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Abstract Jedlicka, Hernando and McGuire proved that Gold and Kasami functions are the
only power mappings which are APN on infinitely many extensions of F2. For p an odd
prime, we prove that the only power mappings x �→ xm such that m ≡ 1 mod p which are
PN on infinitely many extensions of Fp are those such that m = 1 + pl , l positive integer.

As Jedlicka, Hernando and McGuire, we prove that (x+1)m−xm−(y+1)m+ym

x−y has an absolutely
irreducible factor by using Bézout’s theorem.
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1 Introduction

In the following, p is a prime number, n a positive integer, q = pn and Fq is a finite field
with q elements.
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To resist differential cryptanalysis, a function φ from Fq to Fq used in a bloc cypher like
DES has to have a low uniformity, that is to say for all a ∈ F

∗
q and b ∈ Fq , the equation

φ(x + a) − φ(x) = b must have few solutions.
In characteristic 2, if φ(x + a) + φ(x) = b then φ(x + a + a) + φ(x + a) = b. So, the

functions which resist differential cryptanalysis the most are the following

Definition 1 We say that the function φ : Fq → Fq is almost perfectly nonlinear (APN)
over Fq if:

∀a, b ∈ Fq , a �= 0, |{x ∈ Fq , φ(x + a) − φ(x) = b}| ≤ 2

and if, furthermore, there exists a pair (a, b) such that we have equality.

On the contrary, in odd characteristic, x �→ φ(x + a) − φ(x) can be one to one. So, the
functions which resist differential cryptanalysis the most are the following:

Definition 2 If q is odd, a function φ : Fq → Fq is perfectly nonlinear (PN) over Fq if for
all b ∈ Fq and all a ∈ F

∗
q

|{x ∈ Fq , φ(x + a) − φ(x) = b}| = 1.

In [5,8], Jedlicka, Hernando and McGuire are interested in integers m such that the function
x �→ xm is APN on infinitely many extensions of F2. They prove that the only integers m
such that x �→ xm is APN on infinitely many extensions of F2 are m = 2k + 1 (Gold) and
m = 4k − 2k + 1 (Kasami). They use the fact that a function x �→ xm is APN over F2n if
and only if the rational points in F2n of (x + 1)m + xm + (y + 1)m + ym = 0 are points
such that x = y or x = y + 1. This can happen on infinitely many extensions of Fp only if
(x+1)m+xm+(y+1)m+ym

(x+y)(x+y+1)
has no absolutely irreducible factor over F2.

In this paper, we investigate the case of monomial functions which are PN on infinitely
many extensions of Fp in odd characteristic. From now, we assume that the prime number p
is odd. The only known PN power mappings are the following:

Proposition 1 Let φ : x �→ xm a power mapping. Then φ is PN on Fpn for

1. m = 2,
2. m = pl + 1 where l is an integer such that n

gcd(n,l) is odd [1,2],

3. m = 3l+1
2 where p = 3 and l is an odd integer such that gcd(l, n) = 1 [1].

All these monomials are PN on infinitely many extensions of Fp . In this paper, using the
same methods as Jedlicka, Hernando and McGuire, we prove the following theorem:

Theorem 1 The only m ≡ 1 mod p such that x �→ xm is PN on infinitely many extensions
of Fp are m = 1 + pl .

In the case where m �≡ 1 mod p, using similar methods, Hernando, McGuire and Mon-
serrat give partial results in [6]. Zieve completes the proof in [11] using a completely different
method. However this method does not seem to apply in this case.

In Part 2 of this article, we give some background on algebraic curves and explain how
we will prove Theorem 1. In the following parts, we prove Theorem 1.
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2 Preliminaries

The notations set in this section hold for the remainder of the article.

2.1 Some background on algebraic curves

A reference for the following results is [4].

Definition 3 A polynomial f ∈ Fq [x, y] is said absolutely irreducible if it is irreducible on
an algebraic closure of Fq .

If f ∈ Fq [x, y] is irreducible over Fq , then its absolutely irreducible factors are conjugate
(see [10]).

Definition 4 For f ∈ Fq [x, y], we denote by ̂f the homogenized form of f and ˜f the
dehomogenized form of ̂f relatively to y.

Definition 5 Let t = (x0, y0) be a point. We write f (x + x0, y + y0) = f0 + f1 +· · · where
if fi is non zero then, it is an homogeneous polynomial of degree i . Then, the multiplicity of
f in t , denoted by mt ( f ) is the smallest i such that fi �= 0. and the factors of fmt ( f ) on an
algebraic closure of Fq are called the tangent lines of f in t .

A singular point of f ∈ Fq [x, y] is a point t such that mt ( f ) ≥ 2. In this case, we have
f (t) = 0 and ∂ f

∂x (t) = 0 = ∂ f
∂y (t).

The intersection number of two plane curves u = 0 and v = 0 is a number indicating the
multiplicity of intersection of these two curves. The intersection number of two plane curves
over Fq , u = 0 and v = 0 at a point t is dimFq (Ot (A

2)/(u, v)) where Ot (A
2) is the ring

of rational functions over the affine plane defined at t . The intersection number of two plane
curves u = 0 and v = 0 at a point t is denoted by It (u, v). However, we will not calculate
this intersection number using the definition but rather using its properties:

– It (u, v) = 0 if and only if mt (u) = 0 or mt (v) = 0.
– It (u, v) = mt (u)mt (v) if and only if u and v have no common tangent lines.
– If mt (u) = 1, then It (u, v) = ordu

t (v) where ordu
t is the order on the discrete valuation

ring Ot (A
2)/(u)Ot (A

2).

For more information on intersection numbers, we can read [4, pp. 74–81]
The following lemma is proved in [7]:

Lemma 1 Let J (x, y) = 0 be an affine curve over Fq and t = (x0, y0) be a point of J of
multiplicity mt . Then

J (x + x0, y + y0) = Jmt + Jmt +1 + · · ·
where if Ji is non zero then, it is an homogeneous polynomial of degree i . We write

J (x, y) = u(x, y) · v(x, y);
if Jmt and Jmt +1 are relatively prime then It (u, v) = mt (u) · mt (v). In this case, if J has
only one tangent line at t , then It (u, v) = 0.

Theorem 2 (Bézout) Let u = 0 and v = 0 be two projective plane curves of degree n and
m respectively without any common component then

∑

t

It (u, v) = n · m.
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284 E. Leducq

For a proof of this theorem see [4, p. 112]. From this theorem, we deduce the two following
lemmas. The second one is proved in [5] for p = 2 but it is the exact same proof for p �= 2.

Lemma 2 If f ∈ Fp[x, y] has no absolutely irreducible factor over Fp then there exists a
factorization f = uv such that

∑

t

It (u, v) ≥ 2
deg( f )2

9
.

Equivalently, if Itot is any upper bound on the global intersection number
∑

t It (u, v) of u
and v for all factorizations of f = u · v over an algebraic closure of Fp, then

Itot

deg( f )2

4

≥ 8

9
.

Proof Suppose that f has no absolutely irreducible factor then, we write f = e1 . . . er ,
where each ei is irreducible over Fp , but not absolutely irreducible. Then each ei factors into

ci ≥ 2 factors on an algebraic closure of Fp and its factors are all of degree deg(ei )
ci

. Now, we

factor each ei into two factors ui and vi such that deg(ui ) = deg(vi ) + deg(ei )
ci

if ci is odd
(thus ci ≥ 3) or deg(ui ) = deg(vi ) if ci is even. We set u = ∏r

i=1 ui and v = ∏r
i=1 vi . Then

deg(u) − deg(v) ≤ deg( f )
3 . Since deg(u) + deg(v) = deg( f ),

deg(u) deg(v) ≥ 8

9

deg( f )2

4
.

Let Itot be an upper bound on the global intersection number of u and v for all factorizations
of f into two factors over the algebraic closure of Fp . Then by Bézout’s theorem,

Itot ≥
∑

t

It (u, v) = deg(u) deg(v) ≥ 8

9

deg ( f )2

4
= 2

deg( f )2

9
.

��
Lemma 3 Let f ∈ Fp[x, y], fk, 1 ≤ k ≤ r , the irreducible factors of f over Fp and for all
1 ≤ k ≤ r , we write fk = fk,1 . . . fk,ck the factorization of fk into ck absolutely irreducible
factors. Then,

1. deg( fk)
2 ≤ ∑

t∈Sing( f ) mt ( fk)
2 where Sing( f ) is the set of singular points of f .

2. If t is a singular point of f,
∑

1≤i< j≤ck
mt ( fk,i )mt ( fk, j ) ≤ mt ( fk)

2 ck−1
2ck

.

2.2 Strategy of proof

An equivalent definition for a PN function is that a function φ is PN over Fq if for all a ∈ F
∗
q ,

the only rational points in Fq of

φ(x + a) − φ(x) − φ(y + a) + φ(y) = 0

are points such that x = y.
In this article, we are only interested in monomial functions, φ : x �→ xm, m ≥ 3. We

only have to consider the case where a = 1 in the definition of PN functions (see [3]).

Remark 1 If m is odd then, 0 and −1 are solutions of (x + 1)m − xm = 1. So, in this case,
x �→ xm is not PN over Fpn for any n.
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Functions which are PN on infinitely many extensions of Fp, p odd 285

We set f (x, y) = (x + 1)m − xm − (y + 1)m + ym . Since (x − y) divides f (x, y), we
define h(x, y) = f (x,y)

(x−y)
.

We can assume that m �≡ 0 mod p. Indeed, if x �→ xm is PN over Fq and m ≡ 0 mod p

then x �→ x
m
p is also PN over Fq .

Then, the proof of Theorem 1 follow from Proposition 2 and Theorem 3 below.

Proposition 2 If h has an absolutely irreducible factor over Fp then, for n sufficiently large,
x �→ xm is not PN on Fpn .

Proof Assume that h has an absolutely irreducible factor over Fp , denoted by Q. If Q(x, y) =
c(x − y) with c ∈ F

∗
p , then f (x, y) = (y − x)2

˜Q(x, y), ˜Q ∈ Fp[x, y]. Hence,

−m(y + 1)m−1 + mym−1 = ∂ f

∂y
(x, y) = 2(y − x)˜Q(x, y) + (y − x)2 ∂ ˜Q

∂y
(x, y).

So, we get that for all x ∈ Fpn , −m(x + 1)m−1 + mxm−1 = 0 which is impossible since
m �≡ 0 mod p. Let s be the degree of Q. Since Q �= c(x − y), Q(x, x) is not the null
polynomial. So, there are at most s rational points of Q such that x = y.

On the other hand, if we denote by P the number of affine rational points of Q on Fpn , we
have (see [9, p. 331]):

|P − pn | ≤ (s − 1)(s − 2)
√

pn + s2.

Hence, for n sufficiently large, Q has a rational point in Fpn such that x �= y and x �→ xm

is not PN over Fpn . ��
Theorem 3 Let m be an integer such that m ≥ 3, m ≡ 1 mod p and m �= 1 + pl . Assume
that m−1

pl �= pl − 1. Then h has an absolutely irreducible factor over Fp.

From now, we are interested in the case where m ≡ 1 mod p. We denote by l the greatest
integer such that pl divides m − 1 and we set

d := gcd(m − 1, pl − 1) = gcd

(

m − 1

pl
, pl − 1

)

.

Then, by Theorem 3 and Proposition 2, we only have to treat the case where d = m−1
pl = pl−1

in Theorem 1. We have m = pl(pl − 1) + 1 which is odd; so x �→ xm is not PN on all
extensions of Fp .

Now, we only have to prove Theorem 3. The method of Jedlicka, Hernando and McGuire
is, using Bézout’s theorem, to prove that h has an absolutely irreducible factor over Fp

because it has not enough singular points. In Part 3, we study singular points of h and their
multiplicity. In Part 4, we bound the intersection number It (u, v) where t is a singular point
of h and u, v are such that h = uv. In Part 5, we prove Theorem 3.

We set F = (x + z)m − xm − (y + z)m + ym = z ̂f and ˜F = (x + z)m − xm − (z +1)m +1
the dehomogenized form of F relatively to y.

3 Singularities of h

Proposition 3 The singular points of h are described in Table 1.

The proof of this theorem follows from Lemmas 4 to 11 and their corollaries (more
precisions are given in the last column of the Table 1).
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Table 1 Singularities of h for m = 1 + ∑b
j=1 m j pi j with 1 ≤ m j ≤ p − 1, i j > i j−1, i1 = l

Type Description mt (h) It bound Max number
of points

From

Ia Affine x0 = y0 x0, y0 ∈ F
∗
pl pl p2l−1

4 d − 1 Lemma 7
Corollary 4

Ib Affine x0 = y0, x0, y0 �∈ F
∗
pl pl − 1 0 m−1

pl − d Lemma 7
Corollary 5

IIa Affine x0 �= y0, x0, y0 ∈ F
∗
pl pl + 1

(

pl+1
2

)2
(d − 1)(d − 2) Lemma 7

Corollary 6
IIb Affine x0 �= y0, x0 or y0 �∈ F

∗
pl pl 0 N1

a Lemma 7
Corollary 7

IIc Affine x0 �= y0, x0 and y0 �∈ F
∗
pl pl pl b N2

c Lemma 7
Lemma 11

IIIa (1 : 1 : 0) pl − 1

(

pl−1
2

)2
1 Lemma 7

Corollary 1

IIIb (ω : 1 : 0), ωd = 1 and ω �= 1 pl p2l−1
4 d − 1 Lemma 7

Corollary 2

IIIc (ω : 1 : 0), ω

m−1
pl and ωd �= 1 pl − 1 0 m−1

pl − d Lemma 7
Corollary 3

a N1 =
(

m−1
pl − 1

) (

2 m−1
pl − (mb + 1)pib−l − 1

)

− (d − 1)(d − 2)

b It (u, v) = 0 if y0(x0 + 1)pl
(

y pl−1
0 − 1

)pl+1 �= x0(y0 + 1)pl
(

x pl−1
0 − 1

)pl+1

c N2 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

m−1
pl − 1

) (

2 m−1
pl − (mb + 1)pib−l − 1

)

− (d − 1)(d − 2)

or ((pl − 2)(pl + 1) + 1)
(

m−1
pl − 1

)

if y0(x0 + 1)pl
(

y pl−1
0 − 1

)pl+1 = x0(y0 + 1)pl
(

x pl−1
0 − 1

)pl+1
.

3.1 Singular points at infinity

We have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Fx = ∂ F

∂x
= m(x + z)m−1 − mxm−1

Fy = ∂ F

∂y
= −m(y + z)m−1 + mym−1

Fz = ∂ F

∂z
= m(x + z)m−1 − m(y + z)m−1

.

At infinity (z = 0), Fx (x, y, 0) = Fy(x, y, 0) = 0 and

Fz(x, y, 0) = m
(

xm−1 − ym−1).

So (x0, y0, 0) is a singular point of F if and only if xm−1
0 = ym−1

0 . If y0 = 0 then x0 = 0; so
y0 �= 0 and we have to study the solutions of

xm−1
0 = 1. (1)
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Functions which are PN on infinitely many extensions of Fp, p odd 287

Equation 1 is equivalent to x
m−1

pl

0 = 1. Since gcd
(m−1

pl , p
) = 1, there are m−1

pl solutions at
(1) and x0 = 1 is the only one such that x0 = y0.

Now, we want to find the multiplicity of these singularities:

˜F(x + x0, z) = (x + x0 + z)m − (x + x0)
m − (z + 1)m + 1

=
m

∑

k=2

(

m

k

)

(x + z)k xm−k
0 −

m
∑

k=2

(

m

k

)

xk xm−k
0 −

m
∑

k=2

(

m

k

)

zk .

Since m − 1 ≡ 0 mod pl , for all 2 ≤ k < pl ,
(m

k

) = 0. Consider the terms of degree pl − 1
of ˜f :

1

z

(

m

pl

)

(

xm−pl

0 (x + z)pl − xm−pl

0 x pl − z pl
)

=
(

m

pl

)

(

xm−pl

0 − 1
)

z pl−1. (2)

This term vanishes (which means that (x0, y0, 0) is a singular point of multiplicity greater
than pl − 1) if and only if

xm−pl

0 = 1

that is to say if and only if

xd
0 = 1.

Now, consider the terms of degree pl of ˜f :

1
z

( m
pl+1

)

(

xm−pl−1
0 (x + z)pl+1 − xm−pl−1

0 x pl+1 − z pl+1
)

= ( m
pl+1

)

(

xm−pl−1
0 x pl + xm−pl−1

0 xz pl−1 +
(

xm−pl−1
0 − 1

)

z pl
)

. (3)

Since xm−pl−1
0 �= 0, singular points of ̂f of multiplicity greater than pl −1 have multiplicity

pl .
We have just proved the following lemma:

Lemma 4 Let ω such that ω
m−1

pl = 1. The point (ω : 1 : 0) is a singular point of ̂h with
multiplicity

{

pl if ωd = 1, ω �= 1
pl − 1 otherwise

.

Furthermore, ̂h has m−1
pl singular points at infinity.

3.2 Affine singular points

We have:
{

fx = m(x + 1)m−1 − mxm−1

fy = −m(y + 1)m−1 + mym−1
.
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So,

(x0, y0) singular point of f ⇔
⎧

⎨

⎩

f (x0, y0) = 0
(x0 + 1)m−1 = xm−1

0
(y0 + 1)m−1 = ym−1

0

⇔
⎧

⎨

⎩

xm−1
0 (x0 + 1) − xm

0 − ym−1
0 (y0 + 1) + ym

0 = 0
(x0 + 1)m−1 = xm−1

0
(y0 + 1)m−1 = ym−1

0

⇔
⎧

⎨

⎩

xm−1
0 = ym−1

0
(x0 + 1)m−1 = xm−1

0
(y0 + 1)m−1 = ym−1

0

.

Finally, we have

Lemma 5 Affine singular points of f are points satisfying

(x0 + 1)m−1 = xm−1
0 = ym−1

0 = (y0 + 1)m−1.

From Lemma 5, we get that x0, y0 �= 0,−1. Since pl divides m − 1,

(x0, y0) singular point of f ⇔

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x
m−1

pl

0 = y
m−1

pl

0

(x0 + 1)
m−1

pl = x
m−1

pl

0

(y0 + 1)
m−1

pl = y
m−1

pl

0

. (4)

There are at most m−1
pl − 1 solutions to the second equation of (4). Let x0 be one of these

solutions, we want to know the number of y0 such that (x0, y0) is a singular point of f .
We write m = 1 + ∑b

j=1 m j pi j with 1 ≤ m j ≤ p − 1, i j > i j−1, i1 = l. Then,

(y0 + 1)
m−1

pl = y
m−1

pl

0 ⇔
b

∏

j=1

(y0 + 1)m j pi j −l = y
m−1

pl

0

⇔
∑

(k1,...,kb)∈I

⎛

⎝

b
∏

j=1

(

m j

k j

)

⎞

⎠ y
∑b

j=1 k j pi j −l

0 = 0,

where I = {(k1, . . . , kb) ∈ Z
b : ∀ j = 1 . . . b, 0 ≤ k j ≤ m j }\{(m1, . . . , mb)}. We multiply

by y
m−1

pl −mb pib−l

0 and we set α = y
m−1

pl

0 :

∑

(k1,...,kb−1)∈I′

⎛

⎝

b−1
∏

j=1

(

m j

k j

)

⎞

⎠αy
∑b−1

j=1 k j pi j −l

0

+
mb−1
∑

kb=0

∑

0 ≤ k j ≤ m j

j �= b

⎛

⎝

b
∏

j=1

(

m j

k j

)

⎞

⎠ y
m−1

pl −(mb−kb)pib−l+∑b−1
j=1 k j pi j −l

0 = 0,

where I ′ = {(k1, . . . , kb−1) ∈ Z
b−1 : ∀ j = 1 . . . b − 1, 0 ≤ k j ≤ m j }\{(m1, . . . , mb−1)}.
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Functions which are PN on infinitely many extensions of Fp, p odd 289

The degree of this polynomial in y0 is

m − 1

pl
− pib−l +

b−1
∑

j=1

m j pi j −l = 2
m − 1

pl
− (mb + 1)pib−l .

Then, we obtain

Lemma 6 The number of affine singularities of h is at most:
(

m − 1

pl
− 1

) (

2
m − 1

pl
− (mb + 1)pib−l

)

,

where m = 1 + ∑b
j=1 m j pi j with 1 ≤ m j ≤ p − 1, i j > i j−1, i1 = l.

Now, we study the multiplicity of affine singularities:

f (x + x0, y + y0) = (x + x0 + 1)m − (x + x0)
m − (y + y0 + 1)m + (y + y0)

m

=
m

∑

k=2

(

m

k

)

xk(x0 + 1)m−k −
m

∑

k=2

(

m

k

)

xk xm−k
0

−
m

∑

k=2

(

m

k

)

yk(y0 + 1)m−k +
m

∑

k=2

(

m

k

)

yk ym−k
0 .

Since m − 1 ≡ 0 mod pl , for all 2 ≤ k < pl ,
(m

k

) = 0. So (x0, y0) is a singularity of
multiplicity at least pl . Consider the terms of degree pl + 1:
(

m

pl + 1

)

((

(x0 + 1)m−pl−1 − xm−pl−1
0

)

x pl+1 −
(

(y0 + 1)m−pl−1 − ym−pl−1
0

)

y pl+1
)

.

Since (x0, y0) is a singular point, (x0 + 1)m−1 = xm−1
0 and x0 �= −1, 0. So,

(x0 + 1)m−pl−1 − xm−pl−1
0 = 0 ⇔ (x0 + 1)pl

(

(x0 + 1)m−pl−1 − xm−pl−1
0

)

= 0

⇔ −xm−pl−1
0 = 0.

Hence, affine singularities have multiplicity at most pl + 1. Then, we look at the terms of
degree pl :

(

m

pl

)

((

(x0 + 1)m−pl − xm−pl

0

)

x pl −
(

(y0 + 1)m−pl − ym−pl

0

)

y pl
)

.

However,

(x0 + 1)m−pl − xm−pl

0 = 0 ⇔ (x0 + 1)pl
(

(x0 + 1)m−pl − xm−pl

0

)

= 0

⇔ (x0 + 1)m−1(x0 + 1) − xm
0 − xm−pl

0 = 0

⇔ xm−pl

0

(

x pl−1
0 − 1

)

= 0

⇔ x0 ∈ F
∗
pl .

We can do the same for y0.
We have just proved the following lemma.
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Lemma 7 There are at most:

– d − 1 affine singularities of h such that x0 = y0 ∈ F
∗
pl . Their multiplicity is pl (pl + 1

for f );
– m−1

pl − d affine singularities of h such that x0 = y0 �∈ F
∗
pl . Their multiplicity is pl − 1 (pl

for f );
– (d − 1)(d − 2) affine singularities of h such that x0 �= y0 and x0, y0 ∈ F

∗
pl . Their

multiplicity is pl + 1 (for h and f );
–

(m−1
pl − 1

)(

2 m−1
pl − (mb + 1)pib−l − 1

) − (d − 1)(d − 2) affine singularities of h such

that x0 �= y0 and x0 or y0 �∈ F
∗
pl (m = 1 + ∑b

j=1 m j pi j with 1 ≤ m j ≤ p − 1, i j >

i j−1, i1 = l). Their multiplicity is pl (for h and f ).

4 Intersection number bounds

We write h = uv; we want to bound the intersection number It (u, v) for t a singularity of h.

4.1 Singularities at infinity

Let t = (ω : 1 : 0) be a singular point of h at infinity (ω
m−1

pl = 1) of multiplicity mt . We write
˜h(x + ω, z) = ˜Hmt + ˜Hmt +1 + · · · where ˜Hi is the homogeneous polynomial composed of
the terms of degree i of ˜h(x + ω, z) and ˜f (x + ω, z) = ˜Fmt + ˜Fmt +1 + · · · where ˜Fi is the
homogeneous polynomial composed of the terms of degree i of ˜f (x + ω, z). Then,

˜f (x + ω, z) = ˜h(x + ω, z)(x + ω − 1)

= (

R + ˜Hmt +1 + ˜Hmt

)

(x + ω − 1)

where if R is non zero then, it is a polynomial of degree greater than mt + 1

= x R + (ω − 1)R + x ˜Hmt +1 + x ˜Hmt + (ω − 1) ˜Hmt +1 + (ω − 1) ˜Hmt .

So,

– if ω �= 1, then ˜Fmt = (ω − 1) ˜Hmt and ˜Fmt +1 = x ˜Hmt + (ω − 1) ˜Hmt +1;
– if ω = 1, then ˜Fmt +1 = x ˜Hmt .

Then, we have

Lemma 8 If t = (ω : 1 : 0), ω
m−1

pl = 1, is a singular point at infinity of h with multiplicity
mt then

– ˜Fmt = (ω − 1) ˜Hmt and ˜Fmt +1 = x ˜Hmt + (ω − 1) ˜Hmt +1 if ω �= 1;
– ˜Fmt +1 = x ˜Hmt if ω = 1.

Corollary 1 If t = (1 : 1 : 0) then

It (u, v) ≤
(

pl − 1

2

)2

.

Proof If t = (1 : 1 : 0) then its multiplicity is pl − 1. By Lemma 8 and Eq. 3, there exists
a ∈ F

∗
q such that

˜Hmt = a
(

x pl−1 + z pl−1
)

.
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Since the factors of ˜Hmt are different, It (u, v) = mt (u)mt (v). We get the result since
mt (u) + mt (v) = pl − 1. ��
Corollary 2 If t = (ω : 1 : 0) such that ωd = 1, ω �= 1 then

It (u, v) ≤ p2l − 1

4
.

Proof Suppose that t = (ω : 1 : 0) such that ωd = 1 and ω �= 1 then, the multiplicity of t is
pl . By Lemma 8 and Eq. 3, there exists a ∈ F

∗
q such that

(ω − 1) ˜Hpl = ˜Fpl = a
(

x pl
ωm−pl−1 + xz pl−1ωm−pl−1 +

(

ωm−pl−1 − 1
)

z pl
)

.

So all factors of ˜Hpl are simple and It (u, v) = mt (u)mt (v). We get the result since mt (u) +
mt (v) = pl . ��

Corollary 3 If t = (ω : 1 : 0) with ω
m−1

pl = 1, ωd �= 1, then

It (u, v) = 0.

Proof Suppose that t = (ω : 1 : 0) with ω
m−1

pl = 1 and ωd �= 1 then, the multiplicity of t is
pl − 1. By Lemma 8 and Eq. 2, there exists a ∈ F

∗
q and b ∈ F

∗
q such that

(ω − 1) ˜Hpl−1 = ˜Fpl−1 = az pl−1

and

˜Fpl = x ˜Hpl−1+(ω − 1) ˜Hpl =b
(

x pl
ωm−pl−1 + xz pl−1ωm−pl−1 + z pl

(

ωm−pl−1 − 1
))

.

So, gcd( ˜Hpl , ˜Hpl−1) = gcd(˜Fpl , ˜Fpl−1) = 1. Since ˜Hpl−1 has only one tangent line, by
Lemma 1, It (u, v) = 0. ��
4.2 Affine singularities

Let t = (x0, y0) be an affine singular point of h of multiplicity mt .
We write h(x+x0, y+y0) = Hmt +Hmt +1+· · · where Hi is the homogeneous polynomial

composed of the terms of degree i of h(x + x0, y + y0).
Assume x0 = y0. Then, we write f (x + x0, y + y0) = Fmt +1 + Fmt +2 + · · · where Fi is

the homogeneous polynomial composed of the terms of degree i of f (x + x0, y + y0) and

f (x + x0, y + y0) = h(x + x0, y + y0)(x + x0 − y − y0)

= (R + Hmt +1 + Hmt )(x − y)

where if R is non zero then, it is a polynomial of degree

greater than mt + 1

= (x − y)R + (x − y)Hmt +1 + (x − y)Hmt .

So, Fmt +2 = (x − y)Hmt +1 and Fmt +1 = (x − y)Hmt . Furthermore, for some a, Fmt +1 =
a(xmt +1 − ymt +1) (see proof of Lemma 7).

So, we get

Lemma 9 If t = (x0, y0) is an affine singular point of h with multiplicity mt such that
x0 = y0, then Fmt +2 = (x − y)Hmt +1 and Fmt +1 = (x − y)Hmt .

Furthermore, tangent lines to h at t are the factors of xmt +1−ymt +1

x−y .
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Corollary 4 If t = (x0, y0) is an affine singular point of h such that x0 = y0 ∈ F
∗
pl then

It (u, v) ≤ p2l − 1

4
.

Proof Suppose that t = (x0, y0) is an affine singular point of h such that x0 = y0 ∈ F
∗
pl

then, the multiplicity of t is pl . The factors of x pl +1−y pl +1

x−y are all distinct. So, by Lemma 9,
tangent lines to u or v are all distinct and

It (u, v) = mt (u)mt (v).

Since mt (u) + mt (v) = pl , we get the result. ��

Corollary 5 If t = (x0, y0) is an affine singular point of h such that x0 = y0 �∈ F
∗
pl then,

It (u, v) = 0.

Proof Suppose that t = (x0, y0) is an affine singular point of h such that x0 = y0 �∈ F
∗
pl

then, the multiplicity of t is pl − 1. By Lemma 9,

Hpl−1 = a(x − y)pl−1 and Hpl =
b

(

x pl+1 − y pl+1
)

x − y
.

Hence, gcd(Hpl−1, Hpl ) = 1. Since Hpl−1 has only one tangent line, by Lemma 1, It (u, v)

= 0. ��

Assume now x0 �= y0. Then, we write f (x + x0, y + y0) = Fmt + Fmt +1 + · · · where Fi

is the homogeneous polynomial composed of the terms of degree i of f (x + x0, y + y0) and

f (x + x0, y + y0) = h(x + x0, y + y0)(x + x0 − y − y0)

= (

R + Hmt +1 + Hmt

)

(x + x0 − y − y0)

where if R is non zero then, it is a polynomial of degree

greater than mt + 1

= (x0 − y0)Hmt + (

(x − y)Hmt + (x0 − y0)Hmt +1
)

+ (

(x − y + x0 − y0)R + (x − y)Hmt +1
)

.

So, Fmt = (x0 − y0)Hmt and Fmt +1 = (x0 − y0)Hmt +1 + (x − y)Hmt .
Then, we obtain the following lemma.

Lemma 10 If t = (x0, y0) is an affine singular point of h with multiplicity mt such that
x0 �= y0 then

Fmt = (x0 − y0)Hmt and Fmt +1 = (x − y)Hmt + (x0 − y0)Hmt +1.

Corollary 6 If t = (x0, y0) is an affine singular point of h such that x0 �= y0, x0, y0 ∈ F
∗
pl

then

It (u, v) ≤
(

pl + 1

2

)2

.
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Proof Suppose that t = (x0, y0) is an affine singular point of h such that x0 �= y0, x0, y0 ∈
F

∗
pl then, the multiplicity of t is pl + 1. By Lemma 10,

(x0 − y0)Hmt = Fmt = c1x pl+1 − c2 y pl+1 with c1, c2 �= 0.

Hence, all factors of Hmt are simple and then It (u, v) = mt (u)mt (v). Since mt (u)+mt (v) =
pl + 1, we get the result. ��
Corollary 7 If t = (x0, y0) is an affine singular point of h such that x0 �= y0 and x0 ∈ F

∗
pl

and y0 �∈ F
∗
pl or x0 �∈ F

∗
pl and y0 ∈ F

∗
pl then

It (u, v) = 0.

Proof Suppose that t = (x0, y0) is an affine singular point of h such that x0 �= y0 and
x0 ∈ F

∗
pl and y0 �∈ F

∗
pl or x0 �∈ F

∗
pl and y0 ∈ F

∗
pl then, the multiplicity of t is pl . Then

Fpl =
{

c1x pl
if y0 ∈ F

∗
pl , c1 �= 0

c2 y pl
if x0 ∈ F

∗
pl , c2 �= 0

and Fpl+1 = c′
1x pl+1 − c′

2 y pl+1, c′
1, c′

2 �= 0.

So, by Lemma 10, 1 = gcd(Fpl , Fpl+1) = gcd(Hpl , Hpl+1) and Hpl has only one tangent
line. Hence, by Lemma 1, It (u, v) = 0. ��

Assume x0 �= y0 and x0, y0 �∈ Fpl . Then, t has multiplicity pl . We have Fpl = c1x pl −
c2 y pl = (c3x − c4 y)pl

, where c1 = (x0 + 1)m−pl − x pl

0 and c2 = (y0 + 1)m−pl − ym−pl

0 .
Since x0, y0 �∈ F

∗
pl , c1 �= 0 and c2 �= 0. By Lemma 10,

Fpl = (x0 − y0)Hpl and Fpl+1 = (x0 − y0)Hpl+1 + (x − y)Hpl .

So, Hpl has only one factor and gcd(Fpl , Fpl+1) = gcd(Hpl , Hpl+1). Furthermore, Fpl+1 =
d1x pl+1 − d2 y pl+1 with d1 = (x0 + 1)m−pl−1 − xm−pl−1

0 �= 0 and d2 = (y0 + 1)m−pl−1 −
ym−pl−1

0 �= 0. The polynomials Fpl and Fpl+1 have a common factor if and only if c3x −c4 y
divides Fpl+1. So, Fpl and Fpl+1 have a common factor if and only if

(

c1

c2

)pl+1

=
(

d1

d2

)pl

.

If (x0, y0) is a singular point of f , then
⎧

⎪

⎪

⎨

⎪

⎪

⎩

xm−1
0 = ym−1

0

(x0 + 1)m−1 = xm−1
0

(y0 + 1)m−1 = ym−1
0

.

We have:

d1 = (x0 + 1)m−pl−1 − xm−pl−1
0 = (x0 + 1)m−1 − xm−pl−1

0 (x0 + 1)pl

(x0 + 1)pl

= xm−1
0 − xm−1

0 − xm−pl−1
0

(x0 + 1)pl

= −xm−pl−1
0

(x0 + 1)pl .
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Similarly, d2 = −ym−pl −1
0

(y0+1)pl . Hence,

d1

d2
= xm−pl−1

0 (y0 + 1)pl

ym−pl−1
0 (x0 + 1)pl

= xm−1
0 y pl

0 (y0 + 1)pl

ym−1
0 x pl

0 (x0 + 1)pl
= y pl

0 (y0 + 1)pl

x pl

0 (x0 + 1)pl
.

On the other hand, we have:

c1 = (x0 + 1)m−pl − xm−pl

0 = (x0 + 1)(x0 + 1)m−1 − xm−pl

0 (x0 + 1)pl

(x0 + 1)pl

= xm
0 + xm−1

0 − xm
0 − xm−pl

0

(x0 + 1)pl

=
xm−pl

0

(

x pl−1
0 − 1

)

(x0 + 1)pl .

Similarly, c2 = ym−pl

0 (y pl −1
0 −1)

(y0+1)pl . Hence,

c1

c2
=

xm−pl

0

(

x pl−1
0 − 1

)

(y0 + 1)pl

ym−pl

0

(

y pl−1
0 − 1

)

(x0 + 1)pl
=

y pl−1
0 (y0 + 1)pl

(

x pl−1
0 − 1

)

x pl−1
0 (x0 + 1)pl

(

y pl−1
0 − 1

) .

After simplification, we get that Fpl and Fpl+1 have a common factor if and only if

y0(x0 + 1)pl
(

y pl−1
0 − 1

)pl+1 = x0(y0 + 1)pl
(

x pl−1
0 − 1

)pl+1
. (5)

If (x0, y0) is not a solution of (5), then gcd(Hpl , Hpl+1) = 1 and by Lemma 1, It (u, v) = 0.
Otherwise, we write u(x + x0, y + y0) = Ur +Ur+1 +· · · , where Ui is the homogeneous

polynomial composed of the terms of degree i of u(x + x0, y + y0) and Ur �= 0 and
v(x + x0, y + y0) = Vs + Vs+1 + · · · , where Vi is the homogeneous polynomial composed
of the terms of degree i of v(x + x0, y + y0) and Vs �= 0. If r = 0 or s = 0 then t is not a
point of u or v and It (u, v) = 0. Assume that r, s > 0. Since (x0, y0) satisfies (5), Fpl and

Fpl+1 have a common factor that we denote by e. We have Hpl = Ur Vs = epl
and Hpl+1 =

Ur Vs+1 +Ur+1Vs . Furthermore, gcd(Fpl , Fpl+1) = e and thus gcd(Hpl , Hpl+1) = e. Since
r ≥ 1 and s ≥ 1, e divides Ur and Vs and consequently gcd(Ur , Vs). If gcd(Ur , Vs) = ek, ek

divides gcd(Hpl , Hpl+1) thus gcd(Ur , Vs) = e. We can assume without loss of generality

that Ur = epl−1 and Vs = e. Since mt (v) = 1, It (u, v) = ordv
t (u). Since e2 does not divide

Hpl+1, e does not divide Upl and we can write Upl as the product of pl linear factors distinct
from e. Each factor is not tangent to v, so the order of each factor is 1 (see [4, p. 70]). Thus
the order of Upl is pl and ordv

t (u) ≤ pl .
Finally, we get

Lemma 11 If t = (x0, y0) is an affine singular point of h such that x0 and y0 �∈ F
∗
pl and

x0 �= y0 then

– It (u, v) = 0 if y0(x0 + 1)pl (
y pl−1

0 − 1
)pl+1 �= x0(y0 + 1)pl (

x pl−1
0 − 1

)pl+1

– otherwise, It (u, v) ≤ pl ; and there are at most ((pl − 2)(pl + 1) + 1)
(m−1

pl − 1
)

such

singular points.
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5 Proof of Theorem 3

The following theorems prove Theorem 3. From now, assume m �= 1 + pl . We write m =
1 + ∑b

j=1 m j pi j with 1 ≤ m j ≤ p − 1, i j > i j−1, i1 = l.

Theorem 4 If d = 1 then h has an absolutely irreducible factor over Fp.

Proof Suppose that d = 1. Assume h has no absolutely irreducible factor over Fp , then by
Lemma 2 we have e = Itot

(m−2)2
4

≥ 8
9 where Itot is an upper bound on the global intersection

number for any factorization h = u · v. Since d = 1, we only have singularities of type Ib,
IIc, IIIa and IIIc (see Table 1). So, by Table 1, we can take

Itot = pl
(

m − 1

pl
− 1

) (

2
m − 1

pl
− (mb + 1)pib−l − 1

)

+
(

pl − 1

2

)2

. (6)

Since m = 1 + plk and m �= 1 + pl , k ≥ 2; thus m−3
4 = pl k−2

4 ≥ pl−1
2 . Hence

e ≤ 1
(m−2)2

4

(

(m − 3)2

16
+ pl

(

m − 1

pl
− 1

)2
)

≤ 1

4
+ 4

pl
.

For pl �= 3 or 5, we have e < 8
9 which is a contradiction.

First, consider the case where pl = 3. We have 1 = d = gcd(2, k) so k is odd and 3 does
not divide k by definition of l. Hence k ≥ 5, thus, by Lemma 11

e ≤
pl ((pl−2)(pl+1)+1)

(

m−1
pl −1

)

+
(

pl −1
2

)2

(m−2)2
4

= 15(k−1)+1
(3k−1)2

4

.

However, for k ≥ 5, k �→ 15(k−1)+1
(3k−1)2

4

is a decreasing function. So, for k ≥ 11, e < 8
9 . Now

we have to consider the case where k = 5 and k = 7. Using Eq. 6, we have

k 5 7
m 16 22
Itot 37 73
e 37

72
73
112

In all cases we get a contradiction since e < 8
9 .

If pl = 5, then 1 = d = gcd(4, k) and k is odd. Hence, k = 3 or k ≥ 7. As in the case
where pl = 3, e ≤ 95(k−1)+4

(5k−1)2
4

. However k �→ 95(k−1)+4
(5k−1)2

4

is a decreasing function for k ≥ 3.

so, for k ≥ 17, e < 8
9 which is a contradiction. We now have to consider the case where

k = 3, 7, 9, 11, 13. Using Eq. 6, we have

k 3 7 9 11 13
m 16 36 46 56 66
Itot 24 124 324 354 664
e 24

72
124
172

324
222

354
272

664
322

In all case, e < 8
9 which is a contradiction. ��
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Theorem 5 If 1 < d < m−1
pl , h has an absolutely irreducible factor over Fp.

Proof Suppose that 1 < d < m−1
pl . Assume h has no absolutely irreducible factor over Fp ,

then by Lemma 2, we have e = Itot
(m−2)2

4

≥ 8
9 where Itot is an upper bound on the global

intersection number for any factorization of h = u · v. By Table 1, we can take:

Itot = p2l − 1

4
(d − 1) +

(

pl − 1

2

)2

+ pl
((

m − 1

pl
− 1

) (

2
m − 1

pl
− (mb + 1)pib−l − 1

)

− (d − 1)(d − 2)

)

+
(

pl + 1

2

)2

(d − 1)(d − 2) + (d − 1)
p2l − 1

4

≤ p2l − 1

2
(d − 1) +

(

pl − 1

2

)2

(d − 1)(d − 2)

+ pl
(

m − 1

pl
− 1

)2

+
(

pl − 1

2

)2

.

However, m = 1 + kpl with k �= 1. Since d divides k and d < k, we have d ≤ m−1
2pl . Hence,

e ≤ 2(p2l − 1)
( k

2 − 1
) + (pl − 1)2

( k
2 − 1

) ( k
2 − 2

) + 4pl(k − 1)2 + (pl − 1)2

(plk − 1)2

≤ 1
(

k − 1
pl

)2

(

(

1 − 1

p2l

)

(k − 2) + 1

4

(

1 − 1

pl

)2

(k − 2)(k − 4)

+ 4

pl
(k − 1)2 +

(

1 − 1

pl

)2
)

e ≤ 1

k − 1
pl

+ 1

4
+ 4

pl
+ 1

(

k − 1
pl

)2 .

Since e ≥ 8
9 , 1 < d < k and gcd(k, p) = 1, the only possibilities are:

k 4 6 8 9 10 12 14 15 ≥ 16
pl 3, 7, 11 5 3, 5, 7 7 3, 7 5, 7 3, 5 7 3, 5

On one hand, we have

e ≤ 2(p2l − 1)(d − 1) + (pl + 1)2(d − 1)(d − 2)

(plk − 1)2

+4pl(k − 1)((pl − 2)(pl + 1) + 1) + (pl − 1)2

(plk − 1)2 . (7)

On the other hand, we have:

e ≤ 2(p2l − 1)(d − 1) + (pl + 1)2(d − 1)(d − 2)

(plk − 1)2

+4pl(k − 1)(2k − (mb + 1)pib−l − 1) + (pl − 1)2

(plk − 1)2 . (8)
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First, consider the case where k ≥ 16. In inequality (7), e is bounded by a decreasing function
of k. Furthermore, if pl = 3 and k = 16 or if k = 17 and pl = 5 the upper bound in (7) is
less than 8

9 which leaves only the case k = 16 and pl = 5. But replacing in Eq. 8, we also
get a contradiction. In the other cases, using inequality (7) or inequality (8), we have e < 8

9
which is a contradiction. ��

Theorem 6 If d = m−1
pl �= pl − 1 then h has an absolutely irreducible factor over Fp.

Proof Suppose that d = m−1
pl �= pl −1. First, we make some remarks. Since d = m−1

pl , there
are only singularities of type Ia, IIa, IIIa, IIIb (see Table 1). In all these cases, the tangent lines
of h in any singular point are simple. So, for all factorization h = uv, It (u, v) = mt (u)mt (v).

Furthermore, since m−1
pl �= pl −1, m−1

pl ≤ pl−1
2 . Assume that h has no absolutely irreducible

factor over Fp . We write h = h1 . . . hr where each hi factorizes into ci ≥ 2 factors on an

algebraic closure of Fp and its factors are all of degree deg(hi )
ci

. We write hi = hi,1 . . . hi,ci .
Then

A =
r

∑

k=1

∑

1≤i< j≤ck

∑

t

It (hk,i , hk, j ) +
∑

1≤k<l≤r

∑

1 ≤ i ≤ ck

1 ≤ j ≤ cl

∑

t

It (hk,i , hl, j )

=
r

∑

k=1

∑

1≤i< j≤ck

∑

t

mt (hk,i )mt (hk, j ) +
∑

1≤k<l≤r

∑

1 ≤ i ≤ ck

1 ≤ j ≤ cl

∑

t

mt (hk,i )mt (hl, j ).

However,

(mt (h))2 =
(

r
∑

k=1

mt (hk)

)2

=
r

∑

k=1

mt (hk)
2 + 2

∑

1≤k<l≤r

mt (hk)mt (hl)

=
r

∑

k=1

mt (hk)
2 + 2

∑

1≤k<l≤r

∑

1 ≤ i ≤ ck

1 ≤ j ≤ cl

mt (hk,i )mt (hl, j ).

So, by Lemma 3,

A ≤
∑

t

(

r
∑

k=1

mt (hk)
2 ck − 1

2ck
+ 1

2

(

mt (h)2 −
r

∑

k=1

mt (hk)
2

))

,

thus

A ≤ 1

2

∑

t

(

mt (h)2 −
r

∑

k=1

mt (hk)
2

ck

)

.
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On the other hand, by Bézout’s theorem,

A =
r

∑

k=1

∑

1≤i< j≤ck

deg(hk,i ) deg(hk, j ) +
∑

1≤k<l≤r

∑

1 ≤ i ≤ ck

1 ≤ j ≤ cl

deg(hk,i ) deg(hl, j )

=
r

∑

k=1

deg(hk)
2

c2
k

ck(ck − 1)

2
+

∑

1≤k<l≤r

deg(hk) deg(hl)

=
r

∑

k=1

deg(hk)
2 ck − 1

2ck
+ 1

2

(

deg(h)2 −
r

∑

k=1

deg(hk)
2

)

= 1

2

(

deg(h)2 −
r

∑

k=1

deg(hk)
2

ck

)

.

Hence,

deg(h)2 −
r

∑

k=1

deg(hk)
2

ck
≤

∑

t

(

mt (h)2 −
r

∑

k=1

mt (hk)
2

ck

)

.

Then, by Lemma 3,

deg(h)2 −
∑

t

mt (h)2 ≤
r

∑

k=1

1

ck

(

deg(hk)
2 −

∑

t

mt (hk)
2

)

≤ 0.

We set k = m−1
pl . Then

deg(h)2 ≤
∑

t

mt (h)2 ⇔ (m − 2)2 ≤ 2(k − 1)p2l

+ (k − 1)(k − 2)(1 + pl)2 + (pl − 1)2

⇔ −(2pl + 1)k2 + (p2l + 4pl + 3)k − (p2l + 2pl + 2) ≤ 0

⇔ k ≤ 1 or k ≥ p2l + 2pl + 2

2pl + 1
.

However, k ≥ 2 (m �= 1 + pl ) and k ≤ pl−1
2 <

p2l+2pl+2
2pl+1

which is a contradiction. ��
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