Functions which are PN on infinitely many extensions of \mathbb{F}_p *, p* odd

Elodie Leducq

Received: 25 January 2013 / Revised: 16 December 2013 / Accepted: 17 December 2013 / Published online: 3 January 2014 © Springer Science+Business Media New York 2013

Abstract Jedlicka, Hernando and McGuire proved that Gold and Kasami functions are the only power mappings which are APN on infinitely many extensions of \mathbb{F}_2 . For p an odd prime, we prove that the only power mappings $x \mapsto x^m$ such that $m \equiv 1 \mod p$ which are PN on infinitely many extensions of \mathbb{F}_p are those such that $m = 1 + p^l$, l positive integer. As Jedlicka, Hernando and McGuire, we prove that $\frac{(x+1)^m - x^m - (y+1)^m + y^m}{x-y}$ has an absolutely irreducible factor by using Bézout's theorem.

Keywords Exceptional numbers · Perfectly nonlinear functions · Absolutely irreducible polynomial · Singularities

Mathematics Subject Classification 11T71 · 14H20

1 Introduction

In the following, *p* is a prime number, *n* a positive integer, $q = p^n$ and \mathbb{F}_q is a finite field with *q* elements.

Communicated by G. McGuire.

E. Leducq

Present Address: E. Leducq (\boxtimes) Département de Mathématiques, Batiment 425, Faculté des Sciences d'Orsay, Université Paris-Sud 11, 91405 Orsay Cedex, France e-mail: elodie.leducq@u-psud.fr

This paper is available on arxiv.org [\(http://arxiv.org/abs/1006.2610\)](http://arxiv.org/abs/1006.2610) since June 2010 but publication has been delayed due to unforeseen events.

Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR7586, Batiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France

To resist differential cryptanalysis, a function ϕ from \mathbb{F}_q to \mathbb{F}_q used in a bloc cypher like DES has to have a low uniformity, that is to say for all $a \in \mathbb{F}_q^*$ and $b \in \mathbb{F}_q$, the equation $\phi(x + a) - \phi(x) = b$ must have few solutions.

In characteristic 2, if $\phi(x + a) + \phi(x) = b$ then $\phi(x + a + a) + \phi(x + a) = b$. So, the functions which resist differential cryptanalysis the most are the following

Definition 1 We say that the function $\phi : \mathbb{F}_q \to \mathbb{F}_q$ is almost perfectly nonlinear (APN) over \mathbb{F}_q if:

$$
\forall a, b \in \mathbb{F}_q, a \neq 0, |\{x \in \mathbb{F}_q, \phi(x+a) - \phi(x) = b\}| \le 2
$$

and if, furthermore, there exists a pair (a, b) such that we have equality.

On the contrary, in odd characteristic, $x \mapsto \phi(x + a) - \phi(x)$ can be one to one. So, the functions which resist differential cryptanalysis the most are the following:

Definition 2 If *q* is odd, a function $\phi : \mathbb{F}_q \to \mathbb{F}_q$ is perfectly nonlinear (PN) over \mathbb{F}_q if for all $b \in \mathbb{F}_q$ and all $a \in \mathbb{F}_q^*$

$$
|\{x \in \mathbb{F}_q, \phi(x+a) - \phi(x) = b\}| = 1.
$$

In [\[5,](#page-17-0)[8\]](#page-18-0), Jedlicka, Hernando and McGuire are interested in integers *m* such that the function $x \mapsto x^m$ is APN on infinitely many extensions of \mathbb{F}_2 . They prove that the only integers *m* such that $x \mapsto x^m$ is APN on infinitely many extensions of \mathbb{F}_2 are $m = 2^k + 1$ (Gold) and $m = 4^k - 2^k + 1$ (Kasami). They use the fact that a function $x \mapsto x^m$ is APN over \mathbb{F}_{2^n} if and only if the rational points in \mathbb{F}_{2^n} of $(x + 1)^m + x^m + (y + 1)^m + y^m = 0$ are points such that $x = y$ or $x = y + 1$. This can happen on infinitely many extensions of \mathbb{F}_p only if $\frac{(x+1)^m+x^m+(y+1)^m+y^m}{(x+y)(x+y+1)}$ has no absolutely irreducible factor over \mathbb{F}_2 .

In this paper, we investigate the case of monomial functions which are PN on infinitely many extensions of \mathbb{F}_p in odd characteristic. From now, we assume that the prime number p is odd. The only known PN power mappings are the following:

Proposition 1 *Let* $\phi : x \mapsto x^m$ *a power mapping. Then* ϕ *is PN on* \mathbb{F}_{p^n} *for*

- 1. $m = 2$
- 2. $m = p^l + 1$ *where l is an integer such that* $\frac{n}{\gcd(n,l)}$ *is odd [\[1](#page-17-1)[,2\]](#page-17-2)*,
- 3. $m = \frac{3^{l}+1}{2}$ where $p = 3$ and *l* is an odd integer such that $gcd(l, n) = 1$ [\[1](#page-17-1)].

All these monomials are PN on infinitely many extensions of \mathbb{F}_p . In this paper, using the same methods as Jedlicka, Hernando and McGuire, we prove the following theorem:

Theorem 1 *The only* $m \equiv 1 \mod p$ *such that* $x \mapsto x^m$ *is PN on infinitely many extensions of* \mathbb{F}_p are $m = 1 + p^l$.

In the case where $m \neq 1 \mod p$, using similar methods, Hernando, McGuire and Monserrat give partial results in $[6]$. Zieve completes the proof in $[11]$ using a completely different method. However this method does not seem to apply in this case.

In Part 2 of this article, we give some background on algebraic curves and explain how we will prove Theorem [1.](#page-1-0) In the following parts, we prove Theorem [1.](#page-1-0)

2 Preliminaries

The notations set in this section hold for the remainder of the article.

2.1 Some background on algebraic curves

A reference for the following results is [\[4\]](#page-17-3).

Definition 3 A polynomial $f \in \mathbb{F}_q[x, y]$ is said absolutely irreducible if it is irreducible on an algebraic closure of \mathbb{F}_q .

If $f \in \mathbb{F}_q[x, y]$ is irreducible over \mathbb{F}_q , then its absolutely irreducible factors are conjugate $(see [10]).$ $(see [10]).$ $(see [10]).$ If *f* ∈ \mathbb{F}_q [*x*, *y*] is irreducible over \mathbb{F}_q , then its absolutely irreducible factors are conjugate (see [10]).
Definition 4 For *f* ∈ $\mathbb{F}_q[x, y]$, we denote by \hat{f} the homogenized form of *f* and

(see [10]).
Definition 4 For $f \in \mathbb{F}_q$
dehomogenized form of \hat{f} dehomogenized form of \widehat{f} relatively to y.

Definition 5 Let $t = (x_0, y_0)$ be a point. We write $f(x + x_0, y + y_0) = f_0 + f_1 + \cdots$ where if f_i is non zero then, it is an homogeneous polynomial of degree i . Then, the multiplicity of *f* in *t*, denoted by $m_t(f)$ is the smallest *i* such that $f_i \neq 0$. and the factors of $f_{m_t(f)}$ on an algebraic closure of \mathbb{F}_q are called the tangent lines of f in t.

A singular point of $f \in \mathbb{F}_q[x, y]$ is a point *t* such that $m_t(f) \geq 2$. In this case, we have $f(t) = 0$ and $\frac{\partial f}{\partial x}(t) = 0 = \frac{\partial f}{\partial y}(t)$.

The intersection number of two plane curves $u = 0$ and $v = 0$ is a number indicating the multiplicity of intersection of these two curves. The intersection number of two plane curves over \mathbb{F}_q , $u = 0$ and $v = 0$ at a point *t* is dim $_{\mathbb{F}_q}(O_t(\mathbb{A}^2)/(u, v))$ where $O_t(\mathbb{A}^2)$ is the ring of rational functions over the affine plane defined at *t*. The intersection number of two plane curves $u = 0$ and $v = 0$ at a point *t* is denoted by $I_t(u, v)$. However, we will not calculate this intersection number using the definition but rather using its properties:

- $I_t(u, v) = 0$ if and only if $m_t(u) = 0$ or $m_t(v) = 0$.
- $I_t(u, v) = m_t(u)m_t(v)$ if and only if *u* and *v* have no common tangent lines.
- If $m_t(u) = 1$, then $I_t(u, v) = \text{ord}_t^u(v)$ where ord_t^u is the order on the discrete valuation ring $O_t(\mathbb{A}^2)/(u)O_t(\mathbb{A}^2)$.

For more information on intersection numbers, we can read [\[4,](#page-17-3) pp. 74–81] The following lemma is proved in [\[7](#page-18-4)]:

Lemma 1 *Let* $J(x, y) = 0$ *be an affine curve over* \mathbb{F}_q *and* $t = (x_0, y_0)$ *be a point of J of* $multiplicity m_t$. Then

$$
J(x + x_0, y + y_0) = J_{m_t} + J_{m_t+1} + \cdots
$$

where if Ji is non zero then, it is an homogeneous polynomial of degree i. We write

$$
J(x, y) = u(x, y) \cdot v(x, y);
$$

if J_{m_t} *and* J_{m_t+1} *are relatively prime then* $I_t(u, v) = m_t(u) \cdot m_t(v)$ *. In this case, if J has only one tangent line at t, then* $I_t(u, v) = 0$ *.*

Theorem 2 (Bézout) Let $u = 0$ and $v = 0$ be two projective plane curves of degree n and *m respectively without any common component then*

$$
\sum_t I_t(u,v) = n \cdot m.
$$

 $\circled{2}$ Springer

For a proof of this theorem see $[4, p. 112]$ $[4, p. 112]$. From this theorem, we deduce the two following lemmas. The second one is proved in [\[5\]](#page-17-0) for $p = 2$ but it is the exact same proof for $p \neq 2$.

Lemma 2 *If* $f \in \mathbb{F}_p[x, y]$ *has no absolutely irreducible factor over* \mathbb{F}_p *then there exists a* $factorization f = uv such that$

$$
\sum_t I_t(u,v) \geq 2 \frac{\deg(f)^2}{9}.
$$

 $\sum_{t} I_t(u, v) \geq 2 \frac{\deg(f)^2}{9}$.
Equivalently, if I_{tot} is any upper bound on the global intersection number $\sum_{t} I_t(u, v)$ of u *and* v for all factorizations of $f = u \cdot v$ over an algebraic closure of \mathbb{F}_p , then

$$
\frac{I_{tot}}{\frac{\deg(f)^2}{4}} \geq \frac{8}{9}.
$$

Proof Suppose that *f* has no absolutely irreducible factor then, we write $f = e_1 \dots e_r$, where each e_i is irreducible over \mathbb{F}_p , but not absolutely irreducible. Then each e_i factors into $c_i \geq 2$ factors on an algebraic closure of \mathbb{F}_p and its factors are all of degree $\frac{\deg(e_i)}{c_i}$. Now, we factor each e_i into two factors u_i and v_i such that $deg(u_i) = deg(v_i) + \frac{deg(e_i)}{c_i}$ if c_i is odd $c_i \geq 2$ factors on an algebraic closure of \mathbb{F}_p and its factors are all of degree $\frac{\deg(e_i)}{c_i}$
factor each e_i into two factors u_i and v_i such that $\deg(u_i) = \deg(v_i) + \frac{\deg(e_i)}{c_i}$
(thus $c_i \geq 3$) or $\deg(u_i) = \deg(v_i)$ (thus $c_i \ge 3$) or $deg(u_i) = deg(v_i)$ if c_i is even. We set $u = \prod_{i=1}^r u_i$ and $v = \prod_{i=1}^r v_i$. Then $deg(u) - deg(v) \le \frac{deg(f)}{3}$. Since $deg(u) + deg(v) = deg(f)$,

$$
\deg(u)\deg(v) \ge \frac{8}{9}\frac{\deg(f)^2}{4}.
$$

Let I_{tot} be an upper bound on the global intersection number of u and v for all factorizations of *f* into two factors over the algebraic closure of \mathbb{F}_p . Then by Bézout's theorem, *I* upper book
I_{tot} $\geq \sum$

$$
I_{tot} \ge \sum_{t} I_t(u, v) = \deg(u) \deg(v) \ge \frac{8}{9} \frac{\deg(f)^2}{4} = 2 \frac{\deg(f)^2}{9}.
$$

Lemma 3 Let $f \in \mathbb{F}_p[x, y]$, f_k , $1 \leq k \leq r$, the irreducible factors of f over \mathbb{F}_p and for all $1 \leq k \leq r$, we write $f_k = f_{k,1} \dots f_{k,c_k}$ the factorization of f_k into c_k absolutely irreducible *factors. Then,* **Lemma 3** Let *f* ∈ $\mathbb{F}_p[x, y]$, *fk*, $1 \le k \le r$, the irreducible factors of *f* over \mathbb{F}_p and $1 \le k \le r$, we write $f_k = f_{k,1} \dots f_{k,c_k}$ the factorization of f_k into c_k absolutely irred factors. Then,
1. deg(f_k

2. If t is a singular point of f , $\sum_{1 \le i < j \le c_k} m_t(f_{k,i}) m_t(f_{k,j}) \le m_t(f_k)^2 \frac{c_k - 1}{2c_k}$.

2.2 Strategy of proof

An equivalent definition for a PN function is that a function ϕ is PN over \mathbb{F}_q if for all $a \in \mathbb{F}_q^*$, the only rational points in \mathbb{F}_q of

$$
\phi(x + a) - \phi(x) - \phi(y + a) + \phi(y) = 0
$$

are points such that $x = y$.

In this article, we are only interested in monomial functions, $\phi : x \mapsto x^m$, $m \ge 3$. We only have to consider the case where $a = 1$ in the definition of PN functions (see [\[3\]](#page-17-4)).

Remark 1 If *m* is odd then, 0 and −1 are solutions of $(x + 1)^m - x^m = 1$. So, in this case, $x \mapsto x^m$ is not PN over \mathbb{F}_{p^n} for any *n*.

We set $f(x, y) = (x + 1)^m - x^m - (y + 1)^m + y^m$. Since $(x - y)$ divides $f(x, y)$, we define $h(x, y) = \frac{f(x, y)}{(x - y)}$.

We can assume that $m \neq 0 \mod p$. Indeed, if $x \mapsto x^m$ is PN over \mathbb{F}_q and $m \equiv 0 \mod p$ then $x \mapsto x^{\frac{m}{p}}$ is also PN over \mathbb{F}_q .

Then, the proof of Theorem [1](#page-1-0) follow from Proposition [2](#page-4-0) and Theorem [3](#page-4-1) below.

Proposition 2 If h has an absolutely irreducible factor over \mathbb{F}_p then, for n sufficiently large, $x \mapsto x^m$ *is not PN on* \mathbb{F}_{p^n} *.*

Proof Assume that *h* has an absolutely irreducible factor over \mathbb{F}_p , denoted by *Q*. If $Q(x, y) =$ *c*(*x* − *y*) with $c \in \mathbb{F}_p^*$, then $f(x, y) = (y - x)^2 \tilde{Q}(x, y)$, $\tilde{Q} \in \mathbb{F}_p[x, y]$. Hence,

$$
-m(y+1)^{m-1} + my^{m-1} = \frac{\partial f}{\partial y}(x, y) = 2(y-x)\widetilde{Q}(x, y) + (y-x)^2 \frac{\partial \widetilde{Q}}{\partial y}(x, y).
$$

So, we get that for all $x \in \mathbb{F}_{p^n}$, $-m(x+1)^{m-1} + mx^{m-1} = 0$ which is impossible since *m* \neq 0 mod *p*. Let *s* be the degree of *Q*. Since *Q* \neq *c*(*x* − *y*), *Q*(*x*, *x*) is not the null polynomial. So, there are at most *s* rational points of *Q* such that *x* = *y*.

On the other hand, if we denote by P the number of affine rational points of Q on \mathbb{F}_{p^n} , we have (see [9 , p. 331]):

$$
|P - p^n| \le (s - 1)(s - 2)\sqrt{p^n} + s^2.
$$

Hence, for *n* sufficiently large, Q has a rational point in \mathbb{F}_{p^n} such that $x \neq y$ and $x \mapsto x^m$ is not PN over \mathbb{F}_{p^n} .

Theorem 3 *Let m be an integer such that* $m \geq 3$ *,* $m \equiv 1 \mod p$ *and* $m \neq 1 + p^l$ *. Assume that* $\frac{m-1}{p'} \neq p^l - 1$. Then h has an absolutely irreducible factor over \mathbb{F}_p .

From now, we are interested in the case where $m \equiv 1 \mod p$. We denote by 1 the greatest integer such that p^l divides $m-1$ and we set *d* is divides *m* − 1 and we set
 d := gcd(*m* − 1, p^l − 1) = gcd $\left(\frac{m-1}{l}, p^l - 1\right)$

$$
d := \gcd(m-1, p^l - 1) = \gcd\left(\frac{m-1}{p^l}, p^l - 1\right).
$$

Then, by Theorem [3](#page-4-1) and Proposition [2,](#page-4-0) we only have to treat the case where $d = \frac{m-1}{p^l} = p^l - 1$ in Theorem [1.](#page-1-0) We have $m = p^{l}(p^{l} - 1) + 1$ which is odd; so $x \mapsto x^{m}$ is not PN on all extensions of \mathbb{F}_p .

Now, we only have to prove Theorem [3.](#page-4-1) The method of Jedlicka, Hernando and McGuire is, using Bézout's theorem, to prove that *h* has an absolutely irreducible factor over \mathbb{F}_p because it has not enough singular points. In Part 3, we study singular points of *h* and their multiplicity. In Part 4, we bound the intersection number $I_t(u, v)$ where *t* is a singular point of *h* and *u*, *v* are such that $h = uv$. In Part 5, we prove Theorem [3.](#page-4-1) retailleright and *t* and the intersection number $I_t(u, v)$ where *t* is a singular point *h* and *u*, *v* are such that $h = uv$. In Part 5, we prove Theorem 3.
We set $F = (x + z)^m - x^m - (y + z)^m + y^m = z \hat{f}$ and $\tilde{F} = (x + z)^m - x^m -$

the dehomogenized form of *F* relatively to *y*.

3 Singularities of *h*

Proposition 3 *The singular points of h are described in Table [1.](#page-5-0)*

The proof of this theorem follows from Lemmas [4](#page-6-0) to [11](#page-13-0) and their corollaries (more precisions are given in the last column of the Table [1\)](#page-5-0).

Type	Description	$m_t(h)$	I_t bound	Max number of points	From
Ia	Affine $x_0 = y_0 x_0, y_0 \in \mathbb{F}_{nl}^*$		p^{l} $\frac{p^{2l}-1}{4}$	$d-1$	Lemma 7 Corollary 4
Ib	Affine $x_0 = y_0, x_0, y_0 \notin \mathbb{F}_{n^l}^*$	p^l-1 0		$\frac{m-1}{n^l} - d$	Lemma 7 Corollary 5
Пa	Affine $x_0 \neq y_0, x_0, y_0 \in \mathbb{F}_{nl}^*$		$p^{l}+1 \qquad \left(\frac{p^{l}+1}{2}\right)^{2}$	$(d-1)(d-2)$	Lemma 7 Corollary 6
IIb	Affine $x_0 \neq y_0$, x_0 or $y_0 \notin \mathbb{F}_{nl}^*$	p^{l}	$\overline{0}$	$N_1^{\rm a}$	Lemma 7 Corollary 7
Пc	Affine $x_0 \neq y_0$, x_0 and $y_0 \notin \mathbb{F}_{pl}^*$	p^{l}	n^{l}	N_2 ^c	Lemma 7 Lemma 11
Ша	(1:1:0)		$p^{l}-1 \qquad \left(\frac{p^{l}-1}{2}\right)^{2}$	$\mathbf{1}$	Lemma 7 Corollary 1
IIIb	$(\omega:1:0), \omega^d = 1$ and $\omega \neq 1$	p^{l}	$\frac{p^{2l}-1}{4}$	$d-1$	Lemma 7 Corollary 2
IIIc	$(\omega: 1: 0)$, $\omega \frac{m-1}{p^l}$ and $\omega^d \neq 1$	p^l-1 0		$\frac{m-1}{n^l} - d$	Lemma 7 Corollary 3

286
 Table 1 Singularities of h for $m = 1 + \sum_{j=1}^{b} m_j p^{i_j}$ with $1 \le m_j \le p - 1$, $i_j > i_{j-1}$, $i_1 = b$

$$
{}^{a} N_{1} = \left(\frac{m-1}{p^{l}} - 1\right) \left(2\frac{m-1}{p^{l}} - (m_{b} + 1)p^{i_{b}-l} - 1\right) - (d - 1)(d - 2)
$$

\n
$$
{}^{b} I_{t}(u, v) = 0 \text{ if } y_{0}(x_{0} + 1)p^{l} \left(y_{0}^{p^{l}-1} - 1\right)^{p^{l}+1} \neq x_{0}(y_{0} + 1)p^{l} \left(x_{0}^{p^{l}-1} - 1\right)^{p^{l}+1}
$$

\n
$$
{}^{c} N_{2} = \begin{cases} \left(\frac{m-1}{p^{l}} - 1\right) \left(2\frac{m-1}{p^{l}} - (m_{b} + 1)p^{i_{b}-l} - 1\right) - (d - 1)(d - 2) \\ \text{or } ((p^{l} - 2)(p^{l} + 1) + 1) \left(\frac{m-1}{p^{l}} - 1\right) \\ \text{if } y_{0}(x_{0} + 1)p^{l} \left(y_{0}^{p^{l}-1} - 1\right)^{p^{l}+1} = x_{0}(y_{0} + 1)p^{l} \left(x_{0}^{p^{l}-1} - 1\right)^{p^{l}+1} .\end{cases}
$$

3.1 Singular points at infinity

We have

$$
\begin{cases}\nF_x = \frac{\partial F}{\partial x} = m(x+z)^{m-1} - mx^{m-1} \\
F_y = \frac{\partial F}{\partial y} = -m(y+z)^{m-1} + my^{m-1} \\
F_z = \frac{\partial F}{\partial z} = m(x+z)^{m-1} - m(y+z)^{m-1}\n\end{cases}
$$

At infinity ($z = 0$), $F_x(x, y, 0) = F_y(x, y, 0) = 0$ and

$$
y, 0 = F_y(x, y, 0) = 0 \text{ and}
$$

$$
F_z(x, y, 0) = m(x^{m-1} - y^{m-1}).
$$

So (*x*₀, *y*₀, 0) is a singular point of *F* if and only if $x_0^{m-1} = y_0^{m-1}$. If $y_0 = 0$ then $x_0 = 0$; so $y_0 \neq 0$ and we have to study the solutions of

$$
x_0^{m-1} = 1.
$$
 (1)

.

Equation [1](#page-5-1) is equivalent to *x* $\frac{m-1}{p^l}$ by many extensions of \mathbb{F}_p , *p* odd 287
 $\frac{m-1}{p'}$ = 1. Since gcd $\left(\frac{m-1}{p'}$, *p* $\right)$ = 1, there are $\frac{m-1}{p'}$ solutions at [\(1\)](#page-5-1) and $x_0 = 1$ is the only one such that $x_0 = y_0$.

Now, we want to find the multiplicity of these singularities:

$$
\widetilde{F}(x + x_0, z) = (x + x_0 + z)^m - (x + x_0)^m - (z + 1)^m + 1
$$
\n
$$
= \sum_{k=2}^m {m \choose k} (x + z)^k x_0^{m-k} - \sum_{k=2}^m {m \choose k} x^k x_0^{m-k} - \sum_{k=2}^m {m \choose k} z^k.
$$

Since $m - 1 \equiv 0 \mod p^l$, for all $2 \le k < p^l$, $\binom{m}{k} = 0$. Consider the terms of degree $p^l - 1$ of *f* : $-1 \equiv 0 \mod p^l$, for all $2 \le k < p^l$, $\binom{m}{k} = 0$. Consider the terms

$$
\frac{1}{z} \binom{m}{p^l} \left(x_0^{m-p^l} (x+z)^{p^l} - x_0^{m-p^l} x^{p^l} - z^{p^l} \right) = \binom{m}{p^l} \left(x_0^{m-p^l} - 1 \right) z^{p^l - 1}.
$$
 (2)

This term vanishes (which means that $(x_0, y_0, 0)$ is a singular point of multiplicity greater than $p^l - 1$) if and only if

$$
x_0^{m-p^l}=1
$$

that is to say if and only if

 $x_0^d = 1.$

Now, consider the terms of degree p^l of \tilde{f} : $\frac{1}{2}$

$$
\frac{1}{z} {m \choose p^l+1} \left(x_0^{m-p^l-1} (x+z)^{p^l+1} - x_0^{m-p^l-1} x^{p^l+1} - z^{p^l+1} \right)
$$
\n
$$
= {m \choose p^l+1} \left(x_0^{m-p^l-1} x^{p^l} + x_0^{m-p^l-1} x z^{p^l-1} + \left(x_0^{m-p^l-1} - 1 \right) z^{p^l} \right). \tag{3}
$$
\n
$$
\text{Since } x_0^{m-p^l-1} \neq 0, \text{ singular points of } \hat{f} \text{ of multiplicity greater than } p^l - 1 \text{ have multiplicity}
$$

pl .

We have just proved the following lemma:

Lemma 4 *Let* ω *such that* $\omega \frac{m-1}{p^l}$ p_{p} ilowing lemma:
 p_{p}^{m-1} = 1. *The point* (ω : 1 : 0) *is a singular point of* \widehat{h} with *multiplicity*

$$
\begin{cases}\n p^l & \text{if } \omega^d = 1, \omega \neq 1 \\
 p^l - 1 & \text{otherwise}\n\end{cases}.
$$

F' y $\omega^{\alpha} = 1$,
 p^l - 1 *otherwise*
 Furthermore, \widehat{h} *has* $\frac{m-1}{p^l}$ *singular points at infinity.*

3.2 Affine singular points

We have:

$$
\begin{cases} f_x = m(x+1)^{m-1} - mx^{m-1} \\ f_y = -m(y+1)^{m-1} + my^{m-1} \end{cases}
$$

 $\hat{\mathfrak{D}}$ Springer

So,

$$
(x_0, y_0) \text{ singular point of } f \Leftrightarrow \begin{cases} f(x_0, y_0) = 0 \\ (x_0 + 1)^{m-1} = x_0^{m-1} \\ (y_0 + 1)^{m-1} = y_0^{m-1} \end{cases}
$$

$$
\Leftrightarrow \begin{cases} x_0^{m-1}(x_0 + 1) - x_0^m - y_0^{m-1}(y_0 + 1) + y_0^m = 0 \\ (x_0 + 1)^{m-1} = x_0^{m-1} \\ (y_0 + 1)^{m-1} = y_0^{m-1} \end{cases}
$$

$$
\Leftrightarrow \begin{cases} x_0^{m-1} = y_0^{m-1} \\ (x_0 + 1)^{m-1} = x_0^{m-1} \\ (y_0 + 1)^{m-1} = y_0^{m-1} \end{cases}.
$$

Finally, we have

Lemma 5 *Affine singular points of f are points satisfying*

$$
(x0 + 1)m-1 = x0m-1 = y0m-1 = (y0 + 1)m-1.
$$

From Lemma [5,](#page-7-0) we get that x_0 , $y_0 \neq 0$, -1 . Since p^l divides $m - 1$,

∟.

$$
(x_0, y_0) \text{ singular point of } f \Leftrightarrow \begin{cases} x_0^{\frac{m-1}{p'}} = y_0^{\frac{m-1}{p'}}\\ (x_0 + 1)^{\frac{m-1}{p'}} = x_0^{\frac{m-1}{p'}}\\ (y_0 + 1)^{\frac{m-1}{p'}} = y_0^{\frac{m-1}{p'}} \end{cases} . \tag{4}
$$

There are at most $\frac{m-1}{p'}$ − 1 solutions to the second equation of [\(4\)](#page-7-1). Let *x*₀ be one of these solutions, we want to know the number of y_0 such that (x_0, y_0) is a singular point of f. ere are at most $\frac{m-1}{p^l} - 1$ solutions to the second equation of (4). Let x_0 be one *i* utions, we want to know the number of y_0 such that (x_0, y_0) is a singular point of We write $m = 1 + \sum_{j=1}^{b} n_j p^{i_j}$ with

$$
(y_0 + 1)^{\frac{m-1}{p'}} = y_0^{\frac{m-1}{p'}} \Leftrightarrow \prod_{j=1}^b (y_0 + 1)^{m_j p^{i_j - l}} = y_0^{\frac{m-1}{p'}}
$$

$$
\Leftrightarrow \sum_{(k_1, ..., k_b) \in \mathcal{I}} \left(\prod_{j=1}^b {m_j \choose k_j} \right) y_0^{\sum_{j=1}^b k_j p^{i_j - l}} = 0,
$$

where $\mathcal{I} = \{(k_1, \ldots, k_b) \in \mathbb{Z}^b : \forall j = 1 \ldots b, \ 0 \le k_j \le m_j\} \setminus \{(m_1, \ldots, m_b)\}.$ We multiply by *y m*−1 *pl* [−]*mb ^pib*−*^l* $\int_0^{p^u}$ and we set $\alpha = y$ $rac{m-1}{p^l}$: 0 ∴ $p^{i}b^{-}$ κ $(k_b) \in \mathbb{Z}^{\nu} : \forall j$
 \exists we set $\alpha = y_0$ $y_0^{p^l}$:

$$
\sum_{\substack{(k_1,\dots,k_{b-1})\in\mathcal{I}'\\k_b=0}}\left(\prod_{j=1}^{b-1}\binom{m_j}{k_j}\right)\alpha y_0^{\sum_{j=1}^{b-1}k_jp^{i_j-l}} + \sum_{k_b=0}^{m_b-1}\sum_{\substack{0\le k_j\le m_j\\j\ne b}}\left(\prod_{j=1}^b\binom{m_j}{k_j}\right)y_0^{\frac{m-1}{p'}-(m_b-k_b)p^{i_b-l}+\sum_{j=1}^{b-1}k_jp^{i_j-l}} = 0,
$$

where $\mathcal{I}' = \{(k_1, \ldots, k_{b-1}) \in \mathbb{Z}^{b-1} : \forall j = 1 \ldots b-1, 0 \le k_j \le m_j\} \setminus \{(m_1, \ldots, m_{b-1})\}.$

 \hat{Z} Springer

The degree of this polynomial in y_0 is

of this polynomial in
$$
y_0
$$
 is
\n
$$
\frac{m-1}{p^l} - p^{i_b-l} + \sum_{j=1}^{b-1} m_j p^{i_j-l} = 2\frac{m-1}{p^l} - (m_b+1)p^{i_b-l}.
$$

Then, we obtain

Lemma 6 *The number of affine singularities of h is at most:*

$$
\left(\frac{m-1}{p^l} - 1\right) \left(2\frac{m-1}{p^l} - (m_b + 1)p^{i_b - l}\right),
$$

where $m = 1 + \sum_{j=1}^b m_j p^{i_j}$ with $1 \le m_j \le p - 1$, $i_j > i_{j-1}$, $i_1 = l$.

Now, we study the multiplicity of affine singularities:
\n
$$
f(x + x_0, y + y_0) = (x + x_0 + 1)^m - (x + x_0)^m - (y + y_0 + 1)^m + (y + y_0)^m
$$
\n
$$
= \sum_{k=2}^m {m \choose k} x^k (x_0 + 1)^{m-k} - \sum_{k=2}^m {m \choose k} x^k x_0^{m-k}
$$
\n
$$
- \sum_{k=2}^m {m \choose k} y^k (y_0 + 1)^{m-k} + \sum_{k=2}^m {m \choose k} y^k y_0^{m-k}.
$$

Since $m - 1 \equiv 0 \mod p^l$, for all $2 \le k \le p^l$, $\binom{m}{k} = 0$. So (x_0, y_0) is a singularity of multiplicity at least p^l . Consider the terms of degree $p^l + 1$:

$$
\binom{m}{p^l+1}\left(\left((x_0+1)^{m-p^l-1}-x_0^{m-p^l-1}\right)x^{p^l+1}-\left((y_0+1)^{m-p^l-1}-y_0^{m-p^l-1}\right)y^{p^l+1}\right).
$$

Since (x_0, y_0) is a singular point, $(x_0 + 1)^{m-1} = x_0^{m-1}$ and $x_0 \neq -1, 0$. So,

$$
\begin{aligned}\n\text{Let } (x_0, y_0) \text{ is a singular point, } (x_0 + 1)^{m-1} &= x_0^{m-1} \text{ and } x_0 \neq -1, 0. \text{ So,} \\
(x_0 + 1)^{m - p^l - 1} - x_0^{m - p^l - 1} &= 0 \Leftrightarrow (x_0 + 1)^{p^l} \left((x_0 + 1)^{m - p^l - 1} - x_0^{m - p^l - 1} \right) &= 0 \\
&\Leftrightarrow -x_0^{m - p^l - 1} &= 0.\n\end{aligned}
$$

Hence, affine singularities have multiplicity at most $p^l + 1$. Then, we look at the terms of degree *p^l* :

$$
{m \choose p^l} \left(\left((x_0 + 1)^{m-p^l} - x_0^{m-p^l} \right) x^{p^l} - \left((y_0 + 1)^{m-p^l} - y_0^{m-p^l} \right) y^{p^l} \right).
$$

$$
(x_0 + 1)^{m-p^l} - x_0^{m-p^l} = 0 \Leftrightarrow (x_0 + 1)^{p^l} \left((x_0 + 1)^{m-p^l} - x_0^{m-p^l} \right) =
$$

However,

$$
(x_0 + 1)^{m-p'} - x_0^{m-p'} = 0 \Leftrightarrow (x_0 + 1)^{p'} \left((x_0 + 1)^{m-p'} - x_0^{m-p'} \right) = 0
$$

$$
\Leftrightarrow (x_0 + 1)^{m-1} (x_0 + 1) - x_0^m - x_0^{m-p'} = 0
$$

$$
\Leftrightarrow x_0^{m-p'} \left(x_0^{p'-1} - 1 \right) = 0
$$

$$
\Leftrightarrow x_0 \in \mathbb{F}_{p'}^*.
$$

We can do the same for y_0 .

We have just proved the following lemma.

Lemma 7 *There are at most:*

- *− d* − 1 *affine singularities of h such that* $x_0 = y_0 \in \mathbb{F}_{p^l}^*$. Their multiplicity is p^l (p^l + 1 *for f);*
- *– ^m*−¹ *^p^l* [−] *d affine singularities of h such that x*⁰ ⁼ *^y*⁰ ∈ ^F[∗] *^p^l . Their multiplicity is p^l* [−] ¹ *(p^l for f);*
- *–* $(d 1)(d 2)$ *affine singularities of h such that* $x_0 ≠ y_0$ *and* $x_0, y_0 ∈ \mathbb{F}_{p'}^*$ *. Their multiplicity is* $p^l + 1$ *(for h and f); for f*);
 − (*d* − 1)(*d* − 2) *affine singularities of h such that* $x_0 \neq y_0$ *and* x_0 , $y_0 \in \mathbb{F}_{p^l}^*$. Their
 multiplicity is $p^l + 1$ (*for h and f*);
 $- \left(\frac{m-1}{p^l} - 1\right) \left(2\frac{m-1}{p^l} - (m_b +$
- *that* $x_0 \neq y_0$ *and* x_0 *or* $y_0 \notin \mathbb{F}_{p^l}^*$ ($m = 1 + \sum_{j=1}^b m_j p^{i_j}$ with $1 \leq m_j \leq p 1$, $i_j >$ *p*^{*l*} *(meg b) n such n*
j j,
*i*_{*b*}^{*l*} *(meg* 1 + \sum_{j}^{b} i_{i-1} , $i_1 = l$). Their multiplicity is p^l (for h and f).

4 Intersection number bounds

We write $h = uv$; we want to bound the intersection number $I_t(u, v)$ for t a singularity of h.

4.1 Singularities at infinity

Let *t* = (ω : 1 : 0) be a singular point of *h* at infinity ($\omega \frac{m-1}{p'} = 1$) of multiplicity m_t . We write $h(x + \omega, z) = H_{m_t} + H_{m_t+1} + \cdots$ where *H_i* is the homogeneous polynomial composed of Let $t = (\omega : 1 : 0)$ be a singular point of *h* at infinity $(\omega \frac{m-1}{p'} = 1)$ of multiplicity m_t . We $\widetilde{h}(x + \omega, z) = \widetilde{H}_{m_t} + \widetilde{H}_{m_t+1} + \cdots$ where \widetilde{H}_i is the homogeneous polynomial comportion the terms of degre *i* the terms of degree *i* of $\tilde{h}(x + \omega, z)$ and $\tilde{f}(x + \omega, z) = \tilde{F}_{m_t} + \tilde{F}_{m_t+1} + \cdots$ where \tilde{F}_i is the nomogeneous polynomial composed of the terms of degree *i* of $f(x + \omega, z)$. Then, $\tilde{f}(x + \omega, z) = \tilde{h}(x + \omega$ Let $t = (\omega : 1 : 0)$ be a singular point of h at infinity $(\omega^p) = 1$ of multiplicity m_t .
 $\tilde{h}(x + \omega, z) = \tilde{H}_{m_t} + \tilde{H}_{m_t+1} + \cdots$ where \tilde{H}_i is the homogeneous polynomial composed if the terms of degree *i* of $\tilde{$

$$
\tilde{f}(x + \omega, z) = \tilde{h}(x + \omega, z)(x + \omega - 1)
$$
\nwhere if R is non-zero, then, it is a polynomial of degree *i* of *f*(*x* + *ω*, *z*). Then,

\n
$$
\tilde{f}(x + \omega, z) = \tilde{h}(x + \omega, z)(x + \omega - 1)
$$
\n
$$
= (R + \tilde{H}_{m_t+1} + \tilde{H}_{m_t})(x + \omega - 1)
$$
\nwhere if R is non zero, then, it is a polynomial of degree greater than *m_t* + 1

\n
$$
= xR + (\omega - 1)R + x\tilde{H}_{m_t+1} + x\tilde{H}_{m_t} + (\omega - 1)\tilde{H}_{m_t+1} + (\omega - 1)\tilde{H}_{m_t}.
$$

So,

- if
$$
\omega \neq 1
$$
, then $\widetilde{F}_{m_t} = (\omega - 1) \widetilde{H}_{m_t}$ and $\widetilde{F}_{m_t+1} = x \widetilde{H}_{m_t} + (\omega - 1) \widetilde{H}_{m_t+1}$;
- if $\omega = 1$, then $\widetilde{F}_{m_t+1} = x \widetilde{H}_{m_t}$.

Then, we have

Lemma 8 *If t* = (ω : 1 : 0), $\omega^{\frac{m-1}{p'}} = 1$, is a singular point at infinity of h with multiplicity *mt then*

 $-\tilde{F}_{m_t} = (\omega - 1)\tilde{H}_{m_t}$ and $\tilde{F}_{m_t+1} = x\tilde{H}_{m_t} + (\omega - 1)\tilde{H}_{m_t+1}$ if $\omega \neq 1$; $-F_{m_t+1} = x \tilde{H}_{m_t}$ *if* $\omega = 1$.

Corollary 1 *If* $t = (1 : 1 : 0)$ *then*

$$
I_t(u,v) \leq \left(\frac{p^l-1}{2}\right)^2.
$$

Proof If $t = (1 : 1 : 0)$ then its multiplicity is $p^l - 1$. By Lemma [8](#page-9-2) and Eq. [3,](#page-6-1) there exists $a \in \mathbb{F}_q^*$ such that \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot

$$
\widetilde{H}_{m_t}=a\left(x^{p^l-1}+z^{p^l-1}\right).
$$

 \mathcal{L} Springer

Since the factors of H_{m_t} are different, $I_t(u, v) = m_t(u)m_t(v)$. We get the result since $m_t(u) + m_t(v) = p^l - 1.$

Corollary 2 If $t = (\omega : 1 : 0)$ *such that* $\omega^d = 1$, $\omega \neq 1$ *then*

$$
I_t(u,v) \leq \frac{p^{2l}-1}{4}.
$$

Proof Suppose that $t = (\omega : 1 : 0)$ such that $\omega^d = 1$ and $\omega \neq 1$ then, the multiplicity of *t* is p^l . By Lemma [8](#page-9-2) and Eq. [3,](#page-6-1) there exists $a \in \mathbb{F}_q^*$ such that 1.0 $1.1 \cdot d$ $1.1 \cdot d$ $1.1 \cdot d$ $1.1 \cdot d$

$$
(\omega - 1)\widetilde{H}_{p^l} = \widetilde{F}_{p^l} = a\left(x^{p^l}\omega^{m-p^l-1} + xz^{p^l-1}\omega^{m-p^l-1} + \left(\omega^{m-p^l-1} - 1\right)z^{p^l}\right).
$$

So all factors of H_{p^l} are simple and $I_t(u, v) = m_t(u)m_t(v)$. We get the result since $m_t(u)$ + $m_t(v) = p^l$. . 

Corollary 3 *If* $t = (\omega : 1 : 0)$ *with* $\omega \frac{m-1}{p} = 1$, $\omega^d \neq 1$, then

 $I_t(u, v) = 0.$

Proof Suppose that $t = (\omega : 1 : 0)$ with $\omega^{\frac{m-1}{p'}} = 1$ and $\omega^d \neq 1$ then, the multiplicity of *t* is *p*^{*l*} − 1. By Lemma [8](#page-9-2) and Eq. [2,](#page-6-2) there exists *a* ∈ \mathbb{F}_q^* and *b* ∈ \mathbb{F}_q^* such that

$$
(\omega - 1)\widetilde{H}_{p^l-1} = \widetilde{F}_{p^l-1} = az^{p^l-1}
$$

and

$$
(\omega - 1)\widetilde{H}_{p^{l}-1} = \widetilde{F}_{p^{l}-1} = az^{p^{l}-1}
$$

and

$$
\widetilde{F}_{p^{l}} = x\widetilde{H}_{p^{l}-1} + (\omega - 1)\widetilde{H}_{p^{l}} = b\left(x^{p^{l}}\omega^{m-p^{l}-1} + xz^{p^{l}-1}\omega^{m-p^{l}-1} + z^{p^{l}}\left(\omega^{m-p^{l}-1} - 1\right)\right).
$$

So, gcd $(H_{p^l}, H_{p^l-1}) = \text{gcd}(F_{p^l}, F_{p^l-1}) = 1$. Since H_{p^l-1} has only one tangent line, by Lemma [1,](#page-2-0) $I_t(u, v) = 0$.

4.2 Affine singularities

Let $t = (x_0, y_0)$ be an affine singular point of h of multiplicity m_t .

We write $h(x+x_0, y+y_0) = H_{m_t} + H_{m_t+1} + \cdots$ where H_i is the homogeneous polynomial composed of the terms of degree *i* of $h(x + x_0, y + y_0)$.

Assume $x_0 = y_0$. Then, we write $f(x + x_0, y + y_0) = F_{m_t+1} + F_{m_t+2} + \cdots$ where F_i is the homogeneous polynomial composed of the terms of degree *i* of $f(x + x_0, y + y_0)$ and

$$
f(x + x_0, y + y_0) = h(x + x_0, y + y_0)(x + x_0 - y - y_0)
$$

= $(R + H_{m_t+1} + H_{m_t})(x - y)$
where if *R* is non zero then, it is a polynomial of degree
greater than $m_t + 1$
= $(x - y)R + (x - y)H_{m_t+1} + (x - y)H_{m_t}$.

So, $F_{m_t+2} = (x - y)H_{m_t+1}$ and $F_{m_t+1} = (x - y)H_{m_t}$. Furthermore, for some *a*, $F_{m_t+1} =$ $a(x^{m_t+1} - y^{m_t+1})$ (see proof of Lemma [7\)](#page-9-0).

So, we get

Lemma 9 If $t = (x_0, y_0)$ *is an affine singular point of h with multiplicity* m_t *such that* $x_0 = y_0$ *, then* $F_{m_t+2} = (x - y)H_{m_t+1}$ *and* $F_{m_t+1} = (x - y)H_{m_t}$ *.*

Furthermore, tangent lines to h at t are the factors of $\frac{x^{m_1+1}-y^{m_1+1}}{x-y}$.

 \mathcal{L} Springer

Corollary 4 *If* $t = (x_0, y_0)$ *is an affine singular point of h such that* $x_0 = y_0 \in \mathbb{F}_{p^l}^*$ *then*

$$
I_t(u,v) \leq \frac{p^{2l}-1}{4}.
$$

Proof Suppose that $t = (x_0, y_0)$ is an affine singular point of *h* such that $x_0 = y_0 \in \mathbb{F}_{p^l}^*$ then, the multiplicity of *t* is p^l . The factors of $\frac{x^{p^l+1}-y^{p^l+1}}{x-y}$ are all distinct. So, by Lemma [9,](#page-10-2) tangent lines to *u* or v are all distinct and

$$
I_t(u, v) = m_t(u)m_t(v).
$$

Since $m_t(u) + m_t(v) = p^l$, we get the result.

Corollary 5 *If* $t = (x_0, y_0)$ *is an affine singular point of h such that* $x_0 = y_0 \notin \mathbb{F}_{p^l}^*$ *then,*

$$
I_t(u,v)=0.
$$

Proof Suppose that $t = (x_0, y_0)$ is an affine singular point of *h* such that $x_0 = y_0 \notin \mathbb{F}_{p^l}^*$ then, the multiplicity of *t* is $p^l - 1$. By Lemma [9,](#page-10-2)

$$
H_{p^{l}-1} = a(x - y)^{p^{l}-1} \text{ and } H_{p^{l}} = \frac{b\left(x^{p^{l}+1} - y^{p^{l}+1}\right)}{x - y}.
$$

Hence, gcd(H_{p^l-1} , H_{p^l}) = 1. Since H_{p^l-1} has only one tangent line, by Lemma [1,](#page-2-0) $I_t(u, v)$ = 0. □ $= 0.$

Assume now $x_0 \neq y_0$. Then, we write $f(x + x_0, y + y_0) = F_{m_t} + F_{m_t+1} + \cdots$ where F_i

is the homogeneous polynomial composed of the terms of degree *i* of
$$
f(x + x_0, y + y_0)
$$
 and
\n
$$
f(x + x_0, y + y_0) = h(x + x_0, y + y_0)(x + x_0 - y - y_0)
$$
\n
$$
= (R + H_{m_t+1} + H_{m_t})(x + x_0 - y - y_0)
$$
\nwhere if *R* is non zero then, it is a polynomial of degree
\ngreatest than $m_t + 1$
\n
$$
= (x_0 - y_0)H_{m_t} + ((x - y)H_{m_t} + (x_0 - y_0)H_{m_t+1})
$$
\n
$$
+ ((x - y + x_0 - y_0)R + (x - y)H_{m_t+1}).
$$

So, $F_{m_t} = (x_0 - y_0)H_{m_t}$ and $F_{m_t+1} = (x_0 - y_0)H_{m_t+1} + (x - y)H_{m_t}$. Then, we obtain the following lemma.

Lemma 10 If $t = (x_0, y_0)$ *is an affine singular point of h with multiplicity* m_t *such that* $x_0 \neq y_0$ *then*

$$
\mathbb{F}_{m_t} = (x_0 - y_0)H_{m_t} \quad \text{and} \quad F_{m_t+1} = (x - y)H_{m_t} + (x_0 - y_0)H_{m_t+1}.
$$

Corollary 6 *If* $t = (x_0, y_0)$ *is an affine singular point of h such that* $x_0 \neq y_0$, x_0 , $y_0 \in \mathbb{F}_{p^l}^*$ *then* $ular no int$

$$
I_t(u,v) \leq \left(\frac{p^l+1}{2}\right)^2.
$$

 \mathcal{L} Springer

Proof Suppose that $t = (x_0, y_0)$ is an affine singular point of *h* such that $x_0 \neq y_0, x_0, y_0 \in$ $\mathbb{F}_{p^l}^*$ then, the multiplicity of *t* is $p^l + 1$. By Lemma [10,](#page-11-3)

$$
(x_0 - y_0)H_{m_t} = F_{m_t} = c_1 x^{p^l+1} - c_2 y^{p^l+1} \quad \text{with } c_1, c_2 \neq 0.
$$

Hence, all factors of H_{m_t} are simple and then $I_t(u, v) = m_t(u)m_t(v)$. Since $m_t(u) + m_t(v) =$
 $n^l + 1$, we get the result $p^l + 1$, we get the result.

Corollary 7 *If* $t = (x_0, y_0)$ *is an affine singular point of h such that* $x_0 \neq y_0$ *and* $x_0 \in \mathbb{F}_{p^l}^*$ $and y_0 \notin \mathbb{F}_{p^l}^*$ *or* $x_0 \notin \mathbb{F}_{p^l}^*$ *and* $y_0 \in \mathbb{F}_{p^l}^*$ *then*

$$
I_t(u,v)=0.
$$

Proof Suppose that $t = (x_0, y_0)$ is an affine singular point of *h* such that $x_0 \neq y_0$ and $x_0 \in \mathbb{F}_{p^l}^*$ and $y_0 \notin \mathbb{F}_{p^l}^*$ or $x_0 \notin \mathbb{F}_{p^l}^*$ and $y_0 \in \mathbb{F}_{p^l}^*$ then, the multiplicity of *t* is p^l . Then

$$
F_{p^l} = \begin{cases} c_1 x^{p^l} \text{ if } y_0 \in \mathbb{F}_{p^l}^*, c_1 \neq 0 \\ c_2 y^{p^l} \text{ if } x_0 \in \mathbb{F}_{p^l}^*, c_2 \neq 0 \end{cases} \text{ and } F_{p^l+1} = c_1' x^{p^l+1} - c_2' y^{p^l+1}, c_1', c_2' \neq 0.
$$

So, by Lemma [10,](#page-11-3) $1 = \gcd(F_{p^l}, F_{p^l+1}) = \gcd(H_{p^l}, H_{p^l+1})$ and H_{p^l} has only one tangent line. Hence, by Lemma [1,](#page-2-0) $I_t(u, v) = 0$.

Assume $x_0 \neq y_0$ and x_0 , $y_0 \notin \mathbb{F}_{p^l}$. Then, *t* has multiplicity p^l . We have $F_{p^l} = c_1 x^{p^l}$ $c_2y^{p^l} = (c_3x - c_4y)^{p^l}$, where $c_1 = (x_0 + 1)^{m-p^l} - x_0^{p^l}$ and $c_2 = (y_0 + 1)^{m-p^l} - y_0^{m-p^l}$. Since x_0 , $y_0 \notin \mathbb{F}_{p^l}^*$, $c_1 \neq 0$ and $c_2 \neq 0$. By Lemma [10,](#page-11-3)

$$
F_{p'} = (x_0 - y_0)H_{p'}
$$
 and $F_{p'+1} = (x_0 - y_0)H_{p'+1} + (x - y)H_{p'}.$

So, H_{p^l} has only one factor and $gcd(F_{p^l}, F_{p^l+1}) = gcd(H_{p^l}, H_{p^l+1})$. Furthermore, $F_{p^l+1} =$ $d_1x^{p^l+1} - d_2y^{p^l+1}$ with $d_1 = (x_0 + 1)^{m-p^l-1} - x_0^{m-p^l-1} \neq 0$ and $d_2 = (y_0 + 1)^{m-p^l-1}$ $y_0^{m-p^l-1} \neq 0$. The polynomials *F_{pl}* and *F_{pl¹*+1} have a common factor if and only if *c*₃*x* − *c*₄*y* divides F_{p^l+1} . So, F_{p^l} and F_{p^l+1} have a common factor if and only if

$$
\left(\frac{c_1}{c_2}\right)^{p^l+1} = \left(\frac{d_1}{d_2}\right)^{p^l}.
$$

If (x_0, y_0) is a singular point of *f*, then

$$
\begin{cases} x_0^{m-1} = y_0^{m-1} \\ (x_0 + 1)^{m-1} = x_0^{m-1} \\ (y_0 + 1)^{m-1} = y_0^{m-1} \end{cases}
$$

.

We have:

$$
d_1 = (x_0 + 1)^{m-p^{l}-1} - x_0^{m-p^{l}-1} = \frac{(x_0 + 1)^{m-1} - x_0^{m-p^{l}-1}(x_0 + 1)^{p^{l}}}{(x_0 + 1)^{p^{l}}}
$$

$$
= \frac{x_0^{m-1} - x_0^{m-1} - x_0^{m-p^{l}-1}}{(x_0 + 1)^{p^{l}}}
$$

$$
= \frac{-x_0^{m-p^{l}-1}}{(x_0 + 1)^{p^{l}}}.
$$

 $\circled{2}$ Springer

Similarly, $d_2 = \frac{-y_0^{m-p^l-1}}{(y_0+1)^{p^l}}$. Hence,

$$
\frac{d_1}{d_2} = \frac{x_0^{m-p^l-1}(y_0+1)^{p^l}}{y_0^{m-p^l-1}(x_0+1)^{p^l}} = \frac{x_0^{m-1}y_0^{p^l}(y_0+1)^{p^l}}{y_0^{m-1}x_0^{p^l}(x_0+1)^{p^l}} = \frac{y_0^{p^l}(y_0+1)^{p^l}}{x_0^{p^l}(x_0+1)^{p^l}}.
$$

On the other hand, we have:

$$
c_1 = (x_0 + 1)^{m-p^l} - x_0^{m-p^l} = \frac{(x_0 + 1)(x_0 + 1)^{m-1} - x_0^{m-p^l}(x_0 + 1)^{p^l}}{(x_0 + 1)^{p^l}}
$$

$$
= \frac{x_0^m + x_0^{m-1} - x_0^m - x_0^{m-p^l}}{(x_0 + 1)^{p^l}}
$$

$$
= \frac{x_0^{m-p^l} (x_0^{p^l-1} - 1)}{(x_0 + 1)^{p^l}}.
$$

Similarly, $c_2 = \frac{y_0^{m-p^l} (y_0^{p^l-1}-1)}{(y_0+1)^{p^l}}$. Hence, \mathcal{L} $(1)^{p^l}$. Then

$$
c_1 c_2 = \frac{y_0^{m-p^l} (y_0^{p^l-1} - 1)}{(y_0 + 1)^{p^l}}.
$$
 Hence,

$$
\frac{c_1}{c_2} = \frac{x_0^{m-p^l} \left(x_0^{p^l-1} - 1\right) (y_0 + 1)^{p^l}}{y_0^{m-p^l} \left(y_0^{p^l-1} - 1\right) (x_0 + 1)^{p^l}} = \frac{y_0^{p^l-1} (y_0 + 1)^{p^l} \left(x_0^{p^l-1} - 1\right)}{x_0^{p^l-1} (x_0 + 1)^{p^l} \left(y_0^{p^l-1} - 1\right)}.
$$

After simplification, we get that F_{p^l} and F_{p^l+1} have a common factor if and only if

$$
y_0
$$
 y_0
fication, we get that F_{p^l} and F_{p^l+1} have a common factor if and only if

$$
y_0(x_0 + 1)^{p^l} \left(y_0^{p^l-1} - 1 \right)^{p^l+1} = x_0(y_0 + 1)^{p^l} \left(x_0^{p^l-1} - 1 \right)^{p^l+1}.
$$
 (5)

If (x_0, y_0) is not a solution of [\(5\)](#page-13-1), then $gcd(H_{p^l}, H_{p^l+1}) = 1$ and by Lemma [1,](#page-2-0) $I_t(u, v) = 0$.

Otherwise, we write $u(x + x_0, y + y_0) = U_r + U_{r+1} + \cdots$, where U_i is the homogeneous polynomial composed of the terms of degree *i* of $u(x + x_0, y + y_0)$ and $U_r \neq 0$ and $v(x + x_0, y + y_0) = V_s + V_{s+1} + \cdots$, where V_i is the homogeneous polynomial composed of the terms of degree *i* of $v(x + x_0, y + y_0)$ and $V_s \neq 0$. If $r = 0$ or $s = 0$ then *t* is not a point of *u* or *v* and $I_t(u, v) = 0$. Assume that *r*, $s > 0$. Since (x_0, y_0) satisfies [\(5\)](#page-13-1), F_{p^l} and F_{p^l+1} have a common factor that we denote by *e*. We have $H_{p^l} = U_r V_s = e^{p^l}$ and $H_{p^l+1} = U_r V_s$ $U_r V_{s+1} + U_{r+1} V_s$. Furthermore, $gcd(F_{p^l}, F_{p^l+1}) = e$ and thus $gcd(H_{p^l}, H_{p^l+1}) = e$. Since $r \geq 1$ and $s \geq 1$, *e* divides U_r and V_s and consequently gcd(U_r , V_s). If gcd(U_r , V_s) = e^k , e^k divides $gcd(H_{p^l}, H_{p^l+1})$ thus $gcd(U_r, V_s) = e$. We can assume without loss of generality that $U_r = e^{p^l-1}$ and $V_s = e$. Since $m_t(v) = 1$, $I_t(u, v) = \text{ord}_t^v(u)$. Since e^2 does not divide H_{p^l+1} , *e* does not divide U_{p^l} and we can write U_{p^l} as the product of p^l linear factors distinct from *e*. Each factor is not tangent to v, so the order of each factor is 1 (see [\[4](#page-17-3), p. 70]). Thus the order of U_{p^l} is p^l and ord $v_l^v(u) \leq p^l$.

Finally, we get

Lemma 11 *If* $t = (x_0, y_0)$ *is an affine singular point of h such that* x_0 *and* $y_0 \notin \mathbb{F}_{p^l}^*$ *and* $x_0 \neq y_0$ *then* Lemma 11 If $t = (x_0, y_0)$ is an affine singular point of h such that x_0 and y_0
 $x_0 \neq y_0$ then
 $- I_t(u, v) = 0$ if $y_0(x_0 + 1)^{p'} (y_0^{p'-1} - 1)^{p'+1} \neq x_0(y_0 + 1)^{p'} (x_0^{p'-1} - 1)^{p'+1}$ $\sum_{i=1}^{n} p_i$

-
- *− otherwise,* $I_t(u, v) \le p^l$; *and there are at most* $((p^l 2)(p^l + 1) + 1)(\frac{m-1}{p^l} 1)$ *such singular points.*

5 Proof of Theorem [3](#page-4-1)

The following theorems prove Theorem [3.](#page-4-1) From now, assume $m \neq 1 + p^l$. We write $m =$ **5 Proof of Theorem 3**

The following theorems prove Theorem 3. From now, assu
 $1 + \sum_{j=1}^{b} m_j p^{i_j}$ with $1 \leq m_j \leq p - 1$, $i_j > i_{j-1}$, $i_1 = l$.

Theorem 4 *If d* = 1 *then h has an absolutely irreducible factor over* \mathbb{F}_p *.*

Proof Suppose that $d = 1$. Assume *h* has no absolutely irreducible factor over \mathbb{F}_p , then by Lemma [2](#page-3-0) we have $e = \frac{I_{tot}}{(m-2)^2} \ge \frac{8}{9}$ where I_{tot} is an upper bound on the global intersection number for any factorization $h = u \cdot v$. Since $d = 1$, we only have singularities of type Ib,
IIc, IIIa and IIIc (see Table 1). So, by Table 1, we can take IIc, IIIa and IIIc (see Table [1\)](#page-5-0). So, by Table [1,](#page-5-0) we can take

$$
I_{tot} = p^l \left(\frac{m-1}{p^l} - 1 \right) \left(2 \frac{m-1}{p^l} - (m_b + 1) p^{i_b - l} - 1 \right) + \left(\frac{p^l - 1}{2} \right)^2.
$$
 (6)

Since $m = 1 + p^l k$ and $m \neq 1 + p^l$, $k \ge 2$; thus $\frac{m-3}{4} = \frac{p^l k - 2}{4} \ge \frac{p^l - 1}{2}$. Hence

$$
e \le \frac{1}{\frac{(m-2)^2}{4}} \left(\frac{(m-3)^2}{16} + p^l \left(\frac{m-1}{p^l} - 1 \right)^2 \right)
$$

$$
\le \frac{1}{4} + \frac{4}{p^l}.
$$

For $p^l \neq 3$ or 5, we have $e < \frac{8}{9}$ which is a contradiction.

First, consider the case where $p^l = 3$. We have $1 = d = \gcd(2, k)$ so k is odd and 3 does not divide *k* by definition of *l*. Hence $k \geq 5$, thus, by Lemma [11](#page-13-0)

$$
e \le \frac{p^{l}((p^{l}-2)(p^{l}+1)+1)\left(\frac{m-1}{p^{l}}-1\right)+\left(\frac{p^{l}-1}{2}\right)^2}{\frac{(m-2)^2}{4}} = \frac{15(k-1)+1}{\frac{(3k-1)^2}{4}}.
$$

However, for $k \ge 5$, $k \mapsto \frac{15(k-1)+1}{\frac{(3k-1)^2}{4}}$ is a decreasing function. So, for $k \ge 11$, $e < \frac{8}{9}$. Now we have to consider the case where $k = 5$ and $k = 7$. Using Eq. [6,](#page-14-0) we have

k	5	7
m	16	22
I _{tot}	37	73
e	$\frac{37}{7^2}$	$\frac{73}{11^2}$

In all cases we get a contradiction since $e < \frac{8}{9}$.

If $p^l = 5$, then $1 = d = \gcd(4, k)$ and *k* is odd. Hence, $k = 3$ or $k \ge 7$. As in the case where $p^l = 3$, $e \leq \frac{95(k-1)+4}{\frac{(5k-1)^2}{4}}$ \therefore However $k \mapsto \frac{95(k-1)+4}{\frac{(5k-1)^2}{4}}$ is a decreasing function for $k \geq 3$.

so, for $k \ge 17$, $e < \frac{8}{9}$ which is a contradiction. We now have to consider the case where $k = 3, 7, 9, 11, 13$. Using Eq. [6,](#page-14-0) we have

In all case, $e < \frac{8}{9}$ which is a contradiction.

Theorem 5 *If* $1 < d < \frac{m-1}{p^l}$, *h* has an absolutely irreducible factor over \mathbb{F}_p .

Proof Suppose that $1 < d < \frac{m-1}{p^l}$. Assume *h* has no absolutely irreducible factor over \mathbb{F}_p , then by Lemma [2,](#page-3-0) we have $e = \frac{I_{tot}}{(m-2)^2} \ge \frac{8}{9}$ where I_{tot} is an upper bound on the global intersection number for any factorization of $h = u \cdot v$. By Table [1,](#page-5-0) we can take:

$$
I_{tot} = \frac{p^{2l} - 1}{4}(d - 1) + \left(\frac{p^{l} - 1}{2}\right)^{2}
$$

+ $p^{l}\left(\left(\frac{m - 1}{p^{l}} - 1\right)\left(2\frac{m - 1}{p^{l}} - (m_{b} + 1)p^{i_{b} - l} - 1\right) - (d - 1)(d - 2)\right)$
+ $\left(\frac{p^{l} + 1}{2}\right)^{2}(d - 1)(d - 2) + (d - 1)\frac{p^{2l} - 1}{4}$
 $\leq \frac{p^{2l} - 1}{2}(d - 1) + \left(\frac{p^{l} - 1}{2}\right)^{2}(d - 1)(d - 2)$
+ $p^{l}\left(\frac{m - 1}{p^{l}} - 1\right)^{2} + \left(\frac{p^{l} - 1}{2}\right)^{2}$.
*wever, m = 1 + kp^{l} with k \neq 1. Since d divides k and d < k, we have d \leq \frac{m - 1}{2p^{l}}. Her
 $2(p^{2l} - 1)\left(\frac{k}{2} - 1\right) + (p^{l} - 1)^{2}\left(\frac{k}{2} - 1\right)\left(\frac{k}{2} - 2\right) + 4p^{l}(k - 1)^{2} + (p^{l} - 1)^{2}$*

However, $m = 1 + kp^l$ with $k \neq 1$. Since *d* divides *k* and $d < k$, we have $d \leq \frac{m-1}{2p^l}$. Hence,

$$
e \le \frac{2(p^{2l} - 1)\left(\frac{k}{2} - 1\right) + (p^l - 1)^2 \left(\frac{k}{2} - 1\right) \left(\frac{k}{2} - 2\right) + 4p^l (k - 1)^2 + (p^l - 1)^2}{(p^l k - 1)^2}
$$

$$
\le \frac{1}{\left(k - \frac{1}{p^l}\right)^2} \left(\left(1 - \frac{1}{p^{2l}}\right) (k - 2) + \frac{1}{4} \left(1 - \frac{1}{p^l}\right)^2 (k - 2)(k - 4) + \frac{4}{p^l} (k - 1)^2 + \left(1 - \frac{1}{p^l}\right)^2 \right)
$$

$$
e \le \frac{1}{k - \frac{1}{p^l}} + \frac{1}{4} + \frac{4}{p^l} + \frac{1}{\left(k - \frac{1}{p^l}\right)^2}.
$$

Since $e \ge \frac{8}{9}$, $1 < d < k$ and $gcd(k, p) = 1$, the only possibilities are:

On one hand, we have

$$
e \le \frac{2(p^{2l} - 1)(d - 1) + (p^l + 1)^2(d - 1)(d - 2)}{(p^l k - 1)^2} + \frac{4p^l(k - 1)((p^l - 2)(p^l + 1) + 1) + (p^l - 1)^2}{(p^l k - 1)^2}.
$$
\n(7)

On the other hand, we have:

$$
e \le \frac{2(p^{2l} - 1)(d - 1) + (p^l + 1)^2(d - 1)(d - 2)}{(p^l k - 1)^2} + \frac{4p^l (k - 1)(2k - (m_b + 1)p^{i_b - l} - 1) + (p^l - 1)^2}{(p^l k - 1)^2}.
$$
 (8)

 \bigcirc Springer

First, consider the case where $k > 16$. In inequality [\(7\)](#page-15-0), e is bounded by a decreasing function of *k*. Furthermore, if $p^l = 3$ and $k = 16$ or if $k = 17$ and $p^l = 5$ the upper bound in [\(7\)](#page-15-0) is less than $\frac{8}{9}$ which leaves only the case $k = 16$ and $p^l = 5$. But replacing in Eq. [8,](#page-15-1) we also get a contradiction. In the other cases, using inequality [\(7\)](#page-15-0) or inequality [\(8\)](#page-15-1), we have $e < \frac{8}{9}$ which is a contradiction.

Theorem 6 If $d = \frac{m-1}{p^l} \neq p^l - 1$ then h has an absolutely irreducible factor over \mathbb{F}_p .

Proof Suppose that $d = \frac{m-1}{p^l} \neq p^l - 1$. First, we make some remarks. Since $d = \frac{m-1}{p^l}$, there are only singularities of type Ia, IIa, IIIa, IIIb (see Table [1\)](#page-5-0). In all these cases, the tangent lines of *h* in any singular point are simple. So, for all factorization $h = uv$, $I_t(u, v) = m_t(u)m_t(v)$. Furthermore, since $\frac{m-1}{p^l} \neq p^l-1$, $\frac{m-1}{p^l} \leq \frac{p^l-1}{2}$. Assume that *h* has no absolutely irreducible factor over \mathbb{F}_p . We write $h = h_1 \dots h_r$ where each h_i factorizes into $c_i \geq 2$ factors on an algebraic closure of \mathbb{F}_p and its factors are all of degree $\frac{\deg(h_i)}{c_i}$. We write $h_i = h_{i,1} \dots h_{i,c_i}$.
Then
 $A = \sum_{i=1}^r \sum_{i=1}^r \sum_{j=1}^r I_i(h_{k,i}, h_{k,j}) + \sum_{i=1}^r \sum_{j=1}^r \sum_{j=1}^r I_i(h_{k,i}, h_{l,j})$ Then

$$
A = \sum_{k=1}^{r} \sum_{1 \le i < j \le c_k} \sum_{t} I_t(h_{k,i}, h_{k,j}) + \sum_{1 \le k < l \le r} \sum_{1 \le i \le c_k} \sum_{t} I_t(h_{k,i}, h_{l,j})
$$
\n
$$
1 \le j \le c_l
$$
\n
$$
= \sum_{k=1}^{r} \sum_{1 \le i < j \le c_k} \sum_{t} m_t(h_{k,i}) m_t(h_{k,j}) + \sum_{1 \le k < l \le r} \sum_{1 \le i \le c_k} \sum_{t} m_t(h_{k,i}) m_t(h_{l,j}).
$$
\n
$$
1 \le j \le c_l
$$

However,

$$
(m_t(h))^2 = \left(\sum_{k=1}^r m_t(h_k)\right)^2
$$

= $\sum_{k=1}^r m_t(h_k)^2 + 2 \sum_{1 \le k < l \le r} m_t(h_k)m_t(h_l)$
= $\sum_{k=1}^r m_t(h_k)^2 + 2 \sum_{1 \le k < l \le r} \sum_{\substack{1 \le i \le c_k \\ 1 \le j \le c_l}} m_t(h_{k,i})m_t(h_{l,j}).$

So, by Lemma [3,](#page-3-1)

na 3,

$$
A \leq \sum_{t} \left(\sum_{k=1}^{r} m_t (h_k)^2 \frac{c_k - 1}{2c_k} + \frac{1}{2} \left(m_t (h)^2 - \sum_{k=1}^{r} m_t (h_k)^2 \right) \right),
$$

thus

$$
A \leq \frac{1}{2} \sum_{t} \left(m_t(h)^2 - \sum_{k=1}^{r} \frac{m_t(h_k)^2}{c_k} \right).
$$

 $\circled{2}$ Springer

On the other hand, by Bézout's theorem,

e other hand, by Bézout's theorem,
\n
$$
A = \sum_{k=1}^{r} \sum_{1 \le i < j \le c_k} \deg(h_{k,i}) \deg(h_{k,j}) + \sum_{1 \le k < l \le r} \sum_{1 \le i \le c_k} \deg(h_{k,i}) \deg(h_{l,j})
$$
\n
$$
= \sum_{k=1}^{r} \frac{\deg(h_k)^2}{c_k^2} \frac{c_k(c_k - 1)}{2} + \sum_{1 \le k < l \le r} \deg(h_k) \deg(h_l)
$$
\n
$$
= \sum_{k=1}^{r} \deg(h_k)^2 \frac{c_k - 1}{2c_k} + \frac{1}{2} \left(\deg(h)^2 - \sum_{k=1}^{r} \deg(h_k)^2 \right)
$$
\n
$$
= \frac{1}{2} \left(\deg(h)^2 - \sum_{k=1}^{r} \frac{\deg(h_k)^2}{c_k} \right).
$$

Hence,

$$
\deg(h)^2 - \sum_{k=1}^r \frac{\deg(h_k)^2}{c_k} \le \sum_t \left(m_t(h)^2 - \sum_{k=1}^r \frac{m_t(h_k)^2}{c_k} \right).
$$

Then, by Lemma [3,](#page-3-1)

mma 3,
\n
$$
\deg(h)^2 - \sum_t m_t(h)^2 \le \sum_{k=1}^r \frac{1}{c_k} \left(\deg(h_k)^2 - \sum_t m_t(h_k)^2 \right) \le 0.
$$

We set $k = \frac{m-1}{p^l}$. Then $=\frac{m-1}{p^l}$.
 $2 \le \sum$

$$
\deg(h)^2 \le \sum_{t} m_t(h)^2 \Leftrightarrow (m-2)^2 \le 2(k-1)p^{2l}
$$

+ $(k-1)(k-2)(1+p^l)^2 + (p^l-1)^2$
 $\Leftrightarrow -(2p^l+1)k^2 + (p^{2l}+4p^l+3)k - (p^{2l}+2p^l+2) \le 0$
 $\Leftrightarrow k \le 1 \text{ or } k \ge \frac{p^{2l}+2p^l+2}{2p^l+1}.$

However, $k \ge 2$ ($m \ne 1 + p^l$) and $k \le \frac{p^l-1}{2} < \frac{p^{2l}+2p^l+2}{2p^l+1}$ which is a contradiction. □

References

- 1. Coulter R.S., Matthews R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr. **10**(2), 167–184 (1997).
- 2. Dembowski P., Ostrom T.G.: Planes of order *n* with collineation groups of order *n*2. Math. Z. **103**, 239–258 (1968).
- 3. Dobbertin H., Mills D., Müller E.N., Pott A., Willems A.: APN functions in odd characteristic. Discrete Math. **267**(13), 95–112 (2003). Combinatorics 2000 (Gaeta).
- 4. Fulton W.: Algebraic Curves. Advanced Book Classics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989). An introduction to algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original.
- 5. Hernando F., McGuire G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra **343**, 78–92 (2011).
- 6. Hernando F., McGuire G., Monserrat F.: On the classification of exceptional planar functions over \mathbb{F}_p . ArXiv e-prints (2013).
- 7. Janwa H., McGuire G.M., Wilson R.M.: Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra **178**(2), 665–676 (1995).
- 8. Jedlicka D.: APN monomials over GF(2*n*) for infinitely many *n*. Finite Fields Appl. **13**(4), 1006–1028 (2007).
- 9. Lidl R., Niederreiter H.: Finite Fields, Volume 20 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (1997). With a foreword by P. M. Cohn.
- 10. Sorensen A.B.: A note on algorithms deciding rationality and absolutely irreducibility based on the number of rational solutions. RISC report series 91-37, Research Institute for Symbolic Computation (RISC), University of Linz, Hagenberg (1991).
- 11. Zieve M.: Planar functions and perfect nonlinear monomials over finite fields. ArXiv e-prints (2013).