
plaintext, and find the plaintext in Si ; we denote it by P̂i, j , and denote by Ĉi, j the
corresponding ciphertext for P̂i, j .

(e) For every ciphertext pair (Ci, j , Ĉi, j ), add one to the counter corresponding to the
pair of the above-mentioned 28 ciphertext bits from (Ci, j , Ĉi, j ).

(f) Guess a value for (K12,1, K12,8, K12,11, K12,13, K12,18, K12,23, K12,28), and do as
follows.

i For each of the 256 pairs of the concerned 28 ciphertext bits, partially decrypt
it with the guessed (K12,1, K12,8, K12,11, K12,13, K12,18, K12,23, K12,28) to get
the pair of the 16 bits concerned by the output mask, and compute the XOR of
the pair of the 16 bits (concerned by the output mask).

ii Count the number of the ciphertext pairs (Ci, j , Ĉi, j ) such that the XOR of
the pair of the 16 bits concerned by the output mask is zero, and compute its
deviation from λ · 2106.

iii If the guess for (KΘ, K1,18, K1,22, K1,24, K1,25, K12,1, K12,8, K12,11, K12,13,

K12,18, K12,23, K12,28) belongs to the first φ guesses for (KΘ, K1,18, K1,22,

K1,24, K1,25, K12,1, K12,8, K12,11, K12,13, K12,18, K12,23, K12,28), then record
the guess and the deviation computed in Step 2(f)(ii); otherwise, record the guess
and its deviation only when the deviation is larger than the smallest deviation
of the previously recorded φ guesses, and remove the guess with the smallest
deviation from the φ guesses.
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3. For every recorded (KΘ, K1,18, K1,22, K1,24, K1,25) in Step 2(f)(iii), exhaustively search
for the remaining 132 key bits with two known plaintext-ciphertext pairs. If a 256-bit key
is suggested, output it as the user key of the 12-round Serpent.

The attack requires λ × 2108 chosen plaintexts. The required memory for the attack is dom-
inated by the storage of the plaintexts and ciphertexts, which is λ × 2108 × 32 = λ × 2113

bytes. The time complexity of Step 2 is dominated by the time complexity of Steps 2(b), 2(d)
and 2(f)(i), which is λ × 2 × 2107 × 2124 × 27+4

32×12 + 2 × 2124 × 228 × 256 × 7
32×12 ≈

λ × 2228.37 12-round Serpent encryptions. Step 3 has a time complexity of at most
φ × 2132 12-round Serpent encryptions. There are λ × 2107 plaintext pairs (Pi, j , P̂i, j )
for a guess of (KΘ, K1,18, K1,22, K1,24, K1,25, K12,1, K12,8, . . . , K12,28). Following The-
orem 1, we have that the probability that the correct guess of (KΘ, K1,18, K1,22, K1,24,

K1,25, K12,1, K12,8, . . . , K12,28) is recorded in Step 2(f)(iii) is about Φ(|2( 12 − 2−59.41) −
1|√λ × 2107 − Φ−1(1 − φ

2152
)) ≈ 99% when we set λ = 216.5 and φ = 2104. Thus, with a

success probability of about 99% the attack requires 2124.5 chosen plaintexts, and has a total
time complexity of approximately 2244.9 12-round Serpent encryptions.

6.4 Notes

For the purpose of then AES submission requirements, the Serpent designers also considered
the cases when using a 128/192-bit key, and we denote these versions by Serpent-128/192,
respectively. There are some published cryptanalytic results on Serpent-128/192, and we
are particularly interested in those differential-linear cryptanalytic results: Biham et al.’s
and Dunkelman et al.’s differential-linear attacks on 10-round Serpent-128 and 11-round
Serpent-192 given in [12,23]. All these attacks are based on Langford and Biham et al.’s
methodology. A detailed analysis shows that the 9-round differential-linear distinguisher
described in Sect. 6.2 can also be used to break 11-round Serpent-192 and 10-round Serpent-
128, and we brief them below.

6.4.1 Note 1: Differential-linear attack on 11-round Serpent-192

The attack is basically the version of the above 12-round Serpent attack when the first
round is removed. Let φ = 1, then we get similarly that with a success probability of
about 99% the attack requires 2107.2 structures of 216 plaintexts with the 16 bits for S-
boxes 18, 22, 24 and 25 (of Round 1) taking all the possible values and the other 112 bits
fixed, and has a time complexity of 2123.2 + 2 × 2122.2 × 216 × 4

32×11 + 2 × 216 × 228 ×
256 × 7

32×11 ≈ 2132.8 11-round Serpent encryptions to find the correct value of (K1,18,

K1,22, K1,24, K1,25, K12,1, K12,8, K12,11, K12,13, K12,18, K12,23, K12,28). Then for the cor-
rect (K12,1, K12,8, K12,11, K12,13, K12,18, K12,23, K12,28), we can get the 192-bit key by
performing an exhaustive search on the remaining 164 key bits, which takes 2164 11-round
Serpent encryptions.

We can reduce the time complexity using a different 9-round differential-linear dis-
tinguisher, which is obtained by changing the output mask of the S2 operation to
0x00001000000000007000010000100001. Consequently, the output mask Γ δ becomes
0x000B0000B001030220B0200C00400010, and it now concerns 11 S-boxes in the fol-
lowing round. Since the bias for the linear approximation remains invariant, the distin-
guisher has a bias 2−59.41. Similarly, the attack (with φ = 1) requires 2109.5 structures
(as described above) to have a success probability of about 99%, and has a time complexity
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of 2125.5 +2×2124.5 ×216 × 4
32×11 +2×216 ×244 ×288 × 11

32×11 ≈ 2144 11-round encryp-
tions to find the correct value for (K1,18, K1,22, K1,24, K1,25, K12,1, K12,5, K12,8, K12,11,

K12,13, K12,15, K12,16, K12,18, K12,20, K12,23, K12,28). Given the correct (K12,1, K12,5, . . . ,

K12,28), an exhaustive search for the remaining 148 key bits takes 2148 11-round encryptions.
Therefore, the attack has a total time complexity of approximately 2144 + 2148 ≈ 2148.1 11-
round Serpent encryptions to find the 192-bit key.

We can also perform an attack without using the counters; it is a time-memory tradeoff to
the above 11-roundSerpent-192 attack. For every guess of (K1,18, K1,22, K1,24, K1,25, K12,1,

K12,8, . . . , K12,28), we first get the ciphertext pairs as in Steps 2(b)–(d), and then partially
decrypt every ciphertext pair to get the XOR of the pair of the 16 bits concerned by the output
mask, and finally perform as in Steps 2(f)(ii), 2(f)(iii) and 3 (with φ = 1). The resulting attack
has a total time complexity of approximately 2×2122.2×244× 7

32×11+2164 ≈ 2164.3 11-round
Serpent encryptions.

6.4.2 Note 2: Differential-linear attack on 10-round Serpent-128

The attack is basically the version of the 12-round Serpent attackwhen the first two rounds are
removed. Let φ = 1; then with a success probability of about 99% the attack requires 2122.4

plaintext pairswith differenceα, and has a time complexity of 2123.4+2×228×256× 7
32×10 ≈

2123.4 10-round Serpent encryptions to find the correct value for (K1,18, K1,22, K1,24, K1,25).
Given the recorded (K1,18, K1,22, K1,24, K1,25), we can get the 128-bit key by performing
an exhaustive search on the remaining 112 key bits, which takes 2112 10-round Serpent
encryptions.

We also find some8-round and several 9-round (different) differential-linear distinguishers
that can be used to break 10-round Serpent-128, like the two to be described in the latter part
of Note 3. Nevertheless, among them only one differential-linear distinguisher can be used
to break 10-round Serpent-128 without requiring additional memory for similar counters,
and it is 9-round. This 9-round differential-linear distinguisher consists of a 6.5-round linear
approximation Γ γ → Γ δ with bias 2−27 and all the 2.5-round differentials {�α → �β}
that meet β � γ = 0 with �α = 0x000000000000009000000000000 00000. The 6.5-
round linear approximation Γ γ → Γ δ is 0x000B0000B0000300 00B0200E00000010 →
0x00400000000000000000000000040008, which operates on 6.5 consecutive rounds from
the L operation immediately before the S3 operation until the L operation immediately after
the S4 operation in the decryption direction (It is quite similar to the corresponding 6.5
rounds from the 9-round linear approximation with bias 2−50 given in [15]). The 2.5-round
differentials {�α → �β} operate on 2.5 consecutive rounds in the decryption direction,
from the S5 S-boxes of Round 13 until the S3 S-boxes of Round 11. We can similarly get
that the distinguisher has a bias of 2−59.01. An important property of the distinguisher is
that Γ δ concerns only three S4 S-boxes of the preceding round. Likewise, with a success
probability of 99%, the attack requires 2121.2 ciphertext pairs with difference α, and has a
total time complexity of 2122.2 + 2× 2121.2 × 212 × 3

32×10 + 2112 ≈ 2127.5 10-round Serpent
encryptions to find the 128-bit key, where we use φ = 1. We can also use the distinguisher to
break 11-round Serpent-192 by appending one round after the round with �α, but anyway
cannot use it to break 12-round Serpent with a 256-bit key, because there are a large number
of required unknown subkey bits in the extra round.

It is worthy to note that in both the above 10-round Serpent-128 attacks we can reduce the
data and time complexity by using a reasonably greater φ, while keeping the same success
probability.
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6.4.3 Note 3: A few 9-round differential-linear distinguishers

We have checked the biases of many 9-round differential-linear distinguishers, and a few
of them can be used to attack 10-round Serpent-128 or 11-round Serpent-192, but almost
all of them cannot be used to nontrivially break 12-round Serpent with a 256-bit key. For
instance, we have computed the bias of the 9-round differential-linear distinguisher con-
structed by replacing the input difference of the 9-round differential-linear distinguisher
described in Sect. 6.2 with 0x00000000000000400000000000000000 and replacing the
input mask with 0x00200000000000000000000000000002 (the intermediate masks remain
unchanged). This input mask is also used as the input mask of the 6-round linear approx-
imation in Biham et al.’s 9-round differential-linear distinguisher. The reason for choosing
the input difference is because it causes a minimal number of active bits for the following
S3 operation. As a result, we have gotten that the probability of β � γ = 0 is approximately
0.49988768994808197. Besides, we have also checked the 9-round differential-linear dis-
tinguisher when the input difference is 0x00000000000000040000000000000000 (and the
input mask is 0x00200000000000000000000000000002), and the probability of β � γ = 0
is approximately 0.50000306963920593. Both distinguishers have a bias smaller than 2−64,
and are not useful.

Interestingly,wefind such a 9-rounddifferential-linear distinguisher that for every possible
differenceω the probability ofβω�γ = 0 is equal or surprisingly close to 1

2 ,which is obtained
by replacing the input difference of the 9-round differential-linear distinguisher described in
Sect. 6.2 with 0x00000000000000400000000000000000 and replacing the input mask with
0x00E0000000000000000000000000000E (the intermediate masks keep invariant). The
reason for choosing the input mask is that it will make a 6-round linear approximation with
bias 2−25, thus improving a factor of 4 over the one used above. The input difference generates
four possible output differences after the active S2 S-box: {ω|ω = 0x6, 0x A, 0x B, 0xD},
each with probability 2−2; the probability of βω � γ = 0 for ω ∈ {0x6, 0x A} is 0.5, the
probability of βω � γ = 0 for ω = 0x B is 0.50000000018189894, and the probability of
βω�γ = 0 forω = 0xD is 0.50000000000499334.Hence, the total probability ofβ�γ = 0
is approximately 0.50000000004672309, surprisingly close to 1

2 .
The second best 9-round differential-linear distinguisher which we have found might be

potentially used to break 12-round Serpent with a 256-bit key is the one described in Sect. 6.2
with the input difference being replaced by 0x00000000000000000000005000000000
(keeping the other parts unchanged). The probability of β � γ = 0 is approximately
0.49902951717376709, and thus the distinguisher has a bias of approximately 2 × 2−9 ×
(2−27)2 = 2−62, larger than 2−64. There are 5 active S-boxes in Round 1, and 28 active
S-boxes in Round 0. Changing the input difference to 0x0A00000000000000000000000000
000,weobtain the third best 9-rounddifferential-linear distinguisher thatwehave foundmight
be potentially used to break 12-round Serpentwith a 256-bit key. The probability ofβ�γ = 0
is approximately 0.49903964996337891, and the distinguisher has a bias of approximately
2×2−9.03×(2−27)2 = 2−62.03. There are 4 active S-boxes in Round 1, and 26 active S-boxes
in Round 0. If they were used to attack 12-round Serpent with a 256-bit key, the resulting
attacks would require almost the entire codebook to have an acceptable success probability.

7 Possible extensions of our methodology

In this section we briefly discuss several possible extensions of our methodology, although
particulars should be noticed.
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The first possible extension is to consider the case when using two different values for
the output mask δ in Definition 3, say δ1, δ2; that is, we might consider the event E(P) �
δ1 = E(P ⊕ α) � δ2 for a randomly chosen P ∈ {0, 1}n . The resulting differential-linear
distinguisher would have a bias of 2(2 p̂− 1)ε1ε2 for some ε1 and ε2 denoting the respective
bias of the two linear approximations. From a theoretical point of view, there seems no need
to use two different output masks, for we can always choose the output mask with the bigger
bias, and a key-recovery attack based on a differential-linear distinguisher with two different
output masks requires us to guess no less key bits than that based on a differential-linear
distinguisher with one output mask; however, the case with two different output masks may
depend on Assumption 2 to a lesser degree than the discussed case with one output mask,
for the two linear approximations can be independent somewhat, instead of two identical
linear approximations used in the case with one output mask, and thus it may potentially be
particularly helpful when making a practicable attack in reality.

The second possible extension is to consider the case when applying our methodology
in a related-key [3,27,30] attack scenario. The notion of the related-key differential-linear
analysis appeared in [26], and later Kim [29] described an enhanced version based on Lang-
ford and Biham et al.’s methodology. Likewise, we can get a more reasonable and general
version based on our new methodology.

Other possible extensions are to obtain new methodologies, in a way similar to the above
new methodology for differential-linear cryptanalysis, for the high-order differential-linear
attack, the differential-bilinear attack and the differential-bilinear-boomerang attack, which
were proposed in [13]. At present, however, these attack techniques appear to be hard to
apply to obtain good cryptanalytic results in practice.

8 Conclusions

In this paper we have given a new methodology for differential-linear cryptanalysis under
only the two assumptions implicitly used in the very first published paper on this technique.
The newmethodology is more reasonable and more general than Langford and Biham et al.’s
methodology, and it can lead to some better differential-linear cryptanalytic results for some
block ciphers than the previously known methodologies.

Using the new methodology, we have presented differential-linear attacks on 10-round
CTC2 with a 255-bit block size and key, 13-round DES, and 12-round Serpent. In terms of
the numbers of attacked rounds: The 10-roundCTC2 attack is the first published cryptanalytic
attack on the version of CTC2; the 13-round DES attack is inferior to the best previously
published cryptanalytic results for DES; and the 12-round Serpent attack matches the best
previously published cryptanalytic result for Serpent (that was obtained using Langford and
Biham et al.’s methodology). In addition, an important merit for these new differential-
linear cryptanalytic results is that they are obtained under only two assumptions and thus are
more reasonable than those obtained using Langford and Biham et al.’s methodology. Like
most cryptanalytic results on block ciphers, most of these attacks are far less than practical
at present, but they provide a comprehensive understanding of the security of the block
ciphers.

Thenewmethodology aswell as its possible extensions is a general cryptanalysis technique
and can be potentially used to cryptanalyse other block ciphers; and block cipher designers
should pay attention to this new methodology when designing ciphers.

The newmethodology still requiresAssumptions 1 and 2.As a direction for future research
on differential-linear cryptanalysis, it would be interesting to investigate how to further reduce
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the number of assumptions used, making a more reasonable and more general methodology
that could be used in practice.
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