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Abstract Let C be an extremal binary doubly even self-dual code of length n and Dw be the
support design of C for a weight w. We introduce the two numbers δ(C) and s(C): δ(C) is
the largest integer t such that, for all wight, Dw is a t-design; s(C) denotes the largest integer
t such that there exists a w such that Dw is a t-design. In this paper, we consider the possible
values of δ(C) and s(C).
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1 Introduction

LetC be an extremal binary doubly even self-dual code (Type II code) of length n. Mallows et
al. [10] showed thatC does not exist for all sufficiently large n. In 1999, itwas shownbyZhang
[11] that C does not exist if n = 24m (m ≥ 154), 24m +8 (m ≥ 159), 24m +16 (m ≥ 164).
A t-(v, k, λ) design is a pair D = (X,B), where X is a set of points of cardinality v, and B
a collection of k-element subsets of X called blocks, with the property that any t points are
contained in precisely λ blocks. It follows that every i-subset of points (i ≤ t) is contained in
exactly λi = λ

(
v−i
t−i

)
/
(k−i
t−i

)
blocks. The support supp(c) of a codeword c = (c1, . . . , cn) ∈ C

is the set of indices of its nonzero coordinates: supp(c) = {i : ci �= 0}. The support design of
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38 T. Miezaki, H. Nakasora

C for a given nonzeroweightw (w ≡ 0 (mod 4) and 4�n/24�+4 ≤ w ≤ n−(4�n/24�+4))
is the design for which the points are the n coordinate indices, and the blocks are the supports
of all codewords of weight w. Let Dw be the support design of C for a weight w. Then it is
known from the Assmus–Mattson theorem [2] that, for all w, Dw is a 5-, 3- and 1-design for
n = 24m, 24m + 8 and 24m + 16, respectively.

Let

δ(C) := max{t ∈ N | ∀w; Dw is a t-design},
s(C) := max{t ∈ N | ∃w; s.t. Dw is a t-design}.

Note that δ(C) ≤ s(C).
In this paper, we consider the possible values of δ(C) and s(C). Our motivations are the

following problems.

Problem 1.1 Find an upper bound of s(C).

Problem 1.2 Does the case occur for δ(C) < s(C) ?

First, we provide some known results for δ(C) and s(C). The following theorem gives
the lower bound of δ(C) due to Janusz [9].

Theorem 1.3 LetC bean extremal binary doubly even self-dual code of length n = 24m+8r ,
r = 0, 1 or 2. Then either δ(C) ≥ 7−2r , or δ(C) = 5−2r and there is no nontrivial weight
w such that Dw holds a (1 + δ(C))-design.

We collect some known results for the support t-design of the minimum weight. Let
D24m
4m+4 be the support t-design of the minimum weight of an extremal binary doubly

even self-dual [24m, 12m, 4m + 4] code. By the Assmus–Mattson theorem, D24m
4m+4 is a

5-
(
24m, 4m + 4,

(5m−2
m−1

))
design. Suppose that D24m

4m+4 is a t-(24m, 4m + 4, λt ) design with

t ≥ 6. Then λt = (5m−2
m−1

)(4m−1
t−5

)
/
(24m−5

t−5

)
is a nonnegative integer. It is known that if D24m

4m+4
is a 6-design, then it is a 7-design by a strengthening of the Assmus–Mattson theorem [5].
In 2006, Bannai et al. [4] showed that D24m

4m+4 is never a 9-design. In [7,8], we showed that
D24m
4m+4 is never an 8-design.
We investigate the support designs of the non minimum weights and as a corollary, we

have an upper bound of s(C). This paper is organized as follows. In Sect. 2, we recall the
definition and some properties of the harmonic weight enumerators, which were introduced
in [3], and which will be our main tool to study the support designs for the non minimum
weights. In particular, we will use the fact that the harmonic weight enumerators of Type II
codes are related to the invariant rings of some finite subgroups of GL(2,C). By using these
facts, we extend the methods of Bachoc [3] and Bannai et al. [4].

In Sect. 3, a proof of our result is given for each cases of lengths 24m, 24m + 8 and
24m + 16. By using the methods of the harmonic weight enumerators, we give the results
of the support designs for any weights in Propositions 3.1, 3.3 and 3.6. Then, by using these
propositions, we apply our previous results [7,8] of the minimumweight to the nonminimum
weights. Thus our result is the following theorem.

Theorem 1.4 Let C be an extremal binary doubly even self-dual code of length n.

(1) If n = 24m, then δ(C) = s(C) = 5 or δ(C) = s(C) = 7.
(2) If n = 24m + 8, then δ(C) = s(C) = 3 or 5 ≤ δ(C) ≤ s(C) ≤ 7.
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Extremal binary doubly even self-dual codes 39

(3) If n = 24m + 16, then δ(C) = s(C) = 1 or 3 ≤ δ(C) ≤ s(C) ≤ 5.

It is still unknown whether δ(C) = s(C) = 7 (in case (1)) or 5 ≤ δ(C) ≤ s(C) ≤ 7 (in
case (2)) or 3 ≤ δ(C) ≤ s(C) ≤ 5 (in case (3)), actually occurs or not. It is an interesting
open problem to determine the existence of such examples. We give the details for each m
of the above theorem in Sects. 3.1, 3.2 and 3.3.

For Problem 1.1, we conclude that s(C) ≤ 7 for any extremal Type II codeC . For Problem
1.2, if n = 24m, we see that δ(C) < s(C) does not occur by (1) of Theorem 1.4. There is no
known example of δ(C) < s(C). In the process of proving Theorem 1.4, we will see that, if
δ(C) < s(C) occurs, it can only happen in a limited number of cases listed in the following
proposition.

Proposition 1.5 If the case δ(C) < s(C) occurs, then one of the following holds:

(1) n = 24m + 8, m = 58, δ(C) = 6 and s(C) = 7 with w = n/2;
(2) n = 24m + 16, m ∈ {10, 23, 79, 93, 118, 120, 123, 125, 142}, δ(C) = 4 and

s(C) = 5 with w = n/2.

2 Harmonic weight enumerators

2.1 Harmonic weight enumerators

In this section, we extend a method of the harmonic weight enumerators which were used
by Bachoc [3] and Bannai et al. [4]. For the reader’s convenience we quote the definitions
and properties of discrete harmonic functions from [3,6] (for more information the reader is
referred to [3,6]).

Let � = {1, 2, . . . , n} be a finite set (which will be the set of coordinates of the code) and
let X be the set of its subsets, while, for all k = 0, 1, . . . , n, Xk is the set of its k-subsets. We
denote by RX , RXk the free real vector spaces spanned by respectively the elements of X ,
Xk . An element of RXk is denoted by

f =
∑

z∈Xk

f (z)z

and is identified with the real-valued function on Xk given by z �→ f (z).
Such an element f ∈ RXk can be extended to an element f̃ ∈ RX by setting, for all

u ∈ X ,

f̃ (u) =
∑

z∈Xk ,z⊂u

f (z).

If an element g ∈ RX is equal to some f̃ , for f ∈ RXk , we say that g has degree k. The
differentiation γ is the operator defined by linearity from

γ (z) =
∑

y∈Xk−1,y⊂z

y

for all z ∈ Xk and for all k = 0, 1, . . . n, and Harmk is the kernel of γ :

Harmk = ker(γ |RXk ).

Theorem 2.1 ([6]). A set B ⊂ Xk of blocks is a t-design if and only if
∑

b∈B f̃ (b) = 0 for
all f ∈ Harmk , 1 ≤ k ≤ t .
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40 T. Miezaki, H. Nakasora

In [3], the harmonic weight enumerator associated to a binary linear code C was defined
as follows:

Definition 2.2 Let C be a binary code of length n and let f ∈ Harmk . The harmonic weight
enumerator associated to C and f is

WC, f (x, y) =
∑

c∈C
f̃ (c)xn−wt(c)ywt(c).

Let G be the subgroup of GL(2,C) generated by elements

T1 = 1√
2

(
1 1
1 −1

)
, T2 =

(
1 0
0 i

)
.

We consider the group G = 〈T1, T2〉 together with the characters χk defined by

χk(T1) = (−1)k, χk(T2) = i−k .

We denote by IG = C[x, y]G the ring of polynomial invariants of G and by IG,χk the ring
of relative invariants of G with respect to the character χk . Let P8 = x8 + 14x4y4 + y8,
P12 = x2y2(x4 − y4)2, P18 = xy(x8 − y8)(x8 − 34x4y4 + y8), P24 = x4y4(x4 − y4)4,
P30 = P12P18 and

IG,χk =

⎧
⎪⎪⎨

⎪⎪⎩

〈P8, P24〉 if k ≡ 0 (mod 4)
P12〈P8, P24〉 if k ≡ 2 (mod 4)
P18〈P8, P24〉 if k ≡ 3 (mod 4)
P30〈P8, P24〉 if k ≡ 1 (mod 4)

.

Then the structure of these invariant rings is described as follows:

Theorem 2.3 ([3]). Let C be an extremal binary doubly even self-dual code of length n, and
let f ∈ Harmk . Then we have WC, f (x, y) = (xy)k ZC, f (x, y). Moreover, the polynomial
ZC, f (x, y) is of degree n − 2k and is in IG,χk , the space of the relative invariants of G with
respect to the character χk .

We recall the slightly more general definition of the notion of a T -design, for a subset T
of {1, 2, . . . , n}: a set B of blocks is called a T -design if and only if

∑
b∈B f̃ (b) = 0 for all

f ∈ Harmk and for all k ∈ T . By Theorem 2.1, a t-design is a T = {1, . . . , t}-design. Let
WC, f = ∑n

i=0 c f (i)xn−i yi . Then we note that Dw is a T -design if and only if c f (w) = 0
for all f ∈ Harm j with j ∈ T . The following theorem is called a strengthening of the
Assmus–Mattson theorem.

Theorem 2.4 ([5]). Let Dw be the support design of an extremal binary doubly even self-dual
code of length n.

• If n ≡ 0 (mod 24), Dw is a {1, 2, 3, 4, 5, 7}-design.
• If n ≡ 8 (mod 24), Dw is a {1, 2, 3, 5}-design.
• If n ≡ 16 (mod 24), Dw is a {1, 3}-design.

Weremark thatBachocgave an alternative proof of a strengtheningof theAssmus–Mattson
theorem in [3, Theorem 4.2].
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Extremal binary doubly even self-dual codes 41

2.2 Harmonic weight enumerators of extremal Type II codes

In this section, we give the explicit description of the harmonic weight enumerators of
extremal Type II codes for the particular cases, which will be needed in the proof of our
theorems in Sect. 3. We set n = 24m + 8r the length of a code C .
Case t = 4 and r = 2 Let us assume that t = 4, and C is an extremal binary doubly even
self-dual code of length n = 24m + 16. Then by the Theorem 2.3 we have WC, f (x, y) =
c( f )(xy)4ZC, f (x, y), where c( f ) is a linear function from Harmt to R and ZC, f (x, y) ∈
IG,χ0 . By Theorem 2.3, ZC, f (x, y) can be written in the following form:

ZC, f (x, y) =
m∑

i=0

ai P
3(m−i)+1
8 Pi

24.

Since the minimumweight ofC is 4m+4, we have ai = 0 for i �= m. Therefore,WC, f (x, y)
can be written in the following form:

WC, f (x, y) = c( f )(xy)4P8P
m
24

= c( f )x4m+4y4m+4(x4 − y4)4m(x8 + 14x4y4 + y8). (2.1)

The other cases are as follows.
Case t = 5 and r = 2 WC, f (x, y) can be written in the following form:

WC, f (x, y) = c( f )(xy)5ZC, f (x, y)

= c( f )(xy)5P30

m−1∑

i=0

ai P
3(m−i)−3
8 Pi

24.

If C is extremal, then

WC, f (x, y) = c( f )(xy)5P30P
m−1
24

= c( f )x4m+4y4m+4(x4 − y4)4m−1(x4 + y4) (x8 − 34x4y4 + y8). (2.2)

Case t = 6 and r = 1, 2 WC, f (x, y) can be written in the following form:

WC, f (x, y) = c( f )(xy)6ZC, f (x, y)

= c( f )(xy)6P12

m−1∑

i=0

ai P
3(m−i)−3+r
8 Pi

24.

If C is extremal, then

WC, f (x, y) = c( f )(xy)6P12P
r
8 P

m−1
24

= c( f )x4m+4y4m+4(x4 − y4)4m−2(x8 + 14x4y4 + y8)r . (2.3)

Case t = 7 and r = 1 WC, f (x, y) can be written in the following form:

WC, f (x, y) = c( f )(xy)7ZC, f (x, y)

= c( f )(xy)7P18

m−1∑

i=0

ai P
3(m−i)−3
8 Pi

24.
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If C is extremal, then

WC, f (x, y) = c( f )(xy)7P18P
m−1
24

= c( f )x4m+4y4m+4(x4 − y4)4m−3(x4 + y4) (x8 − 34x4y4 + y8). (2.4)

Case t = 8 and r = 0, 1 WC, f (x, y) can be written in the following form:

WC, f (x, y) = c( f )(xy)8ZC, f (x, y)

= c( f )(xy)8
m−1∑

i=0

ai P
3(m−i)−2+r
8 Pi

24.

If C is extremal, then

WC, f (x, y) = c( f )(xy)8Pr+1
8 Pm−1

24

= c( f )x4m+4y4m+4(x4 − y4)4m−4(x8 + 14x4y4 + y8)r+1. (2.5)

2.3 Coefficients of the harmonic weight enumerators of extremal Type II codes

As we mentioned in Sect. 2.1, it is important for the support designs of a code C whether
the coefficients of WC, f (x, y) are zero or not. Therefore, we investigate it and show the
following lemmas.

Lemma 2.5 Let Q = (x4 − y4)α(x8 + 14x4y4 + y8)β with 0 ≤ α ≤ 652 and β = 1, 2.

(1) In the case β = 1, if the coefficients of (x4)α+2−i (−y4)i in Q are equal to 0 for
0 ≤ i ≤ α+2

2 , then (α, i) = (14, 1), (223, 15).
(2) In the case β = 2, the coefficients of (x4)α+4−i (−y4)i in Q are equal to 0 for 0 ≤ i ≤

α+4
2 , then (α, i) = (28, 1).

Proof We have checked numerically using computer.
We note that C does not exist if n = 24m (m ≥ 154), 24m + 8 (m ≥ 159), 24m + 16

(m ≥ 164). Then 0 ≤ α ≤ 652 satisfy the condition for m ≤ 163 in Eqs. 2.1–2.5. ��
Lemma 2.6 Let R = (x4 − y4)α(x4 + y4)(x8 − 34x4y4 + y8) with 1 ≤ α ≤ 652. If the
coefficients of (x4)α+3−i (−y4)i in R are equal to 0 for 0 ≤ i ≤ α+3

2 , then α = 2i − 3.

Proof We have checked numerically using computer. ��

3 Proof of Theorems

3.1 Case for n = 24m

In this section, we consider the case of length n = 24m. Let D24m
w be the support t-design

of weight w of an extremal binary doubly even self-dual [24m, 12m, 4m + 4] code (m ≤
153). By Theorem 1.3 and [7,8, Theorem 1.1], we remark that if there exists w′ such that
D24m

w′ becomes a 6-design, then D24m
w is a 7-design for any w, and m must be in the set

{15, 52, 55, 57, 59, 60, 63, 90, 93, 104, 105, 107, 118, 125, 127, 135, 143, 151}.
For t ≥ 8, we give the following proposition.

Proposition 3.1 Let D24m
w be the support t-design of weight w of an extremal binary doubly

even self-dual code of length n = 24m. Then all D24m
w are 8-designs simultaneously, or none

of D24m
w is an 8-design.

123



Extremal binary doubly even self-dual codes 43

Proof If r = 0 in the Eq. 2.5, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m−4(x8 + 14x4y4 + y8).

We recall that C does not exist if n = 24m (m ≥ 154) [10,11]. By Lemma 2.5 (1), the
coefficients of xi with i ≡ 0 (mod 4) and 4m + 4 ≤ i ≤ n − (4m + 4) are all nonzero if
c( f ) �= 0 or zero if c( f ) = 0 form ≤ 153. Therefore, all D24m

w are 8-designs simultaneously,
or none of D24m

w is an 8-design. ��
We apply [7,8, Theorem 1.1] to Proposition 3.1. In [7,8, Theorem 1.1], we showed that

D24m
4m+4 cannot be an 8-design, so we obtain the following theorem.

Theorem 3.2 D24m
w is never an 8-design for any w.

Thus the proof of Theorem 1.4 (1) is completed.

3.2 Case for 24m + 8

In this section, we state the cases of length n = 24m+8. Let D24m+8
w be the support t-design

of weight w of an extremal binary doubly even self-dual [24m + 8, 12m + 4, 4m + 4] code
(m ≤ 158). By Theorem 1.3 and [7,8, Theorem 4.3(1)], we remark that if there exists w′
such that D24m+8

w′ becomes a 4-design, then D24m+8
w is a 5-design for any w, and m must be

in the set {15, 35, 45, 58, 75, 85, 90, 95, 113, 115, 120, 125}.
For t ≥ 6, we give the following proposition. We call w the middle weight if w = n/2.

Proposition 3.3 Let D24m+8
w be the support t-design of weight w of an extremal binary

doubly even self-dual code of length n = 24m + 8.

(1) (i) Assume that m �= 4. Then all D24m+8
w are 6-designs simultaneously, or none of

D24m+8
w is a 6-design.

(ii) Assume that m = 4.

Then D104
w is a

{
{1, 2, 3, 5}-design if w �= 24

{1, 2, 3, 5, 6}-design if w = 24.

(2) (i) Assume that w �= 12m + 4. Then all D24m+8
w are 7-designs simultaneously, or none

of D24m+8
w is a 7-design.

(ii) D24m+8
12m+4 is a {1, 2, 3, 5, 7}-design.

(3) (i) Assume that m �= 8. Then all D24m+8
w are 8-designs simultaneously, or none of

D24m+8
w is an 8-design.

(ii) Assume that m = 8.

Then D200
w is a

{
{1, 2, 3, 5}-design if w �= 40

{1, 2, 3, 5, 8}-design if w = 40.

Proof (1) If r = 1 in the Eq. 2.3, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m−2(x8 + 14x4y4 + y8).

By Lemma 2.5 (1), if m �= 4, the coefficients of xi with i ≡ 0 (mod 4) and 4m + 4 ≤ i ≤
n − (4m + 4) are all nonzero or zero at the same time. Therefore, if m �= 4, all D24m+8

w are
6-designs simultaneously, or none of D24m+8

w is a 6-design.
Let m = 4. By Lemma 2.5 (1), if i �= 24, the coefficients of xi with i ≡ 0 (mod 4) and

20 ≤ i ≤ 84 are all nonzero or zero at the same time. Also, the coefficient of x24 is equals to
0. Therefore, if w �= 24, D104

w is a {1, 2, 3, 5}-design. Also, D104
24 is a {1, 2, 3, 5, 6}-design.
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(2) By the Eq. 2.4, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m−3(x4 + y4)(x8 − 34x4y4 + y8).

By Lemma 2.6, if i �= 12m + 4, the coefficients of xi with i ≡ 0 (mod 4) and 4m + 4 ≤
i ≤ n − (4m + 4) are all nonzero or zero at the same time. Therefore, if w �= 12m + 4, then
all D24m+8

w are 7-designs simultaneously, or none of D24m+8
w is a 7-design.

We consider the case thatw is themiddle weight. By Lemma 2.6, the coefficient of x12m+4

is equals to 0. Hence D24m+8
12m+4 is a {1, 2, 3, 5, 7}-design.

(3) If r = 1 in the Eq. 2.5, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m−4(x8 + 14x4y4 + y8)2.

By Lemma 2.5 (2), if m �= 8, the coefficients of xi with i ≡ 0 (mod 4) and 4m + 4 ≤ i ≤
n − (4m + 4) are all nonzero or zero at the same time. Therefore, if m �= 8, then all D24m+8

w

are 8-designs simultaneously, or none of D24m+8
w is an 8-design.

Let m = 8. By Lemma 2.5 (2), if i �= 40, the coefficients of xi with i ≡ 0 (mod 4) and
36 ≤ i ≤ 164 are all nonzero or zero at the same time. Also, the coefficient of x40 is equals
to 0. Therefore, ifw �= 40, D200

w is a {1, 2, 3, 5}-design. Also, D200
40 is a {1, 2, 3, 5, 8}-design.

��

Remark 3.4 In Lemma 2.5 (1), the solution (α, i) = (223, 15) corresponds to the polynomial
Q = (x4 − y4)223(x8 + 14x4y4 + y8). In the case t = 9 and r = 1, if C is extremal, then
the harmonic weight enumerator is

WC, f (x, y) = c( f )(xy)9P30P8P
m−2
24

= c( f )x4m+4y4m+4(x4 − y4)4m−5(x4 + y4)

× (x8 + 14x4y4 + y8)(x8 − 34x4y4 + y8). (3.1)

The polynomial Q is contained in the case of m = 57 in the Eq. 3.1. By a computation,
the coefficients of xi in the Eq. 3.1 with i ≡ 0 (mod 4) and 4m + 4 ≤ i ≤ n − (4m + 4) are
not equal to 0. Thus the solution (α, i) = (223, 15) does not give a design.

We apply [7,8, Theorem 4.3(1)] to Proposition 3.3. In [7,8, Theorem 4.3(1)], we showed
the following: if D24m+8

4m+4 becomes a 6-design, then m must be 58; if D24m+8
4m+4 becomes a

7-design, then m must be 58; D24m+8
4m+4 cannot be an 8-design, so we obtain the following

theorem.

Theorem 3.5 Let D24m+8
w be the support t-design of weight w of an extremal binary doubly

even self-dual [24m + 8, 12m + 4, 4m + 4] code (m ≤ 158).

(1) (i) In the case w �= 12m + 4. If D24m+8
w becomes a 6-design, then m must be 58. If

D24m+8
w becomes a 7-design, then m must be 58.

(ii) In the case w = 12m + 4. If D24m+8
12m+4 becomes a 6-design, then D24m+8

12m+4 becomes a
7-design and m must be 58.

(2) D24m+8
w is never an 8-design for any w.

Thus the proof of Theorem 1.4 (2) is completed.
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3.3 Case for 24m + 16

In this section, we state the cases of length n = 24m + 16. Let D24m+16
w be the support t-

design of weightw of an extremal binary doubly even self-dual [24m+16, 12m+8, 4m+4]
code (m ≤ 163). By Theorem 1.3 and [7,8, Theorem 4.3 (2)], we remark that if there exists
w′ such that D24m+16

w′ becomes a 2-design, then D24m+16
w is a 3-design for any w, and m

must be in the set {5, 10, 20, 23, 25, 35, 44, 45, 50, 55, 60, 70, 72, 75, 79, 80, 85, 93, 95,
110, 118, 120, 121, 123, 125, 130, 142, 144, 145, 149, 150, 155, 156, 157, 160, 163}.

For t ≥ 4, we give the following proposition.

Proposition 3.6 Let D24m+16
w be the support t-design of weight w of an extremal binary

doubly even self-dual code of length n = 24m + 16.

(1) All D24m+16
w are 4-designs simultaneously, or none of D24m+16

w is a 4-design.
(2) (i) Assume thatw �= 12m+8. Then all D24m+16

w are 5-designs simultaneously, or none
of D24m+16

w is a 5-design.
(ii) D24m+16

12m+8 is a {1, 2, 3, 5}-design.
(3) All D24m+16

w are 6-designs simultaneously, or none of D24m+16
w is a 6-design.

Proof (1) If r = 2 in the Eq. 2.1, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m(x8 + 14x4y4 + y8).

By Lemma 2.5 (1), the coefficients of xi with i ≡ 0 (mod 4) and 4m+4 ≤ i ≤ n−(4m+4)
are all nonzero or zero at the same time. Therefore, all D24m+16

w are 4-designs simultaneously,
or none of D24m+16

w is a 4-design.
(2) By the Eq. 2.2, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m−1(x4 + y4)(x8 − 34x4y4 + y8).

By Lemma 2.6, if i �= 12m + 8, the coefficients of xi with i ≡ 0 (mod 4) and 4m + 4 ≤
i ≤ n − (4m + 4) are all nonzero or zero at the same time. Therefore, if w �= 12m + 8, then
all D24m+16

w are 5-designs simultaneously, or none of D24m+16
w is a 5-design.

We consider the case thatw is themiddle weight. By Lemma 2.6, the coefficient of x12m+8

is equals to 0. Hence D24m+16
12m+8 is a {1, 2, 3, 5}-design.

(3) If r = 2 in the Eq. 2.3, we have

WC, f (x, y) = c( f )x4m+4y4m+4(x4 − y4)4m−2(x8 + 14x4y4 + y8)2.

By Lemma 2.5 (2), the coefficients of xi with i ≡ 0 (mod 4) and 4m+4 ≤ i ≤ n−(4m+4)
are all nonzero or zero at the same time. Therefore, all D24m+16

w are 6-designs simultaneously,
or none of D24m+16

w is a 6-design. ��

We apply [7,8, Theorem 4.3 (2)] to Proposition 3.6. In [7,8, Theorem 4.3 (2)], we
showed the following: if D24m+16

4m+4 becomes a 4-design, then m must be in the set

{10, 23, 79, 93, 118, 120, 123, 125, 142}; if D24m+16
4m+4 becomes a 5-design, then m must

be in the set {23, 79, 93, 118, 120, 123, 125, 142}; D24m+16
4m+4 cannot be a 6-design, so we

obtain the following theorem.

Theorem 3.7 Let D24m+16
w be the support t-design of weightw of an extremal binary doubly

even self-dual [24m + 16, 12m + 8, 4m + 4] code (m ≤ 163).
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(1) (i) In the case w �= 12m + 8. If D24m+16
w becomes a 4-design, then m must be in the set

{10, 23, 79, 93, 118, 120, 123, 125, 142}. If D24m+16
w becomes a 5-design, then

m must be in the set {23, 79, 93, 118, 120, 123, 125, 142}.
(ii) In the case w = 12m + 8. If D24m+16

12m+8 becomes a 4-design, then D24m+16
12m+8 becomes

a 5-design and m must be in the set {10, 23, 79, 93, 118, 120, 123, 125, 142}.
(2) D24m+16

w is never a 6-design for any w.

Thus the proof of Theorem 1.4 (3) is completed.

Remark 3.8 Let D = (X,B) be a t-design. The complementary design of D is D̄ = (X, B̄),
where B̄ = {X \ B : B ∈ B}. If D = D̄, D is called a self-complementary design. Let Dn/2

be the support t-design of the middle weight of an extremal binary doubly even self-dual
code of length n. It is easily seen that Dn/2 is self-complement.

Alltop [1] proved that if D is a t-design with an even integer t and self-complementary,
then D is also a (t + 1)-design. Hence Dn/2 is a {1, 3, 5, . . . , 2s + 1}-design. Thus Alltop’s
theorem gives an alternative proof of Propositions 3.3 (2) (ii) and 3.6 (2) (ii).
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