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Abstract For codes, there are multiple notions of isomorphism. For example, we can con-
sider isomorphisms that only permute the coordinates of codewords, or isomorphisms that
not only permute the coordinates of codewords but also multiply each coordinate by a scalar
(not necessarily the same scalar for each coordinate) as it permutes the coordinates. Isomor-
phisms of cyclic codes of the first kind have been studied in some circumstances—we will
call them permutation isomorphisms—and our purpose is to begin the study of the second
kind of isomorphism—which we call monomial isomorphisms—for cyclic codes. We give
examples of cyclic codes that are monomially isomorphic but not permutationally isomor-
phic. We also show that the monomial isomorphism problem for cyclic codes of length n
over Fq reduces to the permutation isomorphism problem for cyclic codes of length n over
Fq if and only if gcd(n, q − 1) = 1. Applying known results, this solves the monomial
isomorphism problem for cyclic codes satisfying gcd(n, q(q − 1)) = 1. Additionally, we
solve the monomial isomorphism problem for cyclic codes of prime length over all finite
fields. Finally, our results also hold for some codes that are not cyclic.

Keywords Cyclic code · Monomial · Permutation · Isomorphism · Equivalent

Mathematical Subject Classification 94B15

A linear code of length n over the field of q elements Fq is simply a subspace of F
n
q ,

and an element of the subspace is called a codeword. There are two common ways of
defining linear isomorphisms (usually called equivalence) between linear codes. In the first
definition, one only considers possible isomorphismswhich are simply permutations of letters
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258 E. Dobson

(or coordinates) in a code word. More specifically, if C and C ′ are linear codes of length
n over Fq , then C and C ′ are isomorphic if there exists an n × n permutation matrix P
such that Pc ∈ C ′ if and only if c ∈ C . As a permutation matrix simply permutes the
coordinates, we can and sometimes will consider P ∈ Sn . This kind of isomorphism we
will refer to as a permutation isomorphism for the rest of the paper. The second kind is
more complicated. We still need an n × n permutation matrix P , but we will also allow
multiplication of a component by a scalar in Fq . This can be represented as P D, where
D is a diagonal matrix whose determinant is nonzero. We will call such an isomorphism
a monomial isomorphism. We remark that monomial isomorphisms between codes is in
some sense the most general form of linear isomorphism between codes, as Filip and Heise
[7] have shown that any Hamming weight preserving linear bijection from one linear code
to another is necessarily a monomial isomorphism between the two codes. We remark that
there are nonlinear isomorphisms between linear codes—see [11]. We shall not consider
such isomorphisms here. We point out that Sendrier and Simosit [22] have shown that the
monomial isomorphism problem for codes reduces to the permutation isomorphism problem
for codes, but that in the reduction the length of the code increases.

As there two notions of linear isomorphism for linear codes, there are two notions of linear
automorphism for linear codes as well. By PAut(C), we denote the group of all permutation
isomorphisms between a code C and itself, called permutation automorphisms, and by
MAut(C), the group of all monomial isomorphisms between a code C and itself, called
monomial automorphisms. A code C is cyclic, if the map that shifts coordinates by 1 is
a permutation automorphism of C . That is, the map (c1, . . . , cn) �→ (cn, c1, . . . , cn−1) is a
permutation automorphism of C . The permutation isomorphism problem for cyclic codes of
length n over any finite field has been solved by Huffman et al. [10] in the case where n is a
prime squared. Recently Muzychuk [17] showed that the permutation isomorphism problem
for cyclic codes of length n over Fq reduces to the isomorphism problem for circulant color
digraphs provided that gcd(n, q) = 1. In this paper, we begin the investigation of monomial
isomorphisms of cyclic codes, and give an arithmetic condition for which the solution of the
monomial isomorphism problem for cyclic codes reduces to the permutation isomorphism
problem for cyclic codes (Corollary 2.2). Combining this with Muzychuk’s results, we solve
themonomial isomorphismproblem for all values ofn and for all finite fields of certain charac-
teristic depending on the length n (Corollary 2.4). Additionally, we give an example of cyclic
codes of prime length p over Fq , q a prime, which aremonomially isomorphic but not permu-
tationally isomorphic (Example 1.1), and then completely solve the monomial isomorphism
problem for cyclic codes of prime length over all finite fields (Theorem 3.1 and Theorem 3.2).

1 Definitions, terminology, and known and preliminary results

We begin with notation and terminology regarding monomial maps. A matrix of the form
P D, where P is a permutation matrix and D is a diagonal matrix with nonzero determinant,
is amonomial matrix, and the groupMMn(q) of all n × n monomial matrices with entries
in Fq is isomorphic to Sn � (F∗

q)n . For convenience, we let Pn(q) be the group of all n × n
permutation matrices, Dn(q) the group of all n × n diagonal matrices with entries in the
field Fq with nonzero determinant, and Sn(q) the set of all n × n scalar matrices in Dn(q),
where a scalar matrix is a matrix of the form α In , α ∈ F

∗
q . Now let Sn � F

∗
q act on Zn × Fq

in the natural fashion. That is, Sn � F
∗
q = {(i, j) �→ (σ (x), αi j) : σ ∈ Sn, αi ∈ F

∗
q}.

Then Sn � F
∗
q

∼= Sn � (F∗
q)n , and so MMn(q) ∼= Sn � F

∗
q . Thus any subgroup of MMn(q)

is isomorphic to a subgroup of Sn � F
∗
q by the map, say, ξ . Clearly under ξ the group of
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Monomial isomorphisms of cyclic codes 259

permutation matrices maps to the subgroup {(i, j) �→ (σ (i), j) : σ ∈ Sn}. Also, there is a
canonical isomorphism between the group of all n × n permutation matrices and Sn , which
we denote by ψ .

Let G be a group and define gL : G → G by gL(x) = gx . Let GL = {gL : g ∈ G}.
Then GL is the left-regular representation of G. For g ∈ G, we define ĝL = ψ−1(gL) and
let ĜL = ψ−1(GL). Then ĝL : G × Fq → G × Fq by ĝL(x, i) = (gx, i). Of course ĜL

is a group isomorphic to G. We say that a code C is ĜL -invariant if ĜL ≤ MAut(C). Note
that this is equivalent to requiring that the group of codeword preserving permutations of the
components of codewords contains GL , or equivalently, that GL ≤ ψ(PAut(C)). A cyclic
code of length n in this language is just a Ẑn-invariant code.

Note that as ĜL ≤ MAut(C), the coordinates of a codeword can indexed with elements
of G. We may then consider ψ(PAut(C)) ≤ SG , where SG is the symmetric group on G.
We may also identify SG with the n × n (or |G| × |G|) permutation matrices, in which case
PAut(C) consists of those permutation matrices which stabilize C .

We begin with an example showing that there are cyclic codes that are monomially iso-
morphic but not permutation isomorphic. For coding theory terms used in the following result
that are not defined here, see [11].

Example 1.1 Let n be a positive integer, p|n be prime, and q a prime-power such that
p|(q − 1). Then there exists monomially isomorphic cyclic codes of length n over Fq of
dimension 1 that are not permutationally isomorphic.

Proof Let α ∈ F
∗
q be of order p. Then α is a root of the polynomial xn − 1 (viewed as

a polynomial with coefficients in Fq ). Let C be the cyclic code of length n over Fq with
generating polynomial (xn − 1)/(x − α). As α has order p in F

∗
q , (xn − 1)/(x − α) is not

a multiple of
∑n−1

i=0 xi . Then the code C is monomially isomorphic to the repetition code
of length n over Fq (as they are both subspaces of F

∗
q of dimension 1), but C is clearly not

permutation isomorphic to the repetition code of length n overFq as its generating polynomial
is not a multiple of

∑n−1
i=0 xi . Thus there are monomially isomorphic cyclic codes of length

n over Fq that are not permutationally isomorphic cyclic codes. 
�
The problem of permutation isomorphism between cyclic codes is usually discussed in

termsof theCayley isomorphismproblem.Wenowdefine the appropriate terms for discussion
of this problem not only in our context of permutation and monomial isomorphisms of codes,
but also Cayley color digraphs and in the more general context of Cayley objects.

Definition 1.2 Let C be a ĜL -invariant linear code over Fq . We say that C is a PCI-code of
G if whenever C ′ is a ĜL -invariant code over Fq , then C and C ′ are permutation isomorphic
if and only if they are permutation isomorphic by an automorphism of G (by “isomorphic
by a group automorphism of G” we mean C and C ′ are isomorphic by a permutation matrix
P such that ψ(P) is an automorphism of G). We say that C is anMCI-code of G provided
that C and C ′ are isomorphic by a monomial isomorphism if and only if they are isomorphic
by a permutation matrix P , where again ψ(P) is an automorphism of G.

Definition 1.3 We define aCayley object of G to be a combinatorial object X (e.g. digraph,
graph, design, code) such that GL ≤ Aut(X), where Aut(X) is the automorphism group of
X (note that this implies that the vertex set of X is in fact G). If X is a Cayley object of G in
some class K of combinatorial objects with the property that whenever Y is another Cayley
object of G in K, then X and Y are isomorphic if and only if they are isomorphic by a group
automorphism of G, then we say that X is a CI-object of G in K. If every Cayley object of
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260 E. Dobson

G in K is a CI-object of G in K, then we say that G is a CI-group with respect to K. If G
is a CI-group with respect to every class of combinatorial objects, then G is a CI-group.

Several equivalent precise definitions of the notion of a combinatorial object can be found
in [20]. It is worth mentioning the following remarkable theorem of Pálfy [21].

Theorem 1.4 A group G of order n is a CI-group if and only if n = 4 or gcd(n, ϕ(n)) = 1,
where ϕ is Euler’s phi function.

In our context, the above result says that if n = 4 or gcd(n, ϕ(n)) = 1, then every Ĝ-
invariant code is a PCI-code. Note that this also explains why Huffman, Job, and Pless [10]
began by considering the permutation isomorphism problem for cyclic codes of length a
prime-squared as the simpler case of prime length is handled by Pálfy’s Theorem above.

As for a ĜL -invariant code C we have that ψ(PAut(C)) is isomorphic to a subgroup of
SG (here SG is the symmetric group on G) and ψ(ĜL) = GL , the question of determining
whether or not a group G has the property every ĜL -invariant code over Fq is a PCI-code
can be phrased in the context and language of the CI-problem. That is, a Ĝ-invariant code
would be called a “Cayley code” over Fq , and that G is a CI-group with respect to codes
over Fq instead of that every Ĝ-invariant code over Fq is a PCI-code. We remark that the
term “Cayley code” is not used in coding theory, and such a code is called a group code.
Finally, as mentioned earlier, we may identify the coordinates of a codeword canonically
with elements of G. Then

Babai [1] characterized the CI-property in the following manner, and this tool is used in
almost every positive result concerning the Cayley isomorphism problem.

Lemma 1.5 For a Cayley object X of G in K the following are equivalent:

(1) X is a CI-object,
(2) given a permutation δ ∈ SG such that δ−1GLδ ≤ Aut(X), GL and δ−1GLδ are conjugate

in Aut(X).

If X is not a CI-object of G, the solution to the isomorphism problem is usually expressed
in terms of solving sets. Let G be a finite group. We say that S ⊆ SG is a solving set for
a Cayley object X in a class of Cayley objects K if for every X ′ ∈ K such that X ∼= X ′,
there exists s ∈ S such that s(X) = X ′. Observe that solving sets are not unique, as if S is
a solving set, then {sgL : s ∈ S} is a solving set for every g ∈ G. Also, X is a CI-object of
G if and only if a solving set for X consists of automorphisms of G. Solving sets for Cayley
objects of abelian groups were characterized in [6, Lemma 13].

Lemma 1.6 Let G be a finite abelian group, and S ⊆ SG set of permutations. Then the
following conditions are equivalent:

(1) S is a solving set for a Cayley object X in a class K of Cayley objects of G,
(2) whenever δ ∈ SG such that δ−1GLδ ≤ Aut(X), then there exists s ∈ S and v ∈ Aut(X)

such that v−1δ−1gLδv = s−1gL s for every g ∈ G.

Let C be a cyclic code of length n over Fq . We say that S ⊂ Pn(q) is a permutation
solving set for C if and only if any cyclic code C ′ permutationally isomorphic to C is
permutationally isomorphic to C by an element of S. Similarly, we say that S ⊂ MMn(q)

is amonomial solving set for C if and only if any cyclic code C ′ monomially isomorphic to
C is monomially isomorphic to C by an element of S.
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Monomial isomorphisms of cyclic codes 261

The isomorphism problem for Cayley objects has been most thoroughly studied when the
object is a digraph or a graph (see [14] for a relatively recent survey). Usually, such results
hold for color Cayley digraphs, where a color Cayley digraph of G is a digraph whose edges
have been colored (and so GL not only preserves edges, but also maps all edges of a given
color to edges of the same color). A circulant color digraph of order n is a Cayley color
digraph of the group Zn . Recently, Muzyhcuk [17] discovered a relationship between the
isomorphism problem for color Cayley digraphs and the isomorphism problem for group
codes. The following result is a combination of [17, Theorems 1, 2 and 3], and contains the
results of [17] that we will have need of. We need one additional term before proceeding. A
Ĝ-invariant code C over Fq is called semisimple if gcd(|G|, q) = 1.

Theorem 1.7 If G is either cyclic or a p-group, then a permutation solving set for color
Cayley digaphs of G is a solving set for semisimple group codes of G. If in addition, G is a CI-
group with respect to color digraphs, then G is a CI-group with respect to semisimple codes.

Themonomial isomorphism problem for Ĝ-invariant codes over Fq , q odd, though cannot
be rephrased in terms of the CI-problem, as it is never the case that MAut(C) is canonically
isomorphic to a subgroup of Sn , where n is the length of a codeword of C (as the maps α In ,
α ∈ F

∗
q , are always monomial isomorphisms of a linear code over Fq , and so are always in

MAut(C)). Nevertheless, these problems are clearly related, and after proving a preliminary
lemma we prove an analog of Lemma 1.6 for monomial isomorphisms of Ĝ-invariant linear
codes. Before proceeding, we will need some additional terminology.

For groups H ≤ G, we denote the centralizer of H in G by ZG(H). Let C a ĜL -invariant
code over Fq . For σ = P D ∈ MAut(C), we define σ/Fq = ψ(P) and for H ≤ MAut(C),
we let H/Fq = {ψ(P) : P D ∈ H}. Clearly ψ(PAut(C)) ≤ MAut(C)/Fq .

Lemma 1.8 If G is finite and abelian, then ZMMn(q)(ĜL) = ĜL × Sn(q).

Proof It is straightforward to verify that 〈ĜL ,Sn(q)〉 ≤ ZMMn(q)(ĜL). Let δ ∈
ZMMn(q)(ĜL). Then ψ(δ) centralizes ψ(ĜL) = GL , and as a transitive abelian group is
self-centralizing [2, Theorem 4.2A (v)], δ/Fq ∈ GL . It thus suffices to show that if δ ∈ Dn(q)

centralizes ĜL , then δ ∈ Sn(q). Now, ξ(δ)(i, j) = (i, αi j), αi ∈ F
∗
q , and

(gi, j) = ξ(ĝL)(i, j) = ξ(δ−1 ĝLδ)(i, j) = (gi, α−1
gi αi j).

We conclude that α−1
gi αi = 1 for all g, i ∈ G and so αi = αgi for all i, g ∈ G. As the left

action of G on itself is transitive, we see that αi = α j for all i, j ∈ G, and so δ ∈ Sn(q). Then
ZMMn(q)(ĜL) = 〈ĜL ,Sn(q)〉. Clearly ĜL ∩ Sn(q) = {In} and every element of Sn(q)

commutes with ĜL . Then ĜL ,Sn(q)�〈ĜL ,Sn(q)〉 and so 〈ĜL ,Sn(q)〉 = ĜL × Sn(q). 
�
Lemma 1.9 Let G be a finite abelian group of order n, S ⊆ SG a set of permutations, and
C a Ĝ-invariant code over Fq . Then the following are equivalent:

(1) S is a monomial solving set for C,
(2) whenever δ ∈ MMn(q) such that δ−1ĜLδ ≤ MAut(C), then there exists s ∈ S, and

v ∈ MAut(C) such that v−1δ−1ĝLδv = s−1 ĝL s for every g ∈ G.

Proof (1) implies (2). Let δ ∈ MMn(q) such that δ−1ĜLδ ≤ MAut(C). Then δ(C) is
a Ĝ-invariant code as MAut(δ(C)) = δMAut(C)δ−1. As S is a monomial solving set
for C , δ(C) = s(C) for some s ∈ S. Thus v = δ−1s ∈ MAut(C) and if g ∈ G, then
(δ−1s)−1δ−1ĝLδ(δ−1s) = s−1ĝL s as required.
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262 E. Dobson

(2) implies (1). Let C ′ be a ĜL -invariant code with δ : C → C ′ a monomial isomorphism.
As ĜL ≤ MAut(C ′), δ−1ĜLδ ≤ MAut(C). By hypothesis, there exists s ∈ S and v ∈
MAut(C) such that v−1δ−1ĥLδv = s−1ĥL s for every h ∈ G, or sv−1δ−1ĥL = ĥL sv−1δ−1.
By Lemma 1.8, sv−1δ−1 = ĝL T for some g ∈ G and T ∈ Sn(q), and so s = ĝL T δv. Then
s(C) = ĝL T δv(C) = ĝL T δ(C) = ĝL T (C ′) = C ′ as ĝL , T ∈ MAut(C ′). 
�
Lemma 1.10 Let C be a ĜL -invariant linear code over Fq , where G has order n. Then the
following are equivalent:

(1) if S is a permutation solving set of C then S is a monomial solving set of C,
(2) whenever C ′ is a ĜL -invariant code monomially isomorphic to C with δ ∈ MMn(q)

a monomial isomorphism, then there exists γ ∈ MAut(C) such that γ −1δ−1ĜLδγ ≤
PAut(C).

Proof (1) implies (2). Let S be a permutation solving set for C such that S is a monomial
solving set for C , and C ′ a ĜL -invariant code monomially isomorphic to C with δ : C �→ C ′
a monomial isomorphism. By Lemma 1.9 there exists s ∈ S, and v ∈ MAut(C) such that
v−1δ−1ĝLδv = s−1ĝL s for every g ∈ G. As s and ĝL are both permutation matrices, setting
γ = v we see that γ −1δ−1GLδγ ≤ PAut(C) as required.

(2) implies (1). Let S be a permutation solving set ofC ,C ′ a ĜL -invariant codemonomially
isomorphic to C with δ ∈ MMn(q) a monomial isomorphism, and γ ∈ MAut(C) such that
γ −1δ−1ĜLδγ ≤ PAut(C). Considering PAut(C) as a subgroup of the |G|×|G| permutation
matrices identified with SG , we have that ĜL and γ −1δ−1ĜLδγ are isomorphic regular
subgroups of SG . By [2, Lemma 1.6B] ĜL and γ −1δ−1ĜLδγ are equivalent permutation
groups, and so there exists ω ∈ SG such that ω−1ĝLω = γ −1δ−1 ĝLδγ for every g ∈ G. By
Lemma 1.6 there exists v ∈ PAut(C) and s ∈ S such that

s−1ĝL s = v−1ω−1ĝLωv = v−1γ −1δ−1ĝLδγ v

for every g ∈ G. The result then follows by Lemma 1.9 as γ v ∈ MAut(C). 
�
The following conjugation result [3, Lemma 2.5] will be crucial. Before stating it, we will

need some additional terminology. For terms regarding permutation groups not defined here,
see [2].

Definition 1.11 Let G be a transitive group. We denote by StabG(x) the stabilizer of the
element x in the set on which G acts, and for B ∈ B, StabG(B) is the set-wise stabilizer of
the block B. That is, StabG(x) = {g ∈ G : g(x) = x} and StabG(B) = {g ∈ G : g(B) = B}.
Define a partial order� on the set of all block systems ofG byB � C if and only if every block
of C is a union of blocks ofB. We defineB|C to be the block system of StabG(C) consisting of
all those blocks of B that are contained in C , C ∈ C. By fixG(B) we mean the subgroup of G
which fixes each block of B set-wise. That is, fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}.
Finally, by G/B we mean the induced action of G on B. That is, for g ∈ G, g/B(B) = B ′
if and only if g(B) = B ′, and G/B = {g/B : g ∈ G}. We remark that many authors denote
this by GB.

Definition 1.12 Let n = 
r
i=1 pai

i and m = �r
i=1ai . We will call m the exponent of n. A

transitive group G of degree n is m-step imprimitive if there exists a sequence of block
systems B0 ≺ B1 ≺ . . . ≺ Bm . A block system B will be said to be normal if B is formed
by the orbits of a normal subgroup. We will say that G is normally m-step imprimitive if
each Bi , 0 ≤ i ≤ m, is formed by the orbits of a normal subgroup of G.
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Monomial isomorphisms of cyclic codes 263

Note that the definition of m-step imprimitive implies that if Bi+1 ∈ Bi+1 and Bi ∈ Bi ,
then |Bi+1|/|Bi | is prime for every 0 ≤ i ≤ m − 1.

Definition 1.13 Let G be a permutation group acting on X and H a permutation group
acting on Y . Define the wreath product of G and H , denoted G � H , to be the group of all
permutations of X × Y of the form (x, y) → (g(x), hx (y)).

The following result is also proven in [3]. The proof is included here for completeness.

Lemma 1.14 Let n be a positive integer and G1, G2 be transitive abelian groups of degree
n such that 〈G1, G2〉 is m-step imprimitive. Let n = pa1

1 pa2
2 · · · par

r be the prime-power
decomposition of n. Then there exists δ ∈ 〈G1, G2〉 and a sequence of primes q1, . . . , qm

such that n = q1 · · · qm and 〈G1, δ
−1G2δ〉 is permutation isomorphic to a subgroup of

AGL(1, q1) � (AGL(1, q2) � (· · · � AGL(1, qm))). Furthermore, if 〈G1, G2〉 is solvable, then
we may take δ = 1.

Proof We proceed by induction on m. If m = 1, then n is prime, and both G1 and G2 are
Sylow n-subgroups of Sn . Hence there exists δ ∈ 〈G1, G2〉 such that δ−1G2δ = G1, and the
result is trivial as 〈G1, δ

−1G2δ〉 is cyclic of order n. If 〈G1, G2〉 is solvable, then the result
follows by [2, Exercise 3.5.1]. Now assume that the result is true for all m − 1 ≥ 1, and let
G1, G2 be transitive abelian groups of degree n, where n has exponent m, such that 〈G1, G2〉
is m-step imprimitive.

As 〈G1, G2〉 ism-step imprimitive, 〈G1, G2〉 admits a normal block systemB consisting of
n/qm blocks of size qm for some prime qm |n, and both G1/B and G2/B are transitive abelian
groups of degree n/qm and exponent m − 1. Note that B is normal as every block system
of a permutation group that contains a regular abelian subgroup is normal. Furthermore, as
〈G1, G2〉 is m-step imprimitive, 〈G1, G2〉/B is (m − 1)-step imprimitive by [6, Lemma 8],
so by the induction hypothesis, there exists δ1 ∈ 〈G1, G2〉 such that 〈G1, δ

−1
1 G2δ〉/B is

permutation isomorphic to a subgroup of AGL(1, q1) � (AGL(1, q2) � (· · · �AGL(1, qm−1)))

for some sequence of primes q1, . . . , qm−1 such that n/qm = q1 · · · qm−1, and if 〈G1, G2〉
is solvable, we may take δ1 = 1. Furthermore, fixG1(B) is semiregular of order qm , and
fix

δ−1
1 G2δ1

(B) is also semiregular of order qm . Hence there exists δ2 ∈ fix〈G1,δ
−1
1 G2δ1〉(B) such

that δ−1
2 fix

δ−1
1 G2δ1

(B)δ2 is contained in the same Sylow qm-subgroup of fix〈G1,δ
−1
1 G2δ1〉(B)

as fixG1(B). If 〈G1, G2〉 is solvable, then fix〈G1,G2〉(B) is solvable, so fix〈G1,G2〉(B)|B is
solvable for every B ∈ B, and by [2, Exercise 3.5.1], fix〈G1,G2〉(B)|B has a unique Sylow qm-
subgroup for every B ∈ B. Hencewemay take δ2 = 1. Let δ = δ1δ2.As a Sylowqm-subgroup
of fix〈G,δ−1Gδ〉(B) is contained in 1Sn/qm

� Zqm we have that both G1 and δ−1G2δ normalize
1Sn/qm

�Zqm . This then implies that Stab〈G1,δ−1G2δ〉(B)|B has a normal Sylow qm-subgroup, so
that Stab〈G1,δ−1G2δ〉(B)|B is permutation isomorphic to a subgroup of AGL(1, qm) for every
B ∈ B. It then follows by the Embedding Theorem [15, Theorem 2.6], that 〈G1, δ

−1G2δ〉 is
permutation isomorphic to a subgroup of AGL(1, q1) � (AGL(1, q2) � (· · · � AGL(1, qm))),
and the result follows by induction. 
�

2 The main results

We now give conditions under which every permutation solving set for a code over Fq is also
a monomial solving set.

Theorem 2.1 Let G be an abelian group of order n such that whenever δ ∈ SG then there
exists γ ∈ 〈GL , δ−1GLδ〉 such that 〈GL , γ −1δ−1GLδγ 〉 is normally m-step imprimitive.
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264 E. Dobson

Let q be a prime-power such that gcd(n, q − 1) = 1, and C be a Ĝ-invariant code over Fq .
Then every permutation solving set for C is also monomial solving set for C.

Proof By Lemma 1.10, we must show that whenever C ′ is a ĜL -invariant code mono-
mially isomorphic to C with δ ∈ MMn(q) a monomial isomorphism, then there exists
γ ∈ MAut(C) such that γ −1δ−1ĜLδγ ≤ PAut(C). Let δ = P D, where P ∈ Pn(q) and
D ∈ Dn(q). By hypothesis, there exists γ ∈ MAut(C) such that 〈ĜL , δ−1γ −1ĜLγ δ〉/Fq is
normallym-step imprimitive, sowe assumewithout loss of generality that 〈ĜL , δ−1ĜLδ〉/Fq

is normallym-step imprimitive. After an additional conjugation, wemay additionally assume
by Lemma 1.14 that there is a sequence of primes q1, . . . , qm such that n = q1 · · · qm and
〈ĜL , δ−1ĜLδ〉/Fq is permutation isomorphic to a subgroup of AGL(1, q1) � (AGL(1, q2) �
(· · · � AGL(1, qm))), which is solvable.

Let π be the set of primes dividing n. As 〈ĜL , δ−1ĜLδ〉/Fq and F
∗
q are solvable,

〈ĜL , δ−1ĜLδ〉 ≤ (〈ĜL , δ−1ĜLδ〉)/Fq � F
∗
q is solvable. Then 〈ĜL , δ−1ĜLδ〉 contains a

Hall π-subgroup, and so ĜL and δ−1ĜLδ are contained in Hall π-subgroups H1 and
H2 of 〈ĜL , δ−1ĜLδ〉, respectively. By Hall’s Theorem, [12, Proposition II.7.14], after
an appropriate conjugation, we may assume without loss of generality that H1 = H2

and so 〈ĜL , δ−1ĜLδ〉 is a π -group. Now let g, h ∈ G. Then there exists 
 ∈ G such
that (δ−1 ĝLδ
̂L/Fq)(h) = h. As no prime divisor of q − 1 divides |δ−1 ĝLδ
̂L |, we see
that the action of δ−1 ĝLδ
̂L on a codeword in the coordinate corresponding to h is the
identity. As h ∈ G was arbitrary, this then implies that δ−1 ĝLδ ∈ PAut(C), and so
〈ĜL , δ−1ĜLδ〉 ≤ PAut(C) as required. 
�
Corollary 2.2 Let G be a cyclic group of order n or an abelian group of prime-power order n.
Then for any Ĝ-invariant code C over Fq a permutation solving set for C is also a monomial
solving set for C if gcd(n, q − 1) = 1. Additionally, when G is cyclic, for any cyclic code C
of length n over Fq a permutation solving set for C is a monomial solving set for C if and
only if gcd(n, q − 1) = 1.

Proof For the first statement, in view of Theorem 2.1, we need only show that whenever
δ ∈ SG then there exists γ ∈ 〈GL , δ−1GLδ〉 such that 〈GL , γ −1δ−1GLδγ 〉 is normally
m-step imprimitive. That this is true for cyclic groups Zn is [20, Theorem 4.9]. For groups G
of prime-power order p
, p a prime, by a Sylow Theorem there exists γ ∈ 〈GL , δ−1GLδ〉
such that 〈GL , γ −1δ−1GLδγ 〉 is a p-group. It is then easy to show using induction that a
transitive p-group of degree p
 is genuinely 
-step imprimitive using the fact that the center
contains an element of order p and the orbits of a normal subgroup form a block system
[24, Proposition 7.1].

Additionally, we need only show the converse of the if and only if statement. If G is cyclic
and gcd(n, q − 1) �= 1, then by Example 1.1 there exists monomially isomorphic cyclic
codes that are not permutationally isomorphic. 
�
Corollary 2.3 Let G be a cyclic group of order n or an abelian group of prime-power order
n. If gcd(n, q(q − 1)) = 1, and C is a Ĝ-invariant code over Fq , then every permutation
solving set S for C is also monomial solving set for C and ψ(S) is the solving set of a Cayley
color digraph of G.

Proof In view of Corollary 2.2, we need only show that if gcd(n, q) = 1, then ψ(S) is a
solving set for a Cayley digraph of G. This follows by Theorem 1.7. 
�

As Muzychuk has solved the isomorphism problem for circulant color digraphs [16], the
following result holds.
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Corollary 2.4 Let n be an integer and q a prime-power such that gcd(n, q(q − 1)) = 1. Let
C be a cyclic code of length n over Fq . Then a monomial solving set for C is known.

We say that a pair (G, Fq) is an MCI-pair if every ĜL -invariant code over Fq is an
MCI-code.

Corollary 2.5 Let q be a prime-power and G = Zn, Z2n, or Z


p, 1 ≤ 
 ≤ 4, where n is

square-free and p is an odd prime. Ifgcd(n, q(q−1)) = 1 in the former case andgcd(p, q(q−
1)) = 1 in the latter case, then (G, Fq) is an MCI-pair. Additionally, if gcd(p, q(q −1)) = 1,
then any Zp × Zp2 -invariant code over Fq is either an MCI-code, or is also a Z

3
p-invariant

code, and is an MCI-code with respect to Z
3
p.

Proof If n is square-free, then Zn and Z2n are CI-groups with respect to color digraphs
[18,19]. Additionally, Zp , Z

2
p , Z

3
p , and Z

4
p are CI-groups with respect to color digraphs

[4,8,9,23]. Finally, it was shown in [5] that every Cayley color digraph of Zp × Zp2 is either
a CI-color digraph of Zp × Zp2 , or is a Cayley color digraph of Z

3
p . The result then follows

by Corollary 2.3. 
�

3 Monomail isomorphisms of codes of prime length

We now turn to monomial isomorphisms of cyclic codes of prime length p over fields Fq

where the arithmetic conditions of Corollary 2.5 are not satisfied. That is, when p|(q − 1)
or q is a power of p. We will consider the two cases separately. The following result shows
that, in some sense, the codes given in Example 1.1 are the “only” codes of prime length p
which are not permutationally isomorphic when p|(q − 1). In what follows, we denote the
p × p diagonal matrix with entries α1, . . . , αp on the main diagonal by diag(α1, . . . , αp).

Theorem 3.1 Let p be prime and q a prime-power such that p|(q−1). Let C and C ′ be cyclic
codes of length p over Fq . Let α ∈ F

∗
q be of order p, and s a generator of F

∗
p. Then C and

C ′ are monomially isomorphic if and only if they are monomially isomorphic by an element
of 〈P, D〉, where P ∈ Pp(q) such that ψ(P)(i) = si and D = diag(1, α, α2, . . . , α p−1).

Proof Let δ : C → C ′ be a monomial isomorphism. Note that (Ẑp)L = 〈1̂L 〉, and hence
δ−1〈1̂L 〉δ ≤ MAut(C). Then 〈1̂L 〉/Fq and δ−1〈1̂L 〉δ/Fq are Sylow p-subgroups of PAut(C)

and so there exists γ ∈ MAut(C) such that 〈γ −1δ−11̂Lδγ 〉/Fq = 〈1̂L 〉/Fq . Thus δγ /Fq

normalizes 〈1̂L 〉/Fq , and hence (δγ /Fq)(i) = ai + b, where a ∈ Z
∗
p and b ∈ Zp . As

1̂L ∈ MAut(C), we assume without loss of generality that b = 0. Let δγ = R A, where
R ∈ Pp(q) and A ∈ Dp(q). Note that ψ(R)(i) = ai . If C is trivial (that is, either consisting
of the 0 codeword or the entire space F

p
q ), then A ∈ MAut(C) so that R is a monomial

isomorphism from C to C ′, and the result follows. We thus assume without loss of generality
that C is nontrivial. Then γ −1δ−11̂Lδγ = QE , where Q ∈ Pp(q) and ψ(Q)(i) = i + a−1,

and E ∈ Dp(q). Then E = 1̂−a−1

L γ −1δ−11̂Lδγ is a diagonal automorphism of C , so by [13,
Theorem 1.3] we have that E is scalar.

Now, R(C) is a cyclic code of length p over Fq . Clearly R(C) is monomially isomorphic
to C ′ by A. Further, it is easy to see that C and C ′ are monomially isomorphic by an element
of 〈P, D〉 if and only if R(C) and C ′ are monomially isomorphic by an element of 〈P, D〉
as R ∈ 〈P, D〉. We thus assume without loss of generality that R = 1. If A is scalar, then
the result follows, so we also assume without loss of generality that A is not scalar.
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Let A = diag(α0, α1, . . . , αp−1). A straightforward computation will now show that

E = diag(α0α
−1
1 , α1α

−1
2 , . . . , αp−2α

−1
p−1, αp−1α

−1
0 ) ∈ MAut(C).

As every scalar matrix is an automorphism of every cyclic code, we may assume without
loss of generality that α0 = 1. As A is not scalar, it the follows that |A| �= 1. As E is scalar,
αiα

−1
i+1 = α jα

−1
j+1 for all i, j ∈ Zp . Also, as |γ −1δ−11̂Lδγ | = p, and γ −1δ−11̂Lδγ =

1̂L E = E 1̂L as E is scalar, we see that |E | divides p. As A is not scalar, |E | �= 1 and so
|E | = p. As F

∗
q is cyclic and so has a unique subgroup of order p, we may assume without

loss of generality that αiα
−1
i+1 = α−1 for all i ∈ Zp . As α0 = 1, we then have that α−1

1 = α−1,

so that α1 = α. If α−1
i = α−i , then α−1 = αiα

−1
i+1 and so αi+1 = αi+1. Hence A = D, and

the result follows. 
�
The following result solves the monomial isomorphism problem for cyclic codes of length

p over Fpa , a ≥ 1, with n = p as gcd(p, pa − 1) = 1.

Theorem 3.2 Let G be a CI-group of order n and p|n a prime. If gcd(n, pa − 1) = 1, then
(G, pa) is an MCI-pair. In particular, (Zp, pa) is an MCI-pair for every a ≥ 1.

Proof LetC be a Ĝ-invariant code overFpa , andC ′ a ĜL -invariant codemonomially isomor-
phic to C with δ a monomial isomorphism. As G is a CI-group, there exists γ1 ∈ MAut(C)

such that γ −1
1 δ−1ĜLδγ1/Fpa = ĜL/Fpa . Then ξ(〈ĜL , γ −1

1 δ−1ĜLδγ1〉) ≤ GL � F
∗
pa is

of order dividing n · (pa − 1)n , and is solvable as by Theorem 1.4 G is solvable. Let
π be the set of primes dividing n. As gcd(n, pa − 1) = 1, we see that both Ĝ and
γ −1
1 δ−1ĜLδγ1 are Hall π -subgroups of 〈ĜL , γ −1

1 δ−1ĜLδγ1〉, and so by Hall’s Theorem
there exists γ2 ∈ 〈ĜL , γ −1

1 δ−1ĜLδγ1〉 such that γ −1
2 γ −1

1 δ−1ĜLδγ1γ2 = ĜL . Setting
γ = γ1γ2, we see by Theorem 2.1 that a monomial solving set for C is a permutation
solving set for C , and by Lemma 1.9, C is an MCI-code with respect to G. 
�
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