
Des. Codes Cryptogr. (2015) 76:469–504
DOI 10.1007/s10623-014-9972-2

Strongly secure authenticated key exchange
from factoring, codes, and lattices

Atsushi Fujioka · Koutarou Suzuki · Keita Xagawa ·
Kazuki Yoneyama

Received: 19 August 2013 / Revised: 27 March 2014 / Accepted: 8 April 2014 /
Published online: 23 April 2014
© Springer Science+Business Media New York 2014

Abstract An unresolved problem in research on authenticated key exchange (AKE) in the
public-key setting is to construct a secure protocol against advanced attacks such as key
compromise impersonation andmaximal exposure attackswithout relying on randomoracles.
HMQV, a state of the art AKE protocol, achieves both efficiency and the strong security
proposed by Krawczyk (we call it the CK+ model), which includes resistance to advanced
attacks. However, the security proof is given under the random oracle model. We propose a
generic construction of AKE from a key encapsulation mechanism (KEM). The construction
is based on a chosen-ciphertext secure KEM, and the resultant AKE protocol is CK+ secure
in the standard model. The construction gives the first CK+ secure AKE protocols based on
the hardness of integer factorization problem, code-based problems, or learning problems
with errors. In addition, instantiations under the Diffie–Hellman assumption or its variant
can be proved to have strong security without non-standard assumptions such as πPRF and
KEA1. Furthermore, we extend the CK+ model to identity-based (called the id-CK+ model),
and propose a generic construction of identity-based AKE (ID-AKE) based on identity-based
KEM, which satisfies id-CK+ security. The construction leads first strongly secure ID-AKE
protocols under the hardness of integer factorization problem, or learning problems with
errors.

Communicated by K. Matsuura.

A. Fujioka
Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
e-mail: fujioka@kanagawa-u.ac.jp

K. Suzuki · K. Xagawa · K. Yoneyama (B)
NTT Secure Platform Laboratories, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
e-mail: yoneyama.kazuki@lab.ntt.co.jp

K. Suzuki
e-mail: suzuki.koutarou@lab.ntt.co.jp

K. Xagawa
e-mail: xagawa.keita@lab.ntt.co.jp

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-014-9972-2&domain=pdf

470 A. Fujioka et al.

Keywords Authenticated key exchange · CK+ model · Key encapsulation mechanism ·
Identity-based authenticated key exchange

Mathematics Subject Classification 94A60 Cryptography

1 Introduction

1.1 Background

Establishing secure channels is one of the most important areas of cryptographic research.
Secure channels provide secrecy and authenticity for both communication parties. When
parties can share secret information via a public communication channel, secure channels
would be constructed on (symmetric key) encryptions and message authentication codes
with the shared secret information called session keys. Public-key cryptography can provide
various solutions: one approachuses a key encapsulation mechanism (KEM)and another uses
authenticated key exchange (AKE). Note that, though there are two settings (i.e., symmetric-
key based and public-key based) for AKE, this paper focuses on the public-key setting.

In KEM, a receiver has public information, called a public key, and the corresponding
secret information, called a secret key. The public key is expected to be certified with the
receiver’s identity through an infrastructure such as a public key infrastructure (PKI). A
sender who wants to share information, a session key, with the receiver sends a ciphertext of
the information and, the receiver decrypts the ciphertext to extract the information. KEM can
be easily constructed from public-key encryption (PKE) under the reasonable condition that
the plaintext space is sufficiently large. The desirable security notion of KEM is formulated
as the indistinguishability against chosen ciphertext attacks (IND-CCA).

In AKE, each party has public information, called a static public key, and the correspond-
ing secret information, called a static secret key. The static public key is also expected to be
certified with a party’s identity through an infrastructure such as PKI. A party who wants to
share information with a party exchanges ephemeral public keys, generated from the corre-
sponding ephemeral secret keys, and computes a session state from their static public keys,
the corresponding static secret keys, the exchanged ephemeral public keys, and the corre-
sponding ephemeral secret keys. Both parties then derive a session key from these values
including the session state using a key derivation procedure. Many studies have investigated
the security notion of AKE [5,17,43,46,61]. The first security notion of AKE based on
indistinguishability was provided by Bellare and Rogaway [5] (BR model). The BR model
captures basic security requirements for AKE such as known key security and impersonation
resilience. However, the BR model cannot grasp more complicated situations where a static
secret key or session state of a party has been exposed. Accordingly, Canetti and Kraw-
czyk [17] defined the first security notion of AKE capturing the exposure of static secret keys
and session state and called it the Canetti–Krawczyk (CK) model. Though the CKmodel rep-
resents exposure of information other than the target session of the adversary, some advanced
attacks such as key compromise impersonation (KCI), the breaking of weak perfect forward
secrecy (wPFS) and maximal exposure attacks (MEX) use secret information of the target
session; thus, the CK model is not resilient to such attacks. We say that KCI is successful if
given a static secret key an adversary can impersonate some honest party in order to fool the
owner of the exposed secret key. wPFS implies that an adversary cannot recover a session
key using static secret keys if the adversary does not modify messages of the target session
and the session is executed before the static secret keys are compromised. We say that MEX

123

Strongly secure authenticated key exchange 471

is successful if an adversary can distinguish the session key from a random value under the
disclosure of any pair of secret static keys and ephemeral secret keys of the initiator and the
responder in the session except for both the static and ephemeral secret keys of the initiator
or the responder. Resistance to MEX requires security against any exposure situation that
was not presumed. For example, an implementer of AKE may pretend to generate secret
keys in an insecure host machine in order to prevent the randomness generation mechanisms
in a tamper-proof module such as a smart card. Additionally, if a pseudo-random number
generator implemented in a system is poor, secret keys will be known to the adversary even
when the generation of ephemeral secret keys is operated in a tamper-proof module. Most
AKE protocols are proved in the CK model; however, it is unclear whether such protocols
satisfy resistance to advanced attacks due to the limitations of the CK model. A state of the
art AKE protocol HMQV [43] satisfies all known security requirements for AKE, including
resistance to KCI, wPFS,1 and MEX, as well as provable security in the CK model. In this
paper, we call this security model the CK+ model; it is known to be one of the ‘strongest’
models for AKE. LaMacchia et al. [46] and Sarr et al. [61] also proposed very strong security
models for AKE by re-formulating the concept of the CK+ model; they called them the eCK
model and the seCK model, respectively. These models allow an adversary to pose a query
that directly reveals the ephemeral secret key of the target session. However, Cremers points
out that the CK model and the eCK model are incomparable [23,24]; thus, the eCK model is
not stronger than the CK model while the CK+ model is. We will briefly show the difference
between the CK+ model and these models. Since MEX includes any non-trivial exposure
situation, HMQV (and CK+ secure protocols) achieves surprisingly strong security.

1.2 Motivating problem

HMQV is one of the most efficient protocols and satisfies one of the strongest security
models (i.e., CK+ security). However, the security proof is given in the random oracle model
(ROM) under a specific number-theoretic assumption (i.e., the gap Diffie–Hellman (DH)
assumption). Moreover, to prove resistance toMEX, the knowledge-of-exponent assumption
(KEA1) [28] (a widely criticized assumption such as [54]) is also necessary. Hence, one of
the open problems in research on AKE is to construct a secure scheme in the CK+ model
without relying on random oracles under standard assumptions.

Boyd et al. [12,13] andGorantla et al. [34] gave a partial solution to this problem by noting
that KEM and AKE are closely related and that it might be natural to construct AKE from
KEM. They proposed a generic construction of AKE from KEM (BCGNP construction),
and its security is proved in the CK model in the standard model (StdM). Also, the BCGNP
construction is shown to satisfy resistance to KCI. However, it is unclear whether the BCGNP
construction is secure when exposure of secret information occurs (i.e., resistance to MEX).
In fact, the BCGNP construction fails to satisfy CK+ securitywhenwe consider the following
attack scenario: Two parties exchange ciphertexts of an IND-CCA secure KEM scheme and
generate a session key from these. An adversary who obtains the ephemeral secret keys
(randomness used in generating ciphertexts) of the parties can compute the session key and

1 HMQV does not provide full perfect forward secrecy (fPFS), which is the same as wPFS except that
the adversary can modify messages of the target session. Some schemes [14,25,26,32,40,63] have achieved
fPFS. However, the schemes [32,40] are clearly vulnerable toMEX; that is, the session key is computable if an
adversary obtains an ephemeral secret key of parties in the target session. The schemes [14,25,26] is resilient
to MEX, but security is proved in the random oracle model. The other scheme [63] limits instantiations to
DH-based. Upgrading wPFS to fPFS is not that difficult; it can be done by simply adding MAC or a signature
of ephemeral public keys. Thus, we do not discuss fPFS in this paper.

123

472 A. Fujioka et al.

win the game. Though the other construction which satisfies wPFS is also proposed in their
paper, the construction contains specific DH values, and the security proof relies on the
decisional DH assumption. It is quite restrictive because it cannot be instantiated from the
hardness of something other than the DH assumption such as an integer factoring problem,
code-based problem, or lattice problem. Thus, we still have no AKE protocol that is secure
in the ‘strongest’ model under just a general assumption without relying on ROs.

1.3 Our contribution

We fully solve the open problem by providing a generic construction of AKE from KEM.
Our construction is a generalization of the BCGNP construction. The BCGNP construction
uses IND-CCAKEM, a pseudo-random function (PRF), and a key derivation function (KDF)
as building blocks. Our construction effectively follows the design principle of the BCGNP
construction. However, we first point out that the security proof of the BCGNP construc-
tion is not complete. Specifically, a requirement for KEM has not been formulated. KEM
keys must have enough min-entropy in order to make outputs of the KDF computationally
indistinguishable from a uniformly random chosen element. The IND-CCA security does not
imply min-entropy of KEM keys. Thus, the assumption that the KEM scheme satisfies such
a property is additionally required. Fortunately, almost all IND-CCA KEM schemes satisfy
that. Also, we need an IND-CPA secure KEM in addition to the BCGNP construction. Such
an additional KEM can make our scheme wPFS and resilient to MEX. Note that our con-
struction is not one-round protocol (i.e., one-round means that the initiator and the responder
can send their messages independently and simultaneously.) in return for achieving such
strong security properties. The resultant AKE protocol is CK+ secure. Its security is proved
under the existence of such KEMs, a KDF, and a PRF in the StdM. IND-CCA secure KEM
schemes have been shown from the hardness of integer factoring [37,51], code-based prob-
lems [29,50], or lattice problems [1,2,18,49,57,59,62]. To the best of our knowledge, our
generic construction provides the first CK+ secure AKE protocols based on the hardness of
the above problems. Regarding the DH assumption or its variant, our generic construction is
the first protocol that achieves CK+ security in the StdM without non-standard assumptions
(e.g., πPRF and KEA1).

We also rewrite the CK+ model before proving the security of our generic construction in
order to simplify the original model in [43]. Specifically, the original model is defined as a
mix of four definitions (i.e., the CKmodel, wPFS, and resistance to KCI andMEX); thus, the
security proof must also be separated into four theorems, which may reduce the readability.
Therefore,we reformulate theCK+ model as follows:wPFS, resistance toKCI, and resistance
to MEX are integrated into the experiment of the extended model by exhaustively classifying
exposure patterns. This definition is handy to prove security and rigorously captures all
required properties.

Moreover, we show an extension of the above result to the ID-based setting, identity-based
AKE (ID-AKE). It is natural to introduce ID-based cryptography in order to avoid the burden
of key managements. Especially, ID-AKE is more suitable for mobile environment than PKI-
basedAKE. For example, let’s consider someP2P service for smart-phones.When a userwant
to securely connect to a peer with a secure channel in such a service, but he/she only knows
the e-mail address or the phone number of the peer, PKI-based AKE is not available because
each partymust know the public-key of the peer. On the other hand, ID-AKEcan easily handle
this situation by dealing with the e-mail address or the phone number as the ID of the peer.

In ID-based cryptography, it is assumed that a key generate center (KGC) exists. The
KGC manages system parameters and a master secret key, and generates a static secret

123

Strongly secure authenticated key exchange 473

key of each party with the master secret key. However, this means that the master key is
more powerful than static secret keys of parties. We need an additional security requirement,
called master-key weak forward secrecy (mFS), that the session key is protected even when
the master secret key is exposed if the adversary does not modify messages of the target
session and the session is executed before the master secret key is compromised. Thus,
first, we formulate an ID-based version of the CK+ model (called the id-CK+ model) that
captures mFS. Boyd et al. [12,13] gave a generic construction of ID-AKE based on ID-based
chosen-ciphertext secure (IND-ID-CCA) ID-based KEM (IB-KEM). Next, we improve their
ID-AKEconstruction as the sameway as our genericAKEconstruction. IND-ID-CCA secure
IB-KEM schemes have been shown from the hardness of bilinear pairing problems [9,11], or
lattice problems [1,2,18,49,57,59,62]. Our generic construction provides the first id-CK+
secure ID-AKE protocols based on the hardness of the above problems in the StdM.

We summarize our contributions as follows:

1. We reformulate CK+ and id-CK+ models to gain readability of the security proofs.
2. We propose two-pass generic CK+ secure AKE and two-pass generic id-CK+ secure

ID-AKE constructions in the StdM.
3. We achieve the first CK+ secure AKE protocols based on the hardness of integer factor-

ization problem, code-based problems, and lattice-based problems in the StdM.
4. We achieve the first CK+ secure AKE protocol based on the DH assumption or its variant

in the StdM without knowledge assumptions.
5. We achieve the first id-CK+ secure ID-AKE protocols based on the hardness of bilinear

pairing problems, and lattice-based problems in the StdM.

The proposed generic construction can allow a hybrid instantiation; that is, the initiator
and the responder can use different KEMs under different assumptions. For example, the
initiator uses a factoring-based KEM while the responder uses a lattice-based KEM.

2 Security models

In this section, we recall the CK+ model that was introduced by [43]. We show a model
specified to two pass protocols for simplicity. It can be trivially extended to any round
protocol. Also, we show the id-CK+ model as an extension of the CK+ model.

Throughout this paper we use the following notations. If Set is a set, then by m ∈R Set
we denote that m is sampled uniformly from Set. If ALG is an algorithm, then by y ←
ALG(x; r) we denote that y is output by ALG on input x and randomness r (if ALG is
deterministic, r is empty).

2.1 CK+ versus eCK

As indicated in Table 1, the CK+ model captures all non-trivial patterns of exposure of static
and ephemeral secret keys. The eCK model [46], which is a variant of the CK model [17],
also captures all non-trivial patterns of exposure, as in Table 1. Since the CK+ model captures
all non-trivial patterns of exposure of static and ephemeral secret keys, the CK+ model can
theoretically be seen as a completion of the AKE security model.

InTable 1, the six cases inDefinition 2 are listed, and these six cases coverwPFS, resistance
to KCI, and MEX as follows: Cases 2-(a), 2-(c), and 2-(f) capture KCI, since the adversary
obtains the static secret key of one party and the ephemeral secret key of the other party of the
test session. Case 2-(e) captures wPFS, since the adversary obtains the static secret keys of

123

474 A. Fujioka et al.

Table 1 Classification of attacks and proposed CK+ model [43] and eCK model [46]

Cases in Definition 2 sskA eskA sskB eskB Attack type CK+ model eCK model

2-(a) r ok ok n KCI � �
2-(b) ok r ok n MEX � �
2-(c) r ok ok r KCI � �
2-(d) ok r ok r MEX � �
2-(e) r ok r ok wPFS � �
2-(f) ok r r ok KCI � �
2-(*) means the corresponding case in Definition 2, sskA means the static secret key of owner A of test session
sid∗, sskB means the static secret key of peer B of test session sid∗, eskA means the ephemeral secret key of
test session sid∗, eskB means the ephemeral secret key of the matching session sid∗, ok means the secret key
is not revealed, r means the secret key may be revealed, n means no matching session exists, � means that
the model captures the attack

Table 2 Comparison of CK+
model [43] and eCK model [46]

�/χ means that the model
does/does not capture the attack

CK+ model
[43]

eCK model
[46]

All non-trivial key exposure � �
Session state reveal � χ

Adaptive key exposure χ �

both parties of the test session. Cases 2-(b), 2-(d) capture MEX, since the adversary obtains
the ephemeral secret keys of both parties of the test session.

The main difference between the CK+ model and the eCK model is that the CK+ model
captures the session state reveal attack, but the eCKmodel does not. Thus, we adopt the CK+
model, which is stronger than the eCK model from the viewpoint of the session state reveal
attack, in this paper.

Notice that the timing of the static and ephemeral key reveal differs in the eCK and CK+
models. In the eCK model, an adversary can issue the static and ephemeral key reveal query
adaptively. In contrast, in the CK+ model, an adversary can issue a corrupt query to obtain
the static key, and the ephemeral key is given to the adversary when it is determined. We
summarize this in Table 2.

2.2 CK+ security model

We denote a party by Ui , and party Ui and other parties are modeled as probabilistic
polynomial-time (PPT) Turing machines w.r.t. security parameter κ . For partyUi , we denote
static secret (public) key by si (Si) and ephemeral secret (public) key by xi (Xi). Party Ui

generates its own keys, si and Si , and the static public key Si is linked with Ui ’s identity
in some systems like PKI.2 The maximum number of parties and sessions is polynomially
bounded in the security parameter.

2 Static public keys must be known to both parties in advance. They can be obtained by exchanging them
before starting the protocol or by receiving them from a certificate authority. This situation is common for all
PKI-based AKE schemes.

123

Strongly secure authenticated key exchange 475

2.2.1 Session

An invocation of a protocol is called a session. Session activation is done by an incoming
message of the forms (Π, I,UA,UB) or (Π,R,UB ,UA, XA), where we equate Π with a
protocol identifier, I and R with role identifiers, andUA and UB with user identifiers. IfUA

is activated with (Π, I,UA,UB), then UA is called the session initiator. If UB is activated
with (Π,R,UB ,UA, XA), thenUB is called the session responder. The initiatorUA outputs
XA, then may receive an incoming message of the forms (Π, I,UA,UB , XA, XB) from the
responder UB , UA then computes the session key SK if UA received the message. On the
contrary, the responder UB outputs XB , and computes the session key SK.

IfUA is the initiator of a session, the session is identified by sid = (Π, I,UA,UB , XA) or
sid = (Π, I,UA,UB , XA, XB). If UB is the responder of a session, the session is identified
by sid = (Π,R,UB ,UA, XA, XB). We say that UA is the owner of session sid, if the third
coordinate of session sid isUA. We say thatUA is the peer of session sid, if the fourth coordi-
nate of session sid isUA. We say that a session is completed if its owner computes the session
key. The matching session of (Π, I,UA,UB , XA, XB) is session (Π,R,UB ,UA, XA, XB)

and vice versa.

2.2.2 Adversary

The adversary A, which is modeled as a probabilistic polynomial-time Turing machine,
controls all communications between parties including session activation by performing the
following adversary query.

– Send(message): Themessagehas oneof the following forms: (Π, I,UA,UB), (Π,R,UB ,

UA, XA), or (Π, I,UA,UB , XA, XB). The adversary A obtains the response from the
party.

To capture exposure of secret information, the adversaryA is allowed to issue the following
queries.

– SessionKeyReveal(sid): The adversaryA obtains the session key SK for the session sid
if the session is completed.

– SessionStateReveal(sid): The adversary A obtains the session state of the owner of
session sid if the session is not completed (the session key is not established yet). The
session state includes all ephemeral secret keys and intermediate computation results
except for immediately erased information but does not include the static secret key.

– Corrupt(Ui): This query allows the adversaryA to obtain all information of the partyUi .
If a party is corrupted by a Corrupt(Ui , Si) query issued by the adversaryA, then we call
the party Ui dishonest. If not, we call the party honest.

2.2.3 Freshness

For the security definition, we need the notion of freshness.

Definition 1 (Freshness) Let sid∗ = (Π, I,UA,UB , XA, XB) or (Π,R,UA,UB , XB , XA)

be a completed session between honest usersUA and UB . If the matching session exists, then
let sid∗ be the matching session of sid∗. We say session sid∗ is fresh if none of the following
conditions hold:

123

476 A. Fujioka et al.

1. The adversaryA issuesSessionKeyReveal(sid∗), orSessionKeyReveal(sid∗) if sid∗
exists,

2. sid∗ exists and the adversary A makes either of the following queries

– SessionStateReveal(sid∗) or SessionStateReveal(sid∗),

3. sid∗ does not exist and the adversary A makes the following query

– SessionStateReveal(sid∗).

2.2.4 Security experiment

For the security definition, we consider the following security experiment. Initially, the adver-
saryA is given a set of honest users and makes any sequence of the queries described above.
During the experiment, the adversary A makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈U {0, 1}, and return
the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversary A makes a guess b′. The adversary A wins
the game if the test session sid∗ is still fresh and if the guess of the adversary A is correct,
i.e., b′ = b. The advantage of the adversary A in the AKE experiment with the PKI-based
AKE protocol Π is defined as

AdvAKEΠ (A) = Pr[A wins] − 1

2
.

We define the security as follows.

Definition 2 (Security for PKI-based AKE) We say that a PKI-based AKE protocol Π is
secure in the CK+ model if the following conditions hold:

1. If two honest parties completematching sessions, then, exceptwith negligible probability,
they both compute the same session key.

2. For any PPT bounded adversaryA, AdvAKEΠ (A) is negligible in security parameter κ for
the test session sid∗,

(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to A.
(b) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given to A.
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral secret

key of sid∗ are given to A.
(d) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral secret key of

sid∗ are given to A.
(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret key

of the peer of sid∗ are given to A.
(f) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret key of the

peer of sid∗ are given to A.

Note that the items 2.a, 2.c, and 2.f correspond to resistance to KCI, item 2.e corresponds
to wPFS, and items 2.b and 2.d correspond to resistance to MEX.

123

Strongly secure authenticated key exchange 477

2.3 id-CK+ security model

The id-CK+ security model for ID-AKE is similarly defined as the CK+ model. There are
some differences between two models as follows:

– The KGC generates the master secret key and public parameter.
– Static secret keys of parties are generated by the KGC with the master secret key and

IDs.
– An adversary may reveal the master secret key according to mFS.

Formulations of sessions, adversarial oracle queries, and freshness are not changed with
the CK+ model. To capture mFS, we modify the definition of security experiment.

Definition 3 (Security for ID-AKE) We say that a ID-AKE protocol Π is secure in the
id-CK+ model if the following conditions hold:

1. If two honest parties completematching sessions, then, exceptwith negligible probability,
they both compute the same session key.

2. For any PPT adversary A, AdvID-AKEΠ (A) is negligible in security parameter κ for the
fresh test session sid∗,

(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to A.
(b) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given to A.
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral secret

key of sid∗ are given to A.
(d) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral secret key of

sid∗ are given to A.
(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret key

of the peer of sid∗ are given to A.
(f) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret key of the

peer of sid∗ are given to A.
(g) if sid∗ exists, the master secret key msk is given to A.

Note that the items 2.a, 2.c, and 2.f correspond to resistance to KCI, item 2.e corresponds
to wPFS, items 2.b and 2.d correspond to resistance to MEX, and item 2.g corresponds to
mFS.

3 Generic AKE construction from KEM without random oracles

In this section, we propose a generic construction of CK+-secure AKE from KEM.

3.1 Preliminaries

3.1.1 Security notions of KEM schemes

Here, we recall the definition of IND-CCA and IND-CPA security for KEM, andmin-entropy
of KEM keys as follows.

Definition 4 (Model for KEM Schemes) A KEM scheme consists of the following 3-tuple
(KeyGen, EnCap, DeCap):

123

478 A. Fujioka et al.

(ek, dk) ← KeyGen(1κ , rg) : a key generation algorithm which on inputs 1κ and rg ∈
RSG , where κ is the security parameter and RSG is a ran-
domness space, outputs a pair of keys (ek, dk).

(K ,CT) ← EnCapek(re) : an encryption algorithmwhich takes as inputs encapsulation
key ek and re ∈ RSE , outputs session key K ∈ KS and
ciphertext CT ∈ CS, where RSE is a randomness space,
KS is a session key space, and CS is a ciphertext space.

K ← DeCapdk(CT) : a decryption algorithm which takes as inputs decapsulation
key dk and ciphertext CT ∈ CS, and outputs session key
K ∈ KS.

Definition 5 (IND-CCA and IND-CPA Security for KEM) A KEM scheme is IND-
CCA-secure for KEM if the following property holds for security parameter κ; For
any PPT adversary A = (A1,A2), Advind−cca = |Pr[rg ← RSG; (ek, dk) ←
KeyGen(1κ , rg); (state) ← ADO(dk,·)

1 (ek); b ← {0, 1}; re ← RSE ; (K ∗
0 ,CT ∗

0) ←
EnCapek(re); K ∗

1 ← K; b′ ← ADO(dk,·)
2 (ek, (K ∗

b ,CT ∗
0), state); b′ = b] − 1/2| ≤

negl, whereDO is the decryption oracle,K is the space of session key and state is state infor-
mation thatA wants to preserve fromA1 to A2.A cannot submit the ciphertext CT = CT ∗

0
to DO.

We say a KEM scheme is IND-CPA-secure for KEM if A does not access DO.

Definition 6 (Min-Entropy of KEM Key) A KEM scheme is k-min-entropy KEM if for any
ek, distribution DKS of variable K defined by (K ,CT) ← EnCapek(re), distribution Dpub

of public information and random re ∈ RSE , H∞(DKS |Dpub) ≥ k holds, where H∞
denotes min-entropy.

3.1.2 Security notion of key derivation function

Let KDF : Salt × Dom → Rng be a function with finite domain Dom, finite range Rng,
and a space of non-secret random salt Salt .

Definition 7 (Key Derivation Function [33])We say functionKDF is a KDF if the following
condition holds for a security parameter κ: For any PPT adversary A and any distribution
DRng over Rng with H∞(DRng) ≥ κ, |Pr[y ∈R Rng; 1 ← A(y)]−Pr[x ∈R Dom; s ∈R

Salt; y ← K DF(s, x); 1 ← A(y)]| ≤ negl.

For example, concrete constructions of such a computationally secure KDF are given in
[27,44] from a computational extractor and a PRF.

3.1.3 Security notion of pseudo-random function

Let κ be a security parameter and F = {Fκ : Domκ ×FSκ → Rngκ }κ be a function family
with a family of domains {Domκ }κ , a family of key spaces {FSκ }κ and a family of ranges
{Rngκ }κ .
Definition 8 (Pseudo-Random Function) We say that function family F = {Fκ }κ is a PRF
family if for any PPT distinguisher D, Advprf = |Pr[1 ← DFκ (·)] − Pr[1 ← DRFκ (·)]| ≤
negl, where RFκ : Domκ → Rngκ is a truly random function.

123

Strongly secure authenticated key exchange 479

3.2 Construction

Our construction (GC) is based on an IND-CCA secure KEM, an IND-CPA secure KEM,
PRFs, and a KDF.While the requirements for the underlying building blocks are not stronger
than those for the previous generic construction [12,13],GC achieves stronger security (i.e.,
CK+ security) without random oracles.

3.2.1 Necessity of min-entropy of KEM key

In the BCGNP construction, a KEM scheme is only assumed to be IND-CCA. However, it is
not enough to prove the security. Both parties derive the session key by applying decapsulated
KEM keys to a strong randomness extractor before applying them to PRFs. This extractor
guarantees to output a statistically indistinguishable value from a uniform randomly chosen
element from the same space. It requires as input a (public) seed and a KEM session key with
min-entropy κ , where κ is a security parameter. IND-CCA states that no PPT adversary can
distinguish the KEM key from a random element, but this does not directly guarantee min-
entropy of the KEM session key. Thus, we must also assume that min-entropy of the KEM
session key is equal or larger than κ . This property is not very strong; almost all IND-CCA
secure schemes satisfy it.Wewill discuss later about this property of concrete KEM schemes.

Also, we can improve the efficiency of the session key derivation procedure of the BCGNP
construction by using a KDF instead of a strong randomness extractor. On input a value
having sufficient min-entropy, a strong randomness extractor outputs a value which is sta-
tistically indistinguishable from a uniformly chosen random value. Indeed, such statistical
indistinguishability is not necessary to prove the security of our construction.Computational
indistinguishability is sufficient, and the KDF [33] is suitable. Such a technique is also used
in [64,65].

3.2.2 Design principle

The main ideas to achieve CK+ security are to use the twisted PRF trick and session-specific
key generation.

First, we have to consider resistance to MEX. The most awkward pattern of MEX is the
disclosure of ephemeral secret keys of the initiator and the responder. IfweuseKEMnaturally,
all randomness used to generate ciphertexts is exposed as ephemeral secret keys; thus, the
adversary can obtain encrypted messages without knowing secret keys. Hence, we have to
avoid using ephemeral secret keys as randomness of KEM directly. A possible solution is to
generate randomness from the static secret key as well as the ephemeral secret key by using a
technique such as the ordinary NAXOS trick [46]. Though this trick leads to security against
exposure of ephemeral secret keys, the trick must apply an RO to the concatenation of the
static and ephemeral secret keys, and it uses the output as a quasi-ephemeral secret key. It is
unsuitable for our purpose to construct secure protocols in the StdM. Thus, we use a trick to
achieve the same properties as the NAXOS trick but without ROs. We call it the twisted PRF
trick.3 This trick uses two PRFs (F, F ′) with reversing keys; we choose two ephemeral keys
(r, r ′) and compute Fσ (r) ⊕ F ′

r ′(σ ′), where σ and σ ′ are static secret keys. The twisted PRF
trick is especially effective in the following two scenarios: exposure of both ephemeral secret
keys of the initiator and the responder, and exposure of the static secret key of the initiator and
the ephemeral secret key of the responder (i.e., corresponding to KCI). If (r, r ′) is exposed,

3 A similar trick is used in the Okamoto AKE scheme [56].

123

480 A. Fujioka et al.

Fig. 1 Generic construction GC

Fσ (r) cannot be computed without knowing σ . Similarly, if σ and σ ′ are exposed, F ′
r ′(σ ′)

cannot be computed without knowing r ′. In our KEM-based generic construction, the output
of the twisted PRF is used as randomness for the encapsulation algorithm.

Next, we have to consider the scenario in which static secret keys are exposed as the
attack scenario in wPFS. We cannot achieve a CK+ secure scheme by any combination of
KEMs using static secret keys as decapsulation keys against exposure of both static secret
keys of the initiator and the responder because an adversary can obtain all information that
the parties can obtain by using static secret keys. Our solution is to generate session-specific
decapsulation and encapsulation keys. The initiator sends the temporary encapsulation key
to the responder, the responder encapsulates a KEM key with the temporary encapsulation
key, and the initiator decapsulates the ciphertext. Since this procedure does not depend on the
static secret keys, the KEM key is hidden even if both static secret keys of the initiator and
the responder are exposed. Note that security of KEM for temporary use only requires IND-
CPA.The session-specific key generation is effective for achievingwPFS. Since the responder
must wait the session-specific encapsulation key from the initiator, our construction is not
one-round protocol (Fig. 1).

As the BCGNP construction [12,13], we use IND-CCA secure KEM schemes to exchange
ciphertexts. The CCA security is necessary to simulate SessionStateReveal queries in the
security proof. When we prove security in the case where ephemeral secret keys are exposed,
the simulator needs to embed the challenge ciphertext in the ephemeral public key in the test
session. Then, the static secret key to decrypt the challenge ciphertext is not known; that is, the
simulator must respond to the SessionStateReveal query for a session owned by the same
parties as the test session without knowing the static secret key. Hence, the simulator needs
the power of the decryption oracle to obtain intermediate computation results corresponding
to the SessionStateReveal query.

3.2.3 Generic construction GC

The protocol of GC from KEMs (KeyGen, EnCap, DeCap) and (wKeyGen, wEnCap,

wDeCap) is as follows.

123

Strongly secure authenticated key exchange 481

Public parameters Let κ be the security parameter, F, F ′ : {0, 1}∗ × FS → RSE , and
G : {0, 1}∗ × FS → {0, 1}κ be pseudo-random functions, where FS is the key space of
PRFs (|FS| = κ), RSE is the randomness space of encapsulation algorithms, and RSG is
the randomness space of key generation algorithms, and let K DF : Salt ×KS → FS be a
KDF with a non-secret random salt s ∈ Salt , where Salt is the salt space and KS is a space
of KEM session keys. These are provided as some of the public parameters.

Secret and public keys Party UP randomly selects σP ∈R FS, σ ′
P ∈R {0, 1}κ and

r ∈R RSG , and runs (ekP , dkP) ← KeyGen(1κ , r). Party UP ’s SSK and SPK are
((dkP , σP , σ ′

P), ekP).

Key exchange Party UA with secret and public keys ((dkA,1, σA, σ ′
A), ekA) as the initiator,

and party UB with secret and public keys ((dkB,1, σB , σ ′
B), ekB) as the responder, perform

the following two-pass key exchange protocol.

1. PartyUA randomly chooses ephemeral secret keys rA ∈R {0, 1}κ , r ′
A ∈R FS and rT A ∈

RSG . Party UA computes (CTA, KA) ← EnCapekB (FσA (rA) ⊕ F ′
r ′
A
(σ ′

A)) 4 and

(ekT , dkT) ← wKeyGen(1κ , rT A) and sends (UA,UB ,CTA, ekT) to party UB .
2. Upon receiving (UA,UB ,CTA, ekT), party UB chooses the ephemeral secret keys

rB ∈R {0, 1}κ , r ′
B ∈R FS and rT B ∈R RSE , computes (CTB , KB) ←

EnCapekA (FσB (rB) ⊕ F ′
r ′
B
(σ ′

B)) and (CTT , KT) ← wEnCapekT (rT B), and sends

(UA,UB ,CTB , CTT) to partyUA. PartyUB computes KA ← DeCapdkB (CTA), K ′
1 ←

K DF(s, KA), K ′
2 ← K DF(s, KB) and K ′

3 ← K DF(s, KT), sets the session tran-
script ST = (UA,UB , ekA, ekB , CTA, ekT , CTB , CTT) and the session key SK =
GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), completes the session, and erases all session states.

3. Upon receiving (UA,UB ,CTB ,CTT), party UA computes KB ← DeCapdkA (CTB),

KT ← wDeCapdkT (CTT), K ′
1 ← K DF(s, KA), K ′

2 ← K DF(s, KB) and K ′
3 ←

K DF(s, KT), sets the session transcript ST = (UA,UB , ekA, ekB , CTA, ekT , CTB ,

CTT) and the session key SK = GK ′
1
(ST) ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), completes the

session, and erases all session states.

The session state of a session owned by UA contains ephemeral secret keys (rA, rT A),
encapsulated KEM key KA and ad-hoc decryption key dkT . Other information that is com-
puted after receiving themessage from the peer is immediately erased when the session key is
established. Similarly, the session state of a session owned byUB contains ephemeral secret
keys (rB , rT B) and encapsulated KEM keys KB and KT .

Other intermediate values (e.g., decapsulated KEM keys, and outputs of KDF) are not
contained in session state. After receiving the message from the peer all intermediate compu-
tations are executed without stopping, and such values are immediately erased after finishing
the session. Boyd et al. [12] showed that protocols based on KEM would be trivially broken
if an adversary learned these values by SessionStateReveal.

Ephemeral secret keys could be erased after generating encapsulatedKEMkeys. However,
in our construction, it is enough to erase such information on the end of the session (i.e., on
generating the session key). Hence, we deal with ephemeral secret keys as a part of session
state.

If a SessionStateReveal query is posed to a non-completed session, rA, rT A, KA and
dkT (or rB , rT B , KB and KT) are returned.

4 Actually, FσA (rA)⊕F ′
r ′A

(σ ′
A) can be replaced with FσA (rA)⊕F ′

r ′A
(1κ). This modification has no influence

to the security proof.

123

482 A. Fujioka et al.

Remark 1 Obviously, we can use arbitrary combinations of KEM schemes in the generic
construction. This means that each party can rely on a different assumption from the peer.
Since our construction does not contain any direct operation between derivatives of KEM
schemes, it is no problem that randomness spaces, public keys, or ciphertext are distinct from
each other.

3.3 Security

We show the following theorem.

Theorem 1 If (KeyGen,EnCap,DeCap) is IND-CCA secure KEM and is κ-min-entropy
KEM, (wKeyGen,wEnCap, wDeCap) is IND-CPA secure KEM and is κ-min-entropy
KEM, F, F ′,G are PRFs, and K DF is a KDF, then AKE construction GC is CK+-secure.

The proof of Theorem 1 is shown in Appendix 1. Here, we give an overview of the security
proof.

We have to consider the following four exposure patterns in the CK+ security model
(matching cases):

2-(c) the static secret key of the initiator and the ephemeral secret key of the responder
2-(d) both ephemeral secret keys
2-(e) both static secret keys
2-(f) the ephemeral secret key of the initiator and the static secret key of the responder

In case 2-(c), KA is protected by the security of CTA because r ′
A is not exposed; therefore,

F ′
r ′
A
(σ ′

A) is hidden and dkB is not exposed. In case 2-(d), KA and KB are protected by the secu-

rity of CTA and CTB because σA and σB are not exposed; therefore, FσA (rA) and FσB (rB)

are hidden and dkA and dkB are not exposed. In case 2-(e), KT is protected by the secu-
rity of CTT because dkT and rT B are not exposed. In case 2-(f), KB is protected by the
security of CTB because r ′

B is not exposed; therefore, F ′
r ′
B
(σ ′

B) is hidden and dkA is not

exposed. Then, we transform the CK+ security game since the session key in the test session
is randomly distributed. First, we change part of the twisted PRF in the test session into a
random function because the key of part of the twisted PRF is hidden from the adversary;
therefore, the randomness of the protected KEM can be randomly distributed. Second, we
change the protected KEM key into a random key for each pattern; therefore, the input of
K DF is randomly distributed and has sufficient min-entropy. Third, we change the output
of K DF into randomly chosen values. Finally, we change one of the PRFs (corresponding
to the protected KEM) into a random function. Therefore, the session key in the test session
is randomly distributed; thus, there is no advantage to the adversary. We can show a similar
proof in non-matching cases.

3.4 Instantiations

In this section, from our generic construction GC, we provide AKE protocols as concrete
instantiations based on various problems.

3.4.1 Diffie–Hellman-based

We can achieve various AKE schemes as concrete instantiations based on the hardness of
the DH problem and its variants. These are derived from the generic construction GC in

123

Strongly secure authenticated key exchange 483

Table 3 Comparison of previous DH-based schemes and an instantiation of our scheme

Model Resource Assumption Computation
(#[multi,regular]-
exp.)

Communication
complexity

[43] CK+ ROM Gap DH & KEA1 [2,2] 2|p| 512

[56] eCK StdM DDH & πPRF [6,6] 9|p| 2,304

[12,13] CK & KCI StdM DDH [4,8] 6|p| 1,536

Ours CK+ StdM DDH [4,12] 8|p| 2,048

For concreteness the expected ciphertext overhead for a 128-bit implementation is also given. Note that
computational costs are estimated without any pre-computation technique

Sect. 3. For example, we can apply efficient IND-CCA KEM schemes to GC from the
decisional DH [21,45] (DDH), computational DH [35,36], hashed DH [41] and bilinear DH
assumptions [15].

We can easily show that these schemes have κ-min-entropy KEM keys. The KEM part
of the Cramer-Shoup PKE consists of gzr1 ∈ G, where G is a finite cyclic group of order
prime p, gz1 is part of ek, and r is uniformly chosen randomness, and |r | is 2κ . Thus, gzr1 has
min-entropy larger than κ . Similarly, other schemes are also κ-min-entropy KEM.

The significant advantage of our instantiations in the StdM is reasonable assumption. First,
HMQV satisfies the same security model as our construction. However, it requires the KEA1
assumption and relies on ROs. Since it has been criticized, in particular because the KEA1
assumption does not appear to be “efficiently falsifiable” as Naor put it [54], this assumption
is quite undesirable. Also, it was shown that there exist some protocols that are secure in
the ROM but are insecure if ROs are replaced by any specific function [16]. A disadvantage
of our construction to HMQV is that HMQV is a one-round protocol but our scheme is
not. One-round protocols mean that the initiator and the responder can send their messages
independently and simultaneously. Conversely, in our scheme, the responder must wait to
receive the message from the initiator. Next, the AKE scheme by Okamoto [56] is secure
in the StdM. However, it is not proved in the CK+ model and needs to assume existence of
πPRF. πPRF is a stronger primitive than ordinary PRF, and it is not known how to construct
πPRF concretely. On the contrary, our instantiations only require the standard notions of
KEM and PRF security. Moreover, the BCGNP construction [12,13] is secure in the StdM
with standard assumption. However, the security is not proved in the CK+ model.5 Thus,
DH-based AKE schemes from GC are first CK+ secure schemes in the StdM with standard
assumptions.

For example, our scheme can be instantiatedwith the Cramer-ShoupKEM [22] as an IND-
CCA KEM, and with the ElGamal KEM as an IND-CPA KEM under the DDH assumption.
Communication complexity (for two parties) of this instantiation is 8|p|, where |p| is the
length of a group element. Computational complexity (for two parties) of this instantiation
is 4 multi-exponentiations and 12 regular exponentiations (all symmetric operations such as
hash function/KDF/PRF and multiplications are ignored). We show a comparison between
this instantiation and previous schemes in Table 3.

5 The BCGNP construction with an additional exchange of a DH value (called Protocol 2 in [12,13]) can be
proved in the CK model, and it satisfies wPFS and resistance to KCI. We can extend the security of Protocol
2 to the CK+ security with the twisted PRF trick. If IND-CPA KEM in GC is instantiated with the ElGamal
KEM, our scheme is the same as Protocol 2 with the twisted PRF trick. Thus, our scheme can also be seen as
a generalization of the BCGNP construction.

123

484 A. Fujioka et al.

3.4.2 Factoring-based

We can achieve several new AKE protocols as concrete instantiations based on the hardness
of integer factorization and its variants such as the RSA problem.

Some instantiations in the StdM are based on the hardness of the integer factorization
problem. The Hofheinz-Kiltz PKE [37] and the Mei-Li-Lu-Jia PKE [51] are IND-CCA
secure in the StdM under the factoring assumption. Furthermore, by applying the fact [38]
that if a scheme is secure under the CDH assumption in Z

∗
N , it is also secure under the

factoring assumption, we can obtain more efficient factoring-based KEM schemes from
IND-CCA secure KEM under the CDH assumption such as [35,36]. Thus, we can obtain
first CK+ secure AKE protocols in the StdM under the integer factorization assumption.
Also, we have other instantiations based on the hardness of RSA inversion. By applying
the Chevallier-Mames-Joye PKE [20] and the Kiltz-Mohassel-O’Neill PKE [42], which are
IND-CCA secure in the StdM under the instance-independent RSA assumption to GC, we
can obtain first CK+ secure AKE protocols in the StdM under the RSA-type assumption.

We can regard a message in PKE as a KEM key when the message space is larger than κ

and messages are uniformly chosen randomness. In this case, it is obvious that such a KEM
scheme is κ-min-entropy KEM.

3.4.3 Code-based

We can achieve newAKE protocols as concrete instantiations based on code-based problems.
For the AKE protocol in the StdM, we can apply Dowsley et al.’s PKE [29] that is IND-

CCA secure in the StdM under the McEliece and LPN assumptions toGC. (See Ref. [29] for
definitions of these assumptions.) This is the first CK+ secure AKE protocol without ROs
based on a code-based problem.

As for factoring-based PKE, code-based PKE schemes are also κ-min-entropyKEMwhen
the message space is larger than κ and messages are uniformly chosen randomness.

Remark 2 Bernstein et al. [7] estimated the size of a public key of the original McEliece
at about 2 Mbits for 128-bit security. If we employ “wild” McEliece by Bernstein et al. [6]
rather than the original McEliece PKE, the size of the public key is reduced to 750K bits. Our
generic construction contains the public key of the KEM from the temporary key generation
in the first roundmessage. If the randomizedMcEliece PKE byNojima et al. [55] is employed
as the IND-CPA secure KEM, which is IND-CPA secure and requires the same size for the
public key as the original, the communication complexity of the resultant AKE scheme is
high. However, the way to construct an efficient and CK+ secure AKE scheme from codes
is an open problem.

3.4.4 Lattice-based

We also achieve new concrete AKE protocols based on the worst-case hardness of the
(ring-)LWE problems derived from our generic constructions.

PKE schemes [1,2,18,49,52,57,59,62] which are IND-CCA secure in the StdM are easily
converted into IND-CCA secure KEM schemes. Also, PRFs are obtained from one-way
functions [3,48,53,58] and directly constructed from the (ring-)LWE assumptions with sub-
exponential parameters [4]. Thus, by applying these building blocks toGC, we can obtain first
CK+ secure AKE protocols in the StdM under the (ring-)LWE assumption. Unfortunately,
the obtained AKE protocols are still theoretical since these PKE schemes require huge keys,

123

Strongly secure authenticated key exchange 485

say, of the quadratic or cubic order of the security parameter, and thus, an efficient and direct
construction of PRFs from the (ring-)LWE assumption with polynomial parameters has not
yet been achieved.

As for factoring-based PKE, lattice-based PKE schemes are also κ-min-entropy KEM
when the message space is larger than κ and messages are uniformly chosen randomness.

4 Generic ID-AKE construction from IB-KEM without random oracles

In this section, we propose a generic construction of id-CK+-secure ID-AKE from IB-KEM.

4.1 Preliminaries

Here, we recall the definition of IND-sID-CCA/CPA security (selective-ID IND-CCA/CPA
security) for IB-KEM, and min-entropy of KEM keys as follows.

Definition 9 (Model for ID-based KEM Schemes) A IB-KEM scheme consists of the fol-
lowing 4-tuple (MKeyGen,KeyDer,EnCap,DeCap):

(mpk,msk) ← MKeyGen(1κ , rg) : a key generation algorithm which on inputs 1κ and rg
∈ RSG , where κ is the security parameter and RSG

is a randomness space, outputs master public key and
secret key (mpk,msk).

dk ← KeyDer(mpk,msk, I D, rg) : a key derivation algorithm which on inputs master
public and secret keys (mpk,msk), identity string
ID and rg ∈ RSG ,whereRSG is a randomness space,
outputs decapsulation key dk corresponding to ID.

(K ,CT) ← EnCapmpk,I D(re) : an encryption algorithm which takes as inputs master
public key mpk, identity string ID, and re ∈ RSE ,
outputs session key K ∈ KS and ciphertextCT ∈ CS,
where RSE is a randomness space, KS is a session
key space, and CS is a ciphertext space.

K ← DeCapdk(CT) : a decryption algorithmwhich takes as inputs decapsu-
lation key dk and ciphertextCT ∈ CS, outputs session
key K ∈ KS.

Here, we recall the definition of IND-sID-CCA/CPA security (selective-ID IND-
CCA/CPA security) for IB-KEM as follows.

Definition 10 (IND-CCA/CPA security for ID-based KEM) A IB-KEM scheme is (t, ε)-
IND-ID-CCA-secure for IB-KEM if the following property holds for security parameter
κ; For any adversary A = (A1,A2) with a time-complexity at most t, Advid−ind−cca =
|Pr[(mpk,msk) ← MKeyGen(1κ , rg); (I D∗, state) ← ADO(·,·),KO(msk,·)

1 (mpk); b ←
{0, 1}; (K ∗

0 ,CT ∗
0) ← EnCapmpk,I D∗(r); K ∗

1 ← K; b′ ← ADO(·,·),KO(msk,·)
2 (mpk,

(K ∗
b ,CT ∗

0), state); b′ = b] − 1/2| ≤ ε, where DO(I D,CT) is the decryption oracle,
KO(msk, I D) is the key derivation oracle,K is the space of session key, state is state infor-
mation which A wants to preserve from A1 to A2 and A runs in at most t steps. A cannot
make query DO(I D∗,CT ∗

0), and cannot make query KO(msk, I D∗).
We say IB-KEMscheme is IND-CPA secure if adversaryA cannot access to the decryption

oracle DO.

123

486 A. Fujioka et al.

We say IB-KEM scheme is IND-sID-CCA/CPA secure if adversary A outputs target
identity string I D∗ at the beginning of the game.

We define the notion of k-min-entropy for KEM keys as follows.

Definition 11 (Min-Entropy of KEM Keys)A IB-KEM scheme is k-min-entropy IB-KEM if
for any I D, mpk, distribution DKS of variable K defined by (K ,CT) ← EnCapmpk,I D(re),
distribution Dpub of public information and random re ∈ RSE , H∞(DKS |Dpub) ≥ k holds,
where H∞ denotes min-entropy.

4.2 Construction

We propose a generic construction ID-GC of id-CK+ secure ID-AKE without ROs from
IND-sID-CCA secure IB-KEM, IND-CPA secure KEM, PRFs, and a KDF.

4.2.1 Design principle

To modify the generic construction GC of PKI-based AKE, we must remove static public
keys from the protocol. Thus, we use IND-sID-CCA secure IB-KEM instead of IND-CCA
secure KEM. In initialization, each party receives a static secret key based on the ID from
the KGC. To send CTA or CTB each party encapsulates a KEM session key with the ID of
the peer by using the encapsulation algorithm of IB-KEM. Hence, static public keys are not
necessary. IND-CPA secure KEM for session-specific key generation can be still used in the
ID-based setting because it is not necessary to put any information to static public keys in
order to generate ekT and CTT .

The reason that IND-sID-CCA security is enough for ID-AKE (i.e., the full-ID security is
not necessary) is that our model supposes that the maximum number of parties and session is
polynomially bounded in the security parameter. In the security proof (Appendix 2), the target
party and session can be fixed before the hybrid experiment using IND-sID-CCA security.
Hence, the ID of the target party is known to the adversary for IB-KEM, and IND-sID-CCA
security is enough (Fig. 2).

4.2.2 Generic construction ID-GC

The protocol of ID-GC from IB-KEM (MKeyGen,KeyDer,EnCap,DeCap) and KEM
(wKeyGen, wEnCap,wDeCap) is provided as follows.

Public parameters Let κ be the security parameter, F, F ′ : {0, 1}∗ × FS → RSE , and
G : {0, 1}∗ × FS → {0, 1}κ be pseudo-random functions, where FS is the key space of
PRFs (|FS| = κ), RSE is the randomness space of encapsulation algorithms, and RSG is
the randomness space of key generation algorithms, and let K DF : Salt ×KS → FS be a
KDF a non-secret random salt s ∈ Salt , where Salt is the salt space and KS is a space of
KEM session keys. These are provided as some of the public parameters.

Master secret and public keys The KGC randomly selects r ∈ RSG , and generates master
public and secret keys (mpk,msk) ← MKeyGen(1κ , r), where RSG is the randomness
space ofMKeyGen.

123

Strongly secure authenticated key exchange 487

Fig. 2 Generic construction ID-GC

Secret key For party UP , the KGC randomly selects σP ∈R FS, σ ′
P ∈R {0, 1}κ and r ′ ∈

RSG , and runs the key derivation algorithm dkP ← KeyDer(mpk,msk,UP , r ′), where
RSG is the randomness space of KeyDer. Party UP ’s static secret key is (dkP , σP , σ ′

P).

Key exchange Party UA with secret and public keys ((dkA,1, σA, σ ′
A), ekA) as the initiator,

and party UB with secret and public keys ((dkB,1, σB , σ ′
B), ekB) as the responder, perform

the following two-pass key exchange protocol.

1. PartyUA randomly chooses ephemeral secret keys rA ∈R {0, 1}κ , r ′
A ∈R FS and rT A ∈

RSG . Party UA computes (CTA, KA) ← EnCapmpk,UB
(FσA (rA) ⊕ F ′

r ′
A
(σ ′

A)) and

(ekT , dkT) ← wKeyGen(1κ , rT A) and sends (UA,UB ,CTA, ekT) to party UB .
2. Upon receiving (UA,UB ,CTA, ekT), partyUB chooses the ephemeral secret keys rB ∈R

{0, 1}κ , r ′
B ∈R FS and rT B ∈R RSE , computes (CTB , KB) ← EnCapmpk,UA

(FσB

(rB) ⊕ F ′
r ′
B
(σ ′

B)) and (CTT , KT) ← wEnCapekT (rT B), and sends (UA,UB ,CTB ,

CTT) to partyUA. PartyUB computes KA ← DeCapdkB (CTA), K ′
1 ← K DF(s, KA),

K ′
2 ← K DF(s, KB) and K ′

3 ← K DF(s, KT), sets the session transcript ST =
(UA,UB , ekA, ekB , CTA, ekT , CTB , CTT) and the session key SK = GK ′

1
(ST) ⊕

GK ′
2
(ST) ⊕ GK ′

3
(ST), completes the session, and erases all session states.

3. Upon receiving (UA,UB ,CTB ,CTT), party UA computes KB ← DeCapdkA (CTB),

KT ← wDeCapdkT (CTT), K ′
1 ← K DF(s, KA), K ′

2 ← K DF(s, KB) and K ′
3 ←

K DF(s, KT), sets the session transcript ST = (UA,UB , ekA, ekB , CTA, ekT , CTB ,

CTT) and the session key SK = GK ′
1
(ST) ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), completes the

session, and erases all session states.

The session state of a session owned by UA contains ephemeral secret keys (rA, rT A),
encapsulated KEM key KA and ad-hoc decryption key dkT . Other information that is com-
puted after receiving themessage from the peer is immediately erased when the session key is
established. Similarly, the session state of a session owned byUB contains ephemeral secret
keys (rB , rT B) and encapsulated KEM keys KB and KT .

123

488 A. Fujioka et al.

4.3 Security

The generic construction ID-GC is id-CK+ secure ID-AKE without random oracles as fol-
lows.

Theorem 2 If (MKeyGen,KeyDer,EnCap,DeCap) is IND-sID-CCA secure and κ-min-
entropy IB-KEM, (wKeyGen,wEnCap,wDeCap) is IND-CPA secure and κ-min-entropy
KEM, F, F ′,G are PRFs, and K DF is a KDF, then ID-AKE construction ID-GC is id-CK+
secure.

The proof of Theorem 2 is shown in Appendix 2. Here, we give an overview of the security
proof.

In addition to the case of Theorem 1, we have to consider exposure of the master secret
key according to Definition 3 in the id-CK+ security model: Other cases are almost same as
Theorem 1.

Ifmsk is revealed, dkA and dkB are also revealed, and an adversary can know KA and KB .
However, KT is protected by the security of CTT because dkT and rT B are not exposed
because these values are generated only from ephemeral secret keys. We can prove the case
by a similar way as Theorem 1.

4.4 Instantiations

In this section, from our generic construction ID-GC, we provide some ID-AKE protocols
as concrete instantiations based on the lattices and pairings.

4.4.1 Lattice-based instantiations

From our generic construction ID-GC in Sect. 4, we achieve new concrete ID-AKE protocols
from the (ring-)LWE assumption.6

The existing IND-sID-CPA secure HIBE schemes [1,18,47,49] in the StdM are easily
converted into IND-sID-CCA secure IBE schemes by the CHK conversion [10] and they
yield IND-sID-CCA secure IB-KEM schemes. Also, PRFs are obtained from one-way func-
tions [3,48,53,58] under the (ring-)LWE assumption with standard parameters and a direct
construction [4] from the (ring-)LWE assumption with sub-exponential parameters. Apply-
ing our generic construction ID-GC with these building blocks, we can obtain first id-CK+
secure ID-AKE protocols in the StdM under the (ring-)LWE assumption. We note that the
obtained IB-KEM scheme from [47] enjoys quasi-linear-time key-generation, encapsulation,
and decapsulation.

We show a comparison between this instantiation and previous schemes in Table 4.
We instantiate an IND-sID-CCA secure IBE with message space {0, 1}κ from the LWE
(resp. ring-LWE) assumption by applying the CHK conversion to the 2-level IND-sID-CPA
secure IBE scheme in [1,52] (resp. its ring-LWE version). Here, its ciphertext length is
|CTcca,LWE|, |CTcca,rLWE| = (m + 2κ log2(q) + κ) log2(q) + |σ | + |ovk| = Õ(κ).

We adopt the Regev encryption scheme [60] with message space {0, 1}κ (resp. the LPR10
encryption scheme [49]) as an IND-CPAsecurePKE from theLWE(resp. ring-LWE) assump-
tion. |PKcpa,LWE| = (m + κ)κ log2(q) = Õ(κ2) and |PKcpa,rLWE| = 2κ log2(q)Õ(κ).
|CTcpa,LWE| = (m + κ) log2(q) = Õ(κ) and |CTcpa,rLWE| = 2κ log2(q) = Õ(κ).

6 The hardness of the (ring-)LWE problems are reduced to the worst-case hardness of the (ideal) lattice
problems.

123

Strongly secure authenticated key exchange 489

Table 4 Comparison of previous lattice-based schemes and an instantiation of our scheme

Model Resource Assumption Communication complexity

[13] with [1,52] CK & KCI StdM LWE 2|CTcca,LWE| = Õ(κ)

[13] with [1,52] CK & KCI StdM Ring-LWE 2|CTcca,rLWE| = Õ(κ)

Ours CK+ StdM LWE 2|CTcca,LWE| + |PKcpa,LWE| +
|CTcpa,LWE| = Õ(κ2)

Ours CK+ StdM Ring-LWE 2|CTcca,rLWE|+|PKcpa,rLWE|+
|CTcpa,rLWE| = Õ(κ)

Let κ be the security parameter. Let q = poly(κ) and m = 3κ log2(q)

Table 5 Comparison of previous pairing-based schemes and an instantiation of our scheme

Model Resource Assumption Computation
(#[pairing,exp.])

Communication
complexity

[19] id-BR & KCI
& mFS

ROM BDH [4, 6] 2|p| 512

[39] id-eCK ROM BDH [4, 6] 2|p| 512

[30]a id-CK & KCI
& mFS

ROM Strong DH [0, 8] 4|p| 1,024

[31] id-eCK ROM Gap BDH [4, 6] 2|p| 512

[12,13] id-CK & KCI StdM DBDH [8, 10] 6|p| 1,536

Ours id-CK+ StdM DBDH & DDH [8, 14] 8|p| 2,048

For concreteness the expected ciphertext overhead for a 128-bit implementation is also given. Note that
computational costs are estimated without any pre-computation technique
a Non-pairing protocol

4.4.2 Pairing-based instantiations

From our generic construction ID-GC in Sect. 4, we can achieve various ID-AKE schemes
as concrete instantiations based on the hardness of the bilinear DH (BDH) problem and its
variants. For example,we can apply efficient IND-sID-CCAIB-KEMschemes to ID-GC from
the decisional BDH (DBDH), decisional linear (DLIN) or the DBDH Inversion (DBDHI) [8]
with the BCHK transformation [10].

We can easily show that these schemes are κ-min-entropy KEM. The KEM part of the
Boneh-Boyen IBE consists of e(g, ĝ)αβs ∈ GT , where GT is a finite cyclic bilinear group of
order prime p, e(g, ĝ)αβ is part of public parameters, and s is uniformly chosen randomness,
and |s| is larger than κ . Thus, e(g, ĝ)αβs has min-entropy larger than κ .

The significant advantage of our instantiations is security in the StdM. Most of previous
ID-AKE schemes [19,30,31,39] are proved in the ROM. Moreover, though the generic con-
struction of ID-AKE in [12,13] is secure in the StdM, its security is not proved in the id-CK+
model. Thus, pairing-based ID-AKE schemes from ID-GC are first id-CK+ secure schemes
in the StdM.

For example, our scheme can be instantiated with the Boyen-Mei-Waters ID-based
KEM [15] as an IND-sID-CCA KEM under the DBDH assumption, and with the ElGa-
mal KEM as an IND-CPA KEM under the DDH assumption. Communication complexity
(for two parties) of this instantiation is 8|p|, where |p| is the length of a group element.
Computational complexity (for two parties) of this instantiation is 8 pairings and 14 regular

123

490 A. Fujioka et al.

exponentiations (all symmetric operations such as hash function/KDF/PRF and multiplica-
tions are ignored). We show a comparison between this instantiation and previous schemes
in Table 5.

Appendix 1: Proof of Theorem 1

In the experiment of CK+ security, we suppose that sid∗ is the session identity for the test
session, and that there are N users and at most
 sessions are activated. Let κ be the security
parameter, and let A be a PPT (in κ) bounded adversary. Suc denotes the event that A wins.
We consider the following events that cover all cases of the behavior of A.

– Let E1 be the event that the test session sid∗ has no matching session sid
∗
, the owner of

sid∗ is the initiator and the static secret key of the initiator is given to A.
– Let E2 be the event that the test session sid∗ has no matching session sid

∗
, the owner of

sid∗ is the initiator and the ephemeral secret key of sid∗ is given to A.
– Let E3 be the event that the test session sid∗ has no matching session sid

∗
, the owner of

sid∗ is the responder and the static secret key of the responder is given to A.
– Let E4 be the event that the test session sid∗ has no matching session sid

∗
, the owner of

sid∗ is the responder and the ephemeral secret key of sid∗ is given to A.
– Let E5 be the event that the test session sid∗ has matching session sid

∗
, and both static

secret keys of the initiator and the responder are given to A.
– Let E6 be the event that the test session sid∗ has matching session sid

∗
, and both

ephemeral secret keys of sid∗ and sid∗ are given to A.
– Let E7 be the event that the test session sid∗ has matching session sid

∗
, and the static

secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given to A.
– Let E8 be the event that the test session sid∗ hasmatching session sid

∗
, and the ephemeral

secret key of sid∗ and the static secret key of the owner of sid∗ are given to A.

To finish the proof, we investigate events Ei ∧ Suc (i = 1, . . . , 8) that cover all cases of
event Suc.

Appendix 1.1: Event E1 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These
instances are gradually changed over seven hybrid experiments, depending on specific sub-
cases. In the last hybrid experiment, the session key in the test session does not contain
information of the bit b. Thus, the adversary clearly only output a random guess. We denote
these hybrid experiments by H0, . . . ,H6 and the advantage of the adversary A when partic-
ipating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for CK+ security
and in this experiment the environment forA is as defined in the protocol. Thus,Adv(A,H0)

is the same as the advantage of the real experiment.
Hybrid experiment H1: In this experiment, if session identities in two sessions are iden-

tical, the experiment halts.
When two ciphertexts from different randomness are identical and two public keys

from different randomness are identical, session identities in two sessions are also iden-
tical. In the IND-CCA secure KEM, such an event occurs with negligible probability. Thus,
|Adv(A,H1) − Adv(A,H0)| ≤ negl.

123

Strongly secure authenticated key exchange 491

Hybrid experiment H2: In this experiment, the experiment selects a partyUA and integer
i ∈ [1,
] randomly in advance. IfA poses Test query to a session except i-th session ofUA,
the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/N 2
, Adv
(A,H2) ≥ 1/N 2
 · Adv(A,H1).

Hybrid experiment H3: In this experiment, the computation of (CT ∗
A, K ∗

A) in the test
session is changed. Instead of computing (CT ∗

A , K ∗
A) ← EnCapekB (FσA (rA) ⊕ F ′

r ′
A
(σ ′

A)),

it is changed as (CT ∗
A, K ∗

A) ← EnCapekB (FσA (rA) ⊕ RF(σ ′
A)), where we suppose thatUB

is the intended partner of UA in the test session.
We construct a distinguisher D between PRF F∗ : {0, 1}∗ × FS → RSE and a random

function RF from A in H2 or H3. D performs the following steps.

Setup D chooses PRF F : {0, 1}∗ × FS → RSE and G : {0, 1}∗ × FS → {0, 1}κ ,
where FS is the key space of PRFs, and a KDF K DF : Salt × KS → FS with a non-
secret random salt s ∈ Salt . Also, D embeds F∗ into F ′. These are provided as a part
of the public parameters. Also, D sets all N users’ static secret and public keys. D selects
σP ∈R FS, σ ′

P ∈R {0, 1}κ and r ∈R RSG , and runs (ekP , dkP) ← KeyGen(1κ , r). Party
UP ’s SSK and SPK are ((dkP , σP , σ ′

P), ekP). UA’s static key (dkA, σA, σ ′
A) is given to A.

Next,D sets the ephemeral public key of i-th session ofUA (i.e., the test session) as follows:
D selects ephemeral secret keys r∗

A ∈ {0, 1}κ , r ′∗
A ∈ FS and r∗

T A ∈ RSG randomly. Then,D
poses σ ′

A to his oracle (i.e., F∗ or a random function RF) and obtains x ∈ RSE .D computes
(CT ∗

A, K ∗
A) ← EnCapekB (FσA (r

∗
A) ⊕ x) and (dk∗

T , ek∗
T) ← KeyGen(r∗

T A), and sets the
ephemeral public key (CT ∗

A, ek∗
T) of i-th session of UA.

Simulation D maintains the list LSK that contains queries and answers of
SessionKeyReveal. D simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): If P = A and the session is i-th session of UA, D returns
the ephemeral public key (CT ∗

A , ek∗
T) computed in the setup. Otherwise, D computes

the ephemeral public key (CTP , ekT) obeying the protocol, returns it and records
(�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)):D computes the ephemeral public key (CTP̄ ,CTT)

and the session key SK obeying the protocol, returns the ephemeral public key, and
records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in
the list LSK .

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, D records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Otherwise, D computes the session key SK obeying the protocol, and
records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the
list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, D returns an error message.
(b) Otherwise, D returns the recorded value SK .

5. SessionStateReveal(sid):D responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

6. Corrupt(UP): D responds the static secret key and all unerased session states of UP as
the definition.

123

492 A. Fujioka et al.

7. Test(sid): D responds to the query as the definition.
8. If A outputs a guess b′ = 0, D outputs that the oracle is the PRF F∗. Otherwise, D

outputs that the oracle is a random function RF .

Analysis For A, the simulation by D is same as the experiment H2 if the oracle is the PRF
F∗. Otherwise, the simulation by D is same as the experiment H3. Thus, if the advantage of
D is negligible, then |Adv(A,H3) − Adv(A,H2)| ≤ negl.

Hybrid experiment H4: In this experiment, the computation of K ∗
A in the test session is

changed again. Instead of computing (CT ∗
A , K ∗

A) ← EnCapekB (FσA (rA) ⊕ RF(σ ′
A)), it is

changed as choosing K ∗
A ← KS randomly, where we suppose thatUB is the intended partner

of UA in the test session.
We construct an IND-CCA adversary S from A in H3 or H4. S performs the following

steps.

Init S receives the public key ek∗ as a challenge.

Setup S chooses PRF F, F ′ : {0, 1}∗×FS → RSE , andG : {0, 1}∗×FS → {0, 1}κ , where
FS is the key space of PRFs, and aKDF K DF : Salt×KS → FS with a non-secret random
salt s ∈ Salt . These are provided as a part of the public parameters. Also, S sets all N users’
static secret and public keys exceptUB .S selectsσP ∈R FS, σ ′

P ∈R {0, 1}κ and r ∈R RSG ,
and runs (ekP , dkP) ← KeyGen(1κ , r). PartyUP ’s SSKandSPKare ((dkP , σP , σ ′

P), ekP).
UA’s static key (dkA, σA, σ ′

A) is given to A.
Next, S sets ek∗ as the static public key ofUB . Also, S receives the challenge (K ∗,CT ∗)

from the challenger.

Simulation Smaintains the listLSK that contains queries and answers ofSessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): If P = A and the session is i-th session of UA, S computes
ekT obeying the protocol and returns the ephemeral public key (CT ∗, ekT). Otherwise,
S computes the ephemeral public key (CTP , ekT) obeying the protocol, returns it and
records (�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)): If P̄ = B and CTP �= CT ∗, S poses CTP to the
decryption oracle, obtains KP , computes the ephemeral public key (CTP̄ ,CTT) and
the session key SK obeying the protocol, returns the ephemeral public key, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK . Else if P̄ = B and CTP = CT ∗, S sets KP = K ∗, computes the ephemeral public
key (CTP̄ ,CTT) and the session key SK obeying the protocol, returns the ephemeral pub-
lic key, and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session
and SK in the list LSK . Otherwise, S computes the ephemeral public key (CTP̄ ,CTT)

and the session key SK obeying the protocol, returns the ephemeral public key, and
records (�, UP , UP̄ , (CTP , ekT), (CTP̄ , CTT)) as the completed session and SK in
the list LSK .

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, S records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Else if P = A and the session is i-th session of UA, S com-
putes the session key SK obeying the protocol except that K ∗

A = K ∗, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list

123

Strongly secure authenticated key exchange 493

LSK . Otherwise, S computes the session key SK obeying the protocol, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value SK .

5. SessionStateReveal(sid): S responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. If the owner of sid is UB , S poses ciphertexts
received by UB to the decryption oracle and can simulate all intermediate computation
results. Note that the SessionStateReveal query is not posed to the test session from
the freshness definition.

6. Corrupt(UP): S responds the static secret key and all unerased session states of UP as
the definition.

7. Test(sid): S responds to the query as the definition.
8. If A outputs a guess b′, S outputs b′.

Analysis For A, the simulation by S is same as the experiment H3 if the challenge is
(K ∗

1 ,CT ∗
0). Otherwise, the simulation by S is same as the experiment H4. Also, both K ∗

A in
two experiments have κ-min-entropy because (KeyGen,EnCap,DeCap) is κ-min-entropy
KEM. Thus, if the advantage of S is negligible, then |Adv(A,H4) − Adv(A,H3)| ≤ negl.

Hybrid experiment H5: In this experiment, the computation of K ′∗
1 in the test session is

changed. Instead of computing K ′∗
1 ← K DF(s, K ∗

A), it is changed as choosing K ′∗
1 ∈ FS

randomly.
Since K ∗

A is randomly chosen inH4, it has sufficient min-entropy. Thus, by the definition
of the KDF, |Adv(A,H5) − Adv(A,H4)| ≤ negl.

Hybrid experiment H6: In this experiment, the computation of SK in the test session is
changed. Instead of computing SK = GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), it is changed as

SK = x ⊕ GK ′
2
(ST) ⊕ GK ′

3
(ST) where x ∈ {0, 1}κ is chosen randomly and we suppose

that UB is the intended partner of UA in the test session.
We construct a distinguisherD′ between PRF F∗ : {0, 1}∗ ×FS → {0, 1}κ and a random

function RF from A in H5 or H6. D′ performs the following steps.

Setup D′ chooses PRF F : {0, 1}∗×FS → RSE , F ′ : {0, 1}∗×FS → RSE , setsG = F∗,
whereFS is the key space of PRFs, and a KDF K DF : Salt ×KS → FS with a non-secret
random salt s ∈ Salt . These are provided as a part of the public parameters. Also,D′ sets all
N users’ static secret and public keys.D′ selects σP ∈R FS, σ ′

P ∈R {0, 1}κ and r ∈R RSG ,
and runs (ekP , dkP) ← KeyGen(1κ , r). PartyUP ’s SSKandSPKare ((dkP , σP , σ ′

P), ekP).
UA’s static key (dkA, σA, σ ′

A) is given to A.

Simulation D′ maintains the listLSK that contains queries and answers ofSessionKeyReveal.
D′ simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): D′ computes the ephemeral public key (CTP , ekT) obeying the
protocol, returns it and records (�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)):D′ computes the ephemeral public key (CTP̄ ,CTT)

and the session key SK obeying the protocol, returns the ephemeral public key, and
records (�, UP , UP̄ , (CTP , ekT), (CTP̄ , CTT)) as the completed session and SK in
the list LSK .

123

494 A. Fujioka et al.

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, D′ records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Else if P = A and the session is i-th session ofUA, D′ poses ST to his
oracle (i.e., F∗ or a random function RF), obtains x ∈ {0, 1}κ , computes the session key
SK = x ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

as the completed session and SK in the list LSK . Otherwise, D′ computes the session
key SK obeying the protocol, and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as
the completed session and SK in the list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, D′ returns an error message.
(b) Otherwise, D′ returns the recorded value SK .

5. SessionStateReveal(sid):D′ responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

6. Corrupt(UP): D′ responds the static secret key and all unerased session states of UP as
the definition.

7. Test(sid): D′ responds to the query as the definition.
8. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F∗. Otherwise, D′

outputs that the oracle is a random function RF .

Analysis For A, the simulation by D′ is same as the experiment H5 if the oracle is the PRF
F∗. Otherwise, the simulation byD′ is same as the experimentH6. Thus, if the advantage of
D′ is negligible, then |Adv(A,H6) − Adv(A,H5)| ≤ negl.

In H6, the session key in the test session is perfectly randomized. Thus, A cannot obtain
any advantage from Test query.

Therefore, Adv(A,H6) = 0 and Pr[E1 ∧ Suc] is negligible.
Appendix 1.2: Event E2 ∧ Suc

The proof in this case is essentially same as the event E1 ∧ Suc. There is a differ-
ence in the experiment H3. In the event E1 ∧ Suc, instead of computing (CT ∗

A, K ∗
A) ←

EnCapekB (FσA (rA) ⊕ F ′
r ′
A
(σ ′

A)), it is changed as (CT ∗
A, K ∗

A) ← EnCapekB (FσA (rA) ⊕
RF(σ ′

A)), where we suppose that UB is the intended partner ofUA in the test session. In the
event E2 ∧ Suc, it is changed as (CT ∗

A, K ∗
A) ← EnCapekB (RF(rA) ⊕ F ′

r ′
A
(σ ′

A)). Since A
cannot obtain σA by the freshness definition in this event, we can construct a distinguisher
D from A in the similar manner in the proof of the event E1 ∧ Suc.

Appendix 1.3: Event E3 ∧ Suc

The proof in this case is essentially same as the event E1 ∧ Suc. There is differences in
experiments H3 and H4. In H3 of the event E1 ∧ Suc, instead of computing (CT ∗

A , K ∗
A) ←

EnCapekB (FσA (rA) ⊕ F ′
r ′
A
(σ ′

A)), it is changed as (CT ∗
A, K ∗

A) ← EnCapekB (FσA (rA) ⊕
RF(σ ′

A)), where we suppose that UB is the intended partner of UA in the test session. In
H3 of the event E3 ∧ Suc, instead of computing (CT ∗

B , K ∗
B) ← EnCapekA (FσB (rB) ⊕

F ′
r ′
B
(σ ′

B)), it is changed as (CT ∗
B , K ∗

B) ← EnCapekA (FσB (rB) ⊕ RF(σ ′
B)). In H4 of the

event E1 ∧ Suc, instead of computing (CT ∗
A, K ∗

A) ← EnCapekB (FσA (rA) ⊕ RF(σ ′
A)),

it is changed as choosing K ∗
A ← KS randomly. In H4 of the event E3 ∧ Suc, instead

123

Strongly secure authenticated key exchange 495

of computing (CT ∗
B , K ∗

B) ← EnCapekA (FσB (rB) ⊕ RF(σ ′
B)), it is changed as choosing

K ∗
B ← KS randomly. Since A cannot obtain σB by the freshness definition in this event,

we can construct a distinguisher D from A in the similar manner in the proof of the event
E1 ∧ Suc.

Appendix 1.4: Event E4 ∧ Suc

The proof in this case is essentially same as the event E2 ∧ Suc. There is differences in
experiments H3 and H4. In H3 of the event E2 ∧ Suc, instead of computing (CT ∗

A, K ∗
A) ←

EnCapekB (FσA (rA) ⊕ F ′
r ′
A
(σ ′

A)), it is changed as (CT ∗
A , K ∗

A) ← EnCapekB (RF(rA) ⊕
F ′
r ′
A
(σ ′

A)), where we suppose that UB is the intended partner of UA in the test session. In

H3 of the event E3 ∧ Suc, instead of computing (CT ∗
B , K ∗

B) ← EnCapekA (FσB (rB) ⊕
F ′
r ′
B
(σ ′

B)), it is changed as (CT ∗
B , K ∗

B) ← EnCapekA (RF(rB) ⊕ F ′
r ′
B
(σ ′

B)). In H4 of the

event E2 ∧ Suc, instead of computing (CT ∗
A , K ∗

A) ← EnCapekB (RF(rA) ⊕ F ′
r ′
A
(σ ′

A)),

it is changed as choosing K ∗
A ← KS randomly. In H4 of the event E3 ∧ Suc, instead

of computing (CT ∗
B , K ∗

B) ← EnCapekA (RF(rB) ⊕ F ′
r ′
B
(σ ′

B)), it is changed as choosing

K ∗
B ← KS randomly. Since A cannot obtain σB by the freshness definition in this event,

we can construct a distinguisher D from A in the similar manner in the proof of the event
E1 ∧ Suc.

Appendix 1.5: Event E5 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These
instances are gradually changedover six hybrid experiments, depending on specific sub-cases.
In the last hybrid experiment, the session key in the test session does not contain information
of the bit b. Thus, the adversary clearly only output a random guess. We denote these hybrid
experiments by H0, . . . ,H5 and the advantage of the adversary A when participating in
experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for CK+ security
and in this experiment the environment forA is as defined in the protocol. Thus,Adv(A,H0)

is the same as the advantage of the real experiment.
Hybrid experiment H1: In this experiment, if session identities in two sessions are iden-

tical, the experiment halts.
By the same as the event E1 ∧ Suc, |Adv(A,H1) − Adv(A,H0)| ≤ negl.
Hybrid experiment H2: In this experiment, the experiment selects a partyUA and integer

i ∈ [1,
] randomly in advance. IfA poses Test query to a session except i-th session ofUA,
the experiment halts.

By the same as the event E1 ∧ Suc, Adv(A,H2) ≥ 1/N 2
 · Adv(A,H1).
Hybrid experiment H3: In this experiment, the computation of K ∗

T in the test session is
changed. Instead of computing (CT ∗

T , K ∗
T) ← wEnCapekT (rT B), it is changed as choosing

K ∗
T ← KS randomly, where we suppose that UB is the intended partner of UA in the test

session.
We construct an IND-CPA adversary S from A in H2 or H3. S performs the following

steps.

Init S receives the public key ek∗ as a challenge.

123

496 A. Fujioka et al.

Setup S chooses PRF F, F ′ : {0, 1}∗ × FS → RSE , and G : {0, 1}∗ × FS → {0, 1}κ ,
whereFS is the key space of PRFs, and a KDF K DF : Salt ×KS → FS with a non-secret
random salt s ∈ Salt . These are provided as a part of the public parameters. Also, S sets all N
users’ static secret and public keys.S selects σP ∈R FS, σ ′

P ∈R {0, 1}κ and r ∈R RSG , and
runs (ekP , dkP) ← KeyGen(1κ , r). Party UP ’s SSK and SPK are ((dkP , σP , σ ′

P), ekP).
UA’s static key (dkA, σA, σ ′

A) and UB ’s static key (dkB , σB , σ ′
B) are given to A.

Next, S receives the challenge (K ∗,CT ∗) from the challenger.

Simulation Smaintains the listLSK that contains queries and answers ofSessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): If P = A and the session is i-th session of UA, S computes
CTA obeying the protocol and returns the ephemeral public key (CTA, ek∗). Otherwise,
S computes the ephemeral public key (CTP , ekT) obeying the protocol, returns it and
records (�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)): If P̄ = B, S computes CTP̄ and the session key
SK obeying the protocol except that KT = K ∗, returns the ephemeral public key
(CTP̄ ,CT ∗), and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed
session and SK in the list LSK . Otherwise, S computes the ephemeral public key
(CTP̄ ,CTT) and the session key SK obeying the protocol, returns the ephemeral public
key, and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and
SK in the list LSK .

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, S records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Else if P = A and the session is i-th session of UA, S com-
putes the session key SK obeying the protocol except that K ∗

T = K ∗, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK . Otherwise, S computes the session key SK obeying the protocol, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value SK .

5. SessionStateReveal(sid): S responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

6. Corrupt(UP): S responds the static secret key and all unerased session states of UP as
the definition.

7. Test(sid): S responds to the query as the definition.
8. If A outputs a guess b′, S outputs b′.

Analysis For A, the simulation by S is same as the experiment H2 if the challenge is
(K ∗

1 ,CT ∗
0). Otherwise, the simulation by S is same as the experiment H3. Also, both K ∗

T in
two experiments have κ-min-entropy because (wKeyGen,wEnCap,wDeCap) is κ-min-
entropy KEM. Thus, if the advantage of S is negligible, then |Adv(A,H3)−Adv(A,H2)| ≤
negl.

Hybrid experiment H4: In this experiment, the computation of K ′∗
3 in the test session is

changed. Instead of computing K ′∗
3 ← K DF(s, K ∗

T), it is changed as choosing K ′∗
3 ∈ FS

randomly.

123

Strongly secure authenticated key exchange 497

Since K ∗
T is randomly chosen inH3, it has sufficient min-entropy. Thus, by the definition

of the KDF, |Adv(A,H4) − Adv(A,H3)| ≤ negl.
Hybrid experiment H5: In this experiment, the computation of SK in the test session is

changed. Instead of computing SK = GK ′
1
(ST) ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), it is changed as

SK = GK ′
1
(ST) ⊕ GK ′

2
(ST) ⊕ x where x ∈ {0, 1}κ is chosen randomly and we suppose

that UB is the intended partner of UA in the test session.
We construct a distinguisherD′ between PRF F∗ : {0, 1}∗ ×FS → {0, 1}κ and a random

function RF from A in H4 or H5. D′ performs the following steps.

Setup D′ chooses PRF F, F ′ : {0, 1}∗ × FS → RSE , and sets G = F∗, where FS is the
key space of PRFs, and a KDF K DF : Salt × KS → FS with a non-secret random salt
s ∈ Salt . These are provided as a part of the public parameters. Also, D′ sets all N users’
static secret and public keys.D′ selects σP ∈R FS, σ ′

P ∈R {0, 1}κ and r ∈R RSG , and runs
(ekP , dkP) ← KeyGen(1κ , r). Party UP ’s SSK and SPK are ((dkP , σP , σ ′

P), ekP). UA’s
static key (dkA, σA, σ ′

A) and UB’s static key (dkB , σB , σ ′
B) are given to A.

Simulation D′ maintains the list LSK that contains queries and answers of
SessionKeyReveal. D′ simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): D′ computes the ephemeral public key (CTP , ekT) obeying the
protocol, returns it and records (�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)): If P = A and the session is partnered with i-
th session of UA, D′ poses ST to his oracle (i.e., F∗ or a random function RF),
obtains x ∈ {0, 1}κ , computes the session key SK = GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ x ,

and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK
in the list LSK . Otherwise, D′ computes the ephemeral public key (CTP̄ ,CTT) and the
session key SK obeying the protocol, returns the ephemeral public key, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK .

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, D′ records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Else if P = A and the session is i-th session ofUA, D′ poses ST to his
oracle (i.e., F∗ or a random function RF), obtains x ∈ {0, 1}κ , computes the session key
SK = GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ x , and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

as the completed session and SK in the list LSK . Otherwise, D′ computes the session
key SK obeying the protocol, and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as
the completed session and SK in the list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, D′ returns an error message.
(b) Otherwise, D′ returns the recorded value SK .

5. SessionStateReveal(sid):D′ responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

6. Corrupt(UP): D′ responds the static secret key and all unerased session states of UP as
the definition.

7. Test(sid): D′ responds to the query as the definition.
8. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F∗. Otherwise, D′

outputs that the oracle is a random function RF .

123

498 A. Fujioka et al.

Analysis For A, the simulation by D′ is same as the experiment H4 if the oracle is the PRF
F∗. Otherwise, the simulation byD′ is same as the experimentH5. Thus, if the advantage of
D′ is negligible, then |Adv(A,H5) − Adv(A,H4)| ≤ negl.

In H5, the session key in the test session is perfectly randomized. Thus, A cannot obtain
any advantage from Test query.

Therefore, Adv(A,H5) = 0 and Pr[E5 ∧ Suc] is negligible.
Appendix 1.6: Event E6 ∧ Suc

The proof in this case is essentially same as the event E2 ∧ Suc. The situation that the
ephemeral secret key of sid

∗
is given to A is the same as sid has no matching session

because A can decide arbitrary ephemeral key. Thus, the proof in this event follows that in
the event E2 ∧ Suc.

Appendix 1.7: Event E7 ∧ Suc

The proof in this case is essentially same as the event E1 ∧ Suc. The situation that the
ephemeral secret key of sid

∗
is given to A is the same as sid has no matching session

because A can decide arbitrary ephemeral key. Thus, the proof in this event follows that in
the event E1 ∧ Suc.

Appendix 1.8: Event E8 ∧ Suc

The proof in this case is essentially same as the event E4 ∧ Suc. The situation that the
ephemeral secret key of sid

∗
is given to A is the same as sid

∗
has no matching session

because A can decide arbitrary ephemeral key. Thus, the proof in this event follows that in
the event E4 ∧ Suc.

Appendix 2: Proof of Theorem 2

In the experiment of id-CK+ security, we suppose that sid∗ is the session identity for the test
session, and that there are N users and at most
 sessions are activated. Let κ be the security
parameter, and let A be a PPT (in κ) bounded adversary. Suc denotes the event that A wins.
We consider the following events that cover all cases of the behavior of A.

– Let E1 be the event that the test session sid∗ has no matching session sid
∗
, the owner of

sid∗ is the initiator and the static secret key of the initiator is given to A.
– Let E2 be the event that the test session sid∗ has no matching session sid

∗
, the owner of

sid∗ is the initiator and the ephemeral secret key of sid∗ is given to A.
– Let E3 be the event that the test session sid∗ has no matching session sid

∗
, the owner of

sid∗ is the responder and the static secret key of the responder is given to A.
– Let E4 be the event that the test session sid∗ has no matching session sid

∗
, the owner of

sid∗ is the responder and the ephemeral secret key of sid∗ is given to A.
– Let E5 be the event that the test session sid∗ has matching session sid

∗
, and both static

secret keys of the initiator and the responder are given to A.
– Let E6 be the event that the test session sid∗ has matching session sid

∗
, and both

ephemeral secret keys of sid∗ and sid∗ are given to A.

123

Strongly secure authenticated key exchange 499

– Let E7 be the event that the test session sid∗ has matching session sid
∗
, and the static

secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given to A.
– Let E8 be the event that the test session sid∗ hasmatching session sid

∗
, and the ephemeral

secret key of sid∗ and the static secret key of the owner of sid∗ are given to A.
– Let E9 be the event that the test session sid∗ has matching session sid

∗
, and master secret

key is given to A.

To finish the proof, we investigate events Ei ∧ Suc (i = 1, . . . , 9) that cover all cases of
event Suc. Though proofs of events are essentially same as the case of Theorem 1, E9 ∧ Suc
is the characteristic event for Theorem 2. Thus, we only show the proof of event E9 ∧ Suc.

Appendix 2.1: Event E9 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These
instances are gradually changedover six hybrid experiments, depending on specific sub-cases.
In the last hybrid experiment, the session key in the test session does not contain information
of the bit b. Thus, the adversary clearly only output a random guess. We denote these hybrid
experiments by H0, . . . ,H5 and the advantage of the adversary A when participating in
experiment Hi by Adv(A,Hi).

Hybrid experimentH0: This experiment denotes the real experiment for id-CK+ security
and in this experiment the environment forA is as defined in the protocol. Thus,Adv(A,H0)

is the same as the advantage of the real experiment.
Hybrid experiment H1: In this experiment, if session identities in two sessions are iden-

tical, the experiment halts.
When two ciphertexts from different randomness are identical, session identities in two

sessions are also identical. In the IND-sID-CCA secure IB-KEM, such an event occurs with
negligible probability. Thus, |Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid experiment H2: In this experiment, the experiment selects a partyUA and integer
i ∈ [1,
] randomly in advance. IfA poses Test query to a session except i-th session ofUA,
the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/N 2
, Adv
(A,H2) ≥ 1/N 2
 · Adv(A,H1).

Hybrid experiment H3: In this experiment, the computation of K ∗
T in the test session is

changed. Instead of computing (CT ∗
T , K ∗

T) ← wEnCapekT (rT B), it is changed as choosing
K ∗
T ← KS randomly, where we suppose that UB is the intended partner of UA in the test

session.
We construct an IND-CPA adversary S from A in H2 or H3. S performs the following

steps.

Init S receives the public key ek∗ as a challenge.

Setup S chooses PRF F, F ′ : {0, 1}∗ × FS → RSE , and G : {0, 1}∗ × FS → {0, 1}κ ,
whereFS is the key space of PRFs, and a KDF K DF : Salt ×KS → FS with a non-secret
random salt s ∈ Salt . These are provided as a part of the public parameters. Also, S sets
the master public and secret key, and all N users’ static secret keys. S selects r ∈ RSG , and
generatesmaster public and secret keys (mpk,msk) ← MKeyGen(1κ , r), whereRSG is the
randomness space ofMKeyGen. Then, S selects σP ∈R FS, σ ′

P ∈R {0, 1}κ and r ′ ∈ RSG ,
and runs the key derivation algorithm dkP ← KeyDer(mpk,msk,UP , r ′), where RSG is
the randomness space of KeyDer. Party UP ’s static secret key is (dkP , σP , σ ′

P). The master
key msk is given to A.

123

500 A. Fujioka et al.

Next, S receives the challenge (K ∗,CT ∗) from the challenger.

Simulation Smaintains the listLSK that contains queries and answers ofSessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): If P = A and the session is i-th session of UA, S computes
CTA obeying the protocol and returns the ephemeral public key (CTA, ek∗). Otherwise,
S computes the ephemeral public key (CTP , ekT) obeying the protocol, returns it and
records (�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)): If P̄ = B, S computes CTP̄ and the session key
SK obeying the protocol except that KT = K ∗, returns the ephemeral public key
(CTP̄ ,CT ∗), and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed
session and SK in the list LSK . Otherwise, S computes the ephemeral public key
(CTP̄ ,CTT) and the session key SK obeying the protocol, returns the ephemeral public
key, and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and
SK in the list LSK .

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, S records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Else if P = A and the session is i-th session of UA, S com-
putes the session key SK obeying the protocol except that K ∗

T = K ∗, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK . Otherwise, S computes the session key SK obeying the protocol, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value SK .

5. SessionStateReveal(sid): S responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

6. Corrupt(UP): S responds the static secret key and all unerased session states of UP as
the definition.

7. Test(sid): S responds to the query as the definition.
8. If A outputs a guess b′, S outputs b′.

Analysis For A, the simulation by S is same as the experiment H2 if the challenge is
(K ∗

1 ,CT ∗
0). Otherwise, the simulation by S is same as the experiment H3. Also, both K ∗

T in
two experiments have κ-min-entropy because (wKeyGen,wEnCap,wDeCap) is κ-min-
entropy KEM. Thus, if the advantage of S is negligible, then |Adv(A,H3)−Adv(A,H2)| ≤
negl.

Hybrid experiment H4: In this experiment, the computation of K ′∗
3 in the test session is

changed. Instead of computing K ′∗
3 ← K DF(s, K ∗

T), it is changed as choosing K ′∗
3 ∈ FS

randomly.
Since K ∗

T is randomly chosen inH3, it has sufficient min-entropy. Thus, by the definition
of the KDF, |Adv(A,H4) − Adv(A,H3)| ≤ negl.

Hybrid experiment H5: In this experiment, the computation of SK in the test session is
changed. Instead of computing SK = GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ GK ′

3
(ST), it is changed as

123

Strongly secure authenticated key exchange 501

SK = GK ′
1
(ST) ⊕ GK ′

2
(ST) ⊕ x where x ∈ {0, 1}κ is chosen randomly and we suppose

that UB is the intended partner of UA in the test session.
We construct a distinguisherD′ between PRF F∗ : {0, 1}∗ ×FS → {0, 1}κ and a random

function RF from A in H4 or H5. D′ performs the following steps.

Setup D′ chooses PRF F, F ′ : {0, 1}∗×FS → RSE , and setsG = F∗, whereFS is the key
space of PRFs, and aKDF K DF : Salt×KS → FS with a non-secret random salt s ∈ Salt .
These are provided as a part of the public parameters. Also, S sets the master public and
secret key, and all N users’ static secret keys. S selects r ∈ RSG , and generates master public
and secret keys (mpk,msk) ← MKeyGen(1κ , r), where RSG is the randomness space of
MKeyGen. Then, S selects σP ∈R FS, σ ′

P ∈R {0, 1}κ and r ′ ∈ RSG , and runs the key
derivation algorithm dkP ← KeyDer(mpk,msk,UP , r ′), where RSG is the randomness
space of KeyDer. PartyUP ’s static secret key is (dkP , σP , σ ′

P). The master keymsk is given
to A.

Simulation D′ maintains the list LSK that contains queries and answers of
SessionKeyReveal. D′ simulates oracle queries by A as follows.

1. Send(�, I,UP ,UP̄): D′ computes the ephemeral public key (CTP , ekT) obeying the
protocol, returns it and records (�,UP ,UP̄ , (CTP , ekT)).

2. Send(�,R,UP̄ ,UP , (CTP , ekT)): If P = A and the session is partnered with i-
th session of UA, D′ poses ST to his oracle (i.e., F∗ or a random function RF),
obtains x ∈ {0, 1}κ , computes the session key SK = GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ x ,

and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK
in the list LSK . Otherwise, D′ computes the ephemeral public key (CTP̄ ,CTT) and the
session key SK obeying the protocol, returns the ephemeral public key, and records
(�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as the completed session and SK in the list
LSK .

3. Send(�, I,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)): If (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,

CTT)) is not recorded, D′ records the session (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

is not completed. Else if P = A and the session is i-th session ofUA, D′ poses ST to his
oracle (i.e., F∗ or a random function RF), obtains x ∈ {0, 1}κ , computes the session key
SK = GK ′

1
(ST) ⊕ GK ′

2
(ST) ⊕ x , and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT))

as the completed session and SK in the list LSK . Otherwise, D′ computes the session
key SK obeying the protocol, and records (�,UP ,UP̄ , (CTP , ekT), (CTP̄ ,CTT)) as
the completed session and SK in the list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, D′ returns an error message.
(b) Otherwise, D′ returns the recorded value SK .

5. SessionStateReveal(sid):D′ responds the ephemeral secret key and intermediate com-
putation results of sid as the definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

6. Corrupt(UP): D′ responds the static secret key and all unerased session states of UP as
the definition.

7. Test(sid): D′ responds to the query as the definition.
8. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F∗. Otherwise, D′

outputs that the oracle is a random function RF .

123

502 A. Fujioka et al.

Analysis For A, the simulation by D′ is same as the experiment H4 if the oracle is the PRF
F∗. Otherwise, the simulation byD′ is same as the experimentH5. Thus, if the advantage of
D′ is negligible, then |Adv(A,H5) − Adv(A,H4)| ≤ negl.

In H5, the session key in the test session is perfectly randomized. Thus, A cannot obtain
any advantage from Test query.

Therefore, Adv(A,H5) = 0 and Pr[E5 ∧ Suc] is negligible.

References

1. Agrawal S., Boneh D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: EUROCRYPT 2010,
pp. 553–572 (2010).

2. Agrawal S., Boneh D., Boyen X.: Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE. In: CRYPTO 2010, pp. 98–115 (2010).

3. Ajtai M.: Generating hard instances of lattice problems (extended abstract). In: STOC 1996, pp. 99–108
(1996).

4. Banerjee A., Peikert C., Rosen A.: Pseudorandom functions and lattices. In: EUROCRYPT 2012, pp.
719–737 (2012).

5. Bellare M., Rogaway P.: Entity authentication and key distribution. In: CRYPTO 1993, pp. 232–249
(1993).

6. Bernstein D.J., Lange T., Peters C.: Wild McEliece. In: SAC 2010, pp. 143–158 (2010).
7. Bernstein D.J., Lange T., Peters C.: Smaller decoding exponents: ball-collision decoding. In: CRYPTO

2011, pp. 743–760 (2011).
8. Boneh D., Boyen X.: Efficient selective-ID secure identity-based encryption without random oracles. In:

EUROCRYPT 2004, pp. 223–238 (2004). See also Cryptology ePrint Archive-2004/172.
9. Boneh D., Boyen X., Shacham H.: Short group signatures. In: CRYPTO2004, pp. 41–55 (2004).

10. Boneh D., Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption.
SIAM J. Comput. 36(5), 1301–1328 (2007).

11. Boneh D., Franklin M.K.: Identity-based encryption from the weil pairing. In: CRYPTO 2001, pp. 213–
229 (2001).

12. Boyd C., Cliff Y., González Nieto J.M., Paterson K.G.: Efficient one-round key exchange in the standard
model. In: ACISP 2008, pp. 69–83 (2008).

13. Boyd C., Cliff Y., González Nieto J.M., Paterson K.G.: One-round key exchange in the standard model.
In: IJACT 1(3), pp. 181–199 (2009).

14. Boyd C., González Nieto J.M.: On forward secrecy in one-round key exchange. In: IMA Int. Conf. 2011,
pp. 451–468 (2011).

15. Boyen X., Mei Q., Waters B.: Direct chosen ciphertext security from identity-based techniques. In: ACM
Conference on Computer and Communications Security 2005, pp. 320–329 (2005).

16. Canetti R., Goldreich O., Halevi S.: The random oracle methodology, revisited (preliminary version). In:
STOC 1998, pp. 131–140 (1998).

17. Canetti R., Krawczyk H.: Analysis of key-exchange protocols and their use for building secure channels.
In: EUROCRYPT 2001, pp. 453–474 (2001).

18. CashD.,HofheinzD.,KiltzE., PeikertC.:Bonsai trees, or how to delegate a lattice basis. In: EUROCRYPT
2010, pp. 523–552 (2010).

19. Chen L., Cheng Z., Smart N.P.: Identity-based key agreement protocols from pairings. Int. J. Inf. Secur.
6(4), 213–241 (2007).

20. Chevallier-Mames B., Joye M.: Chosen-ciphertext secure RSA-type cryptosystems. In: ProvSec 2009,
pp. 32–46 (2009).

21. Cramer R., Shoup V.: A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In: CRYPTO 1998, pp. 13–25 (1998).

22. Cramer R., Shoup V.: Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33, 167–226 (2004).

23. Cremers C.J.F.: Session-state reveal is stronger than ephemeral key reveal: attacking the NAXOS authen-
ticated key exchange protocol. In: ACNS 2009, pp. 20–33 (2009).

24. Cremers C.J.F.: Examining indistinguishability-based security models for key exchange protocols: the
case of CK, CK-HMQV, and eCK. In: ASIACCS 2011, pp. 80–91 (2011).

25. Cremers C.J.F., Feltz M.: One-round strongly secure key exchange with perfect forward secrecy and
deniability. In: Cryptology ePrint Archive: 2011/300 (2011).

123

Strongly secure authenticated key exchange 503

26. Cremers C.J.F., Feltz M.: Beyond eCK: perfect forward secrecy under actor compromise and ephemeral-
key reveal. In: ESORICS 2012, pp. 734–751 (2012).

27. Dachman-Soled D., Gennaro R., Krawczyk H., Malkin T.: Computational extractors and pseudorandom-
ness. In: TCC 2012, pp. 383–403 (2012).

28. Damgård I.: Towards practical public key systems secure against chosen ciphertext attacks. In: CRYPTO
1991, pp. 445–456 (1991).

29. Dowsley R., Müller-Quade J., Nascimento A.C.A.: A CCA2 secure public key encryption scheme based
on the McEliece assumptions in the standard model. In: CT-RSA 2009, pp. 240–251 (2009).

30. FioreD., GennaroR.:Making theDiffie–Hellman protocol identity-based. In: CT-RSA2010, pp. 165–178
(2010).

31. Fujioka A., Suzuki K., Ustaoglu B.: Ephemeral key leakage resilient and efficient ID-AKEs that can share
identities, private and master keys. In: Pairing 2010, pp. 187–205 (2010).

32. Gennaro R., Krawczyk H., Rabin T.: Okamoto-Tanaka revisited: fully authenticated Diffie–Hellman with
minimal overhead. In: ACNS 2010, pp. 309–328 (2010).

33. Gennaro R., Shoup V.: A note on an encryption scheme of Kurosawa and Desmedt. In: Cryptology ePrint
Archive: 2004/194 (2004).

34. Gorantla M.C., Boyd C., González Nieto J.M., Manulis M.: Generic one round group key exchange in
the standard model. In: ICISC 2009, pp. 1–15 (2009).

35. Hanaoka G., Kurosawa K.: Efficient chosen ciphertext secure public key encryption under the computa-
tional Diffie–Hellman assumption. In: ASIACRYPT 2008, pp. 308–325 (2008).

36. Haralambiev K., Jager T., Kiltz E., Shoup V.: Simple and efficient public-key encryption from computa-
tional Diffie–Hellman in the standard model. In: Public Key Cryptography 2010, pp. 1–18 (2010).

37. Hofheinz D., Kiltz E.: Practical chosen ciphertext secure encryption from factoring. In: EUROCRYPT
2009, pp. 313–332 (2009).

38. Hofheinz D., Kiltz E.: The group of signed quadratic residues and applications. In: CRYPTO 2009, pp.
637–653 (2009).

39. Huang H., Cao Z.: An ID-based authenticated key exchange protocol based on bilinear Diffie–Hellman
problem. In: ASIACCS 2009, pp. 333–342 (2009).

40. Jeong I.R., Katz J., Lee D.H.: One-round protocols for two-party authenticated key exchange. In: ACNS
2004, pp. 220–232 (2004).

41. Kiltz E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie–Hellman. In: Public
Key Cryptography 2007, pp. 282–297 (2007).

42. Kiltz E., Mohassel P., O’Neill A.: Adaptive trapdoor functions and chosen-ciphertext security. In: EURO-
CRYPT 2010, pp. 673–692 (2010).

43. Krawczyk H.: HMQV: A high-performance secure Diffie–Hellman protocol. In: CRYPTO 2005, pp.
546–566 (2005).

44. Krawczyk H.: Cryptographic extraction and key derivation: The HKDF Scheme. In: CRYPTO 2010, pp.
631–648 (2010).

45. KurosawaK., Desmedt Y.: A new paradigm of hybrid encryption scheme. In: CRYPTO2004, pp. 426–442
(2004).

46. LaMacchia B.A., Lauter K., Mityagin A.: Stronger security of authenticated key exchange. In: ProvSec
2007, pp. 1–16 (2007).

47. Langlois A., Stehle D.: Hardness of decision (R)LWE for any modulus. In: Cryptology ePrint Archive:
2012/091 (2012).

48. Lyubashevsky V., Micciancio D.: Generalized compact knapsacks are collision resistant. In: ICALP (2)
2006, pp. 144–155 (2006).

49. Lyubashevsky V., Peikert C., Regev O.: On Ideal lattices and learning with errors over rings. In: EURO-
CRYPT 2010, pp. 1–23 (2010).

50. McEliece R.J.: A public-key cryptosystem based on algebraic coding theory. In: Deep Space Network
progress Report (1978).

51. Mei Q., Li B., Lu X., Jia D.: Chosen ciphertext secure encryption under factoring assumption revisited.
In: Public Key Cryptography 2011, pp. 210–227 (2011).

52. Micciancio D., Peikert C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: EUROCRYPT 2012,
pp. 700–718 (2012).

53. Micciancio D., Regev O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J.
Comput. 37(1), 267–302 (2007).

54. Naor M.: On cryptographic assumptions and challenges. In: CRYPTO 2003, pp. 96–109 (2003).
55. Nojima R., Imai H., Kobara K., Morozov K.: Semantic security for the McEliece cryptosystem without

random oracles. Des. Codes Cryptogr. 49(1–3), 289–305 (2008).

123

504 A. Fujioka et al.

56. Okamoto T.: Authenticated key exchange and key encapsulation in the standard model. In: ASIACRYPT
2007, pp. 474–484 (2007).

57. Peikert C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In:
STOC 2009, pp. 333–342 (2009).

58. Peikert C., Rosen A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices.
In: TCC 2006, pp. 145–166 (2006).

59. Peikert C., Waters B.: Lossy trapdoor functions and their applications. In: STOC 2008, pp. 187–196
(2008).

60. Regev O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 139–
160 (2009).

61. Sarr A.P., Elbaz-Vincent P., Bajard J.C.: A new security model for authenticated key agreement. In: SCN
2010, pp. 219–234 (2010).

62. Stehlé D., Steinfeld R., Tanaka K., Xagawa K.: Efficient public key encryption based on ideal lattices. In:
ASIACRYPT 2009, pp. 617–635 (2009).

63. Yoneyama K.: One-round authenticated key exchange with strong forward secrecy in the standard model
against constrained adversary. In: IWSEC 2012, pp. 69–86 (2012).

64. Yoneyama K.: Generic construction of two-party round-optimal attribute-based authenticated key
exchange without random oracles. IEICE Trans. 96A(6), 1112–1123 (2013).

65. Yoneyama K.: One-round authenticated key exchange with strong forward secrecy in the standard model
against constrained adversary. IEICE Trans. 96A(6), 1124–1138 (2013).

123

	Strongly secure authenticated key exchange from factoring, codes, and lattices
	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivating problem
	1.3 Our contribution

	2 Security models
	2.1 CK+ versus eCK
	2.2 CK+ security model
	2.2.1 Session
	2.2.2 Adversary
	2.2.3 Freshness
	2.2.4 Security experiment

	2.3 id-CK+ security model

	3 Generic AKE construction from KEM without random oracles
	3.1 Preliminaries
	3.1.1 Security notions of KEM schemes
	3.1.2 Security notion of key derivation function
	3.1.3 Security notion of pseudo-random function

	3.2 Construction
	3.2.1 Necessity of min-entropy of KEM key
	3.2.2 Design principle
	3.2.3 Generic construction GC

	3.3 Security
	3.4 Instantiations
	3.4.1 Diffie--Hellman-based
	3.4.2 Factoring-based
	3.4.3 Code-based
	3.4.4 Lattice-based

	4 Generic ID-AKE construction from IB-KEM without random oracles
	4.1 Preliminaries
	4.2 Construction
	4.2.1 Design principle
	4.2.2 Generic construction ID`-GC

	4.3 Security
	4.4 Instantiations
	4.4.1 Lattice-based instantiations
	4.4.2 Pairing-based instantiations

	Appendix 1: Proof of Theorem 1
	Appendix 1.1: Event E1 Suc
	Appendix 1.2: Event E2 Suc
	Appendix 1.3: Event E3 Suc
	Appendix 1.4: Event E4 Suc
	Appendix 1.5: Event E5 Suc
	Appendix 1.6: Event E6 Suc
	Appendix 1.7: Event E7 Suc
	Appendix 1.8: Event E8 Suc

	Appendix 2: Proof of Theorem 2
	Appendix 2.1: Event E9 Suc

	References

