

Plateaued functions and one-and-half difference sets

Oktay Olmez

Received: 5 June 2013 / Revised: 29 April 2014 / Accepted: 29 April 2014 / Published online: 21 May 2014 © Springer Science+Business Media New York 2014

Abstract We construct an infinite family of $1\frac{1}{2}$ -difference sets in non-cyclic abelian *p*-groups. In particular, we examine the construction in 2-groups to discover the useful relationship between $1\frac{1}{2}$ -difference sets and certain Boolean functions.

Keywords $\frac{1}{2}$ -Design · $1\frac{1}{2}$ -Difference set · Plateaued function · Bent function · Semibent function

Mathematics Subject Classification 05B05 · 05B10 · 06E30

1 Introduction and preliminaries

We begin this paper by recalling several combinatorial objects that will be used throughout. Let v, k and λ be integers with $2 \le k \le v$. A k-element subset S of a (multiplicative) abelian group *G* of order *v* is called a (v, k, λ) -difference set if every nonidentity element of *G* can be expressed as st^{-1} for exactly λ distinct ordered pairs (*s*, *t*) in *S* × *S*. Thus, its parameters hold the identity $\lambda(v-1) = k(k-1)$. The notion of a $1\frac{1}{2}$ -difference set, which was introduced in [\[15\]](#page-12-0), may be viewed as a generalization of the notion of a difference set.

Definition 1.1 Let *G* be a group of order v, and let *S* be a *k*-element subset of *G*. For each *g* ∈ *G*, let ζ (*g*) denote the number of ordered pairs (*s*, *t*) ∈ *S* × *S* such that *st*^{−1} = *g*. Then, *S* is called a $1\frac{1}{2}$ -difference set with parameters $(v, k; \alpha, \beta)$ if

- (i) for each $x \in G S$, the sum $\sum_{s \in S} \zeta(xs^{-1})$ equals α , and
- (ii) for each $x \in S$, the sum $\sum_{s \in S \{x\}} (\zeta(s^{-1}) 1)$ equals β .

O. Olmez (\boxtimes)

Communicated by A. Pott.

Department of Mathematics, Faculty of Science, Ankara University, Tandogan, Ankara 06100, Turkey e-mail: oolmez@ankara.edu.tr

We can easily see that a (v, k, λ) -difference set is a $1\frac{1}{2}$ -difference set with $\alpha = k\lambda$ and $\beta = (k-1)(\lambda - 1)$. Difference sets have been used to construct other combinatorial structures with applications in engineering, such as binary sequences with 2-level autocorrelation functions, optical orthogonal codes, low density parity check codes, and cryptographic functions with high nonlinearity (cf. $[9,10,12,16]$ $[9,10,12,16]$ $[9,10,12,16]$ $[9,10,12,16]$). Difference sets have been also used in the construction of symmetric 2-designs. As a continuation of the work reported in [\[15\]](#page-12-0), in this paper we investigate the existence and nonexistence of $1\frac{1}{2}$ -difference sets by using the classical tools such as group rings and group characters. Also our aim is to show how we can make use of $1\frac{1}{2}$ -difference sets in the construction of certain designs and nonlinear Boolean functions. First, we recall some basic facts related to block designs.

A block design consists of a finite set *P* of points and a collection *B* of (distinct) nonempty proper subsets of P. This design is denoted by the pair (P, B) and B is called the block set. Given $x \in P$ and $B \in B$, the point-block pair (x, B) is called a *flag* if $x \in B$ and an *antiflag* if $x \notin B$. A 1-design with parameters (v, b, k, r) is a block design (P, B) with v points and *b* blocks satisfying the property that every block consists of *k* points and every point belongs to *r* blocks.¹ Its parameters satisfy the identity $vr = bk$. A 2-design is a $1-(v, b, k, r)$ -design satisfying the additional property that any two points occur together in λ blocks. Such a design is often denoted by 2-(v, *k*, λ)-design. It holds (v − 1)λ = *r*(*k* − 1). A design is called symmetric if $v = b$. We note that a (v, k, λ) -difference set *D* in an abelian group *G* gives rise to a symmetric 2-(v, *k*, λ)-design (*G*, *B*) with $\beta = \{Dg : g \in G\}$ where each block $Dg := \{xg : x \in D\}$ is generated by *D*. We are especially interested in the following block designs that are related to $1\frac{1}{2}$ -difference sets.

Definition 1.2 A 1-(*v*, *b*, *k*, *r*)-design (*P*, *B*) is called a $1\frac{1}{2}$ -design with parameters (*v*, *b*, *k*, *r*; α , β) if for any given point $x \in P$ and block $B \in B$, the number of the flags (y, C) satisfying $y \in B - \{x\}$, $C \ni x$ and $C \neq B$, is α if $x \notin B$, and is β if $x \in B$.

We can see that every 2-(v, k, λ)-design is a $1\frac{1}{2}$ -design with $\alpha = k\lambda$ and $\beta = (k-1)(\lambda-1)$. Other well-known examples of $1\frac{1}{2}$ -designs include transversal designs and partial geometries. For more information on $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ -designs, we refer to Neumaier [\[14\]](#page-12-5).²

We now recall Boolean functions of our interest. Let $\mathbb{F} = \{0, 1\}$ be the field of order 2, and let $V_s = \{(a_1, a_2, \ldots, a_s) : a_i \in \{0, 1\}\}\$, the extension field whose additive group is an elementary 2-group that is often used as an *s*-dimensional vector space over F. A function f from V_s to $\mathbb F$ is called a Boolean function of s variables. Boolean functions with various characteristics have been an active research subject in cryptography in connection with differential and linear cryptanalysis (cf. $[7, 8, 17]$ $[7, 8, 17]$ $[7, 8, 17]$ $[7, 8, 17]$ $[7, 8, 17]$ $[7, 8, 17]$). For a Boolean function f , we can define a function $F := (-1)^f$ from V_s to the set $\{-1, 1\}$. The Fourier transform of F is defined as follows:

$$
\widehat{F}(x) = \sum_{y \in V_s} (-1)^{x \cdot y} F(y)
$$

where $x \cdot y$ is the inner product of two vectors $x, y \in V_s$. The nonlinearity N_f of f can be expressed as

$$
N_f = 2^{s-1} - \frac{1}{2} \max \{ |\widehat{F}(x)| : x \in V_s \}.
$$

It is often known as a tactical configuration.

² Bose [\[2\]](#page-12-9) studied 1 $\frac{1}{2}$ -designs and called them partial geometric designs.

It holds that $N_f \leq 2^{s-1} - 2^{(s-2)/2}$. A function *f* is called a bent function if $|\widehat{F}(x)| = 2^{s/2}$ for all $x \in V_s$. A bent function has an optimal nonlinearity. However a bent function is not balanced and can exist only in even number of variables which are not desirable. A combinatorial characterization of bent functions is given as follows:

Having a Hadamard difference set with parameters $(2^s, 2^{s-1} \pm 2^{(s-2)/2}, 2^{s-2} \pm 2^s)$ $2^{(s-2)/2}$) is equivalent to having a bent function from *V_s* to **F** [\[10](#page-12-2)].

In the work of [\[17\]](#page-12-8), plateaued functions are introduced as functions which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^t$ for some integer *t*. It is known that these functions provide some suitable candidates that can be used in cryptosystems [\[7](#page-12-6)[,17\]](#page-12-8). Among the subclasses of plateaued functions, semibent and partially-bent functions are studied the most [\[5](#page-12-10)[,8](#page-12-7)]. However, the combinatorial characterization of these functions in terms of difference sets are not known.

In this paper, we not only provide some infinite families of $1\frac{1}{2}$ -difference sets found in elementary abelian *p*-groups, but also show an interesting relation between plateaued functions and families of $1\frac{1}{2}$ -difference sets in elementary abelian 2-groups. The organization of the paper is as follows. In the following section, we recall some more properties of $1\frac{1}{2}$. difference sets and main tools that will be needed later. In Sect. [3,](#page-4-0) we provide examples of $1\frac{1}{2}$ -difference sets. In our constructions, we mainly focus on cosets of elementary abelian *p*-groups. In Sect. [4,](#page-6-0) we provide the relation between plateaued functions and $1\frac{1}{2}$ -difference sets.

2 Parameters of $1\frac{1}{2}$ -difference sets

We make use of the group ring and character theory to derive some characteristics of $1\frac{1}{2}$ designs. Let *G* be a finite abelian group and let $\mathbb{Z}G$ be the group ring of *G*. By the definition, $\mathbb{Z}G$ is the ring of formal polynomials

$$
\mathbb{Z}G = \left\{ \sum_{g \in G} a_g g : \ a_g \in \mathbb{Z} \right\}
$$

where each *g* denotes the indeterminate corresponding to *g*. We will use calligraphic letters to denote elements of $\mathbb{Z}G$. The ring $\mathbb{Z}G$ has the operation of addition and multiplication given by

$$
\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g) g
$$

$$
\left(\sum_{g \in G} a_g g\right) \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(\sum_{h \in G} a_h b_{h^{-1}g}\right) g
$$

For any element *g* in *G* and any nonempty subset *S* of *G*, the corresponding group ring elements *g* and $\sum_{s \in S} s$ are called *simple quantities* in $\mathbb{Z}G$. We denote $\sum_{s \in S} s$ by *S*, and denote the simple quantity for the set *S*^{−1} = {*s*^{−1} : *s* ∈ *S*} by *S*^{−1}, so that $S^{-1} = \sum_{s \in S} s^{-1}$. A simple relation between the difference sets and the group ring Z*G* can be formulated in the following lemma.

Lemma 2.1 *Let G be a group of order* v*. If a k-element subset S of G is a* (v, *k*, λ)*-difference set, then the following equation holds in the group ring* Z*G:*

$$
SS^{-1} = (k - \lambda)e_{\mathcal{G}} + \lambda \mathcal{G}
$$

where e_G *denotes the simple quantity corresponding to the identity element* (e_G) of G.

When *G* is an abelian group, character theory can be used to simplify calculations. A character χ of a finite abelian group *G* is a homomorphism from *G* to the multiplicative group of the nonzero complex numbers. The character χ of *G* such that $\chi(g) = 1$ for every $g \in G$, is called the principal character of *G*.

Lemma 2.2 *A k-element subset S of an abelian group G of order* v *is a* (v, *k*, λ)*-difference set if and only if* $|\chi(S)| = \sqrt{k - \lambda}$ *for every nonprincipal character* χ *of G.*

For a more detailed description of the relationship between difference sets and character theory and group rings see [\[1](#page-12-11)]. Similar results can also be obtained in $1\frac{1}{2}$ -difference sets by using character theory and group rings. Next we provide a brief introduction to $1\frac{1}{2}$ -difference sets. These results are also available in [\[15](#page-12-0)].

For any $g \in G$ and $S \subseteq G$, we define the *translate* of *S* by $Sg = \{ sg : s \in S \}$, and define the *development* of *S* by $Dev(S) = {Sg : g \in G}$. Development of a $1\frac{1}{2}$ -difference set is a symmetric $1\frac{1}{2}$ -design [\[15](#page-12-0)]. Let *N* be the $v \times b$ point-block incidence matrix and *J* be the $v \times b$ all-ones matrix. Then, the following equation holds for a $1\frac{1}{2}$ -design with parameters $(v, b, k, r; \alpha, \beta)$:

$$
NN^t N = nN + \alpha J \tag{1}
$$

where $n = k + r - 1 + \beta - \alpha$.

Lemma 2.3 [\[15](#page-12-0), Lemma 2.8] *Let G be a group of order* v*. Let S be a subset of G of size k. Then, S is a* $1\frac{1}{2}$ *-difference set with parameters* $(v, k; \alpha, \beta)$ *in G if and only if*

$$
SS^{-1}S = nS + \alpha \mathcal{G}
$$
 (2)

where $n = 2k - 1 + \beta - \alpha$ *in the group ring* $\mathbb{Z}G$ *.*

For the rest of the paper the parameter *n* will denote the number $2k - 1 + \beta - \alpha$ for a given $1\frac{1}{2}$ -difference set with parameters (*v*, *k*; α, *β*). As a corollary of the above lemma, we can observe that any difference set is a $1\frac{1}{2}$ -difference set with parameters (v, *k*; λk , $\lambda k - k - \lambda + 1$). A characterization of $1\frac{1}{2}$ -difference sets is provided in the next theorem.

Theorem 2.4 [\[15,](#page-12-0) Theorem 2.12] *Let G be an abelian group of order* v*. Let S be a subset of G of size k. Then, S is a* $1\frac{1}{2}$ -difference set in G with parameters $(v, k; \alpha, \beta)$ if and only if $|\chi(S)| = \sqrt{n}$ or $\chi(S) = 0$ *for every nonprincipal character* χ *of G and* $k^3 = nk + \alpha v$ *.*

The group character values provide us with tools to investigate parameter restrictions of $1\frac{1}{2}$ -difference sets. The following lemma provides an important parameter restriction.

Lemma 2.5 [\[15](#page-12-0), Lemma 3.1] *If S is a* $1\frac{1}{2}$ -difference set in an abelian group G of order v *with parameters* $(v, k; \alpha, \beta)$ *, then* $\frac{vk - k^2}{n}$ *is an integer.*

Note that here the concurrence matrix NN^t of a symmetric $1\frac{1}{2}$ -design has three eigenvalues, namely k^2 , *n* and 0. The multiplicity of the eigenvalue *n* is $\frac{vk - k^2}{n}$. Hence $\frac{vk - k^2}{n}$ is an integer for a given symmetric $1\frac{1}{2}$ -design.

3 A family of $1\frac{1}{2}$ -difference sets

3.1 Construction I

Let *q* be a prime power and let *s* be a positive integer. Let V_{s+1} be the $(s + 1)$ -dimensional vector space over *GF*(*q*). Then, there are $r = \frac{q^{s+1} - 1}{q - 1}$ subspaces of dimension *s*. We will call these subspaces, hyperplanes of V_{s+1} . Let H_1, \ldots, H_r be the hyperplanes of V_{s+1} . Let E_{s+1} be the additive group of V_{s+1} . When the dimension of the vector space is clear from the context, we will simply use the notation E instead of E_{s+1} . We have the following equations in the group ring $\mathbb{Z}E$:

$$
\mathcal{H}_1 + \cdots + \mathcal{H}_r = q^s \varepsilon_{\mathcal{E}} + \frac{q^s - 1}{q - 1} \varepsilon,
$$

$$
\mathcal{H}_i \mathcal{H}_i = q^s \mathcal{H}_i
$$

and

$$
\mathcal{H}_i\mathcal{H}_j=q^{s-1}\mathcal{E}.
$$

The above equations hold since each element of H_i is exactly replicated q^s times in

$$
H_i + H_i = \{x + y : x, y \in H_i\}
$$

and each element of *E* is exactly replicated q^{s-1} times in

$$
H_i + H_j = \{x + y : x \in H_i, y \in H_j\}
$$

when $H_i \neq H_j$. McFarland provided a family of non-cyclic difference sets by using these cosets [\[13\]](#page-12-12). With a similar approach, we have the following two lemmas to construct $1\frac{1}{2}$ difference sets in non-cyclic groups.

Lemma 3.1 *Let* H_1, \ldots, H_l *be l distinct hyperplanes of* V_{s+1} *and* K *be a group of order l such that* $r \geq l \geq 2$ *. Then,* $S = \bigcup_{i=1}^{l} (H_i, k_i)$ *is a* $1\frac{1}{2}$ -difference set in $G = E \times K$ with *parameters* $n = q^{2s}$ *and* $\alpha = (l^2 - 1)q^{2s-1}$.

Proof We will naturally denote the group *G* by $\mathcal{E}K$ and the set *S* by $\mathcal{S} = \sum_{i=1}^{l} \mathcal{H}_i k_i$ in the group ring *ZG*. Then, note that $S^{-1} = \sum_{i=1}^{l} H_i^{-1} k_i^{-1} = \sum_{i=1}^{l} H_i k_i^{-1}$ since *H_i*'s are subgroups of *E*. We check the Eq. [2.](#page-3-0) in order to show *S* is a $1\frac{1}{2}$ -difference set in *G*.

$$
\mathcal{S}\mathcal{S}^{-1}\mathcal{S} = \left(\sum_{i=1}^{l} \mathcal{H}_{i} k_{i}\right) \left(\sum_{j=1}^{l} \mathcal{H}_{j} \mathcal{K}_{j}^{-1}\right) \left(\sum_{t=1}^{l} \mathcal{H}_{t} k_{t}\right)
$$

\n
$$
= \left(\sum_{i=1}^{l} \mathcal{H}_{i}^{2} e_{\mathcal{K}} + \sum_{i \neq j} \mathcal{H}_{i} \mathcal{H}_{j} k_{i} \mathcal{K}_{j}^{-1}\right) \left(\sum_{t=1}^{l} \mathcal{H}_{t} k_{t}\right)
$$

\n
$$
= \left(q^{s} \sum_{i=1}^{l} \mathcal{H}_{i} e_{\mathcal{K}} + l q^{s-1} \left(\mathcal{E}\mathcal{K} - \mathcal{E} e_{\mathcal{K}}\right)\right) \left(\sum_{t=1}^{l} \mathcal{H}_{t} k_{t}\right)
$$

\n
$$
= q^{2s} \sum_{i=1}^{l} \mathcal{H}_{i} k_{i} + q^{s} \sum_{i \neq t} \mathcal{H}_{i} \mathcal{H}_{t} k_{t} + l^{2} q^{2s-1} \mathcal{E}\mathcal{K} - l q^{2s-1} \sum_{t=1}^{l} \mathcal{E} k_{t}
$$

 $\circled{2}$ Springer

$$
= q^{2s} \sum_{i=1}^{l} \mathcal{H}_i k_i + ((l-1)q^{2s-1} + l^2 q^{2s-1} - l q^{2s-1}) \mathcal{E} \mathcal{K}
$$

= $q^{2s} \sum_{i=1}^{l} \mathcal{H}_i k_i + (l^2 - 1) q^{2s-1} \mathcal{E} \mathcal{K}.$

Hence, *S* is a $1\frac{1}{2}$ -difference set with parameters $v = lq^{s+1}$, $k = lq^s$, $n = q^{2s}$ and $\alpha =$ $(l^2-1)a^{2s-1}$. $2^2 - 1)q^{2s-1}$. \Box

Lemma 3.2 *Let* H_1, \ldots, H_{r-1} *be* $r - 1$ *distinct hyperplanes of* V_{s+1} *and* K *be a group of order r* = $\frac{q^{s+1}-1}{q-1}$. *Then, S* = $\bigcup_{i=1}^{r-1} (H_i, k_i)$ *is a* 1¹/₂*-difference set in G* = *E* × *K with parameters* $n = q^{2s}$ *and* $\alpha = q^{2s-1}(r-2)(r-1)$ *.*

Proof

$$
\mathcal{S}\mathcal{S}^{-1}\mathcal{S} = \left(\sum_{i=1}^{r-1} \mathcal{H}_i k_i\right) \left(\sum_{j=1}^{r-1} \mathcal{H}_j k_j^{-1}\right) \mathcal{S}
$$

\n
$$
= \left(\sum_{i=1}^{r-1} \mathcal{H}_i^2 e_{\mathcal{K}} + \sum_{i \neq j} \mathcal{H}_i \mathcal{H}_j k_i \bar{k}_j^{-1}\right) \mathcal{S}
$$

\n
$$
= \left(q^{2s} e_{\mathcal{E}} e_{\mathcal{K}} + \left(q^s \frac{q^s - 1}{q - 1} - q^{s-1}(r - 2)\right) \mathcal{E} e_{\mathcal{K}} + q^{s-1}(r - 2) \mathcal{E} \mathcal{K} - q^s \mathcal{H}_r e_{\mathcal{K}}\right) \mathcal{S}
$$

\n
$$
= q^{2s} \sum_{i=1}^{r-1} \mathcal{H}_i k_i + q^{2s} \frac{q^s - 1}{q - 1} \mathcal{E} \sum_{i=1}^{r-1} k_i + q^{2s-1}(r - 2)(r - 1) \mathcal{E} \mathcal{K}
$$

\n
$$
-q^{2s-1}(r - 2) \mathcal{E} \sum_{i=1}^{r-1} k_i - q^{2s-1} \mathcal{E} \sum_{i=1}^{r-1} k_i
$$

\n
$$
= q^{2s} \sum_{i=1}^{r-1} \mathcal{H}_i k_i + q^{2s-1}(r - 2)(r - 1) \mathcal{E} \mathcal{K}.
$$

Hence, *S* is a $1\frac{1}{2}$ -difference set with parameters $v = rq^{s+1}$, $k = (r - 1)q^s$, $n = q^{2s}$ and $\alpha = q^{2s-1}(r-2)(r-1).$ \Box

3.2 Construction II

Consider the case $s + 1 = 2m$ for an integer *m*. In this construction, we focus on *m*-dimensional disjoint subspaces to provide more constructions of $1\frac{1}{2}$ -difference sets. There are at most $r = q^m + 1$ such subspaces. Let U_1, \ldots, U_r be the *m*-dimensional disjoint subspaces of V_{2m} . Let *E* be the additive group of V_{2m} . Then, we have the following equations in the group ring $\mathbb{Z}E$:

$$
\mathcal{U}_1 + \cdots + \mathcal{U}_r = q^m e_{\mathcal{E}} + \mathcal{E},
$$

$$
\mathcal{U}_i \mathcal{U}_i = q^m \mathcal{U}_i
$$

 \circledcirc Springer

and

$$
\mathcal{U}_i\mathcal{U}_j=\mathcal{E}.
$$

We can prove the following two lemmas similarly by checking the group ring equation for $1\frac{1}{2}$ -difference sets.

Lemma 3.3 Let U_1, \ldots, U_l be l distinct m-dimensional disjoint subspaces of V_{2m} and K *be a group of order l such that* $r \geq l \geq 2$ *. Then,* $S = \bigcup_{i=1}^{l} (H_i, k_i)$ *is a* $1\frac{1}{2}$ -difference set in $G = E \times K$ *with parameters* $n = q^{2m}$ *and* $\alpha = (l^2 - 1)q^m$.

Lemma 3.4 *Let* U_1, \ldots, U_{r-1} *be* $r-1$ *distinct m-dimensional disjoint subspaces of* V_{2m} *and K be a group of order r. Then,* $S = \bigcup_{i=1}^{m-1} (H_i, k_i)$ *is a* $1\frac{1}{2}$ -difference set in $G = E \times K$ *with parameters* $n = q^{2m}$ *and* $\alpha = q^m(r - 2)(r - 1)$ *.*

4 Plateaued functions from 1 ¹ ² -difference sets

In this section, we investigate the special case $q = 2$. Let V_{s+1} be the $(s + 1)$ -dimensional vector space over \mathbb{F} and E_{s+1} be the additive group of V_{s+1} . Let f be a function from V_{s+1} to F and *F* be the function $(-1)^f$ from V_{s+1} to the set $\{-1, 1\}$. We are interested in the set $Spec = {F(x) : x \in V_{s+1}}$ of distinct values which we will call the Fourier spectrum of *F*. *f* is called a plateaued function if the Fourier spectrum of $F = (-1)^f$ is $\{0, \pm 2^t\}$ for some integer $t \geq \frac{s+1}{2}$. There are two well-studied subsets of plateaued functions namely bent functions ($t = \frac{s+1}{2}$ and *s* is odd) and semibent functions ($t = \lceil \frac{s+2}{2} \rceil$). We define $supp(F) = {x : F(x) \neq 0}$ of vectors whose Fourier spectrum is nonzero and the weight of *f* as $wt(f) = |\{x : f(x) \neq 0\}|$. We define the convolution of two functions as:

$$
(F_1 * F_2)(a) = \sum_{x \in V_{s+1}} F_1(x+a) F_2(x) \tag{3}
$$

for all $a \in V_{s+1}$. The convolution theorem of Fourier analysis states that the Fourier transform of convolution of two functions is the ordinary product of their Fourier transforms:

$$
\widehat{F_1 * F_2} = \widehat{F_1} \cdot \widehat{F_2}.
$$
\n(4)

Proposition 4.1 Let f be a plateaued function from V_{s+1} to \mathbb{F} with Fourier spectrum $\{0, \pm 2^t\}$ *for some t. Then,* $wt(f)$ *is even.*

Proof Since $\widehat{F}(0) = 2^{s+1} - 2wt(f)$ and $\widehat{F}(0) \in \{0, \pm 2^t\}$ for some *t*, $wt(f) = 2^s \pm 2^{t-1}$ or $wt(f) = 2^s$. \Box

Lemma 4.2 Let f be a function from V_{s+1} to F such that $s \geq 2$. Define $F = (-1)^f$ and a *matrix* $M_f = (m_{x,y})$ *where* $m_{x,y} = F(x + y)$ *for all x, y* $\in V_{s+1}$ *. Then, f is a plateaued function with Fourier spectrum* {0, [±]2*^t* } *if and only if*

$$
M_f^3 = 2^{2t} M_f \tag{5}
$$

for some integer t.

 $\circled{2}$ Springer

Proof Suppose *f* is a plateaued function with $Spec = \{0, \pm 2^t\}$ for some integer *t*. Then,

$$
M_f^3)_{x,y} = \sum_{a \in V_{s+1}} \left(\sum_{b \in V} m_{x,b} m_{b,a} \right) m_{a,y}
$$

=
$$
\sum_{a \in V_{s+1}} \left(\sum_{b \in V_{s+1}} F(x+b) F(b+a) \right) F(a+y)
$$

=
$$
\sum_{a \in V_{s+1}} \left(\sum_{w \in V_{s+1}} F(w) F(w+x+a) \right) F(a+y)
$$

=
$$
\sum_{a \in V_{s+1}} (F * F)(x+a) F(a+y)
$$

=
$$
\sum_{u \in V_{s+1}} (F * F)(u) F(u+x+y)
$$

=
$$
((F * F) * F)(x+y).
$$

Let $A = (F * F) * F$. Then, the Fourier transform of *A* is $A = F \cdot F \cdot F$ by Eq. [4.](#page-6-1) Now by Fourier inversion

$$
A(x + y) = \frac{1}{2^{s+1}} \sum_{\beta \in V_{s+1}} \widehat{F}(\beta) \widehat{F}(\beta) \widehat{F}(\beta) (-1)^{(x+y)\cdot \beta}
$$

= $\frac{2^{2t}}{2^{s+1}} \sum_{\beta \in supp(F)} \widehat{F}(\beta) (-1)^{(x+y)\cdot \beta}$
= $2^{2t} F(x + y)$.

Hence the equation $M_f^3 = 2^{2t} M_f$ holds. The above calculations hold since

$$
F(x + y) = \frac{1}{2^{s+1}} \sum_{\beta \in supp(F)} \widehat{F}(\beta)(-1)^{(x+y)\cdot\beta}
$$

and $(\widehat{F}(\beta))^2$ is either 0 or 2^{2t} for any $\beta \in V_{s+1}$.

Suppose $M_f^3 = 2^{2t} M_f$. This implies $((F * F) * F)(x) = 2^{2t} F(x)$ for all $x \in V_{s+1}$. Apply the Fourier transform on both of the sides. Then,

$$
(\widehat{F}(x))^{3} - 2^{2t}\widehat{F}(x) = \widehat{F}(x)((\widehat{F}(x))^{2} - 2^{2t}) = 0
$$

for all x in V_{s+1} . Hence, the Fourier spectrum can only take values of 0 and $\pm 2^t$. . — П \Box

Lemma 4.3 *Let* $s \geq 2$ *and* f *be a plateaued function from* V_{s+1} *to* $\mathbb F$ *with Fourier spectrum* ${0, \pm 2^t}$ *for some integer t. Then, there exists a symmetric* $1\frac{1}{2}$ *-design associated with f.*

Proof Define a matrix $M_f = (m_{x,y})$ where $m_{x,y} = F(x + y)$ for all $x, y \in V_{s+1}$. Since f is a plateaued function, $M_f^3 = 2^{2t} M_f$ for some *t*. Note that M_f is a symmetric { ± 1 }-matrix. Let $wt(f) = 2^{s+1} - k$ where $k \in \{2^s \pm 2^{t-1}, 2^s\}$. Then, the row and column sum of the matrix M_f is $2k - v$ where $v = 2^{s+1}$. Now consider the matrix $N = \frac{1}{2}(J + M_f)$ where *J* denote all-ones matrix. *N* is a symmetric {0, 1}-matrix whose row sum and column sum

(*M*³

is *k*. We show that the matrix *N* can be recognized as an incidence matrix of a symmetric $1\frac{1}{2}$ -design i.e. $v = b$. For this, we need to verify Eq. [1.](#page-3-1)

$$
NNtN = \left(\frac{1}{2}(J + M_f)\right)\left(\frac{1}{2}(J + M_f)\right)\left(\frac{1}{2}(J + M_f)\right)
$$

\n
$$
= \frac{1}{4}\left(vJ + (2k - v)J + (2k - v)J + M_f^2\right)\left(\frac{1}{2}(J + M_f)\right)
$$

\n
$$
= \frac{1}{8}(4k - v)vJ + (4k - v)(2k - v)J + (2k - v)^2J + M_f^3
$$

\n
$$
= \frac{2^{2t}}{8}(J + M_f) + \left(\frac{(4k - v)v + (4k - v)(2k - v) + (2k - v)^2 - 2^{2t}}{8}\right)J
$$

\n
$$
= \frac{2^{2t}}{8}(J + M_f) + \left(\frac{12k^2 - 6kv + v^2 - 2^{2t}}{8}\right)J
$$

\n
$$
= 2^{2t-2}N + \alpha J.
$$

Since *k* is even and $2t \ge s + 1 \ge 3$, $\alpha = \frac{12k^2 - 6kv + v^2 - 2^{2t}}{8}$ is an integer. Therefore, *N* defines a symmetric $1\frac{1}{2}$ -design with parameters $n = 2^{2t-2}$ and α .

Lemma 4.4 Let N be an incidence matrix of a symmetric $1\frac{1}{2}$ -design obtained from a *plateaued function f from* V_{s+1} *to* \mathbb{F} *. Then,* $1\frac{1}{2}$ *-design associated with* N has E_{s+1} *as a transitive automorphism group.*

Proof For any *x* in V_{s+1} , define

 $\phi_x : V_{s+1} \longrightarrow V_{s+1}$

as follows: $\phi_x(y) = x + y$ for all $y \in V_{s+1}$. Let $E = {\phi_x : x \in V_{s+1}}$. We have

$$
m_{\phi_x(a), \phi_x(b)} = F(x + a + x + b) = F(a + b) = m_{a,b}
$$

for all $a, b \in V_{s+1}$. A block in the $1\frac{1}{2}$ -design is given by

$$
B_y = \{a : F(a+y) = 1, \ a \in V_{s+1}\}.
$$

Then, $\{\phi_x(a) : a \in B_y\} = B_{\phi_x(y)}$. Hence,

$$
\{\{\phi_x(a) : a \in B_y\} : y \in V_{s+1}\}\
$$

is the whole block set of the $1\frac{1}{2}$ -design. Therefore, E_{s+1} is an automorphism group of the design. It is clear that E_{s+1} acts transitively on points and blocks of the $1\frac{1}{2}$ -design. \Box

Next we provide a combinatorial classification of plateaued functions in terms of $1\frac{1}{2}$ difference sets.

Theorem 4.5 *The existence of a* $1\frac{1}{2}$ -difference set in E_{s+1} with parameters (v = ²*s*+1, *^k*; α, β) *satisfying n* ⁼ ²2*t*−² *for some integer t and k* ∈ {2*s*, ²*^s* [±] ²*t*−1} *equivalent to the existence of a plateaued function f from* V_{s+1} *to* $\mathbb F$ *with Fourier spectrum* $\{0, \pm 2^t\}$ *.*

Proof Assume there exist a $1\frac{1}{2}$ -difference set *S* in E_{s+1} with parameters $(v = 2^{s+1}, k; \alpha, \beta)$ such that $n = 2^{2t-2}$ for some integer t and $k \in \{2^s, 2^s \pm 2^{t-1}\}$. Then, the parameters satisfy the equation $12k^2 - 6kv + v^2 - 2^{2t} = 8\alpha$ since $\alpha = \frac{k(k^2 - n)}{v}$. The matrix $M = 2N - J = m_{x,y}$ satisfies $m_{x+z, y+z} = m_{x,y}$ for all $x, y, z \in V_{s+1}$. We define a function f from V_{s+1} to F as follows: $f(x) = 1$ if and only if $x \in S$. Therefore, $m_{x,y} = (-1)^{f(x+y)}$. Note that under our assumptions Eq. [5](#page-6-2) holds. This implies *f* is a plateaued function.

Assume *f* is a plateaued function. Then, by Lemmas [2.3](#page-3-2) and [2.4,](#page-3-3) there exists a symmetric $1\frac{1}{2}$ -design such that E_{s+1} acts transitively on its blocks and points. Hence, we can choose a base block *S* which is a *k*-subset of E_{s+1} where all the other blocks are translates of *S*. It is clear that *S* is a $1\frac{1}{2}$ -difference set in E_{s+1} . \Box

Remark 4.6 Let $s = 4l + 3$ be an odd integer and C_m denote the class of elements of V_s having exactly *m* ones as components. Let *S* denote the set union of classes C_m with $m \equiv 0, 1 \, (\text{mod } 4)$. Then, $S = C_0 + C_1 + \cdots + C_{4i} + C_{4i+1} + \cdots + C_{4l} + C_{4l+1}$ and $S = S^{-1}$. One can check that $\chi(S^2)$ is either 0 or 2^{s-1} for any nonprincipal character of E_s [\[15](#page-12-0), Lemma 3.10]. By Lemma [2.4,](#page-3-3) this implies that *S* is $1\frac{1}{2}$ -difference set in E_s . Now by Theorem [4.5,](#page-8-0) the function *f* defined by

$$
f(x) = \begin{cases} 1, & \text{if } x \in S \\ 0, & \text{otherwise} \end{cases}
$$

is a plateaued function with a Fourier spectrum $\{0, \pm 2^{\frac{s+1}{2}}\}$. Here also note that $|S| = 2^{s-1}$. Another example of a balanced plateaued function can be obtained by using the result of Lemma [3.1](#page-4-1) with the group $K = E_1$ and $l = 2$. For instance, choose $H_1 = \{(0, 0), (0, 1)\}\$ and $H_2 = \{(0, 0), (1, 0)\}\)$. Then, the set $S = \{(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)\}\)$ is a $1\frac{1}{2}$ difference set in E_3 . Let N denote the corresponding incidence matrix of this design. Then, we can obtain the following matrix by using the Dev(*S*):

$$
N = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

.

Here *N* satisfies the equation $NN^tN = 4N + 6J$. Hence any row of this matrix will define a plateaued function with the Fourier spectrum $\{0, \pm 4\}.$

In the rest of the section, let *s* be an even number and *f* be a plateaued function from V_{s+1} to F with the Fourier spectrum $\{0, \pm 2^{\frac{s+2}{2}}\}$. *f* is also known under the names semibent and 3-valued almost optimal Boolean function. We specifically consider this case due to its close connection to Hadamard difference sets.

Lemma 4.7 *Let* V_s *be a* $s \geq 2$ *dimensional subspace of* V_{s+1} *. Let* E_s *and* E_{s+1} *be the additive groups of V_s and V_{s+1}, respectively. If there exists a set D* $\subset E_s$ *, such that S =* $(D, 0) \bigcup (E_s \setminus D, 1)$ *is a* 1¹/₂*-difference set in* E_{s+1} *with* $n = 2^s$ *, then D is a Hadamard difference set in Es.*

Proof In the group ring, the following holds

$$
SS^{-1} = S^2 = (D^2, 0) + 2(D\mathcal{E}_s - D^2, 1) + (\mathcal{E}_s^2 - 2D\mathcal{E}_s + D^2, 0).
$$

Then, by Lemma [2.5](#page-3-4) we have exactly 2^s characters of E_{s+1} which takes nonzero values on *S*². Let χ_i^j be a character of $E_{s+1} = E_s \times E_1$. Then, $\chi_i^j(x, y) = \theta_i(x)\zeta_j(y)$. Let θ_0 and ζ_0 be principal characters of E_s and E_1 ; respectively. Thus, $\chi_i^0(S^2) = \theta_i(\mathcal{D}^2) - 2\theta_i(\mathcal{D}^2) + \theta_i(\mathcal{D}^2) =$ 0 for $i \neq 0$. Hence $\chi_i^1(\mathcal{S}^2) = 2^s$ for all $i \neq 0$. If $i \neq 0$, then

$$
\chi_i^1(\mathcal{S}^2) = 4\theta_i(\mathcal{D}^2) = 2^s.
$$

If $i = 0$, then,

$$
\chi_0^1(\mathcal{S}^2) = (2|D| - 2^s)^2 = 2^s.
$$

Therefore, *D* is a Hadamard difference set.

Converse of the above lemma can be verified by using group rings too.

Lemma 4.8 Let V_s be a s-dimensional subspace of V_{s+1} . Let E_s and E_{s+1} be the additive *groups of V_s and V_{s+1}, respectively. If there exists a Hadamard difference set D* $\subset E_s$ *, then* $S = (D, 0) \bigcup (E_s \setminus D, 1)$ *is a* $1\frac{1}{2}$ *-difference set in* E_{s+1} *with* $n = 2^s$ *.*

Remark 4.9 We denote by W_z the set $W_z = \{y : z \cdot y = 0\}$. Note that $W_x = V_s \times \{0\}$ for $x = (0, 0, \ldots, 1) \in V_{s+1}$. Suppose there exist a $1\frac{1}{2}$ -difference set *S* in E_{s+1} with $n = 2^s$ such that *S* can be written as a union of $(D, 0)$ and $(E_s \setminus D, 1)$. We can define a function *f* as follows:

$$
f(x) = \begin{cases} 1, & \text{if } x \in S \\ 0, & \text{otherwise} \end{cases}
$$

Then, the restriction of *f* to the sets W_x and $V_{s+1} \setminus W_x$ are both bent functions. Note that the function *f* is a semibent function since $n = 2^s$ implies *f* has the Fourier spectrum $\{0, \pm 2^{\frac{s+2}{2}}\}$. Hence, our approach provides a family of semibent functions whose restriction to a hyperplane is a bent function. Whether a plateaued function could be bent when restricted to a hyperplane is of interest. To answer this problem, a criterion, which is based on the characteristic function of support of *F*, for semibent functions is provided in the work of Dillon and McGuire [\[11,](#page-12-13)
The same 11, Another share termination of plateau of functions, which is based on the derivative Theorem 1]. Another characterization of plateaued functions, which is based on the derivative, is provided in [\[4](#page-12-14), Theorem V.2]. A part of this result states that the restriction of a semibent function *f* to W_z is a bent function if and only if $\sum_{x \in V_{s+1}} (-1)^{f(x)+f(x+a)} = 0$ for all nonzero $a \in W_z$. In our approach, we provide a characterization in terms of difference sets.

Lemma 4.10 *Let X and Y be two subsets of Es*+1*. Suppose*

$$
\left(|X| = 2^s + 2^{\frac{s}{2}} \text{ or } |X| = 2^s - 2^{\frac{s}{2}}\right)
$$

and $|Y| = 2^s$ *holds. Then,* $S = (X, 0) \bigcup_{1} (Y, 1)$ *is a Hadamard difference set in* $E_{s+2} =$ $E_{s+1} \times E_1$ *if and only if* X *and* Y *are* $1\frac{1}{2}$ -difference sets in E_{s+1} *with* $n = 2^s$ *and any nonprincipal character* χ *of Es*+¹ *satisfies:*

$$
\chi(\mathcal{X}^2) = 0 \text{ when } \chi(\mathcal{Y}^2) = n \tag{6}
$$

and

$$
\chi(\mathcal{X}^2) = n \text{ when } \chi(\mathcal{Y}^2) = 0. \tag{7}
$$

 \mathcal{L} Springer

 \Box

Proof Observe that

$$
S^2 = (\mathcal{X}^2, 0) + 2(\mathcal{X}\mathcal{Y}, 1) + (\mathcal{Y}^2, 0).
$$

Let χ_i^j be a character of $E_{s+2} = E_{s+1} \times E_1$. Then, $\chi_i^j(x, y) = \theta_i(x) \zeta_j(y)$ where θ_i and ζ_j are characters of E_{s+1} and E_1 ; respectively. Let θ_0 and ζ_0 be principal characters of E_s and *E*₁; respectively. First, assume that any nonprincipal character χ of E_{s+1} satisfies Eqs. [6](#page-10-0) and [7.](#page-10-1) Then, for any nonprincipal character χ_i^j of E_{s+2} the following holds:

$$
\chi_i^j(\mathcal{S}^2) = n = 2^s.
$$

Therefore, $S = (X, 0) \bigcup (Y, 1)$ is a Hadamard difference set in E_{s+2} .

Now assume that $S = (X, 0) \bigcup (Y, 1)$ is a Hadamard difference set in E_{s+2} . This implies,

$$
\theta_i(\mathcal{X}^2) - 2\theta_i(\mathcal{X})\theta_i(\mathcal{Y}) + \theta_i(\mathcal{Y}^2) = 2^s
$$

and

$$
\theta_i(\mathcal{X}^2) + 2\theta_i(\mathcal{X})\theta_i(\mathcal{Y}) + \theta_i(\mathcal{Y}^2) = 2^s
$$

for any $i \neq 0$. Hence,

$$
\theta_i(\mathcal{X}^2) + \theta_i(\mathcal{Y}^2) = (\theta_i(\mathcal{X}))^2 + (\theta_i(\mathcal{Y}))^2 = 2^s.
$$

It is well-known that when *s* is even, the sum of the squares of two integers equals 2*^s* implies one of these squares is null and the other one equals 2^s . Thus, $\theta_i(\mathcal{X}^2)$ is either 0 or 2^s . For the sake of contradiction assume for all $i \neq 0$, $\theta_i(\chi^2) = 0$. This implies $\chi = m\mathcal{E}_{s+1}$ for some integer *m* which is a contradiction. Therefore, any nonprincipal character $χ$ of E_{s+1} satisfies Eqs. [6.](#page-10-0) and [7.](#page-10-1) Moreover, *X* and *Y* are $1\frac{1}{2}$ -difference sets in E_{s+1} with $n = 2^s$. \square

Remark 4.11 The previous lemma provides a method to construct a bent function when two plateaued functions with certain properties are given. Note that we can interchange the sizes of the sets *X* and *Y* for our purposes. For example, consider the subsets

$$
X = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)\}
$$

and $Y = \{(0, 0, 0), (1, 1, 1)\}\$ of E_3 . Then, for a nonprincipal character χ of E_3 the equalities

$$
\chi(\chi^2) = 0
$$
 when $\chi(\mathcal{Y}^2) = 4$

and

$$
\chi(\mathcal{X}^2) = 4 \text{ when } \chi(\mathcal{Y}^2) = 0
$$

are satisfied. Thus $S = \{(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1)\}$ $(1, 1, 1, 1)$ is a Hadamard difference set in E_4 . The existence of a bent function f of $s+2 \geq 4$ variables is equivalent to the existence of plateaued functions h_1 and h_2 , which are restrictions of *f* to a linear hyperplane and its complement, respectively, with Fourier spectrum $\{0, \pm 2^{\frac{s+2}{2}}\}$ and the disjoint union of supports h_1 and h_2 equals to E_{s+1} . This result provides a simple way to generate plateaued functions from a bent function and can be found in [\[6,](#page-12-15) Theorem 11]. A more detailed study of restriction of a bent function to a subspace of codimension 1 or 2 can be found in [\[3](#page-12-16)].

We have the following corollary of Lemma [4.10.](#page-10-2)

Corollary 1 Let f and g be two semibent functions from V_{s+1} to $\mathbb F$ with

$$
\left(wt(f) = 2^s + 2^{\frac{s}{2}} \text{ or } wt(f) = 2^s - 2^{\frac{s}{2}}\right)
$$

and $wt(g) = 2^s$ *. Let* $X = \{x : f(x) = 1\}$ *and* $Y = \{x : g(x) = 1\}$ *. Define a function h from* V_{s+2} *to* $\mathbb F$ *as follows:*

$$
h(x, y) = \begin{cases} 1, & \text{if } x \in X \text{ and } y = 0 \\ 1, & \text{if } x \in Y \text{; and } y = 1 \\ 0, & \text{otherwise.} \end{cases}
$$

Then, h is a bent function if and only if any nonprincipal character χ *of* E_{s+1} *satisfies:*

$$
\chi(\mathcal{X}^2) = 0 \text{ when } \chi(\mathcal{Y}^2) = 2^s
$$

and

$$
\chi(\mathcal{X}^2) = 2^s \text{ when } \chi(\mathcal{Y}^2) = 0.
$$

Acknowledgments I would like to thank the anonymous referees for their insightful comments on improving the quality of the paper. This work was supported in part by NSF Grant CCF-1018148.

References

- 1. Beth T., Jungnickel D., Lenz H.: Design Theory I, vol. 69. Cambridge University Press, Cambridge (1999).
- 2. Bose R.C., Shrikhande S.S., Singhi N.M.: Edge regular multigraphs and partial geometric designs with an application to the embedding of quasi-residual designs. Colloq. Int. sulle Teorie Comb. **1**, 49–81 (1976).
- 3. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inf. Theory **49**(8), 2004–2019 (2003).
- 4. Canteaut A., Carlet C., Charpin P., Fontaine C.: On cryptographic properties of the cosets of r (1, m). IEEE Trans. Inf. Theory **47**(4), 1494–1513 (2001).
- 5. Carlet C.: Partially-bent functions. Des. Codes Cryptogr. **3**(2), 135–145 (1993).
- 6. Carlet C.: Boolean functions for cryptography and error correcting codes. Boolean Models Methods Math. Comput. Sci. Eng. **2**, 257 (2010).
- 7. Carlet C., Prouff E.: On plateaued functions and their constructions. In: Johansson T. (ed.) Fast Software Encryption, pp 54–73. Springer, Berlin (2003).
- 8. Chee S., Lee S., Kim K.: Semi-bent functions. In: Pieprzyk J., Safavi-Naini R. (eds.) Advances in Cryptology-ASIACRYPT'94, pp. 105–118. Springer, Berlin (1995).
- 9. Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis and applications. IEEE Trans. Inf. Theory **35**(3), 595–604 (1989).
- 10. Dillon J.F.: Elementary Hadamard difference sets. Ph.D. thesis, University of Maryland, College Park, MD (1974).
- 11. Dillon J.F., McGuire G.: Near bent functions on a hyperplane. Finite Fields Appl. **14**(3), 715–720 (2008).
- 12. Jungnickel D., Pott A.: Perfect and almost perfect sequences. Discret. Appl. Math. **95**(1–3), 331–360 (1999).
- 13. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory A **15**(1), 1–10 (1973).
- 14. Neumaier A.: *t* $\frac{1}{2}$ -designs. J. Comb. Theory A **28**(3), 226–248 (1980).
- 15. Olmez O.: Symmetric $1\frac{1}{2}$ -designs and $1\frac{1}{2}$ -difference sets. Comb. Des. Theory (2013). doi[:10.1002/jcd.](http://dx.doi.org/10.1002/jcd.21354) [21354.](http://dx.doi.org/10.1002/jcd.21354)
- 16. Vasic B., Milenkovic O.: Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans. Inf. Theory **50**(6), 1156–1176 (2004).
- 17. Zheng Y., Zhang X.: Plateaued functions. In: Varadharajan V., Mu Y. (eds.) Information and Communication Security, pp. 284–300. Springer, Berlin (1999).