

Weight enumerator of some irreducible cyclic codes

Fabio Enrique Brochero Martínez · Carmen Rosa Giraldo Vergara

Received: 8 May 2014 / Revised: 13 November 2014 / Accepted: 15 November 2014 / Published online: 10 December 2014 © Springer Science+Business Media New York 2014

Abstract In this article, we show explicitly all possible weight enumerators for every irreducible cyclic code of length *n* over a finite field \mathbb{F}_q , in the case which each prime divisor of *n* is also a divisor of $q - 1$.

Keywords Cyclic codes · Weight enumerator · Minimum distance

Mathematics Subject Classification 12E05 · 94B05

1 Introduction

A code of length *n* and dimension *k* over a finite field \mathbb{F}_q is a linear *k*-dimensional subspace of \mathbb{F}_q^n . A $[n, k]_q$ -code *C* is called *cyclic* if it is invariant by the shift permutation, i.e., if $(a_1, a_2,..., a_n) \in \mathcal{C}$ then the shift $(a_n, a_1,..., a_{n-1})$ is also in \mathcal{C} . The cyclic code \mathcal{C} can be viewed as an ideal in the group algebra \mathbb{F}_qC_n , where C_n is the cyclic group of order *n*. We note that $\mathbb{F}_q C_n$ is isomorphic to $\mathcal{R}_n = \frac{\mathbb{F}_q[x]}{(x^n-1)}$ and since subspaces of \mathcal{R}_n are ideals and \mathcal{R}_n is a principal ideal domain, it follows that each ideal is generated by a polynomial $g(x) \in \mathcal{R}_n$, where *g* is a divisor of $x^n - 1$.

Codes generated by a polynomial of the form $\frac{x^n-1}{g(x)}$, where *g* is an irreducible factor of *^xⁿ* [−] 1, are called *minimal cyclic codes*. Thus, each minimal cyclic code is associated of natural form with an irreducible factor of $x^n - 1$ in $\mathbb{F}_q[x]$. An example of minimal cyclic code is the Golay code that was used on the Mariner Jupiter-Saturn Mission (see [\[7\]](#page-8-0)), the BCH code used in communication systems like VOIP telephones and Reed–Solomon code

Communicated by J. D. Key.

F. E. Brochero Martínez (B) · C. R. Giraldo Vergara

Departamento de Matemática, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil e-mail: fbrocher@mat.ufmg.br

C. R. Giraldo Vergara e-mail: carmita@mat.ufmg.br used in two-dimensional bar codes and storage systems like compact disc players, DVDs, disk drives, etc (see [\[5,](#page-8-1) Sects. 5.8 and 5.9]). The advantage of the cyclic codes, with respect to other linear codes, is that they have efficient encoding and decoding algorithms (see [\[5,](#page-8-1) Sect. 3.7]).

For each element of $g \in \mathcal{R}_n$, $\omega(g)$ is defined as the number of non-zero coefficients of *g* and is called the *Hamming weight of the word g*. Denote by *Aj* the number of codewords with weight *i* and by $d = \min\{i > 0 | A_i \neq 0\}$ the minimum distance of the code. A $[n, k]_q$ code with minimum distance *d* will be denoted by $[n, k, d]_q$ -code. The sequence $\{A_i\}_{i=0}^n$ is called the *weight distribution* of the code and $A(z) := \sum_{i=0}^{n} A_i z^i$ is its *weight enumerator*. The importance of the weight distribution is that it allows us to measure the probability of non-detecting an error of the code: For instance, the probability of undetecting an error in a binary symmetric channel is $\sum_{n=1}^{\infty}$ $i=0$ $A_i p^i (1 - p)^{n-i}$, where *p* is the probability that, when the transmitter sends a binary symbol (0 or 1), the receptor gets the wrong symbol.

The weight distribution of irreducible cyclic codes has been determined for a small number of special cases. For a survey about this subject see [\[3](#page-8-2)[,4\]](#page-8-3) and their references.

In this article, we show all the possible weight distributions of length *n* over a finite field \mathbb{F}_q in the case that every prime divisor of *n* divides $q - 1$.

2 Preliminaries

Throughout this article, \mathbb{F}_q denotes a finite field of order q, where q is a power of a prime, n is a positive integer such that $gcd(n, q) = 1, \theta$ is a generator of the cyclic group \mathbb{F}_q^* and α is a generator of the cyclic group $\mathbb{F}_{q^2}^*$ such that $\alpha^{q+1} = \theta$. For each $a \in \mathbb{F}_q^*$, ord_q *a* denotes the minimal positive integer *k* such that $a^k = 1$, for each prime *p* and each integer *m*, $v_p(m)$ denotes the maximal power of p that divides m and $rad(m)$ denotes the radical of m , i.e., if $m = p_1^{\alpha_1} p_2^{\alpha_2}, \ldots, p_l^{\alpha_l}$ is the factorization of *m* in prime factors, then rad(*m*) = $p_1 p_2, \ldots, p_l$. Finally, $a_{\div b}$ denotes the integer $\frac{a}{\gcd(a,b)}$.

Since each irreducible factor of $x^n - 1 \in \mathbb{F}_q[x]$ generates an irreducible cyclic code of length *n*, then a fundamental problem of code theory is to characterize these irreducible factors. The problem of finding a "generic algorithm" to split $x^n - 1$ in $\mathbb{F}_q[x]$, for any *n* and *q*, is an open one and only some particular cases are known. Since $x^n - 1 = \prod_{d|n} \Phi_d(x)$, where $\Phi_d(x)$ denotes the *d*-th cyclotomic polynomial (see [\[8\]](#page-9-0) Theorem 2.45), it follows that the factorization of $x^n - 1$ strongly depends on the factorization of the cyclotomic polynomial that has been studied by several authors (see $[6,9,11]$ $[6,9,11]$ $[6,9,11]$ $[6,9,11]$ and $[2]$).

In particular, a natural question is to find conditions in order to have all the irreducible factors binomials or trinomials. In this direction, some results are the following ones

Lemma 1 [\[1](#page-8-6), Corollary 3.3] *Suppose that*

1. $rad(n)|(q-1)$ *and*

2. $8 \nmid n \text{ or } q \not\equiv 3 \pmod{4}$.

Then the factorization of $x^n - 1$ *in irreducible factors of* $\mathbb{F}_q[x]$ *is*

$$
\prod_{t|m} \prod_{\substack{1 \le u \le \gcd(n,q-1) \\ \gcd(u,t)=1}} (x^t - \theta^{ul}),
$$

 \mathcal{L} Springer

where $m = n_{\div(a-1)}$ *and* $l = (q-1)_{\div n}$ *. In addition, for each t such that t*|*m, the number of irreducible factors of degree t is* $\frac{\varphi(t)}{t} \cdot \gcd(n, q - 1)$ *, where* φ *denotes the Euler Totient function.*

Lemma 2 [\[1](#page-8-6), Corollary 3.6] *Suppose that*

- 1. $rad(n)(a-1)$ *and*
- 2. 8 | *n* and $q \equiv 3 \pmod{4}$.

Then the factorization of $x^n - 1$ *in irreducible factors of* $\mathbb{F}_q[x]$ *is*

$$
\prod_{\substack{t|m'|1\leq w\leq \gcd(n,q-1)\\ \gcd(w,t)=1}} (x^t - \theta^{wl}) \cdot \prod_{t|m'|u\in S_t} \left(x^{2t} - (\alpha^{ul'} + \alpha^{qul'})x^t + \theta^{ul'} \right),
$$

where $m' = n_{\div(q^2-1)}$ and $l = (q-1)_{\div n}$, $l' = (q^2-1)_{\div n}$, $r = \min\{\nu_2(\frac{n}{2}), \nu_2(q+1)\}$ and S_i *is the set*

$$
\left\{ u \in \mathbb{N} \, \middle| \, \begin{aligned} 1 &\le u \le \gcd(n, q^2 - 1), \gcd(u, t) = 1 \\ 2^r \nmid u \text{ and } u < \{qu\}_{\gcd(n, q^2 - 1))} \end{aligned} \right\},
$$

where $\{a\}_b$ *denotes the remainder of the division of a by b, i.e., it is the number* $0 \leq c < b$ *such that* $a \equiv c \pmod{b}$.

Moreover, for each t odd such that t|m', the number of irreducible binomials of degree t *and* 2*t* is $\frac{\varphi(t)}{t}$ ·gcd(*n*, *q*−1) *and* $\frac{\varphi(t)}{2t}$ ·gcd(*n*, *q*−1) *respectively, and the number irreducible trinomials of degree* 2*t is*

$$
\begin{cases}\n\frac{\varphi(t)}{t} \cdot 2^{r-1} \gcd(n, q-1), & \text{if } t \text{ is even} \\
\frac{\varphi(t)}{t} \cdot (2^{r-1} - 1) \gcd(n, q-1), & \text{if } t \text{ is odd.} \n\end{cases}
$$

3 Weight distribution

Throughout this section, we assume that $rad(n)$ divides $q - 1$ and m , m' *l*, *l'* and r are as in the Lemmas [1](#page-1-0) and [2.](#page-2-0) The following results characterize all the possible cyclic codes of length *n* over \mathbb{F}_q and show explicitly the weight distribution in each case.

Theorem 1 *If* 8 \nmid *n or* $q \not\equiv$ 3 (mod 4)*, then every irreducible code of length n over* \mathbb{F}_q *is an* [*n*, *^t*, *ⁿ ^t*]*^q -code where t divides m and its weight enumerator is*

$$
A(z) = \sum_{j=0}^{t} {t \choose j} (q-1)^{j} z^{j\frac{n}{t}} = (1 + (q-1)z^{\frac{n}{t}})^{t}.
$$

Proof As a consequence of Lemma [1,](#page-1-0) every irreducible factor of $x^n - 1$ is of the form $x^t - a$ where $t|n$ and $a^{n/t} = 1$, so every irreducible code C of length *n* is generated by a polynomial of the form

$$
g(x) = \frac{x^n - 1}{x^t - a} = \sum_{j=0}^{n/t - 1} a^{\frac{n}{t} - 1 - j} x^{tj}
$$

 \mathcal{L} Springer

and ${g(x), xg(x), \ldots, x^{t-1}g(x)}$ is a basis of the \mathbb{F}_q -linear subspace *C*. Thus, every codeword in *C* is of the form $a_0g + a_1xg + \cdots + a_{t-1}x^{t-1}g$, with $a_i \in \mathbb{F}_q$ and

$$
\omega (a_0g + a_1xg + \cdots + a_{t-1}x^{t-1}g) = \omega(a_0g) + \omega(a_1xg) + \cdots + \omega(a_{t-1}x^{t-1}g).
$$

Since $\omega(g) = \frac{n}{t}$, it follows that

$$
\omega (a_0g + a_1xg + \cdots + a_{t-1}x^{t-1}g) = \frac{n}{t} \# \{ j | a_j \neq 0 \}.
$$

Clearly we have $A_k = 0$, for all *k* that is not divisible by $\frac{n}{t}$. On the other hand, if $k = j\frac{n}{t}$, then exactly *j* elements of this base have non-zero coefficients in the linear combination and each non-zero coefficient can be chosen of *q* − 1 distinct forms. Hence $A_k = \binom{i}{j} (q - 1)^j$. Then the weight distribution is

$$
A_k = \begin{cases} 0, & \text{if } t \nmid k \\ \binom{t}{j}(q-1)^j, & \text{if } k = j\frac{n}{t}, \end{cases}
$$

as we want to prove.

Remark 1 The previous result generalizes Theorem 3 in [\[10\]](#page-9-3) (see also Theorem 22 in [\[4\]](#page-8-3)).

Remark 2 As a direct consequence of Lemma [1,](#page-1-0) for all positive divisor *t* of *m*, there exist $\frac{\varphi(t)}{t}$ gcd(*n*, *q* − 1) irreducible cyclic [*n*, *t*, $\frac{n}{t}$]_{*q*}-codes.

In order to find the weight distribution in the case that $q \equiv 3 \pmod{4}$ and 8|*n*, we need some additional lemmas.

Lemma 3 *Let t be a positive integer such that t divides m' and assume that* $q \equiv 3 \pmod{4}$ and $8 \nmid n$. If $x^{2t} - (a + a^q)x^t + a^{q+1} \in \mathbb{F}_q[x]$ is an irreducible trinomial, where $a = \alpha^{ul'} \in \mathbb{F}_{q^2}$, and $g(x)$ is the polynomial $\frac{x^n - 1}{x^{2t} - (a + a^q)x^t + a^{q+1}} \in \mathbb{F}_q[x]$, then $v_2(u) \le r - 2$ and $\omega(g(x) - \lambda x^t g(x)) =$ $\left\{\frac{n}{t}\left(1-\frac{1}{2^{r-\nu_2(u)}}\right), \quad \text{if } \lambda \in \Lambda_u\right\}$

 $\frac{n}{t}$, $if \lambda \notin \Lambda_u$,

where
$$
\Lambda_u = \left\{ \frac{a^i - a^{qi}}{a^{i+1} - a^{q(i+1)}} \middle| i = 0, 1, ..., 2^{r-v_2(u)} - 2 \right\}.
$$

Proof Since $x^{2t} - (a + a^q)x^t + a^{q+1}$ is an irreducible trinomial in $\mathbb{F}_q[x]$, then $gcd(t, u) = 1$, 2^r *∤ u* and *a* $\neq -a^q$. In particular, ord_{*q*}2</sub> *a* does not divide either *q* − 1 or 2(*q* − 1). Observe that

$$
\begin{aligned} \n\text{ord}_{q^2} \, a &= \frac{q^2 - 1}{\gcd(q^2 - 1, u!)} = \frac{q^2 - 1}{\gcd(q^2 - 1, u \frac{q^2 - 1}{\gcd(q^2 - 1, n)})} \\ \n&= \frac{\gcd(q^2 - 1, n)}{\gcd(q^2 - 1, n, u)} \\ \n&= \frac{2^r \gcd(q - 1, n)}{\gcd(2^r (q - 1), n, u)}, \n\end{aligned}
$$

and for each odd prime *p*, we have

$$
\nu_p\left(\frac{2^r \gcd(q-1,n)}{\gcd(2^r(q-1),n,u)}\right) \le \nu_p(\gcd(q-1,n)) \le \nu_p(q-1).
$$
 (1)

 \mathcal{L} Springer

 \Box

Therefore, ord_q² $a \nmid 2(q - 1)$ implies that $v_2(\text{ord}_q^2 a) > v_2(2(q - 1)) = 2$, and since

$$
\nu_2 \left(\frac{2^r \gcd(q-1,n)}{\gcd(2^r (q-1), n, u)} \right) = r + 1 - \min \left\{ \nu_2 (\gcd(2^r (q-1), n)), \nu_2(u)) \right\}
$$

= $r + 1 - \min\{r + 1, \nu_2(u)\} = r + 1 - \nu_2(u),$

we conclude that $v_2(u) \le r - 2$.

On the other hand

$$
g(x) = \frac{x^n - 1}{x^{2t} - (a + a^q)x^t + a^{q+1}}
$$

=
$$
\frac{x^n - 1}{a - a^q} \left(\frac{1}{x^t - a} - \frac{1}{x^t - a^q} \right)
$$

=
$$
\sum_{j=1}^{n/t-1} \left(\frac{a^j - a^{qj}}{a - a^q} \right) x^{n-t-tj},
$$

is a polynomial whose degree is *n*−2*t* and every non-zero monomial is such that its degree is divisible by *t*. Now, suppose that there exist $1 \le i < j \le \frac{n}{t} - 2$ such that the coefficients of the monomials $x^{n-t}-i$ and $x^{n-t}-i$ in the polynomial $g_\lambda := g(x) - \lambda x^t g(x)$ are simultaneously zero. Then

$$
\frac{a^j - a^{qj}}{a - a^q} = \lambda \frac{a^{j+1} - a^{q(j+1)}}{a - a^q} \quad \text{and} \quad \frac{a^i - a^{qi}}{a - a^q} = \lambda \frac{a^{i+1} - a^{q(i+1)}}{a - a^q}.
$$

So, in the case of $\lambda \neq 0$, we have

$$
\lambda = \frac{a^j - a^{qj}}{a^{j+1} - a^{q(j+1)}} = \frac{a^i - a^{qi}}{a^{i+1} - a^{q(i+1)}}.
$$

This last equality is equivalent to $a^{(q-1)(j-i)} = 1$, i.e., ord_a2 *a* divides $(q-1)(j-i)$. In the case of $\lambda = 0$, we obtain that ord_{*q*2} *a* divides $(q - 1)j$ and $(q - 1)i$ by the same argument. Therefore, we can treat this case as a particular case of the above one making $i = 0$. It follows that $\frac{2^r \gcd(q-1,n)}{\gcd(2^r(q-1),n,u)}$ divides $(q-1)(j-i)$.

So, by Eq. [\(1\)](#page-3-0), the condition ord_{*q*2} *a*|(q – 1)(j – *i*) is equivalent to

$$
\nu_2\left(\frac{2^r \gcd(q-1,n)}{\gcd(2^r(q-1),n,u)}\right)=r+1-\nu_2(u)\leq \nu_2((p-1)(j-i))=1+\nu_2(j-i),
$$

and thus $2^{r-\nu_2(u)}|(j-i)$.

In other words, if the coefficient of the monomial of degree $n - t - it$ is zero, then all the coefficients of the monomials of degree $n - t - jt$ with $j \equiv i \pmod{2^{r-v_2(u)}}$ are zero. Thus, if $\lambda \notin \Lambda_u$, then any coefficient of the form $x^{t j}$ is zero and the weight of g_λ is $\frac{n}{t}$. Otherwise, exactly $\frac{n}{t} \cdot \frac{1}{2^{r-\nu_2(u)}}$ coefficients of the monomials of the form x^{t_j} are zero, then the weight of g_{λ} is $\frac{n}{t}(1 - \frac{1}{2^{r-\nu_2(u)}})$, as we want to prove. \Box

Corollary 1 *Let g be a polynomial in the same condition of Lemma [3.](#page-3-1) Then*

$$
\#\left\{(\mu,\lambda)\in\mathbb{F}_q^2\,\bigg|\,\omega(\mu g(x)+\lambda x^t g(x))=\frac{n}{t}\left(1-\frac{1}{2^{r-\nu_2(u)}}\right)\right\}=2^{r-\nu_2(u)}(q-1).
$$

 $\circled{2}$ Springer

Proof If $\mu = 0$ and $\lambda \neq 0$, then $\omega(\lambda x^t g(x)) = \frac{n}{t}(1 - \frac{1}{2^{r-\nu_2(u)}})$ and we have $(q-1)$ ways to choose λ.

Suppose that $\mu \neq 0$, then $\omega(\mu g(x) + \lambda x^t g(x)) = \omega(g(x) + \frac{\lambda}{\mu} x^t g(x))$, i.e., the weight only depends on the quotient $\frac{\lambda}{\mu}$. By Lemma [3,](#page-3-1) there exist $2^{r-\nu_2(u)} - 1$ values of $\frac{\lambda}{\mu}$ such that $g(x) + \frac{\lambda}{\mu} x^t g(x)$ has weight $\frac{n}{t} (1 - \frac{1}{2^{r-\nu_2(u)}})$, so we have $(q-1)(2^{r-\nu_2(u)} - 1)$ pairs of this type. \Box

Theorem 2 *If* 8|*n* and $q \equiv 3 \pmod{4}$, then every irreducible code of length n over \mathbb{F}_q *is one of the following class:*

(a) *A* $[n, t, \frac{n}{t}]_q$ -code, where $4 \nmid t, t | m'$ and its weight enumerator is

$$
A(z) = \sum_{j=0}^{t} {t \choose j} (q-1)^{j} z^{j\frac{n}{t}} = (1 + (q-1)z^{\frac{n}{t}})^{t}.
$$

(b) *A* $[n, 2t, d]_q$ -code, where $t|m', d = \frac{n}{t}(1 - \frac{1}{2^{r-\nu_2(u)}})$, $0 \le u \le r - 2$ and its weight *enumerator is*

$$
A(z) = \left(1 + 2^{r - \nu_2(u)}(q - 1)z^d + (q - 1)(q + 1 - 2^{r - \nu_2(u)})z^{\frac{n}{l}}\right)^t.
$$

In particular, if $\frac{n}{t2^{r-\nu_2(u)}} \nmid k$ *, then* $A_k = 0$ *.*

Proof Observe that every irreducible code is generated by a polynomial of the form $\frac{x^n-1}{x^t-a}$, $\frac{x^{\textit{x}}-1}{x^t-a}$ where *a* ∈ \mathbb{F}_q , or a polynomial of the form $g(x) = \frac{x^n - 1}{(x^t - a)(x^t - a^q)}$, where *a* satisfies the condition of Lemma [3.](#page-3-1) In the first case, the result is the same as Theorem [1.](#page-2-1) In the second case, each codeword is of the form

$$
\sum_{j=0}^{2t-1} \lambda_j x^j g(x) = \sum_{j=0}^{t-1} h_j,
$$

where $h_j = \lambda_j x^j g(x) + \lambda_{t+j} x^{t+j} g(x)$. Since, for $0 \le i \le j \le t - 1$, the polynomial h_i and h_j do not have non-zero monomials of the same degree, it follows that

$$
\omega\left(\sum_{j=0}^{t-1}h_j\right) = \sum_{j=0}^{t-1} \omega(h_j).
$$

By Lemma [3,](#page-3-1) h_j has weight $\frac{n}{t}$, *d* or 0, for all $j = 0, \ldots, t - 1$. For each $j = 0, 1, \ldots, t - 1$, there exist $(q^2 - 1)$ non-zero pairs $(\lambda_j, \lambda_{j+t})$, and by Corollary [1,](#page-4-0) we know that there exist $2^{r-v_2(u)}(q-1)$ pairs with weight *d*. Therefore, there exist

$$
q^{2} - 1 - 2^{r - \nu_{2}(u)}(q - 1) = (q - 1)(q + 1 - 2^{r - \nu_{2}(u)})
$$

pairs with weight $\frac{n}{t}$.

So, in order to calculate A_k , we need to select the polynomials h_l 's which have weight $d = \frac{n}{t}(1 - \frac{1}{2^{r-v_2(u)}})$ and those ones which have weight $\frac{n}{t}$ in such a way that the total weight is *k*.

If we chose *i* of the first type and *j* of the second type, the first h_l 's can be chosen by $\binom{t}{i} (2^{r-v_2(u)}(q-1))^i$ ways and for the other $t-i$ ones, there are $\binom{t-i}{j} ((q-1)(q+1))^i$ $(1 - 2^{r-v_2u}))^j$ ways of choosing *j* with weight $\frac{n}{t}$. The remaining h_j 's have weight zero. Therefore

$$
A_k = \sum_{\substack{k=di+\frac{n}{i}\\0\leq i+j\leq t}} {t \choose i} \left(2^{r-\nu_2(u)}(q-1)\right)^i {t-i \choose j} \left((q-1)(q+1-2^{r-\nu_2(u)})\right)^j,
$$

and

$$
A(z) = \sum_{0 \le i+j \le t} {t \choose i,j} \left(2^{r-\nu_2(u)}(q-1)z^d \right)^i \left((q+1-2^{r-\nu_2(u)})(q-1)z^{\frac{n}{i}} \right)^j
$$

=
$$
\left(1 + 2^{r-\nu_2(u)}(q-1)z^d + (q-1)(q+1-2^{r-\nu_2(u)})z^{\frac{n}{i}} \right)^t.
$$

In particular, the minimum distance is *d* and every non-zero weight is divisible by $gcd(d, \frac{n}{t})$ $= \frac{n}{r2^{r-\nu_2(u)}}$. $\frac{n}{t2^{r-v_2(u)}}$. \Box

Remark 3 As a direct consequence of Lemma [2,](#page-2-0) for all positive divisor t of m' , there exist $2^{r-1-v_2(u)} \frac{\varphi(t)}{t}$ gcd $(n, q - 1)$ irreducible cyclic $[n, t, d]_q$ -codes if *t* is odd, and $2^{r-1} \frac{\varphi(t)}{t}$ gcd(*n*, *q* − 1) irreducible cyclic [*n*, 2*t*, $\frac{n}{t}(1 - \frac{1}{2^r})]_q$ -codes if *t* is even.

Example 1 Let $q = 31$ and $n = 288 = 2^5 \times 3$. Then $m' = 3$, $l' = 10$, $r = 4$. If *h*(*x*) denotes a irreducible factor of $x^{288} - 1$, then *h*(*x*) is a binomial of degree 1, 2, 3 or 6, or a trinomial of degree 2 or 6. The irreducible codes generated by $\frac{x^n-1}{h(x)}$ (and therefore parity check polynomial is *h*), and its weight enumerators are shown in the following tables

[<i>n</i> , <i>t</i> , $\frac{n}{t}$] _{<i>q</i>} -code	h(x)	Weight enumerator
$[288, 1, 288]_{31}$	$x + 1$ $x + 5$ $x + 6$ $x + 25$ $x + 26$ $x + 30$	$1 + 30z^{288}$
$[288, 2, 144]_{31}$	$x^2 + 1$ $x^2 + 5$ $x^2 + 25$	$(1+30z^{144})^2$
$[288, 3, 96]_{31}$	$x^3 + 5$ $x^3 + 6$ $x^3 + 25$ $x^3 + 26$	$(1+30z^{96})^3$
$[288, 6, 48]_{31}$	$x^6 + 5$ $x^6 + 25$	$(1+30z^{48})^6$

Codes generated by binomials

$[n, 2t, d]_q$ -code	$v_2(u)$	h(x)	Weight enumerator
$[288, 6, 72]_{31}$	$\overline{2}$	$x^6 + 9x^3 + 25$ $x^6 + 14x^3 + 5$ $x^6 + 17x^3 + 5$ $x^6 + 22x^3 + 25$	$(1 + 120z^{72} + 840z^{96})^3$
$[288, 6, 84]_{31}$	$\mathbf{1}$	$x^6 + x^3 + 5$ $x^6 + 6x^3 + 25$ $x^6 + 8x^3 + 25$ $x^6 + 9x^3 + 5$ $x^6 + 22x^3 + 5$ $x^6 + 23x^3 + 25$ $x^6 + 25x^3 + 25$	$(1 + 240z^{84} + 720z^{96})^3$
$[288, 6, 90]_{31}$	$\mathbf{0}$	$x^6 + 30x^3 + 5$ $x^6 + 2x^3 + 5$ $x^6 + 4x^3 + 5$ $x^6 + 7x^3 + 5$ $x^6 + 7x^3 + 25$ $x^6 + 8x^3 + 5$ $x^6 + 11x^3 + 25$ $x^6 + 12x^3 + 25$ $x^6 + 14x^3 + 25$ $x^6 + 17x^3 + 25$ $x^6 + 19x^3 + 25$ $x^6 + 20x^3 + 25$ $x^6 + 23x^3 + 5$ $x^6 + 24x^3 + 5$ $x^6 + 24x^3 + 25$ $x^6 + 27x^3 + 5$ $x^6 + 29x^3 + 5$	$(1+480z^{90}+480z^{96})^3$

Codes generated by trinomials of the form $x^6 + ax^3 + b$

Codes generated by trinomials of the form $x^2 + ax + b$

$[n, 2t, d]_q$ -code	$v_2(u)$	h(x)	Weight enumerator
$[288, 2, 216]$ ₃₁	2	$x^2 + 8x + 1$ $x^2 + 9x + 25$ $x^2 + 14x + 5$ $x^2 + 17x + 5$ $x^2 + 22x + 25$ $x^2 + 23x + 1$	$1 + 120z^{216} + 840z^{288}$

References

- 1. Brochero Martínez F.E., Giraldo Vergara C.R., Batista de Oliveira L.: Explicit factorization of *^xⁿ* [−] ¹ [∈] $\mathbb{F}_q[x]$. Des. Codes Cryptogr. (Accepted).
- 2. Chen B., Li L., Tuerhong R.: Explicit factorization of $x^{2^m}p^n - 1$ over a finite field. Finite Fields Appl. **24**, 95–104 (2013).
- 3. Ding C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory **55**, 955–960 (2009).
- 4. Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. **313**, 434–446 (2013).
- 5. Farrell P.G., Castieira Moreira J.: Essentials of Error-Control Coding. Wiley, Hoboken (2006).
- 6. Fitzgerald R.W., Yucas J.L.: Explicit factorization of cyclotomic and Dickson polynomials over finite fields. In Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 4547, pp. 1–10. Springer, Berlin (2007).
- 7. Golay M.J.E.: Notes on digital coding. Proc. IRE **37**, 657 (1949).
- 8. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Addison-Wesley, Boston (1983).
- 9. Meyn H.: Factorization of the cyclotomic polynomials $x^{2^n} + 1$ over finite fields. Finite Fields Appl. 2, 439–442 (1996).
- 10. Sharma A., Bakshi G.: The weight distribution of some irreducible cyclic codes. Finite Fields Appl. **18**, 144–159 (2012).
- 11. Wang L., Wang Q.: On explicit factors of cyclotomic polynomials over finite fields. Des. Codes Cryptogr. **63**(1), 87–104 (2012).