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Abstract A one to one correspondence is given between quadratic homogeneous APN func-
tions and a special kind of matrices which we call as QAM’s. By modifying the elements of a
known QAM, new quadratic APN functions can be constructed. Based on the nice mathemat-
ical structures of the QAM’s, an efficient algorithm for constructing quadratic APN functions
is proposed. On F27 , we have found 471 new CCZ-inequivalent quadratic APN functions,
which is 20 times more than the number of the previously known ones. Before this paper,
It is only found 23 classes of CCZ-inequivalent APN functions on F28 . With the method of
this paper, we have found 2,252 new CCZ-inequivalent quadratic APN functions, and this
number is still increasing.
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1 Introduction

Low differentially uniform permutations are very useful in cryptography, they can provide
good resistance against differential attack. For example, the advanced encryption standard
(AES) [12] uses a differentially 4-uniform permutation as its substitution box (S-box).
The differentially 4-uniform permutation is the best choice for now due to the lack of
differentially 2-uniform permutations on F28 . For clarity, we first introduce the following
definitions.
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588 Y. Yu et al.

Definition 1 A mapping F : F2n → F2n is called differentially δ(F)- uniform if

δ(F) = max
a∈F�

2n ,b∈F2n
#ΔF (a, b),

where ΔF (a, b) = {x ∈ F2n : F(x + a) + F(x) = b}, and #ΔF (a, b) is the cardinality of
ΔF (a, b). If δ(F) = 2, F is called almost perfect nonlinear (APN) [1].

Definition 2 [11] Let F and F ′ be two functions from F2n to F2n .

(i) F and F ′ are Extended affine equivalent (EA-equivalent) if

F ′(x) = A1(F(A2(x)))+ A3(x),

where A1 and A2 are affine permutations on F2n , and A3 is an affine function on F2n .
(ii) F and F ′ are Carlet–Charpin–Zinoviev equivalent (CCZ-equivalent) if there exists an

affine permutation which maps G F onto G F ′ , where G F = {(x, F(x)) : x ∈ F2n } is the
graph of F , and G F ′ is the graph of F ′.

Note that δ(F) is always even, and APN functions provide optimal resistance against
differential attack. The terminology APN was introduced by Nyberg and Knudsen [23] in
1992. Carlet, Charpin and Zinoviev proved that if a function is APN, then its CCZ-equivalent
functions are all APN. CCZ-equivalence is a generalization of EA-equivalence. A function
F(x) = ∑2n−1

j=0 c j x j ∈ F2n [x] is called quadratic if the maximum Hamming weight of
the binary expansion of j with c j �= 0 equals 2. According to Yoshiara’s results [24], two
quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

An APN function is new if it is not CCZ equivalent to any known ones. For a long time,
finding new APN functions is an important research topic in cryptography. In recent years,
most of the new APN functions found are quadratic [2–9,13–20]. For a systematic knowledge
of APN functions, the readers can turn to [10].

Our work was motivated by a recent breakthrough on APN functions. In 2009, Dillon et al.
[4,5,13] found an APN permutation in dimension six, which is the first APN permutation in
even dimension. Their idea can be summarized as follows: firstly, finding an APN function,
and then checking whether this APN function is CCZ-equivalent to a permutation or not.
Thus, if we want to find new APN permutations in even dimensions, we must find new APN
functions first.

Our aim is to find as many new APN functions as possible, especially on F28 . Then we will
check wether these new APN functions are CCZ-equivalent to some permutations. If some
of these functions are CCZ-equivalent to permutations, then this will prove the existence of
APN permutations on F28 .

The contributions of this paper are as follows. In Sect. 2, a one to one correspondence
is given between quadratic homogeneous APN functions and QAMs (see definition 5 in
Sect. 2). In Sect. 3, some relations are proposed between quadratic homogeneous functions
and their corresponding matrices, in particular, some properties of QAMs are given. These
QAMs have nice mathematical structures and constructing QAMs is easier than constructing
quadratic APN functions directly. In Sect. 4, based on some properties of the QAMs, we
have designed an efficient algorithm to search for the new APN functions. Before this paper,
the scholars [13,16] have found 19 and 23 classes of CCZ-inequivalent APN functions on
F27 and F28 respectively. With the algorithm of this paper, we have found more than 471
new CCZ-inequivalent APN functions on F27 , and more than 2252 new CCZ-inequivalent
quadratic APN functions on F28 . The number of CCZ-inequivalent quadratic APN functions
on F28 is still arising. We have checked all these new APN functions on F28 , none of them is
CCZ-equivalent to a permutation.
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A matrix approach for constructing quadratic APN functions 589

2 Notation and basic ideas

2.1 Notation

Let n be a positive integer, F2n be a finite field with 2n elements, and F2n [x] be the polynomial
ring in variable x over F2n .

Definition 3 Quadratic functions on F2n without linear and constant terms are called
quadratic homogeneous functions.

Definition 4 [21] Two bases {α1, . . . , αn} and {θ1, θ2, . . . , θn} of F2n over F2 are said to be
dual if for 1 ≤ u, j ≤ n we have

Tr(αuθ j ) =
{

0 for u �= j;
1 for u = j.

We will use the following convention and notation throughout the paper.

(i) For positive integers r, s, F
r×s
2n denotes the space of r × s matrices over F2n . For a

matrix A, let A[i] be the i th row of A, A[i, j] be the (i, j) entry of A, and B =
Submatrix(A, 1, 1, r, c) the r × c submatrix of A consisting of the first r rows and the
first c columns.

(ii) Suppose {α1, α2, . . . , αn} is a basis of F2n over F2, and {θ1, θ2, . . . , θn} is its dual basis.
Let Mα ∈ F

n×n
2n and Mθ ∈ F

n×n
2n with Mα[i, u] = α2i−1

u and Mθ [i, u] = θ2i−1

u for
1 ≤ u, i ≤ n. Then MT

α Mθ = (Tr(αuθ j ))n×n for 1 ≤ u, j ≤ n, so MT
α Mθ = In , where

In is the n × n identity matrix. Thus M−1
θ = MT

α , where MT
α is the transpose of Mα .

(iii) Suppose η1, η2, . . . , ηm ∈ F2n (m, n ≥ 1), and B = (η1, η2, . . . , ηm) ∈ F
m
2n . Let

Span(B)=Span(η1, η2, . . . , ηm) be the subspace spanned by {η1, η2, . . . , ηm} over F2.
The rank of B over F2, denoted as RankF2(B), is defined as the dimension of Span(B)

over F2. Suppose ηi =∑n
j=1 λi, jα j for 1 ≤ i ≤ m, where λi, j ∈ F2 for all i, j . Define

an m × n matrix Λ = (λi, j )m×n . Then RankF2(B) equals to the rank of Λ.

Now we introduce a class of matrices which will play an important role in the present
paper.

Definition 5 Let H = (hu,v)n×n be an n × n matrix over F2n . H is called a quadratic APN
matrix (QAM) if

(i) H is symmetric and the elements in its main diagonal are zero;
(ii) Every nonzero linear combination of the n rows (or “columns” because of H being

symmetric) of H has rank n − 1.

2.2 One to one correspondence between quadratic homogeneous
APN functions and QAMs

In order to prove Theorem 1 below, we need to give a matrix representation of quadratic
homogeneous functions.

Let F(x) = ∑

1≤t<i≤n
ci,t x2i−1+2t−1 ∈ F2n [x] be a quadratic homogeneous function. We

define an n × n matrix E = (ei,t )n×n by setting

ei,t =
{

ci,t if i > t;
0 if i ≤ t.

(1)
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590 Y. Yu et al.

Let X = (x20
, x21

, . . . , x2n−1
)T . Then we have

F(x) = X T E X. (2)

Let x = x1α1 + x2α2 + · · · + xnαn , where xi ∈ F2, 1 ≤ i ≤ n. Then (2) can be written as

F(x) = xT MT E Mx, (3)

where x = (x1, x2, . . . , xn)T , and M = Mα .
Now for F(x) = ∑

1≤t<i≤n
ci,t x2i−1+2t−1 ∈ F2n [x], let CF be an n×n matrix with CF [t, i] =

CF [i, t] = ci,t for 1 ≤ t < i ≤ n, and CF [i, i] = 0 for 1 ≤ i ≤ n. Thus by definition of E ,
we have CF = E + ET .

Given a basis α = {α1, . . . , αn} for F2n over F2, and let M = Mα . For any quadratic
homogeneous function F(x), let H = MT CF M . Then H is a symmetric matrix over F2n

with main diagonal elements zero.
Conversely, for a symmetric matrix H over F2n with main diagonal elements all zero, we

can define a unique quadratic homogeneous function F(x) such that H = MT CF M . F(x)

is called the quadratic function defined by H relative to the ordered basis α.
Based on (3), we can build a one to one correspondence between quadratic homogeneous

APN functions and QAMs.

Theorem 1 Let F(x) = ∑

1≤t<i≤n
ci,t x2i−1+2t−1 ∈ F2n [x], CF and M be defined as above,

and H = MT CF M. Then, δ(F) = 2k if and only if the smallest rank of any nonzero linear
combination of the n rows of H is n− k. In particular, F is APN on F2n if and only if H is a
QAM.

Proof Let E and x be the same as in (1) and (3), and a = a1α1 + a2α2 + · · · + anαn , where
a = (a1, · · · , an)T ∈ F

n
2\{0}. Let

Da(x) = F(x + a)+ F(x)+ F(a).

Then Da(x) is a linear function. So δ(F) = 2k if and only if

max{dimF2(Ker(Da)) | a ∈ F
�
2n } = k.

Based on (3), we have

Da(x) = (x + a)T MT E M(x + a)+ xT MT E Mx + aT MT E Ma

= xT MT E M(x + a + x)+ aT MT E M(x + a + a)

= xT MT E Ma + aT MT E Mx

= xT MT E Ma + (aT MT E Mx)T

= xT MT (E + ET )Ma

= xT MT CF Ma

= xT Ha.

By linear algebra, Da(x) = 0 has 2k solutions if and only if RankF2((Ha)T ) = n − k. Ha
is a nonzero linear combination of the n columns of H since a ∈ F

n
2\{0}. Thus δ(F) = 2k if

and only if

Da(x) = xT Ha = 0

has 2k solutions for any a ∈ F
n
2\{0}.
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A matrix approach for constructing quadratic APN functions 591

Note that H is symmetric, thus the above results implies the conclusion. �	
The matrix H associated with F(x) in Theorem 1 is called the matrix of F(x) relative to

the ordered basis {α1, . . . , αn}.
Note that M is an invertible matrix over F2n , so the correspondence between quadratic

homogeneous APN functions and QAMs is one to one. It seems that another similar approach
have been considered by Knuth and Edel, the readers can turn to Slides from the talk [14]
for details.

Theorem 1 is very useful when we want to study the differential properties of the quadratic
functions, and it can be generalized to Fpn , where p is any prime and n is a positive integer.
In this paper, we use only this theorem to study the quadratic APN functions on F2n .

3 Theoretical results

In this section, we give some theoretical results concerning relationship between quadratic
homogeneous functions and their corresponding matrices. Since our aim is to construct new
APN functions up to EA-equivalence, thus we need to understand EA-equivalence of two
functions in terms of their corresponding matrices.

Let F(x) be a given quadratic homogeneous function. First we study what happens to
corresponding matrices when the ordered basis is changed. Let α = {α1, . . . , αn} and β =
{β1, . . . , βn} be two ordered bases for F2n over F2. Assume Hα and Hβ are corresponding
matrices for F(x) relative to the α, β respectively. How are the matrices Hα and Hβ related?

As we know, there is a unique invertible n × n matrix P such that

(β1, . . . , βn) = (α1, . . . , αn)P.

Hence we have Mβ = Mα P . So we have Hβ = MT
β CF Mβ = PT Hα P .

Conversely, assume that H ′, H are two n × n symmetric matrices with main diagonal
elements all zeros such that H ′ = PT H P for an invertible matrix P over F2.

Let F(x) be the quadratic function defined by H relative to the ordered basis α. Let
γ = {γ1, . . . , γn} be defined by (γ1, . . . , γn) = (α1, . . . , αn)P . Then γ is a basis for F2n ,
and F(x) is also the quadratic function defined by H ′ relative to ordered basis γ .

Now let F ′(x) be the quadratic function defined by H ′ relative to α, then how are the
functions F(x) and F ′(x) related ? In order to answer this problem, we first note the following
lemma.

Lemma 1 Suppose H = (hu,v)n×n is a symmetric matrix over F2n with hu,u = 0 for all
1 ≤ u ≤ n. Define a set S = {K = (ku,v)n×n | ku,v + kv,u = hu,v for all 1 ≤ v ≤ u ≤ n}.
Then

(1) W ∈ S if and only if W +W T = H.

(2) If W1+W T
1 = H and W2+W T

2 = H, then there exists a symmetric matrix A such that
W2 = W1 + A.

Proof (1) is obvious, omitting it, we prove only (2) in the following. Let W1 + W T
1 = H

and W2 +W T
2 = H , then for any symmetric matrix A, we have

(W1 + A)+ (W1 + A)T = W1 +W T
1 + A + AT = W1 +W T

1 = H,

which implies that W1 + A ∈ S for any symmetric matrix A.
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592 Y. Yu et al.

Define a set S′ = {W1 + A | A is symmetric}. Easy to see that #S′ = 2n2(n+1)/2 = #S,
and for any W ∈ S′, we have W + W T = H . Thus we have S = S′. So W2 ∈ S′, Hence
there exists a symmetric matrix A with W2 = W1 + A. �	
Theorem 2 Let H ∈ F

n×n
2n be a symmetric matrix with main diagonal elements all zero,

and P ∈ F
n×n
2 be an invertible matrix. Suppose H ′ = PT H P, then the quadratic functions

defined by H and H ′ relative to an ordered basis α are EA-equivalent. In particular, H is a
QAM if and only if H ′ is a QAM.

Proof Let the functions defined by H and H ′ relative to α be F(x) = ∑

1≤t<i≤n
ci,t x2i−1+2t−1

,

and F ′(x) = ∑

1≤t<i≤n
c′i,t x2i−1+2t−1

respectively.

Let E = (ei,t ), and E ′ = (e′i,t ) be two n × n matrices such that

ei,t =
{

ci,t if i > t;
0 if i ≤ t,

and e′i,t =
{

c′i,t if i > t;
0 if i ≤ t.

By (3), we have

F(x) = xT MT E Mx, and F ′(x) = xT MT E ′Mx,

where x = (x1, x2, . . . , xn)T ∈ F
n
2.

Let W = MT E M , and W ′ = MT E ′M . Then W + W T = H , and W ′ + W ′T = H ′,
which implies that PT W P+ PT W T P = PT H P = H ′ = W ′ +W ′T . According to Lemma
1, there exists a symmetric matrix A = (au,v)n×n such that W ′ = PT W P + A. Thus we
have xT W ′x = xT (PT W P + A)x . Hence

F ′(x) = xT MT E ′Mx = xT PT MT E M Px + xT Ax

= G(x)+ xT Ax, (4)

where G(x) = xT PT MT E M Px .
Since A is symmetric, we have

xT Ax =
n∑

u=1

n∑

v=1

au,vxu xv =
n∑

u=1

au,u x2
u =

n∑

u=1

au,u xu . (5)

By (4) and (5), F ′(x) is EA-equivalent to G(x). As for G(x), we have

G(x) = xT PT MT E M Px = yT MT E M y = F(y),

where y = (y1, y2, . . . , yn)T = Px . So G(x) is affine equivalent to F(x). Thus F ′(x) is
EA-equivalent to F(x). �	

We need the following result (Theorem 2.3 in [22]) when proving Lemma 3.

Lemma 2 [22] Let {θ1, θ2, . . . , θn} be any given basis of F2n over F2, and let L(x) be a
linearized polynomial over F2n . Then there exists a unique vector (β1, β2, . . . , βn) ∈ F

n
2n

such that

L(x) =
n∑

j=1

Tr(θ j x)β j =
n∑

i=1

⎛

⎝
n∑

j=1

β jθ
2i−1

j

⎞

⎠ x2i−1
.

Moreover, let k be an integer such that 0 ≤ k ≤ n, then dimF2(Ker(L)) = k if and only if
RankF2{β1, β2, . . . , βn} = n − k.
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A matrix approach for constructing quadratic APN functions 593

Lemma 3 With notation as in Lemma 2. Every quadratic function Q(x) ∈ F2n [x] with
Q(0) = 0 can be denoted as

Q(x) =
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)(ηu,v + ηv,u)

+
n∑

u=1

Tr(θu x)ηu,u (6)

=
∑

1≤t<i≤n

ci,t x
2i−1+2t−1 + Lin(x), (7)

where

ci,t =
∑

1≤u,v≤n

θ2i−1

u θ2t−1

v (ηv,u + ηu,v),

Lin(x) =
∑

1≤v<u≤n

(ηu,v + ηv,u)Tr(θuθvx2)

+
n∑

u=1

Tr(θu x)ηu,u,

and

ηu,v (1 ≤ u, v ≤ n) are some elements in F2n .

Proof According to Lemma 2, every quadratic function without constant term can be denoted
as Q(x) = ∑n

t=1 L ′t (x)x2t−1
, where L ′t (x) = ∑n

u=1 Tr(θu x)ωu,t and ωu,t ∈ F2n for all

1 ≤ u, t ≤ n. Then we have Q(x) =∑n
u=1 Lu(x)Tr(θu x), where Lu(x) =∑n

t=1 ωu,t x2t−1
.

Again, according to Lemma 2, we have Lu(x) =∑n
v=1 Tr(θvx)ηv,u , where ηv,u ∈ F2n such

that ωu,t =∑n
v=1 θ2t−1

v ηv,u . Hence we have

Q(x) =
n∑

u=1

Lu(x)Tr(θu x)

=
n∑

u=1

(
n∑

v=1

Tr(θvx)ηv,u)Tr(θu x

)

=
∑

1≤u,v≤n

Tr(θu x)ηu,vTr(θvx)

=
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)(ηu,v + ηv,u)

+
n∑

u=1

Tr(θu x)ηu,u

=
∑

1≤v<u≤n

n∑

i=1

(θu x)2i−1
n∑

t=1

(θu x)2t−1
(ηu,v + ηv,u)

+
n∑

u=1

Tr(θu x)ηu,u
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594 Y. Yu et al.

=
∑

1≤v<u≤n

∑

1≤i,t≤n

(
(ηu,v + ηv,u)θ2i−1

u θ2t−1

v x2i−1+2t−1
)
+

n∑

u=1

Tr(θu x)ηu,u

=
∑

1≤t<i≤n

∑

1≤v<u≤n

(
(ηu,v + ηv,u)

(
θ2i−1

u θ2t−1

v + θ2t−1

u θ2i−1

v

)
x2i−1+2t−1

)
+ Lin(x)

=
∑

1≤t<i≤n

⎛

⎝
∑

1≤u,v≤n

θ2i−1

u θ2t−1

v

(
ηv,u + ηu,v

)
⎞

⎠ x2i−1+2t−1 + Lin(x)

=
∑

1≤t<i≤n

ci,t x
2i−1+2t−1 + Lin(x)

�	

With the help of Lemma 3, the following result can be proved.

Theorem 3 Let H = (hu,v) ∈ F
n×n
2n be a symmetric matrix with main diagonal elements

all zeros, and L be a linear permutation on F2n . Let H ′ = (h′u,v) ∈ F
n×n
2n such that h′u,v =

L(hu,v) for all 1 ≤ u, v ≤ n. Then the quadratic functions defined by H and H ′ relative to
α are EA-equivalent. In particular, H is a QAM if and only if H ′ is a QAM.

Proof Let the corresponding functions of H and H ′ be F(x) = ∑

1≤t<i≤n
ci,t x2i−1+2t−1

and

F ′(x) = ∑

1≤t<i≤n
c′i,t x2i−1+2t−1

respectively.

Let CF be the same as in Sect. 2. Then H = MT CF M . Hence CF = (MT )−1 H M−1 =
Mθ H Mt

θ , where θ is the dual basis of α, see Sect. 2.1. So

ci,t =
∑

1≤u,v≤n

θ2i−1

u θ2t−1

v hu,v.

Choose ηu,v ∈ F2n such that ηu,v + ηv,u = hu,v for all 1 ≤ u, v ≤ n, and let ηu,u = 0 for all
1 ≤ u ≤ n. Define a quadratic function Q(x) over F2n as follows:

Q(x) =
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)hu,v

=
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)(ηu,v + ηv,u).

Then from the proof of Lemma 3, we have

Q(x) = F(x)+ Lin(x), (8)

for some linear function Lin(x) over F2n .
Furthermore we define Q′(x) by

Q′(x) =
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)h′u,v. (9)

Using the same reasoning as Q(x) and F(x), we get Q′(x) = F ′(x) + Lin′(x) for some
linear function Lin′(x) over F2n .
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A matrix approach for constructing quadratic APN functions 595

Thus we have

Q′(x) =
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)h′u,v

=
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)L(hu,v)

= L

⎛

⎝
∑

1≤v<u≤n

Tr(θu x)Tr(θvx)hu,v

⎞

⎠

= L(Q(x)). (10)

By (8), (9) and (10), it deduces that F(x) and F ′(x) are EA-equivalent. �	
Remark 1 Let H = (hu,v)n×n and H ′ = (h′u,v)n×n be two n× n matrices, and L be a linear
permutation on F2n , then H ′ = L(H) means that h′u,v = L(hu,v) for all 1 ≤ u, v ≤ n.

Based on Theorem 2 and Theorem 3 we can obtain the following corollaries.

Corollary 1 Let F(x) and F ′(x) be two quadratic homogeneous functions, and H and
H ′ be their corresponding matrices, respectively. Then F(x) is EA-equivalent to F ′(x) if
H ′ = L(Pt H P), where P is an n×n invertible matrix over F2, and L is a linear permutation
over F2n .

Remark 2 Let F(x) and F ′(x) be two quadratic homogeneous functions, and H and H ′
be their corresponding matrices, respectively. We refer to [18,19] for a characterization for
EA-equivalence of F and F ′.

Up to now, we have introduced the main theoretical results of the paper which are the
theoretical bases of Algorithm 1 in the next section.

4 Constructing quadratic APN functions from a given QAM

In this section, we will give an algorithm to construct QAMs, from which we can get lots
of new quadratic APN functions. Our algorithm can be summarized as guess and determine,
which means we modify the elements of a known QAM to get a new matrix, and then
determine whether the new matrix is a QAM. With the help of previous results, the data
complexity of constructing new quadratic APN functions can be greatly reduced.

4.1 Properties of matrices over F2n

In this subsection, we will give several results on matrices over F2n which are useful for
designing effective algorithms for constructing quadratic APN functions.

Lemma 4 Let H ∈ F
n×n
2n be a symmetric matrix with main diagonal elements all zero. Then

every nonzero linear combination over F2 of the n rows of H has rank at most n − 1.

Proof Obviously, H [i] has rank at most n − 1 for any 1 ≤ i ≤ n. Suppose μ = H [i1] +
H [i2]+· · ·+H [it ], where 2 ≤ t ≤ n and {i1, i2, . . . , it } is a subset of {1, 2, . . . , n}. Then we
have μ[i1]+μ[i2]+ · · ·+μ[it ] = 0, so RankF2(μ) ≤ n−1, which implies this proposition.

�	
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For the convenience of our discussions, we give the following definition:

Definition 6 Let H ∈ F
m×k
2n (m, k ≤ n). H is called proper if every nonzero linear combi-

nation over F2 of the m rows of H has rank at least k − 1.

First, we give the following lemma.

Lemma 5 Let A ∈ F
r×c
2n (1 ≤ r < c ≤ n), and A′ = AP, where P ∈ F

c×c
2 is invertible.

Then A is proper implies that A′ is also proper.

Proof Let S = {∑r
i=1 λi A[i] : (λ1, . . . , λr ) ∈ F

r
2\{0}}, and S′ = {∑r

i=1 λi A′[i] :
(λ1, . . . , λr ) ∈ F

r
2\{0}. Let S′′ = {s P : s ∈ S}. Then S′ = S′′, and since P is invert-

ible, we have RankF2(s) = RankF2(s P). �	
Now we can prove the following theorem:

Theorem 4 Let A = (ai, j ) ∈ F
r×c
2n (1 ≤ r < c ≤ n) with ai, j = a j,i and ai,i = 0

for 1 ≤ i, j ≤ r . Let A[·, k] be the k-th column of A, and b = ∑c
k=1 λk A[·, k], where

0 �= (λ1, . . . , λc) ∈ F
c
2. Assume t = RankF2{b[1], b[2], . . . , b[r ]}. If A is proper, then we

have:
(i) If (λr+1, . . . , λc) = 0, then t = r − 1;
(ii) If (λr+1, . . . , λc) �= 0, then t = r .

Proof (i) Assume (λr+1, . . . , λc) = 0. Then b =∑r
k=1 λk A[·, k]. By Lemma 4, t ≤ r − 1.

Let B = Submatrix(A, 1, 1, r, r), by the definition of A, we have

RankF2

(
r∑

k=1

λk A[·, k]
)

= RankF2

(
r∑

k=1

λk B[·, k]
)

= RankF2

(
r∑

k=1

λk B[k]
)

.

If t < r − 1, then we have RankF2(
∑r

k=1 λk A[k]) < r − 1 + (c − r) = c − 1, which
contradicts with A being proper. Thus t = r − 1.

(ii) Suppose (λr+1, . . . , λc) �= 0. Without loss of generality, let λc = 1. Then substitute
A[·, c]with b, we get a new r×c matrix A′. If t < r , then there exists 0 �= (λ′1, . . . , λ′r ) ∈
F

r
2 such that λ′1 A′[1, c] + λ′2 A′[2, c] + · · · + λ′r A′[r, c] = 0. Without loss of generality,

suppose λ′1 �= 0. Next we perform the following operations step by step, first, substitute
A′[1] with

∑r
i=1 λ′i A′[i] and get a new matrix A′′; second, substitute A′′[·, 1] with∑r

i=1 λ′i A′′[·, i] and get a new matrix A′′′. By Lemma 5 and the definition of the proper,
it implies that A′, A′′ and A′′′ are also proper. However, after these changes, we have
A′′′[1, 1] = A′′′[1, c] = 0, which contradicts with A′′′ being proper. Thus t < r is not
true, so t = r . �	

According to Theorem 4, we get the following corollary.

Corollary 2 Let H = (hu,v)n×n be an n × n symmetric matrix over F2n , and A =
Submatrix(H, 1, 1, r, c) with r < c. Suppose B = AT = Submatrix(H, 1, 1, c, r). Then
A is proper implies that B is also proper.

Corollary 2 will be useful to speed up our algorithm for constructing QAMs. The key
point is that every submatrix of a QAM must be proper (see Definition 6), so if a matrix
has a submatrix which is not proper, it cannot be a QAM. Based on this corollary, we
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A matrix approach for constructing quadratic APN functions 597

can exclude some improper candidates in advance when we haven’t known the whole val-
ues of the matrix. We know that every QAM is symmetric, so we will know the values
of A = Submatrix(H, 1, 1, r, c) and B = AT = Submatrix(H, 1, 1, c, r) at the same time.
According to Corollary 2, we need only to check whether A is proper. Thus some unnecessary
checking can be avoided in our searching algorithm.

4.2 How to construct QAMs

In this section, we will introduce a problem, and then show how to construct QAMs through
solving this problem.

Problem 1 Let ei be a vector of length n with ei [i] = 1 and ei [ j] = 0 for j �= i . The
problem is, how to find −→x = (x1, . . . , xn−1) ∈ F

n−1
2n satisfying

λ1x1 + · · · + λn−1xn−1 ∈ Sλ1e1+···+λn−1en−1 , (11)

for all (λ1, . . . , λn−1) ∈ F
n−1
2 \{0}, where Sλ1e1+···+λn−1en−1 are some subsets of F2n .

(11) consists of 2n−1 − 1 conditions, we need to find all the qualified −→x . As a matter of
fact, all the constructions of QAMs can be reduced to Problem 1. Details are described as
follows.

Given an n×n QAM matrix H over F2n , we wish to reassign the values of the last column
of H to get some new QAMs. Let A = Submatrix(H, 1, 1, n − 1, n − 1), it is easy to see
that A is proper. By Lemma 4, any nonzero linear combination of the n − 1 rows of A has
rank n − 2.

Let c = (x1, . . . , xn−1)
t , and H ′ =

(
A c
ct 0

)

. We want to choose suitable c to make H ′ a

QAM. Actually, by Theorem 4 (ii), we need only to choose c = (x1, . . . , xn−1)
t to satisfy

(11), where Sλ1e1+···+λn−1en−1 = F2n\Span(λ1 A[1] + · · · + λn−1 A[n − 1]).
We can shrink Se1 in (11). Let V = Span(A[1, 1], A[1, 2], . . ., A[1, n − 1]), in (11),

Se1 = F2n\V , which equals to (V +a1)∪ (V +a2)∪ (V +a3) for some ai ∈ F2n , 1 ≤ i ≤ 3
because of dim(V ) = n−2. Since x1 ∈ Se1 , there exists y ∈ V such that x1 = y+ai for some
i , i.e., ai = x1 + y. Since y ∈ V and A[1, 1] = 0, y = λ2 A[1, 2] + · · · + λn−1 A[1, n − 1]
for some λi ∈ F2, i = 2, . . . , n − 1. So we may perform suitable column transformations
to change x1 into ai , and perform the corresponding row transformations to change H ′[n, 1]
into ai . Since we consider only to find CCZ-inequivalent functions, so by Theorem 2, we
may take Se1 = {a1, a2, a3}. Because in the above transformation, we do not use the first
column, therefore based on the same reason as the Se1 , we may take Se2 = {b1, . . . , bl},
where l = 2n−1 − 2n−3.

Further, given a QAM H , we may also reassign the values of the last two columns of
H to get some new QAMs. This can also be reduced to Problem 1, the difference is that
we must apply the problem twice. Similarly, we can reassign more columns of H , so this
method can generate almost all CCZ-inequivalent quadratic APN functions if we change
enough columns.

In view of the above discussions, an algorithm for solving Problem 1 is important for
our approach for constructing new quadratic functions. We give a recursive algorithm as
Algorithm 1. It needs to run GenerateQAM(1, H, S) to solve Problem 1.

In the following, we give an example to illustrate the above algorithm.
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Example 1 Let n = 4 and we work on F24 , and

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 H [1, 2] H [1, 3] x1

H [2, 1] 0 H [2, 3] x2

H [3, 1] H [3, 2] 0 x3

x1 x2 x3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Suppose A = Submartix(H, 1, 1, 3, 3) is proper. The above algorithm is about how to keep
H proper when assigning values for x1, x2 and x3. The basic idea is, if x1 ∈ Span(A[1]),
then H is not proper. So x1 must be chosen such that x1 ∈ F24\Span(A[1]). Similarly, if
x1+ x2 ∈ Span(A[1]+ A[2]), then H is not proper, thus x1+ x2 ∈ F24\Span(A[1]+ A[2]).
With the same reasoning, H is proper if and only if

A← Submatrix(H, 1, 1, n − 1, n − 1);1

et ∈ F
n−1
2 with et [t] = 1 and et [ j] = 0 for j �= t ;2

for each (λ1, λ2, . . . , λn−1) ∈ F
n−1
2 \{0} do3

S(λ1,...,λn−1) ← F2n \Span(
n−1∑

j=1
λ j A[ j]);

4

end5

S = {Sλ : λ = (λ1, · · · , λn−1) ∈ F
n−1
2 \{0}};6

Input: A QAM H over F2n ; A set S as defined above; An index i .
Output: Some QAMs;
procedure GenerateQAM(i, H, S);7
if i = n − 1 then8

for each xi ∈ Sei do9

H [n, n − 1] ← xi ;10
H [n − 1, n] ← xi ;11
Output H;12

end13

else14
for each xi ∈ Sei do15

H [n, i] ← xi ;16
H [i, n] ← xi ;17

S
′ ← S;18

for each (λi+1, ..., λn−1) ∈ F
n−1−i
2 \ {0} do19

λ← (0, ..., 0, λi+1, ..., λn−1);20

S
′
λ ← Sλ ∩ Sλ⊕ei ;21

GenerateQAM(i + 1, H, S
′
);22

end23

end24

end25
end procedure26

Algorithm 1: An algorithm for solving Problem 1
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ F24\Span(A[1]),
x2 ∈ F24\Span(A[2]),
x3 ∈ F24\Span(A[3]),
x1 + x2 ∈ F24\Span(A[1] + A[2]),
x1 + x3 ∈ F24\Span(A[1] + A[3]),
x2 + x3 ∈ F24\Span(A[2] + A[3]),
x1 + x2 + x3 ∈ F24\Span(A[1] + A[2] + A[3]).

The above algorithm is a generalization of this example.

4.3 Experimental results

We have implemented the algorithm of this paper. In this subsection we will report experi-
mental results running our algorithm.

(i) Dillon [13] listed 18 classes of CCZ-inequivalent APN functions over F27 . Edel [16]
found a new class of APN function and this list expanded to 19 classes. With the method
of this paper, firstly, we construct a 7 × 7 QAM H from x3, then reassign the values
H [3, 6], H [3, 7], H [4, 5], H [4, 6], H [4, 7], H [5, 6], H [5, 7] and H [6, 7] (during this
process, we must keep H symmetric). Using this idea we can get more than 470 classes
of CCZ-inequivalent quadratic APN functions, these functions are all CCZ-inequivalent
to the known ones. Similar method can be used on F26 . According to Edel’s results
[15], there is only 13 classes of CCZ-inequivalent quadratic APN functions on F26 . Our
algorithm shows that we need only to change 8 (2× 4) elements of of a QAM and get
all 13 classes of CCZ-inequivalent quadratic APN functions.

(ii) We must change the last two columns (and rows) of a known QAM to get new QAMs
when n ≥ 8. On F28 , it needs about 24 h to find a new APN function in a personal
computer. Fortunately, Algorithm 1 can be implemented in parallel, and we are running
our programs in several computers now. Up to know, we have found about 2252 CCZ-
inequivalent quadratic APN functions on F28 , and they are all CCZ-inequivalent to the
23 classes of known ones introduced by Dillon [13] and Edel and Pott [16]. We have
checked all these new APN functions with the method introduced in [5], none of them is
CCZ-equivalent to a permutation. We refer the readers to [25] for detailed experimental
results, where we list all newly found APN functions in polynomial forms.

5 Conclusion

A one to one correspondence between quadratic homogeneous APN functions and QAMs is
presented. In view of this correspondence, we propose the notion of the proper for matrices
over a finite field. The most important part of our algorithm is how to keep the matrix proper
during the construction process. Algorithm 1 is the core part of our searching program.

Up to now, we have found 471 and 2252 new CCZ-inequivalent quadratic APN functions
on F27 and F28 respectively (see the appendices in [25]). We think our lists are not complete,
especially the list on F28 . Much related work can be done in the future, such as, finding some
QAMs whose corresponding functions are APN on F2n for infinitely many n, generalizing the
matrix approach to construct PN functions, and finding better methods to construct QAMs,
etc.
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