

Plateaued functions and one-and-half difference sets

Oktay Olmez

Received: 5 June 2013 / Revised: 29 April 2014 / Accepted: 29 April 2014 / Published online: 21 May 2014 © Springer Science+Business Media New York 2014

Abstract We construct an infinite family of $1\frac{1}{2}$ -difference sets in non-cyclic abelian p-groups. In particular, we examine the construction in 2-groups to discover the useful relationship between $1\frac{1}{2}$ -difference sets and certain Boolean functions.

 $1\frac{1}{2}$ -Design $\cdot 1\frac{1}{2}$ -Difference set \cdot Plateaued function \cdot Bent function \cdot Semibent Keywords function

Mathematics Subject Classification 05B05 · 05B10 · 06E30

1 Introduction and preliminaries

We begin this paper by recalling several combinatorial objects that will be used throughout. Let v, k and λ be integers with $2 \le k \le v$. A k-element subset S of a (multiplicative) abelian group G of order v is called a (v, k, λ) -difference set if every nonidentity element of G can be expressed as st^{-1} for exactly λ distinct ordered pairs (s, t) in $S \times S$. Thus, its parameters hold the identity $\lambda(v-1) = k(k-1)$. The notion of a $1\frac{1}{2}$ -difference set, which was introduced in [15], may be viewed as a generalization of the notion of a difference set.

Definition 1.1 Let G be a group of order v, and let S be a k-element subset of G. For each $g \in G$, let $\zeta(g)$ denote the number of ordered pairs $(s, t) \in S \times S$ such that $st^{-1} = g$. Then, S is called a $1\frac{1}{2}$ -difference set with parameters $(v, k; \alpha, \beta)$ if

- (i) for each $x \in G S$, the sum $\sum_{s \in S} \zeta(xs^{-1})$ equals α , and (ii) for each $x \in S$, the sum $\sum_{s \in S \{x\}} (\zeta(xs^{-1}) 1)$ equals β .

O. Olmez (🖂)

Communicated by A. Pott.

Department of Mathematics, Faculty of Science, Ankara University, Tandogan, Ankara 06100, Turkey e-mail: oolmez@ankara.edu.tr

We can easily see that a (v, k, λ) -difference set is a $1\frac{1}{2}$ -difference set with $\alpha = k\lambda$ and $\beta = (k - 1)(\lambda - 1)$. Difference sets have been used to construct other combinatorial structures with applications in engineering, such as binary sequences with 2-level autocorrelation functions, optical orthogonal codes, low density parity check codes, and cryptographic functions with high nonlinearity (cf. [9, 10, 12, 16]). Difference sets have been also used in the construction of symmetric 2-designs. As a continuation of the work reported in [15], in this paper we investigate the existence and nonexistence of $1\frac{1}{2}$ -difference sets by using the classical tools such as group rings and group characters. Also our aim is to show how we can make use of $1\frac{1}{2}$ -difference sets in the construction of certain designs and nonlinear Boolean functions. First, we recall some basic facts related to block designs.

A block design consists of a finite set *P* of points and a collection \mathcal{B} of (distinct) nonempty proper subsets of *P*. This design is denoted by the pair (*P*, \mathcal{B}) and \mathcal{B} is called the block set. Given $x \in P$ and $B \in \mathcal{B}$, the point-block pair (*x*, *B*) is called a *flag* if $x \in B$ and an *antiflag* if $x \notin B$. A 1-design with parameters (*v*, *b*, *k*, *r*) is a block design (*P*, \mathcal{B}) with *v* points and *b* blocks satisfying the property that every block consists of *k* points and every point belongs to *r* blocks.¹ Its parameters satisfy the identity vr = bk. A 2-design is a 1-(*v*, *b*, *k*, *r*)-design satisfying the additional property that any two points occur together in λ blocks. Such a design is often denoted by 2-(*v*, *k*, λ)-design. It holds (*v* - 1) $\lambda = r(k - 1)$. A design is called symmetric if v = b. We note that a (*v*, *k*, λ)-difference set *D* in an abelian group *G* gives rise to a symmetric 2-(*v*, *k*, λ)-design (*G*, \mathcal{B}) with $\mathcal{B} = \{Dg : g \in G\}$ where each block $Dg := \{xg : x \in D\}$ is generated by *D*. We are especially interested in the following block designs that are related to $1\frac{1}{2}$ -difference sets.

Definition 1.2 A 1-(v, b, k, r)-design (P, B) is called a $1\frac{1}{2}$ -design with parameters $(v, b, k, r; \alpha, \beta)$ if for any given point $x \in P$ and block $B \in B$, the number of the flags (y, C) satisfying $y \in B - \{x\}, C \ni x$ and $C \neq B$, is α if $x \notin B$, and is β if $x \in B$.

We can see that every 2- (v, k, λ) -design is a $1\frac{1}{2}$ -design with $\alpha = k\lambda$ and $\beta = (k-1)(\lambda-1)$. Other well-known examples of $1\frac{1}{2}$ -designs include transversal designs and partial geometries. For more information on $1\frac{1}{2}$ -designs, we refer to Neumaier [14].²

We now recall Boolean functions of our interest. Let $\mathbb{F} = \{0, 1\}$ be the field of order 2, and let $V_s = \{(a_1, a_2, \dots, a_s) : a_i \in \{0, 1\}\}$, the extension field whose additive group is an elementary 2-group that is often used as an *s*-dimensional vector space over \mathbb{F} . A function *f* from V_s to \mathbb{F} is called a Boolean function of *s* variables. Boolean functions with various characteristics have been an active research subject in cryptography in connection with differential and linear cryptanalysis (cf. [7,8,17]). For a Boolean function *f*, we can define a function $F := (-1)^f$ from V_s to the set $\{-1, 1\}$. The Fourier transform of *F* is defined as follows:

$$\widehat{F}(x) = \sum_{y \in V_s} (-1)^{x \cdot y} F(y)$$

where $x \cdot y$ is the inner product of two vectors $x, y \in V_s$. The nonlinearity N_f of f can be expressed as

$$N_f = 2^{s-1} - \frac{1}{2} \max\left\{ |\widehat{F}(x)| : x \in V_s \right\}.$$

¹ It is often known as a tactical configuration.

² Bose [2] studied $1\frac{1}{2}$ -designs and called them partial geometric designs.

It holds that $N_f \leq 2^{s-1} - 2^{(s-2)/2}$. A function f is called a bent function if $|\widehat{F}(x)| = 2^{s/2}$ for all $x \in V_s$. A bent function has an optimal nonlinearity. However a bent function is not balanced and can exist only in even number of variables which are not desirable. A combinatorial characterization of bent functions is given as follows:

Having a Hadamard difference set with parameters $(2^s, 2^{s-1} \pm 2^{(s-2)/2}, 2^{s-2} \pm 2^{(s-2)/2})$ is equivalent to having a bent function from V_s to \mathbb{F} [10].

In the work of [17], plateaued functions are introduced as functions which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^t$ for some integer t. It is known that these functions provide some suitable candidates that can be used in cryptosystems [7,17]. Among the subclasses of plateaued functions, semibent and partially-bent functions are studied the most [5,8]. However, the combinatorial characterization of these functions in terms of difference sets are not known.

In this paper, we not only provide some infinite families of $1\frac{1}{2}$ -difference sets found in elementary abelian *p*-groups, but also show an interesting relation between plateaued functions and families of $1\frac{1}{2}$ -difference sets in elementary abelian 2-groups. The organization of the paper is as follows. In the following section, we recall some more properties of $1\frac{1}{2}$ difference sets and main tools that will be needed later. In Sect. 3, we provide examples of $1\frac{1}{2}$ -difference sets. In our constructions, we mainly focus on cosets of elementary abelian *p*-groups. In Sect. 4, we provide the relation between plateaued functions and $1\frac{1}{2}$ -difference sets.

2 Parameters of $1\frac{1}{2}$ -difference sets

We make use of the group ring and character theory to derive some characteristics of $1\frac{1}{2}$ -designs. Let *G* be a finite abelian group and let $\mathbb{Z}G$ be the group ring of *G*. By the definition, $\mathbb{Z}G$ is the ring of formal polynomials

$$\mathbb{Z}G = \left\{ \sum_{g \in G} a_{gg} \colon a_g \in \mathbb{Z} \right\}$$

where each g denotes the indeterminate corresponding to g. We will use calligraphic letters to denote elements of $\mathbb{Z}G$. The ring $\mathbb{Z}G$ has the operation of addition and multiplication given by

$$\sum_{g \in G} a_{g}g + \sum_{g \in G} b_{g}g = \sum_{g \in G} (a_{g} + b_{g})g$$
$$\left(\sum_{g \in G} a_{g}g\right)\left(\sum_{g \in G} b_{g}g\right) = \sum_{g \in G} \left(\sum_{h \in G} a_{h}b_{h^{-1}g}\right)g$$

For any element g in G and any nonempty subset S of G, the corresponding group ring elements g and $\sum_{s \in S} s$ are called *simple quantities* in $\mathbb{Z}G$. We denote $\sum_{s \in S} s$ by S, and denote the simple quantity for the set $S^{-1} = \{s^{-1} : s \in S\}$ by S^{-1} , so that $S^{-1} = \sum_{s \in S} s^{-1}$. A simple relation between the difference sets and the group ring $\mathbb{Z}G$ can be formulated in the following lemma.

Lemma 2.1 Let G be a group of order v. If a k-element subset S of G is a (v, k, λ) -difference set, then the following equation holds in the group ring $\mathbb{Z}G$:

$$SS^{-1} = (k - \lambda)e_G + \lambda G$$

where e_G denotes the simple quantity corresponding to the identity element (e_G) of G.

When *G* is an abelian group, character theory can be used to simplify calculations. A character χ of a finite abelian group *G* is a homomorphism from *G* to the multiplicative group of the nonzero complex numbers. The character χ of *G* such that $\chi(g) = 1$ for every $g \in G$, is called the principal character of *G*.

Lemma 2.2 A k-element subset S of an abelian group G of order v is a (v, k, λ) -difference set if and only if $|\chi(S)| = \sqrt{k - \lambda}$ for every nonprincipal character χ of G.

For a more detailed description of the relationship between difference sets and character theory and group rings see [1]. Similar results can also be obtained in $1\frac{1}{2}$ -difference sets by using character theory and group rings. Next we provide a brief introduction to $1\frac{1}{2}$ -difference sets. These results are also available in [15].

For any $g \in G$ and $S \subseteq G$, we define the *translate* of *S* by $Sg = \{sg : s \in S\}$, and define the *development* of *S* by $Dev(S) = \{Sg : g \in G\}$. Development of a $1\frac{1}{2}$ -difference set is a symmetric $1\frac{1}{2}$ -design [15]. Let *N* be the $v \times b$ point-block incidence matrix and *J* be the $v \times b$ all-ones matrix. Then, the following equation holds for a $1\frac{1}{2}$ -design with parameters $(v, b, k, r; \alpha, \beta)$:

$$NN^t N = nN + \alpha J \tag{1}$$

where $n = k + r - 1 + \beta - \alpha$.

Lemma 2.3 [15, Lemma 2.8] Let G be a group of order v. Let S be a subset of G of size k. Then, S is a $1\frac{1}{2}$ -difference set with parameters $(v, k; \alpha, \beta)$ in G if and only if

$$SS^{-1}S = nS + \alpha \mathcal{G} \tag{2}$$

where $n = 2k - 1 + \beta - \alpha$ in the group ring $\mathbb{Z}G$.

For the rest of the paper the parameter *n* will denote the number $2k - 1 + \beta - \alpha$ for a given $1\frac{1}{2}$ -difference set with parameters $(v, k; \alpha, \beta)$. As a corollary of the above lemma, we can observe that any difference set is a $1\frac{1}{2}$ -difference set with parameters $(v, k; \lambda k, \lambda k - k - \lambda + 1)$. A characterization of $1\frac{1}{2}$ -difference sets is provided in the next theorem.

Theorem 2.4 [15, Theorem 2.12] Let G be an abelian group of order v. Let S be a subset of G of size k. Then, S is a $1\frac{1}{2}$ -difference set in G with parameters $(v, k; \alpha, \beta)$ if and only if $|\chi(S)| = \sqrt{n}$ or $\chi(S) = 0$ for every nonprincipal character χ of G and $k^3 = nk + \alpha v$.

The group character values provide us with tools to investigate parameter restrictions of $1\frac{1}{2}$ -difference sets. The following lemma provides an important parameter restriction.

Lemma 2.5 [15, Lemma 3.1] If *S* is a $1\frac{1}{2}$ -difference set in an abelian group *G* of order *v* with parameters $(v, k; \alpha, \beta)$, then $\frac{vk - k^2}{n}$ is an integer.

Note that here the concurrence matrix NN^t of a symmetric $1\frac{1}{2}$ -design has three eigenvalues, namely k^2 , n and 0. The multiplicity of the eigenvalue n is $\frac{vk - k^2}{n}$. Hence $\frac{vk - k^2}{n}$ is an integer for a given symmetric $1\frac{1}{2}$ -design.

3 A family of $1\frac{1}{2}$ -difference sets

3.1 Construction I

Let *q* be a prime power and let *s* be a positive integer. Let V_{s+1} be the (s + 1)-dimensional vector space over GF(q). Then, there are $r = \frac{q^{s+1}-1}{q-1}$ subspaces of dimension *s*. We will call these subspaces, hyperplanes of V_{s+1} . Let H_1, \ldots, H_r be the hyperplanes of V_{s+1} . Let E_{s+1} be the additive group of V_{s+1} . When the dimension of the vector space is clear from the context, we will simply use the notation *E* instead of E_{s+1} . We have the following equations in the group ring $\mathbb{Z}E$:

$$\mathcal{H}_1 + \dots + \mathcal{H}_r = q^s e_{\mathcal{E}} + \frac{q^s - 1}{q - 1} \mathcal{E},$$

 $\mathcal{H}_i \mathcal{H}_i = q^s \mathcal{H}_i$

and

$$\mathcal{H}_i\mathcal{H}_i=q^{s-1}\mathcal{E}.$$

The above equations hold since each element of H_i is exactly replicated q^s times in

$$H_i + H_i = \{x + y : x, y \in H_i\}$$

and each element of *E* is exactly replicated q^{s-1} times in

$$H_i + H_j = \{x + y : x \in H_i, y \in H_j\}$$

when $H_i \neq H_j$. McFarland provided a family of non-cyclic difference sets by using these cosets [13]. With a similar approach, we have the following two lemmas to construct $1\frac{1}{2}$ -difference sets in non-cyclic groups.

Lemma 3.1 Let H_1, \ldots, H_l be l distinct hyperplanes of V_{s+1} and K be a group of order l such that $r \ge l \ge 2$. Then, $S = \bigcup_{i=1}^{l} (H_i, k_i)$ is a $1\frac{1}{2}$ -difference set in $G = E \times K$ with parameters $n = q^{2s}$ and $\alpha = (l^2 - 1)q^{2s-1}$.

Proof We will naturally denote the group G by \mathcal{EK} and the set S by $\mathcal{S} = \sum_{i=1}^{l} \mathcal{H}_i k_i$ in the group ring $\mathbb{Z}G$. Then, note that $\mathcal{S}^{-1} = \sum_{i=1}^{l} \mathcal{H}_i^{-1} k_i^{-1} = \sum_{i=1}^{l} \mathcal{H}_i k_i^{-1}$ since H_i 's are subgroups of E. We check the Eq. 2. in order to show S is a $1\frac{1}{2}$ -difference set in G.

$$SS^{-1}S = \left(\sum_{i=1}^{l} \mathcal{H}_{i} k_{i}\right) \left(\sum_{j=1}^{l} \mathcal{H}_{j} k_{j}^{-1}\right) \left(\sum_{t=1}^{l} \mathcal{H}_{t} k_{t}\right)$$
$$= \left(\sum_{i=1}^{l} \mathcal{H}_{i}^{2} e_{\mathcal{K}} + \sum_{i \neq j} \mathcal{H}_{i} \mathcal{H}_{j} k_{i} k_{j}^{-1}\right) \left(\sum_{t=1}^{l} \mathcal{H}_{t} k_{t}\right)$$
$$= \left(q^{s} \sum_{i=1}^{l} \mathcal{H}_{i} e_{\mathcal{K}} + lq^{s-1} (\mathcal{E}\mathcal{K} - \mathcal{E}e_{\mathcal{K}})\right) \left(\sum_{t=1}^{l} \mathcal{H}_{t} k_{t}\right)$$
$$= q^{2s} \sum_{i=1}^{l} \mathcal{H}_{i} k_{i} + q^{s} \sum_{i \neq t} \mathcal{H}_{i} \mathcal{H}_{t} k_{t} + l^{2} q^{2s-1} \mathcal{E}\mathcal{K} - lq^{2s-1} \sum_{t=1}^{l} \mathcal{E}k_{t}$$

Deringer

$$= q^{2s} \sum_{i=1}^{l} \mathcal{H}_{i} k_{i} + ((l-1)q^{2s-1} + l^{2}q^{2s-1} - lq^{2s-1}) \mathcal{EK}$$
$$= q^{2s} \sum_{i=1}^{l} \mathcal{H}_{i} k_{i} + (l^{2} - 1)q^{2s-1} \mathcal{EK}.$$

Hence, S is a $1\frac{1}{2}$ -difference set with parameters $v = lq^{s+1}$, $k = lq^s$, $n = q^{2s}$ and $\alpha = (l^2 - 1)q^{2s-1}$.

Lemma 3.2 Let H_1, \ldots, H_{r-1} be r-1 distinct hyperplanes of V_{s+1} and K be a group of order $r = \frac{q^{s+1}-1}{q-1}$. Then, $S = \bigcup_{i=1}^{r-1} (H_i, k_i)$ is a $1\frac{1}{2}$ -difference set in $G = E \times K$ with parameters $n = q^{2s}$ and $\alpha = q^{2s-1}(r-2)(r-1)$.

Proof

$$\begin{split} \mathcal{SS}^{-1}\mathcal{S} &= \left(\sum_{i=1}^{r-1} \mathcal{H}_{i} k_{i}\right) \left(\sum_{j=1}^{r-1} \mathcal{H}_{j} k_{j}^{-1}\right) \mathcal{S} \\ &= \left(\sum_{i=1}^{r-1} \mathcal{H}_{i}^{2} e_{\mathcal{K}} + \sum_{i \neq j} \mathcal{H}_{i} \mathcal{H}_{j} k_{i} k_{j}^{-1}\right) \mathcal{S} \\ &= \left(q^{2s} e_{\mathcal{E}} e_{\mathcal{K}} + \left(q^{s} \frac{q^{s} - 1}{q - 1} - q^{s - 1} (r - 2)\right) \mathcal{E} e_{\mathcal{K}} + q^{s - 1} (r - 2) \mathcal{E} \mathcal{K} - q^{s} \mathcal{H}_{r} e_{\mathcal{K}}\right) \mathcal{S} \\ &= q^{2s} \sum_{i=1}^{r-1} \mathcal{H}_{i} k_{i} + q^{2s} \frac{q^{s} - 1}{q - 1} \mathcal{E} \sum_{i=1}^{r-1} k_{i} + q^{2s - 1} (r - 2) (r - 1) \mathcal{E} \mathcal{K} \\ &- q^{2s - 1} (r - 2) \mathcal{E} \sum_{i=1}^{r-1} k_{i} - q^{2s - 1} \mathcal{E} \sum_{i=1}^{r-1} k_{i} \\ &= q^{2s} \sum_{i=1}^{r-1} \mathcal{H}_{i} k_{i} + q^{2s - 1} (r - 2) (r - 1) \mathcal{E} \mathcal{K}. \end{split}$$

Hence, S is a $1\frac{1}{2}$ -difference set with parameters $v = rq^{s+1}$, $k = (r-1)q^s$, $n = q^{2s}$ and $\alpha = q^{2s-1}(r-2)(r-1)$.

3.2 Construction II

Consider the case s + 1 = 2m for an integer *m*. In this construction, we focus on *m*-dimensional disjoint subspaces to provide more constructions of $1\frac{1}{2}$ -difference sets. There are at most $r = q^m + 1$ such subspaces. Let U_1, \ldots, U_r be the *m*-dimensional disjoint subspaces of V_{2m} . Let *E* be the additive group of V_{2m} . Then, we have the following equations in the group ring $\mathbb{Z}E$:

$$\mathcal{U}_1 + \dots + \mathcal{U}_r = q^m e_{\mathcal{E}} + \mathcal{E}_i$$

 $\mathcal{U}_i \mathcal{U}_i = q^m \mathcal{U}_i$

🖄 Springer

and

$$\mathcal{U}_i\mathcal{U}_i=\mathcal{E}.$$

We can prove the following two lemmas similarly by checking the group ring equation for $1\frac{1}{2}$ -difference sets.

Lemma 3.3 Let U_1, \ldots, U_l be l distinct m-dimensional disjoint subspaces of V_{2m} and K be a group of order l such that $r \ge l \ge 2$. Then, $S = \bigcup_{i=1}^{l} (H_i, k_i)$ is a $1\frac{1}{2}$ -difference set in $G = E \times K$ with parameters $n = q^{2m}$ and $\alpha = (l^2 - 1)q^m$.

Lemma 3.4 Let U_1, \ldots, U_{r-1} be r-1 distinct m-dimensional disjoint subspaces of V_{2m} and K be a group of order r. Then, $S = \bigcup_{i=1}^{m-1} (H_i, k_i)$ is a $1\frac{1}{2}$ -difference set in $G = E \times K$ with parameters $n = q^{2m}$ and $\alpha = q^m(r-2)(r-1)$.

4 Plateaued functions from $1\frac{1}{2}$ -difference sets

In this section, we investigate the special case q = 2. Let V_{s+1} be the (s + 1)-dimensional vector space over \mathbb{F} and E_{s+1} be the additive group of V_{s+1} . Let f be a function from V_{s+1} to \mathbb{F} and F be the function $(-1)^f$ from V_{s+1} to the set $\{-1, 1\}$. We are interested in the set $Spec = \{\widehat{F}(x) : x \in V_{s+1}\}$ of distinct values which we will call the Fourier spectrum of F. f is called a plateaued function if the Fourier spectrum of $F = (-1)^f$ is $\{0, \pm 2^t\}$ for some integer $t \ge \frac{s+1}{2}$. There are two well-studied subsets of plateaued functions namely bent functions ($t = \frac{s+1}{2}$ and s is odd) and semibent functions ($t = \lceil \frac{s+2}{2} \rceil$). We define $supp(F) = \{x : \widehat{F}(x) \neq 0\}$ of vectors whose Fourier spectrum is nonzero and the weight of f as $wt(f) = |\{x : f(x) \neq 0\}|$. We define the convolution of two functions as:

$$(F_1 * F_2)(a) = \sum_{x \in V_{s+1}} F_1(x+a)F_2(x)$$
(3)

for all $a \in V_{s+1}$. The convolution theorem of Fourier analysis states that the Fourier transform of convolution of two functions is the ordinary product of their Fourier transforms:

$$\widehat{F_1 * F_2} = \widehat{F_1} \cdot \widehat{F_2}. \tag{4}$$

Proposition 4.1 Let f be a plateaued function from V_{s+1} to \mathbb{F} with Fourier spectrum $\{0, \pm 2^t\}$ for some t. Then, wt(f) is even.

Proof Since $\widehat{F}(0) = 2^{s+1} - 2wt(f)$ and $\widehat{F}(0) \in \{0, \pm 2^t\}$ for some $t, wt(f) = 2^s \pm 2^{t-1}$ or $wt(f) = 2^s$.

Lemma 4.2 Let f be a function from V_{s+1} to \mathbb{F} such that $s \ge 2$. Define $F = (-1)^f$ and a matrix $M_f = (m_{x,y})$ where $m_{x,y} = F(x + y)$ for all $x, y \in V_{s+1}$. Then, f is a plateaued function with Fourier spectrum $\{0, \pm 2^t\}$ if and only if

$$M_f^3 = 2^{2t} M_f (5)$$

for some integer t.

Springer

Proof Suppose f is a plateaued function with $Spec = \{0, \pm 2^t\}$ for some integer t. Then,

$$(M_{f}^{3})_{x,y} = \sum_{a \in V_{s+1}} \left(\sum_{b \in V} m_{x,b} m_{b,a} \right) m_{a,y}$$

= $\sum_{a \in V_{s+1}} \left(\sum_{b \in V_{s+1}} F(x+b)F(b+a) \right) F(a+y)$
= $\sum_{a \in V_{s+1}} \left(\sum_{w \in V_{s+1}} F(w)F(w+x+a) \right) F(a+y)$
= $\sum_{a \in V_{s+1}} (F * F)(x+a)F(a+y)$
= $\sum_{u \in V_{s+1}} (F * F)(u)F(u+x+y)$
= $((F * F) * F)(x+y).$

Let A = (F * F) * F. Then, the Fourier transform of A is $\widehat{A} = \widehat{F} \cdot \widehat{F} \cdot \widehat{F}$ by Eq. 4. Now by Fourier inversion

$$A(x + y) = \frac{1}{2^{s+1}} \sum_{\beta \in V_{s+1}} \widehat{F}(\beta) \widehat{F}(\beta) \widehat{F}(\beta) (-1)^{(x+y) \cdot \beta}$$
$$= \frac{2^{2t}}{2^{s+1}} \sum_{\beta \in supp(F)} \widehat{F}(\beta) (-1)^{(x+y) \cdot \beta}$$
$$= 2^{2t} F(x + y).$$

Hence the equation $M_f^3 = 2^{2t} M_f$ holds. The above calculations hold since

$$F(x+y) = \frac{1}{2^{s+1}} \sum_{\beta \in supp(F)} \widehat{F}(\beta) (-1)^{(x+y) \cdot \beta}$$

and $(\widehat{F}(\beta))^2$ is either 0 or 2^{2t} for any $\beta \in V_{s+1}$.

Suppose $M_f^3 = 2^{2t} M_f$. This implies $((F * F) * F)(x) = 2^{2t} F(x)$ for all $x \in V_{s+1}$. Apply the Fourier transform on both of the sides. Then,

$$(\widehat{F}(x))^3 - 2^{2t}\widehat{F}(x) = \widehat{F}(x)((\widehat{F}(x))^2 - 2^{2t}) = 0$$

for all x in V_{s+1} . Hence, the Fourier spectrum can only take values of 0 and $\pm 2^t$.

Lemma 4.3 Let $s \ge 2$ and f be a plateaued function from V_{s+1} to \mathbb{F} with Fourier spectrum $\{0, \pm 2^t\}$ for some integer t. Then, there exists a symmetric $1\frac{1}{2}$ -design associated with f.

Proof Define a matrix $M_f = (m_{x,y})$ where $m_{x,y} = F(x + y)$ for all $x, y \in V_{s+1}$. Since f is a plateaued function, $M_f^3 = 2^{2t} M_f$ for some t. Note that M_f is a symmetric $\{\pm 1\}$ -matrix. Let $wt(f) = 2^{s+1} - k$ where $k \in \{2^s \pm 2^{t-1}, 2^s\}$. Then, the row and column sum of the matrix M_f is 2k - v where $v = 2^{s+1}$. Now consider the matrix $N = \frac{1}{2}(J + M_f)$ where J denote all-ones matrix. N is a symmetric $\{0, 1\}$ -matrix whose row sum and column sum

is k. We show that the matrix N can be recognized as an incidence matrix of a symmetric $1\frac{1}{2}$ -design i.e. v = b. For this, we need to verify Eq. 1.

$$\begin{split} NN^{t}N &= \left(\frac{1}{2}(J+M_{f})\right) \left(\frac{1}{2}(J+M_{f})\right) \left(\frac{1}{2}(J+M_{f})\right) \\ &= \frac{1}{4} \left(vJ + (2k-v)J + (2k-v)J + M_{f}^{2}\right) \left(\frac{1}{2}(J+M_{f})\right) \\ &= \frac{1}{8}(4k-v)vJ + (4k-v)(2k-v)J + (2k-v)^{2}J + M_{f}^{3} \\ &= \frac{2^{2t}}{8}(J+M_{f}) + \left(\frac{(4k-v)v + (4k-v)(2k-v) + (2k-v)^{2} - 2^{2t}}{8}\right)J \\ &= \frac{2^{2t}}{8}(J+M_{f}) + \left(\frac{12k^{2} - 6kv + v^{2} - 2^{2t}}{8}\right)J \\ &= 2^{2t-2}N + \alpha J. \end{split}$$

Since k is even and $2t \ge s + 1 \ge 3$, $\alpha = \frac{12k^2 - 6kv + v^2 - 2^{2t}}{8}$ is an integer. Therefore, N defines a symmetric $1\frac{1}{2}$ -design with parameters $n = 2^{2t-2}$ and α .

Lemma 4.4 Let N be an incidence matrix of a symmetric $1\frac{1}{2}$ -design obtained from a plateaued function f from V_{s+1} to \mathbb{F} . Then, $1\frac{1}{2}$ -design associated with N has E_{s+1} as a transitive automorphism group.

Proof For any x in V_{s+1} , define

 $\phi_x: V_{s+1} \longrightarrow V_{s+1}$

as follows: $\phi_x(y) = x + y$ for all $y \in V_{s+1}$. Let $E = \{\phi_x : x \in V_{s+1}\}$. We have

$$m_{\phi_x(a),\phi_x(b)} = F(x+a+x+b) = F(a+b) = m_{a,b}$$

for all $a, b \in V_{s+1}$. A block in the $1\frac{1}{2}$ -design is given by

$$B_{y} = \{a : F(a + y) = 1, a \in V_{s+1}\}.$$

Then, $\{\phi_x(a) : a \in B_y\} = B_{\phi_x(y)}$. Hence,

$$\{\{\phi_x(a) : a \in B_y\} : y \in V_{s+1}\}$$

is the whole block set of the $1\frac{1}{2}$ -design. Therefore, E_{s+1} is an automorphism group of the design. It is clear that E_{s+1} acts transitively on points and blocks of the $1\frac{1}{2}$ -design.

Next we provide a combinatorial classification of plateaued functions in terms of $1\frac{1}{2}$ -difference sets.

Theorem 4.5 The existence of a $1\frac{1}{2}$ -difference set in E_{s+1} with parameters ($v = 2^{s+1}, k; \alpha, \beta$) satisfying $n = 2^{2t-2}$ for some integer t and $k \in \{2^s, 2^s \pm 2^{t-1}\}$ equivalent to the existence of a plateaued function f from V_{s+1} to \mathbb{F} with Fourier spectrum $\{0, \pm 2^t\}$.

Proof Assume there exist a $1\frac{1}{2}$ -difference set S in E_{s+1} with parameters $(v = 2^{s+1}, k; \alpha, \beta)$ such that $n = 2^{2t-2}$ for some integer t and $k \in \{2^s, 2^s \pm 2^{t-1}\}$. Then, the parameters satisfy the equation $12k^2 - 6kv + v^2 - 2^{2t} = 8\alpha$ since $\alpha = \frac{k(k^2 - n)}{v}$. The matrix $M = 2N - J = m_{x,y}$ satisfies $m_{x+z,y+z} = m_{x,y}$ for all $x, y, z \in V_{s+1}$. We define a function f from V_{s+1} to \mathbb{F} as follows: f(x) = 1 if and only if $x \in S$. Therefore, $m_{x,y} = (-1)^{f(x+y)}$. Note that under our assumptions Eq. 5 holds. This implies f is a plateaued function.

Assume *f* is a plateaued function. Then, by Lemmas 2.3 and 2.4, there exists a symmetric $1\frac{1}{2}$ -design such that E_{s+1} acts transitively on its blocks and points. Hence, we can choose a base block *S* which is a *k*-subset of E_{s+1} where all the other blocks are translates of *S*. It is clear that *S* is a $1\frac{1}{2}$ -difference set in E_{s+1} .

Remark 4.6 Let s = 4l + 3 be an odd integer and C_m denote the class of elements of V_s having exactly *m* ones as components. Let *S* denote the set union of classes C_m with $m \equiv 0, 1 \pmod{4}$. Then, $S = C_0 + C_1 + \cdots + C_{4i} + C_{4i+1} + \cdots + C_{4l} + C_{4l+1}$ and $S = S^{-1}$. One can check that $\chi(S^2)$ is either 0 or 2^{s-1} for any nonprincipal character of E_s [15, Lemma 3.10]. By Lemma 2.4, this implies that *S* is $1\frac{1}{2}$ -difference set in E_s . Now by Theorem 4.5, the function *f* defined by

$$f(x) = \begin{cases} 1, & \text{if } x \in S \\ 0, & \text{otherwise} \end{cases}$$

is a plateaued function with a Fourier spectrum $\{0, \pm 2^{\frac{s+1}{2}}\}$. Here also note that $|S| = 2^{s-1}$. Another example of a balanced plateaued function can be obtained by using the result of Lemma 3.1 with the group $K = E_1$ and l = 2. For instance, choose $H_1 = \{(0, 0), (0, 1)\}$ and $H_2 = \{(0, 0), (1, 0)\}$. Then, the set $S = \{(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)\}$ is a $1\frac{1}{2}$ -difference set in E_3 . Let N denote the corresponding incidence matrix of this design. Then, we can obtain the following matrix by using the Dev(S):

$$N = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Here N satisfies the equation $NN^t N = 4N + 6J$. Hence any row of this matrix will define a plateaued function with the Fourier spectrum $\{0, \pm 4\}$.

In the rest of the section, let *s* be an even number and *f* be a plateaued function from V_{s+1} to \mathbb{F} with the Fourier spectrum $\{0, \pm 2^{\frac{s+2}{2}}\}$. *f* is also known under the names semibent and 3-valued almost optimal Boolean function. We specifically consider this case due to its close connection to Hadamard difference sets.

Lemma 4.7 Let V_s be a $s \ge 2$ dimensional subspace of V_{s+1} . Let E_s and E_{s+1} be the additive groups of V_s and V_{s+1} , respectively. If there exists a set $D \subset E_s$, such that $S = (D, 0) \bigcup (E_s \setminus D, 1)$ is a $1\frac{1}{2}$ -difference set in E_{s+1} with $n = 2^s$, then D is a Hadamard difference set in E_s .

Proof In the group ring, the following holds

$$\mathcal{SS}^{-1} = \mathcal{S}^2 = (\mathcal{D}^2, 0) + 2(\mathcal{DE}_s - \mathcal{D}^2, 1) + (\mathcal{E}_s^2 - 2\mathcal{DE}_s + \mathcal{D}^2, 0).$$

Then, by Lemma 2.5 we have exactly 2^s characters of E_{s+1} which takes nonzero values on S^2 . Let χ_i^j be a character of $E_{s+1} = E_s \times E_1$. Then, $\chi_i^j(x, y) = \theta_i(x)\zeta_j(y)$. Let θ_0 and ζ_0 be principal characters of E_s and E_1 ; respectively. Thus, $\chi_i^0(S^2) = \theta_i(\mathcal{D}^2) - 2\theta_i(\mathcal{D}^2) + \theta_i(\mathcal{D}^2) = 0$ for $i \neq 0$. Hence $\chi_i^1(S^2) = 2^s$ for all $i \neq 0$. If $i \neq 0$, then

$$\chi_i^1(\mathcal{S}^2) = 4\theta_i(\mathcal{D}^2) = 2^s.$$

If i = 0, then,

$$\chi_0^1(S^2) = (2|D| - 2^s)^2 = 2^s$$

Therefore, D is a Hadamard difference set.

Converse of the above lemma can be verified by using group rings too.

Lemma 4.8 Let V_s be a s-dimensional subspace of V_{s+1} . Let E_s and E_{s+1} be the additive groups of V_s and V_{s+1} , respectively. If there exists a Hadamard difference set $D \subset E_s$, then $S = (D, 0) \bigcup (E_s \setminus D, 1)$ is a $1\frac{1}{2}$ -difference set in E_{s+1} with $n = 2^s$.

Remark 4.9 We denote by W_z the set $W_z = \{y : z \cdot y = 0\}$. Note that $W_x = V_s \times \{0\}$ for $x = (0, 0, ..., 1) \in V_{s+1}$. Suppose there exist a $1\frac{1}{2}$ -difference set *S* in E_{s+1} with $n = 2^s$ such that *S* can be written as a union of (D, 0) and $(E_s \setminus D, 1)$. We can define a function *f* as follows:

$$f(x) = \begin{cases} 1, & \text{if } x \in S \\ 0, & \text{otherwise} \end{cases}.$$

Then, the restriction of f to the sets W_x and $V_{s+1} \setminus W_x$ are both bent functions. Note that the function f is a semibent function since $n = 2^s$ implies f has the Fourier spectrum $\{0, \pm 2^{\frac{s+2}{2}}\}$. Hence, our approach provides a family of semibent functions whose restriction to a hyperplane is a bent function. Whether a plateaued function could be bent when restricted to a hyperplane is of interest. To answer this problem, a criterion, which is based on the characteristic function of support of \hat{F} , for semibent functions is provided in the work of Dillon and McGuire [11, Theorem 1]. Another characterization of plateaued functions, which is based on the derivative, is provided in [4, Theorem V.2]. A part of this result states that the restriction of a semibent function f to W_z is a bent function if and only if $\sum_{x \in V_{s+1}} (-1)^{f(x)+f(x+a)} = 0$ for all nonzero $a \in W_z$. In our approach, we provide a characterization in terms of difference sets.

Lemma 4.10 Let X and Y be two subsets of E_{s+1} . Suppose

$$\left(|X| = 2^s + 2^{\frac{s}{2}} \text{ or } |X| = 2^s - 2^{\frac{s}{2}}\right)$$

and $|Y| = 2^s$ holds. Then, $S = (X, 0) \bigcup (Y, 1)$ is a Hadamard difference set in $E_{s+2} = E_{s+1} \times E_1$ if and only if X and Y are $1\frac{1}{2}$ -difference sets in E_{s+1} with $n = 2^s$ and any nonprincipal character χ of E_{s+1} satisfies:

$$\chi(\mathcal{X}^2) = 0 \text{ when } \chi(\mathcal{Y}^2) = n \tag{6}$$

and

$$\chi(\mathcal{X}^2) = n \text{ when } \chi(\mathcal{Y}^2) = 0.$$
(7)

Deringer

Proof Observe that

$$S^2 = (X^2, 0) + 2(XY, 1) + (Y^2, 0).$$

Let χ_i^j be a character of $E_{s+2} = E_{s+1} \times E_1$. Then, $\chi_i^j(x, y) = \theta_i(x)\zeta_j(y)$ where θ_i and ζ_j are characters of E_{s+1} and E_1 ; respectively. Let θ_0 and ζ_0 be principal characters of E_s and E_1 ; respectively. First, assume that any nonprincipal character χ of E_{s+1} satisfies Eqs. 6 and 7. Then, for any nonprincipal character χ_i^j of E_{s+2} the following holds:

$$\chi_i^j(\mathcal{S}^2) = n = 2^s$$

Therefore, $S = (X, 0) \bigcup (Y, 1)$ is a Hadamard difference set in E_{s+2} .

Now assume that $S = (X, 0) \bigcup (Y, 1)$ is a Hadamard difference set in E_{s+2} . This implies,

$$\theta_i(\mathcal{X}^2) - 2\theta_i(\mathcal{X})\theta_i(\mathcal{Y}) + \theta_i(\mathcal{Y}^2) = 2^s$$

and

$$\theta_i(\mathcal{X}^2) + 2\theta_i(\mathcal{X})\theta_i(\mathcal{Y}) + \theta_i(\mathcal{Y}^2) = 2^s$$

for any $i \neq 0$. Hence,

$$\theta_i(\mathcal{X}^2) + \theta_i(\mathcal{Y}^2) = (\theta_i(\mathcal{X}))^2 + (\theta_i(\mathcal{Y}))^2 = 2^s$$

It is well-known that when *s* is even, the sum of the squares of two integers equals 2^s implies one of these squares is null and the other one equals 2^s . Thus, $\theta_i(\mathcal{X}^2)$ is either 0 or 2^s . For the sake of contradiction assume for all $i \neq 0$, $\theta_i(\mathcal{X}^2) = 0$. This implies $\mathcal{X} = m\mathcal{E}_{s+1}$ for some integer *m* which is a contradiction. Therefore, any nonprincipal character χ of E_{s+1} satisfies Eqs. 6. and 7. Moreover, *X* and *Y* are $1\frac{1}{2}$ -difference sets in E_{s+1} with $n = 2^s$.

Remark 4.11 The previous lemma provides a method to construct a bent function when two plateaued functions with certain properties are given. Note that we can interchange the sizes of the sets *X* and *Y* for our purposes. For example, consider the subsets

$$X = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)\}\$$

and $Y = \{(0, 0, 0), (1, 1, 1)\}$ of E_3 . Then, for a nonprincipal character χ of E_3 the equalities

$$\chi(\mathcal{X}^2) = 0$$
 when $\chi(\mathcal{Y}^2) = 4$

and

$$\chi(\mathcal{X}^2) = 4$$
 when $\chi(\mathcal{Y}^2) = 0$

are satisfied. Thus $S = \{(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 1, 1, 1)\}$ is a Hadamard difference set in E_4 . The existence of a bent function f of $s+2 \ge 4$ variables is equivalent to the existence of plateaued functions h_1 and h_2 , which are restrictions of f to a linear hyperplane and its complement, respectively, with Fourier spectrum $\{0, \pm 2^{\frac{s+2}{2}}\}$ and the disjoint union of supports h_1 and h_2 equals to E_{s+1} . This result provides a simple way to generate plateaued functions from a bent function and can be found in [6, Theorem 11]. A more detailed study of restriction of a bent function to a subspace of codimension 1 or 2 can be found in [3].

We have the following corollary of Lemma 4.10.

Corollary 1 Let f and g be two semibent functions from V_{s+1} to \mathbb{F} with

$$\left(wt(f) = 2^{s} + 2^{\frac{s}{2}} \text{ or } wt(f) = 2^{s} - 2^{\frac{s}{2}}\right)$$

and $wt(g) = 2^s$. Let $X = \{x : f(x) = 1\}$ and $Y = \{x : g(x) = 1\}$. Define a function h from V_{s+2} to \mathbb{F} as follows:

$$h(x, y) = \begin{cases} 1, & \text{if } x \in X \text{ and } y = 0\\ 1, & \text{if } x \in Y; \text{ and } y = 1\\ 0, & \text{otherwise.} \end{cases}$$

Then, h is a bent function if and only if any nonprincipal character χ of E_{s+1} satisfies:

$$\chi(\mathcal{X}^2) = 0$$
 when $\chi(\mathcal{Y}^2) = 2^s$

and

$$\chi(\mathcal{X}^2) = 2^s \text{ when } \chi(\mathcal{Y}^2) = 0.$$

Acknowledgments I would like to thank the anonymous referees for their insightful comments on improving the quality of the paper. This work was supported in part by NSF Grant CCF-1018148.

References

- 1. Beth T., Jungnickel D., Lenz H.: Design Theory I, vol. 69. Cambridge University Press, Cambridge (1999).
- Bose R.C., Shrikhande S.S., Singhi N.M.: Edge regular multigraphs and partial geometric designs with an application to the embedding of quasi-residual designs. Colloq. Int. sulle Teorie Comb. 1, 49–81 (1976).
- 3. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004–2019 (2003).
- Canteaut A., Carlet C., Charpin P., Fontaine C.: On cryptographic properties of the cosets of r (1, m). IEEE Trans. Inf. Theory 47(4), 1494–1513 (2001).
- 5. Carlet C.: Partially-bent functions. Des. Codes Cryptogr. 3(2), 135-145 (1993).
- Carlet C.: Boolean functions for cryptography and error correcting codes. Boolean Models Methods Math. Comput. Sci. Eng. 2, 257 (2010).
- Carlet C., Prouff E.: On plateaued functions and their constructions. In: Johansson T. (ed.) Fast Software Encryption, pp 54–73. Springer, Berlin (2003).
- Chee S., Lee S., Kim K.: Semi-bent functions. In: Pieprzyk J., Safavi-Naini R. (eds.) Advances in Cryptology-ASIACRYPT'94, pp. 105–118. Springer, Berlin (1995).
- Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis and applications. IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
- Dillon J.F.: Elementary Hadamard difference sets. Ph.D. thesis, University of Maryland, College Park, MD (1974).
- 11. Dillon J.F., McGuire G.: Near bent functions on a hyperplane. Finite Fields Appl. 14(3), 715–720 (2008).
- Jungnickel D., Pott A.: Perfect and almost perfect sequences. Discret. Appl. Math. 95(1–3), 331–360 (1999).
- 13. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory A 15(1), 1–10 (1973).
- 14. Neumaier A.: $t\frac{1}{2}$ -designs. J. Comb. Theory A **28**(3), 226–248 (1980).
- Olmez O.: Symmetric 1¹/₂-designs and 1¹/₂-difference sets. Comb. Des. Theory (2013). doi:10.1002/jcd. 21354.
- Vasic B., Milenkovic O.: Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans. Inf. Theory 50(6), 1156–1176 (2004).
- Zheng Y., Zhang X.: Plateaued functions. In: Varadharajan V., Mu Y. (eds.) Information and Communication Security, pp. 284–300. Springer, Berlin (1999).