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Abstract We construct an infinite family of l%-difference sets in non-cyclic abelian
p-groups. In particular, we examine the construction in 2-groups to discover the useful
relationship between 1%—difference sets and certain Boolean functions.
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1 Introduction and preliminaries

We begin this paper by recalling several combinatorial objects that will be used throughout.
Let v, k and A be integers with 2 < k < v. A k-element subset S of a (multiplicative) abelian
group G of order v is called a (v, k, X)-difference set if every nonidentity element of G can be
expressed as st ! for exactly A distinct ordered pairs (s, ¢) in S x S. Thus, its parameters hold
the identity (v — 1) = k(k — 1). The notion of a lé—difference set, which was introduced
in [15], may be viewed as a generalization of the notion of a difference set.

Definition 1.1 Let G be a group of order v, and let S be a k-element subset of G. For each
g € G, let £(g) denote the number of ordered pairs (s, ) € S x § such that s7~! = g. Then,
S is called a 1%—difference set with parameters (v, k; «, B) if

(i) foreachx € G — S, the sum > g ¢(xs™ 1) equals o, and
(i) for each x € §, the sum Zses_{x}(g’(xs_l) — 1) equals 8.
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538 0. Olmez

We can easily see that a (v, k, A)-difference set is a 1%-difference set with « = kA and
B = (k — 1)(A — 1). Difference sets have been used to construct other combinatorial struc-
tures with applications in engineering, such as binary sequences with 2-level autocorrelation
functions, optical orthogonal codes, low density parity check codes, and cryptographic func-
tions with high nonlinearity (cf. [9,10,12,16]). Difference sets have been also used in the
construction of symmetric 2-designs. As a continuation of the work reported in [15], in this
paper we investigate the existence and nonexistence of 1%—difference sets by using the clas-
sical tools such as group rings and group characters. Also our aim is to show how we can
make use of 1 %-difference sets in the construction of certain designs and nonlinear Boolean
functions. First, we recall some basic facts related to block designs.

A block design consists of a finite set P of points and a collection B of (distinct) non-
empty proper subsets of P. This design is denoted by the pair (P, B) and B is called the
block set. Given x € P and B € B, the point-block pair (x, B) is called a flag if x € B
and an antiflag if x ¢ B. A 1-design with parameters (v, b, k, r) is a block design (P, B)
with v points and b blocks satisfying the property that every block consists of k points and
every point belongs to r blocks.! Its parameters satisfy the identity vr = bk. A 2-design is a
1-(v, b, k, r)-design satisfying the additional property that any two points occur together in
A blocks. Such a design is often denoted by 2-(v, k, A)-design. It holds (v — 1)A =r(k —1).
A design is called symmetric if v = b. We note that a (v, k, A)-difference set D in an abelian
group G gives rise to a symmetric 2-(v, k, X)-design (G, B) with B = {Dg : g € G} where
each block Dg := {xg : x € D} is generated by D. We are especially interested in the
following block designs that are related to lé—difference sets.

Definition 1.2 A 1-(v, b, k, r)-design (P, B) is called a 1%-design with parameters (v, b, k,
r; «, B) if for any given point x € P and block B € B, the number of the flags (y, C)
satisfyingy € B—{x},C>xand C # B,isaifx ¢ B,andis Bifx € B.

We can see thatevery 2-(v, k, 1)-designisal %-design witha = krand B = (k—1)(A—1).
Other well-known examples of 1 %—designs include transversal designs and partial geometries.
For more information on 1%—designs, we refer to Neumaier [14].2

We now recall Boolean functions of our interest. Let F = {0, 1} be the field of order
2, and let Vs = {(ar, a2, ...,as) : ai € {0, 1}}, the extension field whose additive group
is an elementary 2-group that is often used as an s-dimensional vector space over F. A
function f from V; to F is called a Boolean function of s variables. Boolean functions with
various characteristics have been an active research subject in cryptography in connection
with differential and linear cryptanalysis (cf. [7,8,17]). For a Boolean function f, we can
define a function F = (—l)f from Vs to the set {—1, 1}. The Fourier transform of F is
defined as follows:

Fx)y= > (=" F(y)
yeVs
where x -y is the inner product of two vectors x, y € V. The nonlinearity Ny of f can be

expressed as

1 -
Np=2"1— 5 max {|F(0)] :x € Vi}.

! It is often known as a tactical configuration.
2 Bose [2] studied 1%—designs and called them partial geometric designs.
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Plateaued functions and one-and-half difference sets 539

It holds that Ny < 251 — 26-2/2_ A function f is called a bent function if | F (x)| = 2/2
for all x € V. A bent function has an optimal nonlinearity. However a bent function is
not balanced and can exist only in even number of variables which are not desirable. A
combinatorial characterization of bent functions is given as follows:

Having a Hadamard difference set with parameters (2°, 25—l 4 2(=2)/2 2s=2 4
26-2/2y jg equivalent to having a bent function from V; to F [10].

In the work of [17], plateaued functions are introduced as functions which either are bent
or have a Fourier spectrum with three values 0 and 42 for some integer ¢. It is known
that these functions provide some suitable candidates that can be used in cryptosystems
[7,17]. Among the subclasses of plateaued functions, semibent and partially-bent functions
are studied the most [5,8]. However, the combinatorial characterization of these functions in
terms of difference sets are not known.

In this paper, we not only provide some infinite families of lé-difference sets found
in elementary abelian p-groups, but also show an interesting relation between plateaued
functions and families of 1 %—difference sets in elementary abelian 2-groups. The organization
of the paper is as follows. In the following section, we recall some more properties of 1%—
difference sets and main tools that will be needed later. In Sect. 3, we provide examples of
l%-difference sets. In our constructions, we mainly focus on cosets of elementary abelian
p-groups. In Sect. 4, we provide the relation between plateaued functions and 1 %-difference
sets.

2 Parameters of 1%-difference sets

We make use of the group ring and character theory to derive some characteristics of 1%-
designs. Let G be a finite abelian group and let ZG be the group ring of G. By the definition,
Z,G 1is the ring of formal polynomials

Zagg: ag € 7

geG

where each gdenotes the indeterminate corresponding to g. We will use calligraphic letters to
denote elements of ZG. The ring ZG has the operation of addition and multiplication given
by

Z agg + Z beg= Z(ag+b )4
geG

8€
(5.)(200)- 2 (50 )

For any element g in G and any nonempty subset S of G, the corresponding group ring
elements g and Z s are called simple quantities in ZG. We denote Z sby S, and

denote the simple quantlty fortheset S™! = {s~! : s € S}byS~!,sothat S~} Z sh

A simple relation between the difference sets and the group ring ZG can be formulated in
the following lemma.
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540 0. Olmez

Lemma 2.1 Let G be a group of order v. If a k-element subset S of G is a (v, k, A)-difference
set, then the following equation holds in the group ring 7Z.G:

S8 =(k—Neg + 26
where eg denotes the simple quantity corresponding to the identity element (eg) of G.

When G is an abelian group, character theory can be used to simplify calculations. A character
x of a finite abelian group G is a homomorphism from G to the multiplicative group of the
nonzero complex numbers. The character x of G such that x (g) = 1 for every g € G, is
called the principal character of G.

Lemma 2.2 A k-element subset S of an abelian group G of order v is a (v, k, 1)-difference
set if and only if | x (S)| = vk — X for every nonprincipal character x of G.

For a more detailed description of the relationship between difference sets and character
theory and group rings see [1]. Similar results can also be obtained in 1%—difference sets by

using character theory and group rings. Next we provide a brief introduction to 1 %-difference
sets. These results are also available in [15].

Forany g € G and S C G, we define the translate of S by Sg = {sg : s € S}, and define
the development of S by Dev(S) = {Sg : g € G}. Development of a 1%—difference setis a
symmetric lé—design [15]. Let N be the v x b point-block incidence matrix and J be the

v X b all-ones matrix. Then, the following equation holds for a 1%—design with parameters
(v, b, k,r;a, p):
NN'N =nN +aJ 1)

wheren =k+r -1+ — .

Lemma 2.3 [15, Lemma 2.8] Let G be a group of order v. Let S be a subset of G of size k.
Then, S is a 1%-diﬁ‘erence set with parameters (v, k; o, B) in G if and only if

S587'S =nS+ag )

where n = 2k — 1 4+ B — « in the group ring ZG.
For the rest of the paper the parameter n will denote the number 2k — 1 + 8 — « for a given
lé-difference set with parameters (v, k; «, ). As a corollary of the above lemma, we can

observe that any difference setisa 1 %-difference set with parameters (v, k; Ak, Ak—k—A+1).
A characterization of 1 %-difference sets is provided in the next theorem.

Theorem 2.4 [15, Theorem 2.12] Let G be an abelian group of order v. Let S be a subset
of G of size k. Then, S is a lé—dijference set in G with parameters (v, k; a, B) if and only if
|x ()| = /1 or x(S) = 0 for every nonprincipal character x of G and k3 = nk + av.

The group character values provide us with tools to investigate parameter restrictions of
1 %-difference sets. The following lemma provides an important parameter restriction.

Lemma 2.5 [15, Lemma 3.1]1 If S is a 1%-di]j‘erence set in an abelian group G of order v
2

with parameters (v, k; o, B), then is an integer.

Note that here the concurrence matrix N N’ of a symmetric 1 %-design has three eigenval-

k — k? vk — k2
. Hence is

ues, namely k2, n and 0. The multiplicity of the eigenvalue n is

n
. . . 1 .
an integer for a given symmetric 15-design.
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Plateaued functions and one-and-half difference sets 541

3 A family of 1%-difference sets
3.1 Construction |

Let ¢ be a prime power and let s be a positive integer. Let V| be the (s 4+ 1)-dimensional
s+1 _ 1

vector space over G F (g). Then, there are r = P subspaces of dimension s. We will
q—

call these subspaces, hyperplanes of V1. Let Hy, ..., H, be the hyperplanes of V. Let

E; 1 be the additive group of V1. When the dimension of the vector space is clear from the

context, we will simply use the notation E instead of E;1. We have the following equations

in the group ring ZE:

R

Hi+---+H, =q‘ye‘s+2_15,
HiHi = q"H;
and
HiH; =q* '€

The above equations hold since each element of H; is exactly replicated ¢* times in
H +H ={x+y:x,y € H;}
and each element of E is exactly replicated ¢°~! times in
Hi+Hj={x+y:x€H,yecHj)}

when H; # H;. McFarland provided a family of non-cyclic difference sets by using these
cosets [13]. With a similar approach, we have the following two lemmas to construct 1%-
difference sets in non-cyclic groups.

Lemma 3.1 Let Hy, ..., H; be l distinct hyperplanes of Vi1 and K be a group of order 1
such that r > 1 > 2. Then, S = ngl(H,', ki) is a 1%-diﬁ‘erence setin G = E x K with
parameters n = q* and a = (1> — 1)g>~.

l
Proof We will naturally denote the group G by EK and the set S by S = E ) IH,-kL- in
1=

I I
: -1 —1,-1 —1 )
the group ring ZG. Then, note that S~ = Zi:l Hk = Zi:l H;K; " since H;’s are
subgroups of E. We check the Eq. 2. in order to show S is a 1%-difference setin G.

ss7's = (gmki) /Z;H,k;‘ (,Z:‘Htkl)

l [
D Hiec+ > HiH kK (ZHI&)
i=1 t=1

i#]

1 1
(qs ZH,' ac +1lg° M EK — Se;c)) (Z Htk[)
t=1

i=1

1 1
i=1 i#t =1
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!
— q2s ZHlkL + ((l _ 1)q25—l +12q25—1 _ qus—l)gIC
i=1

l
=q” > Hiki+(* — g™ 'EK.

i=1

Hence, S is a 1%-difference set with parameters v = [¢*t k = I¢*,n = ¢* and « =

(> — D> ". o

Lemma 3.2 Let Hy, ..., H._| be r — 1 distinct hyperplanes of Vi1 and K be a group of
s+1 _ 1

order r = qil Then, S = U;;II(HI-, ki) is a lé—dijference setin G = E x K with
q—

parameters n = ¢* and o« = ¢= " (r —2)(r — 1).

Proof
r—1 r—1

SsTIs = ( H,-ki) > MK

r—1
= ( H%e;c-f-ZHﬂ‘(jkik;] S

i=1 i)

g -1 ‘ ‘
= (qzsegeic + (qbqq — - ¢ - 2)) e+ ¢ r —2)EK — qAH,e,C) S

r—1
o P L 21
—qéZHlqufle;mqﬂ (r=2)(r = DEK

r—1 r—1
¥ =9ED k—q¥TED K
i=1 i=1

r—1
= g% D Hiki+4¢>7' - =D = DEK.

i=1

Hence, S is a lé-difference set with parameters v = r¢*t!, k = (r — 1)¢*,n = ¢* and
a=g*" -2 1. u!

3.2 Construction II

Consider the case s + 1 = 2m for an integer m. In this construction, we focus on
m-dimensional disjoint subspaces to provide more constructions of 1 %—difference sets. There
are at most r = ¢”" 4 1 such subspaces. Let Uy, .. ., U, be the m-dimensional disjoint sub-
spaces of V»,,. Let E be the additive group of V,,,. Then, we have the following equations
in the group ring ZE:

U+ +U = q"ec + €,
Uill; = q"U;
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Plateaued functions and one-and-half difference sets 543

and
Ul; = €.

We can prove the following two lemmas similarly by checking the group ring equation for
1 %—difference sets.

Lemma 3.3 Let Uy, ..., U be | distinct m-dimensional disjoint subspaces of Va,, and K
be a group of order | such thatr > 1 > 2. Then, S = Ule(H,', ki)isa 1%-diﬁ‘erence set in
G = E x K with parameters n = ¢*" and o = (1> — 1)q™.

Lemma 3.4 Let Uy, ...,U,_1 be r — 1 distinct m-dimensional disjoint subspaces of Vo,
and K be a group of order r. Then, S = Uf”;f([—l,-, ki) isa 1%—diﬁ‘erence setinG =E x K
with parameters n = ¢*" and « = ¢ (r — 2)(r — 1).

4 Plateaued functions from lé-difference sets

In this section, we investigate the special case ¢ = 2. Let V41 be the (s 4+ 1)-dimensional
vector space over F and E | be the additive group of V. Let f be a function from Vi
to F and F be the function (—l)f from Vg4 to the set {—1, 1}. We are interested in the set
Spec = {f (x) : x € Vsyq} of distinct values which we will call the Fourier spectrum of
F.f is called a plateaued function if the Fourier spectrum of F = (—1)f is {0, £2} for
some integer t > % There are two well-studied subsets of plateaued functions namely

2
bent functions (r = % and s is odd) and semibent functions (t = f%l). We define

supp(F) ={x: F (x) # 0} of vectors whose Fourier spectrum is nonzero and the weight of
faswt(f) =|{x: f(x) # 0}|. We define the convolution of two functions as:

(FixF)@= Y, Fix+a)Fx) €)

X€Vst1

foralla € V. The convolution theorem of Fourier analysis states that the Fourier transform
of convolution of two functions is the ordinary product of their Fourier transforms:

—

FilxF,=F - F. 4

Proposition 4.1 Let f be a plateaued function from V1 toF with Fourier spectrum {0, +2"}
for some t. Then, wt(f) is even.

Proof Since F(O) =25+ _ 2wt (f) and f(O) € {0, £2'} for some ¢, wt(f) = 2° + Pl
orwt(f) =2%. O

Lemma 4.2 Let f be a function from Vg, to F such that s > 2. Define F = (—1)/ and a
matrix My = (my, y) where my y = F(x +y) forall x,y € Vy11. Then, f is a plateaued
function with Fourier spectrum {0, 22"} if and only if

M} =2 M 5)

for some integer t.
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544 0. Olmez

Proof Suppose f is a plateaued function with Spec = {0, 2"} for some integer ¢. Then,

(M;)x,y = Z (me,bmb,a)ma,y

aeVsy) \beV

Z Z Fx+b)F(b+a)| Fla+y)

aeVyy) \beVsq)

Z Z Fw)F(w+x+a)| Fla+y)

a€Vsyr \weViy

> (FxF)(x+a)F(a+y)

aeVsql

D (Fx F)@)F(@u+x+y)

ueVsqi

(FxF)* F)(x +y).

Let A = (F x F) x F. Then, the Fourier transformof Ais A= F - F - F by Eq. 4. Now
by Fourier inversion

1 ~ o~
A+ =307 D0 FOFBF@ TP

ISEV,H—I

22 -
— _1\(x+y)-B
- X e
Besupp(F)
=2YF(x +y).

Hence the equation M } =22M r holds. The above calculations hold since

D> EEEHEE

Besupp(F)

F(x +y) = 2s+1

and (ﬁ(ﬂ))2 is either 0 or 2% for any B € Vyi 1.
Suppose M; = 22’Mf. This implies ((F % F) % F)(x) = 2% F(x) forall x € Vy,. Apply
the Fourier transform on both of the sides. Then,

(F) =2 F(x) = FO)((F(x))* =22) =0
for all x in Vi . Hence, the Fourier spectrum can only take values of 0 and £27. O

Lemma 4.3 Lets > 2 and f be a plateaued function from V| to F with Fourier spectrum
{0, 2%} for some integer t. Then, there exists a symmetric 1%—design associated with f.

Proof Define a matrix My = (my,y) where m, y = F(x + y) forall x, y € V1. Since f
A )

is a plateaued function, M = 22 M r for some ¢. Note that M  is a symmetric {#1}-matrix.
Let wt(f) = 25! — k where k € {2° & 2/~!,2%}. Then, the row and column sum of the
matrix M is 2k — v where v = 25! Now consider the matrix N = %(J + M) where

J denote all-ones matrix. N is a symmetric {0, 1}-matrix whose row sum and column sum

@ Springer



Plateaued functions and one-and-half difference sets 545

is k. We show that the matrix N can be recognized as an incidence matrix of a symmetric
lé—design i.e. v = b. For this, we need to verify Eq. 1.

NN'N = (%(1 + Mf)) (%(J + Mf)) (%(J + Mf))
1 N
=3 (v/ + @k =0T + @k —)J + M3) (5(1 + Mf))

1
= gk = 0)vJ + Gk = v)2k = v)J + 2k = )*J + M}

22 4k — 4k — v)(2k — 2k — v)? — 2%
=?(J+Mf)+(( v)v - ( v)(8 v) + ( v) )J
22 12k% — 6kv + v — 2%
:?(J-I-Mf)-l— 3 J
=2272IN + al.

12k% — 6kv + v2 — 22
Since kisevenand 2t > s+ 1> 3, a = + is an integer. Therefore,

22[—2

N defines a symmetric 1%—design with parameters n = and «. O

Lemmad4.4 Let N be an incidence matrix of a symmetric lé—design obtained from a

plateaued function f from Vsy1 to F. Then, 1%—design associated with N has Esy1 as a
transitive automorphism group.

Proof For any x in Vi1, define
¢x t Vg1 — Vsq
as follows: ¢, (y) =x + yforall y € Vyiq. Let E = {¢y : x € Vs41}. We have
My (@).peb) = F(x +a+x+b)=F(a+b) =mgp
foralla, b € Vs41. A block in the 1%—design is given by
By={a:Fa+y) =1, acVs}.
Then, {¢,(a) : a € By} = By, (y). Hence,
{{#x(a) a € By} 1 y € Vsyi}

is the whole block set of the 1%—design. Therefore, E;41 is an automorphism group of the
design. It is clear that E | acts transitively on points and blocks of the lé—design. O

Next we provide a combinatorial classification of plateaued functions in terms of 1%—
difference sets.

Theorem 4.5 The existence of a 1%-diﬁ”erence set in Egy1 with parameters (v =

25tk a, B) satisfying n = 2% 72 for some integer t and k € {2*,2° + 2!} equivalent to
the existence of a plateaued function f from Vi1 to F with Fourier spectrum {0, £2'}.
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546 0. Olmez

Proof Assume there exist a 1 %-difference set S'in E511 with parameters (v = 25+ kg, B)
suchthatn = 222 forsome integer and k € {2°, 2° 42/~ !}. Then, the parameters satisfy the

; 2 2 . k(k* = n) .
equation 12k~ —6kv+v-—2“ = 8a since = —————.Thematrix M = 2N —J =m ,

satisfies myy; y4, = my y forallx, y, z € V. Wg define a function f from V4 to F as
follows: f(x) = 1if and only if x € §. Therefore, m, , = (=1 @+Y) Note that under our
assumptions Eq. 5 holds. This implies f is a plateaued function.

Assume f is a plateaued function. Then, by Lemmas 2.3 and 2.4, there exists a symmetric
1%-design such that E4 1 acts transitively on its blocks and points. Hence, we can choose a
base block S which is a k-subset of E;| where all the other blocks are translates of S. It is
clear that S is a lé-difference setin Eg4q. O

Remark 4.6 Let s = 4l 4+ 3 be an odd integer and C,, denote the class of elements of
Vs having exactly m ones as components. Let S denote the set union of classes C,, with
m=0,1( mod4). Then,S =Cp+C1+---Cai +Caix1+ -+ +Ca+Cqy4+1and S = s
One can check that x (S 2) is either 0 or 25! for any nonprincipal character of E [15, Lemma
3.10]. By Lemma 2.4, this implies that S is 1%-difference set in Eg. Now by Theorem 4.5,
the function f defined by

1, ifxeS
fo) = [0, otherwise
is a plateaued function with a Fourier spectrum {0, :l:Z% }. Here also note that |S| = 25~
Another example of a balanced plateaued function can be obtained by using the result of
Lemma 3.1 with the group K = E; and [ = 2. For instance, choose H; = {(0, 0), (0, 1)}
and H, = {(0, 0), (1, 0)}. Then, the set S = {(0, 0, 0), (0, 1,0), (0,0, 1), (1,0, 1)} is a 1%-
difference set in E3. Let N denote the corresponding incidence matrix of this design. Then,
we can obtain the following matrix by using the Dev(S):

10101100
01011100
10100011
v_|otroroo1
11001010
11000101
001110710
00110101

Here N satisfies the equation NN'N = 4N + 6J. Hence any row of this matrix will define
a plateaued function with the Fourier spectrum {0, 4}.

In the rest of the section, let s be an even number and f be a plateaued function from
Vi1 to F with the Fourier spectrum {0, :|:2¥ }. f is also known under the names semibent
and 3-valued almost optimal Boolean function. We specifically consider this case due to its
close connection to Hadamard difference sets.

Lemma 4.7 Let Vi be a s > 2 dimensional subspace of Vsy1. Let Eg and Egy1 be the
additive groups of Vs and Vg1, respectively. If there exists a set D C Ej, such that S =
(D,0) J(Es \ D, 1) is a 1%-diﬁ‘erence set in Esy1 withn = 25, then D is a Hadamard
difference set in E.
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Plateaued functions and one-and-half difference sets 547

Proof In the group ring, the following holds
8871 = 8% = (D?,0) + 2(DE; — D?, 1) + (€2 — 2DE; + D2, 0).

Then, by Lemma 2.5 we have exactly 2% characters of E; which takes nonzero values on
S2. Let )(ij be a character of Egy| = E x E1. Then, X[J (x,y) =6;(x)¢;(y). Let 6p and ¢o be
principal characters of E and E ; respectively. Thus, X,’O (82) =0; (Dz)—29,- (’D2)+9,- (Dz) =
0 for i # 0. Hence x,!(S?) = 2* foralli # 0.1f i # 0, then

X} (8%) = 46;(D?) = 2°.
Ifi = 0, then,
X0(S%) = Q2ID| - 2°)* =2°.
Therefore, D is a Hadamard difference set. O

Converse of the above lemma can be verified by using group rings too.

Lemma 4.8 Let Vs be a s-dimensional subspace of Vsy1. Let Eg and Eg41 be the additive
groups of Vg and Vi1, respectively. If there exists a Hadamard difference set D C Ej, then
S=(D,0) J(Es\ D, )isa 1%-diﬁ‘erence setin Esyy withn = 2°.

Remark 4.9 We denote by W, the set W, = {y : z - y = 0}. Note that W, = V; x {0} for
x =(0,0,...,1) € Vsi1. Suppose there exist a 1%-difference set S'in Esy1 withn = 2°
such that S can be written as a union of (D, 0) and (E; \ D, 1). We can define a function f
as follows:

1, ifxeS

0, otherwise -

o]

Then, the restriction of f to the sets W, and V1 \ W, are both bent functions. Note that the
function f is a semibent function since n = 2* implies f has the Fourier spectrum {0, £2°F }.
Hence, our approach provides a family of semibent functions whose restriction to a hyperplane
is a bent function. Whether a plateaued function could be bent when restricted to a hyperplane
is of interest. To answer this problem, a criterion, which is based on the characteristic function
of support of F, for semibent functions is provided in the work of Dillon and McGuire [11,
Theorem 1]. Another characterization of plateaued functions, which is based on the derivative,
is provided in [4, Theorem V.2]. A part of this result states that the restriction of a semibent
function f to W, is a bent function if and only if erv (=) DT+ — 0 for all

s+1
nonzero a € W;. In our approach, we provide a characterization in terms of difference sets.

Lemma 4.10 Let X and Y be two subsets of Es11. Suppose
(|X| =2 423 or|X| =25 — 2%)

and |Y| = 2* holds. Then, S = (X,0)J(Y, 1) is a Hadamard difference set in Eg1p =
Esi1 x Ey ifand only if X and Y are 1%-dljﬁerence sets in Egy1 with n = 2% and any
nonprincipal character x of Esy1 satisfies:

x(X?) =0 when x (V*) =n (©6)
and

X (X%) = n when x (V%) = 0. (7
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Proof Observe that
S = (x2,0)+2xY, 1) + V%, 0).

Let X;i be a character of Eg1» = Es41 x E1. Then, Xl:/(x, ¥) = 6;(x)¢;(y) where 6; and ¢;
are characters of Es11 and Ey; respectively. Let 6y and ¢y be principal characters of Es and
E; respectively. First, assume that any nonprincipal character x of E satisfies Eqs. 6 and
7. Then, for any nonprincipal character Xi] of E» the following holds:

X (S =n=2"

Therefore, S = (X, 0) |J(Y, 1) is a Hadamard difference set in E; ;.
Now assume that S = (X, 0) |J(¥, 1) is a Hadamard difference set in E4,. This implies,

0:(X%) = 20;(X)6; (V) + 6;(V*) =2°
and
0:(X%) + 20, (X)0; (V) + 6;(V?) = 2°
for any i # 0. Hence,
0: (X2) +0,(V%) = (0: (X)) + (6:(V)* = 2.

It is well-known that when s is even, the sum of the squares of two integers equals 2° implies
one of these squares is null and the other one equals 2*. Thus, 6; (X?) is either 0 or 2*. For
the sake of contradiction assume for all i # 0, 6;(X?) = 0. This implies X = mé&;4; for
some integer m which is a contradiction. Therefore, any nonprincipal character x of Es4
satisfies Egs. 6. and 7. Moreover, X and Y are 1%-difference setsin Egyy withn =2%. O

Remark 4.11 The previous lemma provides a method to construct a bent function when two
plateaued functions with certain properties are given. Note that we can interchange the sizes
of the sets X and Y for our purposes. For example, consider the subsets

X =1{(0,0,0), (0,0, 1), (0,1,0), (1,0, 0)}
and Y = {(0,0,0), (1, 1, 1)} of E3. Then, for a nonprincipal character x of E3 the equalities
x(X?) =0 when x (V*) =4
and
X(AX%) = 4 when (V%) = 0

are satisfied. Thus § = {(0,0,0,0), (0,0, 1,0), (0, 1,0,0), (1,0,0,0), (0,0,0, 1),
(1, 1, 1, 1)} isaHadamard difference set in E4. The existence of a bent function f of s+2 > 4
variables is equivalent to the existence of plateaued functions /| and %7, which are restric-
tions of f to a linear hyperplane and its complement, respectively, with Fourier spectrum
{0, :E:Z%} and the disjoint union of supports /1 and h; equals to Esy1. This result pro-
vides a simple way to generate plateaued functions from a bent function and can be found
in [6, Theorem 11]. A more detailed study of restriction of a bent function to a subspace of
codimension 1 or 2 can be found in [3].

We have the following corollary of Lemma 4.10.
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Corollary 1 Let f and g be two semibent functions from Vs to F with

(wt(f) =2 425 orwi(f) =2 — 2%)

and wt(g) =2°. Let X = {x : f(x) = 1}andY = {x : g(x) = 1}. Define a function h from
Vi1 to F as follows:

and

I, ifxeXandy=0
hx,y)=11, ifxeY;andy=1

0, otherwise.

Then, h is a bent function if and only if any nonprincipal character x of Esy1 satisfies:

x(X%) =0 when x (V%) =2

x (X% =25 when x (V%) = 0.
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