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Abstract We propose new results on low weight codewords of affine and projective gen-
eralized Reed–Muller (GRM) codes. In the affine case we prove that if the cardinality of
the ground field is large compared to the degree of the code, the low weight codewords are
products of affine functions. Then, without this assumption on the cardinality of the field, we
study codewords associated to an irreducible but not absolutely irreducible polynomial, and
prove that they cannot be second, third or fourth weight depending on the hypothesis. In the
projective case the second distance of GRM codes is estimated, namely a lower bound and
an upper bound on this weight are given.
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1 Introduction: notations

1.1 General overview

This article proposes a study on low weight codewords of generalized Reed–Muller (GRM)
codes and projective GRM (PGRM) codes of degree d, defined over a finite field Fq , called
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272 S. Ballet, R. Rolland

respectively GRM codes and PGRM codes. It includes a focus on their minimum distances
as well as the characterization of the codewords reaching these weights. It also includes a
study of the second weight, namely the weight which is just above the minimal distance. The
second weight is also called the next-to-minimum weight.

Generalized Reed–Muller codes (also known as GRM codes) are evaluation codes
obtained from spaces of polynomials in several variables. More precisely, let d be a fixed
positive integer, if f is a polynomial function in n variables of degree ≤ d, the components
of the codeword c( f ) associated to f are obtained by evaluating the polynomial function f on
all the points of F

n
q :

c( f ) = ( f (x))x∈Fn
q
.

Then, the weight Wa f f ( f ) of a codeword c( f ) is related to the number of zeros of its
associated polynomial, namely the cardinality #Za f f ( f ) of the hypersurface Za f f ( f ) defined
by this polynomial, by the following formula:

Wa f f ( f ) = qn − #Za f f ( f ).

Consequently, the study of low weight codewords leads to the study of hypersurfaces with
many points. Such a geometric interpretation can be also given in the projective case, for
generalized projective Reed–Muller codes (also known as PGRM codes).

Determining the low weights of the Reed–Muller codes as well as the low weight code-
words are interesting questions related to various fields. Of course, from the point of view of
coding theory, knowing something on the weight distribution of a code, and especially on the
low weights is valuable information. From the point of view of algebraic geometry the prob-
lem is also related to the computation of the number of rational points of hypersurfaces and in
particular hypersurfaces that are arrangements of hyperplanes. By means of incidence matri-
ces, Reed–Muller codes are related to finite geometry codes (see [1, Sects. 5.3, 5.4]). From this
point of view, codewords have a geometrical interpretation and can benefit from the numerous
results in this area. Consequently there is a wide variety of concepts that may be involved.

We address in the following several questions related to the values of the low weights and
to the classes of polynomials reaching these values, or equivalently, to the hypersurfaces with
these cardinalities.

Concerning the values of the low weights, the minimal weight is known for the affine
case, namely the GRM codes (cf. [11]) and for the projective case, namely the PGRM codes
(cf. [30,32]). The next-to-minimal weight is known for GRM codes (partial results can be
found in [6,9,10,26,27] and a complete solution in [5]), but it is unknown for PGRM codes
except for some special cases (cf. [23,24]). We give a lower bound and an upper bound on
this quantity.

Concerning the hypersurfaces related to the codewords of minimum weight we know that
they are hyperplane arrangements (cf. [7] for the GRM codes and [25,30] for the PGRM
codes). Is it true for the next-to minimal weight? A positive answer is given in [17] for
GRM codes and the answer is unknown for PGRM codes except for some special cases (cf.
[23,24]). What happens for the codewords which are not products of degree one polynomials?
In order to address the problems surrounding this question it is convenient to introduce the
three following sets of polynomials classified according to the methods used to study their
numbers of zeros:

(1) the class of polynomials which are products of degree one factors; we remark that when
we are looking for polynomials of degree ≤ d having a lot of distinct zeros, we can
require that the degree be exactly d and that the polynomial be without multiple factors,
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Low weight codewords of Reed–Muller codes 273

(2) the class of polynomials which are irreducible but not absolutely irreducible,
(3) the class of absolutely irreducible polynomials.

We study separately the number of zeros of the polynomials of each class, and we compare
these numbers for different relative values of d and q.

We give for GRM codes an explicit lower bound on the distance from codewords which
are defined by irreducible but not absolutely irreducible polynomials to the next-to-minimal
codewords. We study (GRM case), for different relative values of d and q, the codewords
which are associated to polynomials which are products of degree one factors (the associated
hypersurfaces are hyperplane arrangements). We prove that, when q is greater than a certain
value q0 depending on the degree d, all the weights of the codewords defined by polynomials
of degree d which are products of degree one polynomials without multiple factors (the
associated hypersurface is an arrangement of d distinct hyperplanes) are lower than the
weights of the codewords defined by polynomials which are not products of degree one
factors. A similar result was proved in [23] for PGRM codes. We compare for certain relative
values of q and d the weights of the codewords associated to polynomials which have an
irreducible but not absolutely factor to the four first lower weights of the code.

1.2 Organization of the article

Many results concerning this area are here and there in various articles. In this situation, a
comprehensive overview is needed. This is what we do first in Sect. 2.

Section 3 is an overview on the minimal distance both in the affine case as in the projective
case. Concerning PGRM codes, the second author characterized in [25] the codewords of
minimal weights. But the proof given there is only sketched briefly. We give in this Section
a more detailed proof.

In Sect. 4 we study the second weight of GRM codes.

– In Sect. 4.1 we recall some results concerning the second weight and the codewords of
a GRM code reaching the second weight. These codewords are now known. They were
determined in [9,27] for 1 ≤ d ≤ q

2 and in [17] for the general case. It should be noted
that these codewords correspond, as do the minimal codewords, to products of affine
functions (by an affine function we mean a sum of a constant and a homogeneous linear
function, both defined over Fq ). Next we give new results on affine low weight codewords
and we split the study into the three following parts.

– In Sect. 4.2 we give new results on low weight codewords in the case where q is large
compared to d. We prove that any codeword associated to a configuration of d distinct
hyperplanes has a weight that is lower than the weight of a codeword associated to a
polynomial divisible by an irreducible (absolutely or not) component of degree ≥ 2.

– In Sect. 4.3 we study the general case and we compare the second, third an fourth weights
to the weight of a word which is associated to an irreducible but not absolutely irreducible
polynomial.

– In Sect. 4.4 we study the important case where d < q and we prove that under some
hypotheses, a word which is associated to a polynomial having a factor irreducible but
not absolutely irreducible has a weight greater than the third or fourth weight, depending
on the hypothesis.

In Sect. 5 we determine an upper bound and a lower bound for the second weight of a
PGRM code.
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2 Basics

2.1 Polynomials and homogeneous polynomials

Let Fq be the finite field with q elements and n ≥ 1 an integer. We denote respectively by
A

n(q) and P
n(q) the affine space and the projective space of dimension n over Fq .

Let Fq [X1, X2, . . . , Xn] be the algebra of polynomials in n variables over Fq . If f is in
Fq [X1, X2, . . . , Xn] we denote by deg( f ) its total degree and by degXi

( f ) its partial degree
with respect to the variable Xi .

Denote by F (q, n) the space of functions from F
n
q into Fq . It is known that any function

in F (q, n) is a polynomial function. More precisely there is a surjective linear map T from
Fq [X1, X2, . . . , Xn] onto F (q, n) mapping any polynomial to its associated polynomial
function:

T : Fq [X1, X2, . . . , Xn] → F (q, n),

f �→ T ( f ),

where T ( f )(x) = f (x) is the evaluation of the polynomial function f at the point
x = (x1, x2, . . . , xn). The map T is not injective and has for kernel the ideal generated
by the n polynomials Xq

i − Xi :

Ker(T ) = 〈
Xq

1 − X1, Xq
2 − X2, . . . , Xq

n − Xn
〉
.

Any element of the quotient Fq [X1, X2, . . . , Xn]/Ker(T ) can be represented by a unique
reduced polynomial f, namely such that for any variable Xi the following holds:

degXi
( f ) ≤ q − 1.

We denote by R P(q, n) the set of reduced polynomials in n variables over Fq . Then, the map
T restricted to R P(q, n) is one to one, namely each function of F (q, n) can be uniquely
represented by a reduced polynomial in R P(q, n).

Let d be a positive integer. We denote by R P(q, n, d) the set of reduced polynomials P
such that deg(P) ≤ d. We remark that if d ≥ n(q − 1) the set R P(q, n, d) is the whole set
R P(q, n).

Let H (q, n + 1, d) be the space of homogeneous polynomials in n + 1 variables over
Fq with total degree d. The decomposition

Fq [X0, X1, X2, . . . , Xn] =
⊕

d≥0

H (q, n + 1, d),

provides Fq [X0, X1, X2, . . . , Xn] with a graded algebra structure. Let Jd be the subspace
of polynomials f in H (q, n + 1, d) such that f (x) = 0 for any x ∈ F

n+1
q and denote by J

the homogeneous ideal

J =
⊕

d≥0

Jd .

It is known (cf. [21,22]) that the ideal J is the homogeneous ideal generated by the poly-
nomials Xq

i X j − Xi Xq
j where 0 ≤ i < j ≤ n.
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2.2 GRM codes

Let d be an integer such that 1 ≤ d < n(q − 1). The GRM code of order d over Fq is the

following subspace of F
(qn)
q :

GRMq(d, n) =
{
( f (x))x∈Fn

q
| f ∈ Fq [X1, . . . , Xn] and deg( f ) ≤ d

}
.

It may be remarked that the polynomials f determining this code are viewed as polyno-
mial functions. Hence each codeword is associated with a unique reduced polynomial in
R P(q, n, d).

Remark 1 If d ≥ n(q −1), the space of functions given by the polynomials of R P(q, n, d)

is the whole space of functions, hence yielding the trivial code. This is the reason for defining
GRMq(d, n) for d < n(q − 1).

Let us denote by Za f f ( f ) the set of zeros of f (where the index aff stands for “affine”).
From a geometrical point of view Za f f ( f ) is an affine algebraic hypersurface in F

n
q and the

number of points #Za f f ( f ) of this hypersurface (the number of zeros of f) is connected to
the weight Wa f f ( f ) of the associated codeword by the following formula:

Wa f f ( f ) = qn − #Za f f ( f ).

The code GRMq(d, n) has the following parameters (cf. [2, p. 72], [11]) (where the index
aff stands for “affine code”):

(1) length ma f f (q, n, d) = qn,

(2) dimension

ka f f (q, n, d) =
d∑

t=0

n∑

j=0

(−1) j
(

n
j

)(
t − jq + n − 1

t − jq

)
,

(3) minimum distance W (1)
a f f (q, n, d) = (q −b)qn−a−1, where a and b are the quotient and

the remainder in the Euclidean division of d by q − 1, namely d = a(q − 1) + b and
0 ≤ b < q − 1.

Remark 2 The code GRMq(d, 1) is a MDS code.

Remark 3 Be careful not to confuse symbols. With our notations, the length of the Reed–
Muller code of order d is ma f f (q, n, d), its dimension is ka f f (q, n, d) and its minimum

distance is W (1)
a f f (q, n, d). Namely it is an

[
ma f f (q, n, d), ka f f (q, n, d), W (1)

a f f (q, n, d)
]

-code.

The integer n is the number of variables of the polynomials defining the words and the order
d is the maximum total degree of these polynomials.

Remark 4 If d < q − 1 then a = 0 and b = d. Hence

W (1)
a f f (q, n, d) = (q − d)qn−1.

The minimum distance of GRMq(d, n) was given by Kasami et al. [11]. The words
reaching this bound were characterized by Delsarte et al. [7] and are described in the following
theorem:
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Theorem 5 (Delsarthe, Goethals, McWilliams) The maximum number of rational points
over Fq , for an algebraic hypersurface V of degree d in the affine space of dimension n
which is not the whole space F

n
q is attained if and only if:

V =
⎛

⎝
a⋃

i=1

⎛

⎝
q−1⋃

j=1

Vi, j

⎞

⎠

⎞

⎠

⎛

⎝
b⋃

j=1

W j

⎞

⎠ where d = a(q − 1) + b,

with 0 ≤ b < q −1 and where the Vi, j and W j are d distinct hyperplanes defined on Fq such
that for each fixed i the Vi, j are q −1 parallel hyperplanes, the W j are b parallel hyperplanes
and the a + 1 distinct linear forms directing these hyperplanes are linearly independent.

A simpler proof than the original one is given in [18].

2.3 PGRM codes

The case of projective codes is a bit different, because homogeneous polynomials do not
define in a natural way functions on the projective space. Let d be an integer such that
1 ≤ d ≤ n(q − 1). The PGRM code of order d (PGRM code) was introduced by Lachaud
[13]. Let S a subset of F

n+1
q corresponding to the choice of one point on each punctured vector

line of F
n+1
q . Remark that any point of the projective space P

n(q) has a unique coordinate
representation by an element of S. The projective Reed–Muller code PGRMq(d, n) of order
d over P

n(q) is constituted by the words ( f (x))x∈S where f ∈ H (q, n + 1, d) :
PGRMq(d, n) = {( f (x))x∈S | f ∈ H (q, n + 1, d)} .

This code depends on the set S chosen to represent the points of P
n(q). Nevertheless, different

choices of S lead to equivalent codes. Then the main parameters are independent of this choice.
Following [13] we can choose

S = ∪n
i=0Si ,

where Si = {(0, . . . , 0, 1, xi+1, . . . , xn)|xk ∈ Fq}. Subsequently, we shall adopt this value
of S to define the code PGRMq(d, n).

Remark 6 For d > n(q − 1), the image of H (q, n + 1, d) fills up the whole of the ambient
vector space, hence yielding the trivial code. This is the reason for defining PGRMq(d, n)

for d ≤ n(q − 1).

For a homogeneous polynomial f let us denote by Z proj ( f ) the set of zeros of f in the
projective space P

n(q) (where the index proj stands for “projective”). From a geometrical
point of view, an element f ∈ H (q, n +1, d) defines a projective hypersurface Z proj ( f ) in
the projective space P

n(q). The number #Z proj ( f ) of points of this projective hypersurface is
connected to the weight Wproj ( f ) of the corresponding codeword by the following relation:

Wproj ( f ) = qn+1 − 1

q − 1
− #Z proj ( f ).

The parameters of PGRMq(d, n) are the following (cf. [32]) (where the index proj stands
for “projective code”):

(1) length m proj (q, n, d) = qn+1−1
q−1 ,
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(2) dimension,

kproj (q, n, d) =
∑

t = d mod q − 1
0 < t ≤ d

(n+1∑

j=0

(−1) j
(

n + 1
j

)
×
(

t − jq + n
t − jq

))
,

(3) minimum distance: W (1)
proj (q, n, d) = (q −b)qn−a−1 where a and b are the quotient and

the remainder in the Euclidean division of d − 1 by q − 1, namely d − 1 = a(q − 1)+ b
and 0 ≤ b < q − 1.

Remark 7 The code PGRMq(d, 1) is a MDS code.

3 Minimal distance and corresponding codewords

3.1 The affine case: GRM codes

For the affine case recall that we write the degree d in the following form:

d = a(q − 1) + b with 0 ≤ b < q − 1. (1)

The minimum distance of a GRM code was given by Kasami et al. [11]. The words reaching
this bound (i.e. the polynomials reaching the maximal number of zeros) were characterized
by Delsarte et al. [7]. As indicated in [7] the polynomial functions reaching this bound can
be written as:

P(x) = w0

a∏

i=1

(
1 − (li (x) − wi )

q−1)
b∏

j=1

(
la+1(x) − w′

j

)
, (2)

where x ∈ F
n
q , the w′

j in the last b factors are distinct elements of Fq , the wi are arbitrary
elements of Fq with w0 	= 0 and li are a + 1 linearly independent linear forms on F

n
q .

We give here the geometric interpretation of such a polynomial f reaching the maximal
number of zeros. The hypersurface defined by f is the following arrangement of hyperplanes:

(1) a blocks of q −1 parallel hyperplanes, each of them directed by one of the a first linearly
independent linear forms li ,

(2) one block of b parallel hyperplanes directed by la+1.

Such a hypersurface will be called a maximal hypersurface and the associated polynomial is
called a maximal polynomial. The corresponding weight is the minimal weight.

3.2 The projective case: PGRM codes

Let us denote respectively by W (1)
proj (q, n, d) and W (2)

proj (q, n, d) the first and second weights
of the projective Reed–Muller code.

In order to describe the minimal distance in the projective case, write d −1 = a(q −1)+b
with 0 ≤ b < q − 1. The minimum distance of a PGRM code was given by Serre for d ≤ q
(cf. [30]), and by Sørensen [32] in the general case. The polynomials reaching the maximal
number of zeros (or defining the minimum weighted codewords) are given by J.-P. Serre in
the case of d ≤ q (cf. [30]) and by the last author (cf. [25]) in the general case. Let us give a
detailed proof of the following result stated in [25].
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Theorem 8 Let f be a homogeneous polynomial in n + 1 variables of total degree d, with
coefficients in Fq , which does not vanish on the whole projective space P

n(q). Then the
following holds:

(1) The number of Fq -rational points #Z proj ( f ) of the projective algebraic set defined by f
satisfies the following:

#Z proj ( f ) ≤ qn+1 − 1

q − 1
− W (1)

proj (q, n, d), (3)

where

W (1)
proj (q, n, d) =

{
1 if d > n(q − 1),

(q − b)qn−a−1 if d ≤ n(q − 1),

with

d − 1 = a(q − 1) + b and 0 ≤ b < q − 1.

(2) The bound in (3) is attained. When d ≤ n(q − 1), the polynomials f attaining this
bound are exactly the polynomials defining a hypersurface V = Z proj ( f ) such that
: V contains a hyperplane H (namely f vanishes on H) and V restricted to the affine space
A

n(q) = P
n(q) \ H is a maximal affine hypersurface of A

n(q).

Proof The point (1) is proved by Sørensen [32]. However, in order to prove at the same time
the point (2), let us rewrite entirely the proof given by Sørensen of the point (1) and let us
show that one can deduce the result (2) from this proof.

If d > n(q − 1), as f does not vanish on the whole projective space P
n(q), then

#Z proj ( f ) ≤ qn+1 − 1

q − 1
− 1.

Remark 6 proves that this bound is attained.
If d ≤ n(q − 1) and V = Z proj ( f ) contains a hyperplane H, we can suppose that this

hyperplane is given by X0 = 0, so that f = x0 f1, where f1 is a homogeneous polynomial
of degree d − 1. The complement of H is the affine space

A
n(q) = {

x ∈ P
n(q)|x0 = 1

}
.

Let f̃1 be the polynomial in n variables obtained from f1 by setting x0 = 1. This polynomial
is defined on A

n(q) and does not vanish on the whole affine space A
n(q). Hence, using the

result of Kasami et al. [11], we obtain:

#Za f f
(

f̃1
) ≤ qn − (q − b)qn−a−1,

and consequently

#Z proj ( f ) = #H + #Za f f
(

f̃1
) ≤ qn − 1

q − 1
+ qn − (q − b)qn−a−1,

#Z proj ( f ) ≤ qn+1 − 1

q − 1
− (q − b)qn−a−1,

where the symbol # denotes the cardinality. The bound is attained if and only if the polynomial
f̃1 verifies the conditions of maximality given in [7].
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Low weight codewords of Reed–Muller codes 279

If d ≤ n(q − 1) and V = Z proj ( f ) does not contain any hyperplane, we give a proof of
(3) by induction on n. If n = 1 and d > q − 1 the result is a consequence of Remark 6. If
d ≤ q − 1 the homogeneous polynomial f in two variables of degree d can be written as:

f (X0, X1) = k Xd
1 + l X0g (X0, X1) ,

where k 	= 0 and l 	= 0 (because V does not contain any hyperplane) and where g is a nonzero
homogeneous polynomial function of degree d − 1. The point at infinity x0 = 0, x1 = 1 of
the projective line is not a zero, the only zeros are points such that x0 = 1 and x1 is a solution
of a polynomial equation in one variable of degree d. Then #Z proj ( f ) ≤ d and the induction
property is verified.

Next suppose that the property is true for n − 1 and Z proj ( f ) does not contain any
hyperplane. Then for any hyperplane H we have

#
(
Z proj ( f ) ∩ H

) ≤ qn − 1

q − 1
− W (1)

proj (q, n − 1, d),

#
(
H\Z proj ( f ) ∩ H

) ≥ W (1)
proj (q, n − 1, d).

Let us count the number N of couples (M, H) where H is a hyperplane and M a point in
(Pn(q)\Z proj ( f )) ∩ H. We know that the number of hyperplanes containing a given point

is qn−1
q−1 . Then

N = qn − 1

q − 1
#
(
P

n(q)\Z proj ( f )
)
.

This number is also the following sum on the qn+1−1
q−1 hyperplanes of the space P

n(q)

N =
∑

H

#
(
H \ Z proj ( f ) ∩ H

) ≥ qn+1 − 1

q − 1
W (1)

proj (q, n − 1, d).

Then

Wproj ( f ) ≥ qn+1 − 1

qn − 1
W (1)

proj (q, n − 1, d),

Wproj ( f ) > qW (1)
proj (q, n − 1, d).

As d ≤ n(q − 1) we have two cases:

(1) d ≤ (n − 1)(q − 1) and then W (1)
proj (q, n − 1, d) = (q − b)qn−a−2. Hence qW (1)

proj (q,

n − 1, d) = (q − b)qn−a−1 = W (1)
proj (q, n, d). In this case we conclude

Wproj ( f ) > W (1)
proj (q, n, d),

which proves that the induction property is verified and also that the bound cannot be
reached by a hypersurface which does not contain any hyperplane.

(2) (n−1)(q−1) < d ≤ n(q−1) and in this case we have W (1)
proj (q, n−1, d) = 1, a = n−1

and W (1)
proj (q, n, d) = q − b. Then

Wproj ( f ) > qW (1)
proj (q, n − 1, d) = q ≥ q − b,

Wproj ( f ) > W (1)
proj (q, n, d),
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which proves that the induction property is verified and also that the bound cannot be
reached by a hypersurface which does not contain any hyperplane.
The point (2) is a consequence of the above reasoning.

��

4 Low weight codewords in the affine case

4.1 The second weight in the affine case

Let us denote by W (2)
a f f (q, n, d) the second weight of the GRM code RMq(d, n), namely

the weight which is just above the minimum distance. Several simple cases can be easily
described. If d = 1, we know that the code has only three weights: 0, the minimum dis-
tance W (1)

a f f (q, n, 1) = qn − qn−1 and the second weight W (2)
a f f (q, n, 1) = qn . For d = 2

and q = 2 the weight distribution is more or less a consequence of the investigation of
quadratic forms done by Dickson [8] and was also done by E. Berlekamp and N. Sloane
in an unpublished paper. For d = 2 and any q (including q = 2) the weight distribution
was given by McEliece [20]. For q = 2, for any n and any d, the weight distribution is
known in the range [W (1)

a f f (2, n, d), 2.5W (1)
a f f (2, n, d)] by a result of Kasami et al. [12].

In particular, the second weight is W (2)
a f f (2, n, d) = 3 × 2n−d−1 if 1 < d < n − 1 and

W (2)
a f f (2, n, d) = 2n−d+1 if d = n − 1 or d = 1. For d ≥ n(q − 1) the code GRMq(d, n)

is trivial, namely it is the whole of F (q, d, n), hence any integer 0 ≤ t ≤ qn is a
weight.

The general problem of the second weight was tackled by Erickson in his thesis [9, 1974]
and was partly solved. Unfortunately this very good piece of work was not published and
remained virtually unknown. Meanwhile several authors became interested in the problem
independently of the work of D. Erickson. The second weight was first studied by Cherdieu
and Rolland [6] who proved that when q > 2 is fixed, for d < q sufficiently small the second
weight is

W (2)
a f f (q, n, d) = qn − dqn−1 + (d − 1)qn−2.

Their result was improved by Sboui [27], who proved the formula for d ≤ q/2. The methods
in [6,27] are of a geometric nature by means of which the codewords reaching this weight were
determined. These codewords are hyperplane arrangements. Then Geil [10], using Gröbner
basis methods, proved the formula for d < q. Moreover as an application of his method, he
gave a new proof of the Kasami–Lin–Peterson minimum distance formula and determined,
when d > (n − 1)(q − 1), the first d + 1 − (n − 1)(q − 1) weights. In particular for n = 2
the problem is completely solved in his work, and this case is particularly important as we
shall see later. Finally, the last author in [26], using a mix of Geil’s method and geometrical
considerations found the second weight for all cases except when d = a(q − 1) + 1. How-
ever the Gröbner basis method does not determine all the codewords reaching the second
weight.

Recently, Bruen [5] exhumed the work of Erickson and completed the proof, solving the
problem of the second weight for the GRM code. Let us describe a little more the result of
Erickson. First, in order to present his result introduce the following notation used in [9]:
s and t are integers such that

d = s(q − 1) + t, with 0 < t ≤ q − 1.
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Theorem 9 The second weight W (2)
a f f (q, n, d) is

W (2)
a f f (q, n, d) = W (1)

a f f (q, n, d) + cqn−s−2,

where W (1)
a f f (q, n, d) = (q − t)qn−s−1 is the minimal distance and c is

c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q if s = n − 1,

t − 1 if s < n − 1 and 1 < t ≤ q+1
2 ,

or s < n − 1 and t = q − 1 	= 1,

q if s = 0 and t = 1,

q − 1 if q < 4, s < n − 2 and t = 1,

q − 1 if q = 3, s = n − 2 and t = 1,

q if q = 2, s = n − 2 and t = 1,

q if q ≥ 4, 0 < s ≤ n − 2 and t = 1,

ct if q ≥ 4, s ≤ n − 2 and q+1
2 < t.

The number ct is such that ct + (q − t)q is the second weight for the code GRMq(2, t).

It follows from the previous theorem that if one could compute the second weight for
a case where c = ct , the problem would be completely solved. Alternatively, Erickson
[9, Conjecture 4.14, p. 76]conjectured that ct = t − 1 and reduced this conjecture to a
conjecture on blocking sets. Recently in Bruen [3–5] proved that this conjecture follows
from two of his articles. To summarize the state of the art on the problem of determining
the next-to-minimal weights of the GRM codes, say that the problem is now solved by the
combination of the results in [5,9]. It is also solved by combining the results of [9,10] (the
important case n = 2 is completely solved in [10] and this leads to the conclusion as noted
above) or by combining the results of [9,26] (the case not solved in [9] are explicitly resolved
in [26]). More precisely the following theorem holds.

Theorem 10 The coefficient ct used in the previous Theorem 9 is

ct = t − 1.

Remark 11 The values s and t are connected to the values a and b of the formula (1) in the
following way: a = s and b = t unless t = q − 1 and in this case a = s + 1 and b = 0. Let
us also express the second weight with the writing (1) of Euclidean division (cf. [26]). Let
us define γ to be such that

W (2)
a f f (q, n, d) = W (1)

a f f (q, n, d) + γ qn−a−2. (4)

The second weight is given by the following:

(I) n = 1 (and then q > 2):

W (2)
a f f (q, n, d) = q − d + 1; γ = q;

(II) n ≥ 2

(A) d = 1 :
W (2)

a f f (q, n, d) = qn; γ = q;
(B) d ≥ 2

(1) q = 2
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(a) 2 ≤ d < n − 1 :
W (2)

a f f (q, n, d) = 3 × 2n−d−1; γ = q = 2;
(b) d = n − 1 :

W (2)
a f f (q, n, d) = 4; γ = q2 = 4;

(2) q ≥ 3
(a) 2 ≤ d < q − 1 :

W (2)
a f f (q, n, d) = qn − dqn−1 + (d − 1)qn−2; γ = b − 1 = d − 1;

(b) (n − 1)(q − 1) < d < n(q − 1) :
W (2)

a f f (q, n, d) = q − b + 1; γ = q;
(c) q − 1 ≤ d ≤ (n − 1)(q − 1)

(i) b = 0 :
W (2)

a f f (q, n, d) = 2qn−a−1(q − 1); γ = q(q − 2);
(ii) b = 1
(α) q = 3

W (2)
a f f (3, n, d) = 8 × 3n−a−2; γ = q − 1;

(β) q ≥ 4 :
W (2)

a f f (q, n, d) = qn−a; γ = q;
(iii) 2 ≤ b < q − 1 :

W (2)
a f f (q, n, d) = qn−a−2(q − 1)(q − b + 1); γ = b − 1.

Finally let us remark that we now have several approaches to find the next-to-minimal
distance, close to each other, but nevertheless different. The first one (cf. [5,9]) is mainly
based on combinatorics of finite geometries, the second one (cf. [6,26,27]) is mainly based on
geometry and hyperplane arrangements, the third (cf. [10,26]) is mainly based on polynomial
study by means of commutative algebra and Gröbner basis. All these approaches can be
fruitful for the study of similar problems, in particular for the similar codes based on incidence
structures, finite geometry and incidence matrices (see [14–16,33]).

The polynomials reaching the second weight are known (cf. [9, Theorem 3.13, p. 60], [27]
for 2d ≤ q and [17] for any d).

4.2 Low weight codewords for large q

The dimension n of the ambient space and the degree d are fixed. As we make a study of
low weight codewords for large values of q, we suppose first that q > d. Let us denote by
L W (q, d, n) the set of words f (where f is a reduced polynomial) of the Reed–Muller code
GRMq(d, n) such that the set Za f f ( f ) of zeros of f is an union of d distinct hyperplanes.

Lemma 12 Let f be a reduced polynomial function in F (q, n) which is in L W (q, d, n).

Then the number #Za f f ( f ) of zeros in F
n
q is such that

#Za f f ( f ) ≥ dqn−1 − d(d − 1)

2
qn−2. (5)

123



Low weight codewords of Reed–Muller codes 283

Proof The set Za f f ( f ) of zeros of f is the union of the d distinct hyperplanes Hi . Then

#Za f f ( f ) = #Za f f ( f ) ≥
d∑

i=1

#Hi −
∑

i 	= j

#
(
Hi ∩ Hj

)
.

But
∑

i 	= j

#
(
Hi ∩ Hj

) = d(d − 1)

2
qn−2.

Then

#Za f f ( f ) ≥ dqn−1 − d(d − 1)

2
qn−2.

��
The two following lemmas are useful for the study of irreducible but not absolutely

irreducible polynomial functions. The first one is a key lemma which can be found in [31].The
second one is a slight modification of [25, Theorem 2.1].

Lemma 13 Let f be a nonzero irreducible but not absolutely irreducible polynomial over the
finite field Fq , in n variables and of degree d. Then one can find a finite extension Fq ′ such
that there exists a unique polynomial g absolutely irreducible over the finite field Fq ′ , in n
variables and of degree d ′, satisfying:

f = λ
∏

σ∈G

gσ ,

where G = Gal(Fq ′/Fq) is the Galois group of Fq ′ over Fq ,

deg( f ) = [
Fq ′ : Fq

]
deg(g),

λ is a constant in Fq and the gσ are conjugated.

Lemma 14 Let f ∈ R P(q, n, d) be an irreducible but not absolutely irreducible polyno-
mial of degree d > 1. Let us set a and b such that d = a(q − 1) + b and 0 ≤ b < q − 1.

Denote by u the smallest prime factor of d. Then the number #Za f f ( f ) of zeros of f over Fq

satisfies:

#Za f f ( f ) < qn − 2q
n−

⌊
d

u(q−1)

⌋
−1

. (6)

Moreover if a = 0

#Za f f ( f ) <
d

u
qn−1. (7)

Proof Using the Lemma 13 we get:

f =
∏

σ∈G

gσ .

where g ∈ Fq ′ [X1, . . . , Xn]. Let us write the polynomial g as

g (X1, . . . , Xn) =
∑

(u1,...,un)∈D

c(u1,...,un) Xu1
1 , . . . , Xun

n ,
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where D is a finite set of multiple indexes. Hence

gσ (X1, . . . , Xn) =
∑

(u1,...,un)∈D

σ
(
c(u1,...,un)

)
Xu1

1 , . . . , Xun
n .

Let us denote by s the cardinality of the Galois group G. The number s is also the dimension
[Fq ′ : Fq ] of the vector space Fq ′ over the field Fq . The total degree d of f and the total degree
d ′ of g are related by the following formula:

d = deg( f ) = s deg(g) = sd ′.

Let δi be the partial degree of g with respect to the variable Xi . Then the partial degree of f
with respect to the variable Xi is sδi . As f is reduced, all the partial degrees of the polynomials
g are ≤ q − 1.

From the previous writing of f we get:

Za f f ( f ) =
⋃

σ∈G

Za f f

(
gσ|Fn

q

)
,

where gσ|Fn
q

is the restriction to F
n
q of gσ . However all the conjugate polynomials gσ have the

same zeros in F
n
q . Hence Za f f ( f ) = Za f f (g|Fn

q
).

Let (w1, . . . , ws)be a basis of the vector space Fq ′ over Fq and h j the following polynomial
in Fq [X1, . . . , Xn] :

h j (X1, . . . , Xn) =
∑

(u1,...,un)∈D

c j (u1,...,un)
Xu1

1 , . . . , Xun
n ,

where c j (u1,...,un)
∈ Fq is the component of c(u1,...,un) on w j . Then h j is a reduced polynomial

in Fq [X1, . . . , Xn]. Now we can write g as:

g (X1, . . . , Xn) =
s∑

j=1

h j (X1, . . . , Xn)w j ,

where h j ∈ R P(q, d ′, n) and are not all zero.
Hence,

Za f f ( f ) =
s⋂

j=1

Za f f
(
h j
)
.

The nonzero h j cannot all be equal to the same product of d ′ distinct (up to a constant multi-
plier) degree one polynomials because in this case, g would be proportional to a polynomial
over Fq . Then the h j are such that:

(1) there is a j such that h j is of degree < d ′ or has a multiple factor; or
(2) all the h j are of degree d ′ but there is a j such that h j is not the product of degree one

polynomials; or
(3) all the h j are products of d ′ distinct degree one polynomials, but there are two indexes i

and j such that at least one factor of hi is not (up to a constant multiplier) a factor of h j

(and consequently a factor of h j which is not a factor of hi ).

In the two first cases, there is a j such that h j cannot have the maximum number of zeros
(see Theorem 5). In the third case Za f f (hi ) ∩ Za f f (h j ) is strictly included both in Za f f (hi )
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and Za f f (h j ) (a factor of hi which is not in h j defines a hyperplane not included in the
hypersurface defined by h j ). Hence #(Za f f (hi ) ∩ Za f f (h j )) cannot be maximum.

Taking into account that Za f f ( f ) = ⋂s
j=1 Za f f (h j ) we conclude that #Za f f ( f ) cannot

attain the maximum number of zeros for a polynomial of degree ≤ d ′ given by the formula
of Kasami et al. [11]:

#Za f f ( f ) < qn − (q − b′)qn−a′−1, (8)

where d ′ = a′(q − 1) + b′ and 0 ≤ b′ < q − 1. But a′ is the integer part of d ′/(q − 1),

namely:

a′ =
⌊

d ′

q − 1

⌋
=
⌊

d

s(q − 1)

⌋
.

In any case:

#Za f f ( f ) < qn − (q − (q − 2))q
n−

⌊
d

s(q−1)

⌋
−1

.

As s divides d we have u ≤ s and consequently

#Za f f ( f ) < qn − 2q
n−

⌊
d

u(q−1)

⌋
−1

.

Now, if a = 0 then a′ = 0 and we can improve the previous estimate. In this case we know
that b′ = d ′ = d/s, so that, from (8) we get:

#Za f f ( f ) < qn − (q − d/s)qn−1 = (d/s)qn−1.

As s divides d we have u ≤ s and consequently the following inequality holds:

#Za f f ( f ) <
d

s
qn−1 ≤ d

u
qn−1.

Let us remark that 2 ≤ u so that if we replace u by 2, the formulas are still valid. ��
Lemma 15 Let g ∈ F (q, n) such that deg(g) ≤ d < q − 1. Suppose that g = g1g2 where
g1 is an irreducible but not absolutely irreducible polynomial of degree d ′ ≥ 2. Then

#Za f f (g) <

(
d − d ′

2

)
qn−1 ≤ (d − 1)qn−1.

Proof By Lemma 14 we know that

#Za f f (g1) <
d ′

2
qn−1.

On the other hand, as g2 is not the zero polynomial and is of degree ≤ (d − d ′) < q − 1, by
Remark 4 we get

#Za f f (g2) ≤ (d − d ′)qn−1.

Then

#Za f f (g) ≤ #Za f f (g1) + #Za f f (g2) <

(
d − d ′ + d ′

2

)
qn−1 =

(
d − d ′

2

)
qn−1.

As d ′ ≥ 2, we have

#Za f f (g) < (d − 1)qn−1.

��
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Proposition 16 Let g ∈ F (q, n) such that deg(g) ≤ d < q − 1. Suppose that g = g1g2

where g1 is an irreducible but not absolutely irreducible polynomial of degree d ′ ≥ 2. Then
if q ≥ d(d−1)

2 , for any f ∈ L W (q, d, n), the following inequality holds:

#Za f f ( f ) > #Za f f (g).

Proof We know by Lemma 12 that

#Za f f ( f ) ≥ dqn−1 − d(d − 1)

2
qn−2,

and by Lemma 15 that

#Za f f (g) < (d − 1)qn−1.

Then

#Za f f ( f ) − #Za f f (g) > qn−1 − d(d − 1)

2
qn−2.

Hence if

q ≥ d(d − 1)

2
,

we have

#Za f f ( f ) − #Za f f (g) > 0.

��
Lemma 17 For any absolutely irreducible polynomial function h in F (q, n) of degree ≤ d
the following inequality holds:

∣∣#Za f f (h) − qn−1
∣∣ ≤ A(d)qn− 3

2 + B(d)qn−2,

where

A(d) = √
2d

5
2 and B(d) = 4d2k2k

with k = d(d + 1)

2
.

Proof See [29, Theorem 5A, p. 210]. ��
Lemma 18 Let g ∈ F (q, n) such that deg(g) ≤ d. Suppose that g = g1g2 where g1 is an
absolutely irreducible polynomial of degree d ′ ≥ 2. Then

#Za f f (g) ≤ (d − 1)qn−1 + A(d)qn− 3
2 + B(d)qn−2.

Proof

#Za f f (g) ≤ #Za f f (g1) + #Za f f (g2) .

Lemma 17 gives an upper bound for #Za f f (g1) and as g2 is not zero, #Za f f (g2) is bounded
by (d − d ′)qn−1. Then

#Za f f (g) ≤ (d − d ′)qn−1 + qn−1 + A(d ′)qn− 3
2 + B(d ′)qn−2,

#Za f f (g) ≤ (d + 1 − d ′)qn−1 + A(d ′)qn− 3
2 + B(d ′)qn−2,

and as d ′ ≥ 2 and A(d), B(d) are increasing functions

#Za f f (g) ≤ (d − 1)qn−1 + A(d)qn− 3
2 + B(d)qn−2.

��
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Proposition 19 Let g ∈ F (q, n) such that deg(g) ≤ d. Suppose that g = g1g2 where g1 is
an absolutely irreducible polynomial of degree d ′ ≥ 2. Then if q > q0(d), where

q0(d) =
(

A(d) +√
A(d)2 + 4C(d)

2

)2

with C(d) = B(d) + d(d − 1)

2
,

for any f ∈ L W (q, d, n) the following inequality holds:

#Za f f ( f ) > #Za f f (g).

Proof We know by Lemma 12 that

#Za f f ( f ) ≥ dqn−1 − d(d − 1)

2
qn−2,

and by Lemma 18 that

#Za f f (g) ≤ (d − 1)qn−1 + A(d)qn− 3
2 + B(d)qn−2.

Then we have

#Za f f ( f ) − #Za f f (g) ≥ qn−1 − A(d)qn− 3
2 − C(d)qn−2,

#Za f f ( f ) − #Za f f (g) ≥ qn−2(q − A(d)
√

q − C(d)).

As q − A(d)
√

q − C(d) is a quadratic polynomial in
√

q we can conclude that if q > q0(d)

then

#Za f f ( f ) − #Za f f (g) > 0.

��
Theorem 20 Let n ≥ 2 and d ≥ 2 be integers. For any prime power q > q0(d), for any
polynomial function g of degree ≤ d which is not the product of affine factors and for any
polynomial function f of degree d which is the product of d affine factors li (x) + ai pairwise
non-proportional the following holds:

#Za f f ( f ) > #Za f f (g). (9)

Proof Note that

d(d − 1)

2
< q0(d).

Then the result is a consequence of Propositions 16 and 19. ��
Remark 21 Theorem 20 can be also expressed in term of weights of codewords. If q > q0(d)

then any word in L W (q, d, n) has a weight which is strictly lower than any word which is
not a product of degree one factors.

Remark 22 Presumably, the value q0(d)must be improved. Rodier and Sboui proved a similar
result by geometric techniques for PGRM codes with q0(d) = d(d − 1)/2 (cf. [23,28]).

Remark 23 Let us give as examples of codewords in L W (q, d, n) the codewords associated
to hyperplane arrangements L defined in [26, Sect. 2] in the following way. Let d = d1 +
d2 + · · · + dk where {

1 ≤ d1 ≤ d2 · · · ≤ dk ≤ q − 1,

1 ≤ k ≤ n.
(10)
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Let us denote by f1, f2, . . . , fk, k linearly independent linear forms on F
n
q and let us consider

the following hyperplane arrangement: for each fi we have di distinct parallel hyperplanes
defined by

fi (x) = ui, j with 1 ≤ j ≤ di ,

where, when j varies, ui, j yields di distinct values. This arrangement of d hyperplanes consists
of k blocks of parallel hyperplanes, the k directions of the blocks being linearly independent.
The corresponding codeword

f (x) =
k∏

i=1

di∏

j=1

(
fi (x) − ui, j

)
,

is in L W (q, d, n) and has the following number of zeros (see [26, Theorem 2.1]):

#Za f f ( f ) = qn − qn−k
k∏

i=1

(q − di ) .

From the point of view of weight distribution, there are a lot of different values Wa f f ( f )

for different f in this class. For example with k = 2, all the different pairs (d1, d2) with
d1 + d2 = d and d1 ≤ d2 give different Wa f f ( f ).

4.3 Low weight codewords in the general case

From [17] all the next-to-minimal words are known. So the main interest of the following
theorem is to give an estimate of the distance from codewords corresponding to the third or
higher weight to the next-to-minimal ones.

Theorem 24 If f ∈ R P(q, n, d) is an irreducible polynomial but not absolutely irre-
ducible, in n variables over Fq , of degree d > 1 then the weight Wa f f ( f ) of the corresponding

codeword in GRMq(d, n) is such that Wa f f ( f ) > W (2)
a f f (q, n, d).

Remark 25 In the proof of the previous theorem we will determine a strictly positive exact
lower bound for Wa f f ( f ) − W (2)

a f f (q, n, d) in most of the cases appearing.

Proof (of Theorem 24) By Lemma 14 the weight Wa f f ( f ) of the codeword associated to
f is such that

Wa f f ( f ) > 2q
n−

⌊
d

u(q−1)

⌋
−1

. (11)

Moreover when a = 0 the following holds:

Wa f f ( f ) > qn − d

u
qn−1. (12)

All the previous inequalities remain valid if u is replaced by a lower value in particular by
2. Thus, in general we shall apply this result with u = 2 unless we have more information
on d and if we need a more accurate inequality. In the following we compare for each case
Wa f f ( f ) to W (2)

a f f (q, n, d) and we prove that Wa f f ( f ) > W (2)
a f f (q, n, d) and compute a

lower bound for Wa f f ( f ) − W (2)
a f f (q, n, d). This lower bound will be useful later.

For n = 1 the result is trivial (f does not have any zeros). We suppose now that n ≥ 2.

Subsequently a2 is defined by:

a2 =
⌊

d

u(q − 1)

⌋
,
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with u = 2 unless we specify another value.

(1) The case q = 2.

– 2 ≤ d < n − 1. We know that W (2)
a f f (q, n, d) = 3 × 2n−d−1. As d ≥ 2, we have

a2 =
⌊

d
2(q−1)

⌋
≥ 1. If d is even then 2a2 = d and the following holds:

W (2)
a f f (q, n, d) = 3 × 2n−2a2−1 ≤ 3 × 2n−a2−2

≤ 3

4
× 2n−a2 <

3

4
Wa f f ( f ).

If d is odd, then a2 = d−1
2 and d = 2a2+1. It follows that Wa f f ( f ) > 4×2n−a2−2 >

3 × 2n−2a2−2 = W (2)
a f f (q, n, d).

– d = n − 1. Then W (2)
a f f (q, n, d) = 4. As d ≥ 2 we conclude that n ≥ 3 and

a2 = ⌊ n−1
2

⌋ ≤ n−1
2 . Then

Wa f f ( f ) > 2n−a2 ≥ 2
n+1

2 ≥ 4 = W (2)
a f f (q, n, d).

(2) The case q ≥ 3 and 2 ≤ d < q.

– 2 ≤ d < q − 1. Here a = 0. Then Wa f f ( f ) > qn − d
2 qn−1. On the other hand we

have W (2)
a f f (q, n, d) = qn − dqn−1 + (d − 1)qn−2. Then

Wa f f ( f ) − W (2)
a f f (q, n, d) >

d

2
qn−1 − (d − 1)qn−2,

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−2

(
qd

2
− d + 1

)
.

But q ≥ 3 then qd
2 ≥ 3

2 d and

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−2.

– d = q − 1. In this case W (2)
a f f (q, n, d) = 2qn−1 − 2qn−2 while a2 = ⌊ 1

2

⌋ = 0 and

Wa f f ( f ) > 2qn−1. Hence

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−2.

(3) The case q ≥ 3 and (n − 1)(q − 1) < d < n(q − 1).

In this case a2 < n
2 , W (2)

a f f (q, n, d) = (q − b + 1). On the other hand, Wa f f ( f ) >

2qn−a2−1.

If n = 2 then a2 = 0 and Wa f f ( f ) > 2q > W (2)
a f f (q, n, d).

If n = 3 then a2 = 1 and Wa f f ( f ) > 2qn−2 ≥ 2q > W (2)
a f f (q, n, d).

If n ≥ 4 then Wa f f ( f ) > q
n−2

2 ≥ 2q > W (2)
a f f (q, n, d).

(4) The case q ≥ 3 and q ≤ d ≤ (n − 1)(q − 1).

• b = 0. In this case W (2)
a f f (q, n, d) = 2qn−a−1(q − 1) and a2 = ⌊ a

2

⌋
. If a is even

then a = 2a2 ≥ 1. Then W (2)
a f f (q, n, d) = 2qn−2a2 − 2qn−2a2−1 and Wa f f ( f ) >

2qn−a2−1. Hence,

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−2a2

(
qa2−1 − 1

)+ 2qn−2a2−1.
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As qa2−1 − 1 ≥ 0 we conclude that

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−a−1.

If a is odd then a = 2a2 + 1 and W (2)
a f f (q, n, d) = 2qn−2a2−1 − 2qn−2a2−2 the

following formulas hold:

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−2a2−1 (qa2 − 1

)+ 2qn−2a2−2.

As qa2 − 1 ≥ 0 we conclude that

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−a−1.

• b = 1.

– q = 3. In this case d = 2a +1, and consequently the lowest prime factor of d is ≥ 3.

Then we shall take u = 3 for this case. Hence a2 =
⌊

d
3(q−1)

⌋
= ⌊ d

6

⌋
< d

6 , namely

a2 < a
3 + 1

6 . Moreover W (2)
a f f (q, n, d) = 8×3n−a−2 and Wa f f ( f ) > 2×3n− a

3 − 1
6 −1.

Then

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2 × 3n−a−2

(
3

2a
3 + 5

6 − 4
)

,

and as a ≥ 1

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2 × 3n−a−2

(
3

3
2 − 4

)
> 2 × 3n−a−2.

– q ≥ 4. We know that W (2)
a f f (q, n, d) = qn−a and Wa f f ( f ) > 2qn−a−1. If a2 = 0

then

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−1 − qn−a ≥ qn−1.

If a = 1 then d = q ≥ 4 and a2 ≤ q
2(q−1)

≤ 2
3 < 1. Then a2 = 0. Hence, if a2 = 1

then a ≥ 2. Then Wa f f ( f ) > qn−2 and W (2)
a f f (q, n, d) ≤ qn−2. We conclude that

Wa f f ( f ) − W (2)
a f f (q, n, d) > 0.

If a2 ≥ 2, we know that a2 =
⌊

a(q−1)+1
2(q−1)

⌋
and then a2 ≤ a

2 + 1
6 or a > 2a2 − 1

3 .

Consequently W (2)
a f f (q, n, d) < qn−2a2+ 1

3 while Wa f f ( f ) > 2qn−a2−1, hence

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−2a2+ 1

3

(
2qa2− 4

3 − 1
)

> 0.

• 2 ≤ b < q − 1. We know that W (2)
a f f (q, n, d) = qn−a−2(q − 1)(q − b + 1). From

the definitions we get the two following inequalities:

d

q − 1
− 1 < a ≤ d

q − 1
,

d

2(q − 1)
− 1 < a2 ≤ d

2(q − 1)
,
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then

0 ≤ a − 2a2 ≤ 1.

If a is even then a = 2a2 ≥ 2 and

W (2)
a f f (q, n, d) = qn−2a2−2(q − 1)(q − b + 1) < qn−2a2 .

Hence:

Wa f f ( f ) − W (2)
a f f (q, n, d) > 2qn−a2−1 − qn−2a2 ,

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−2a2

(
2qa2−1 − 1

)
,

and as a2 ≥ 1 we conclude that

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−2a2 = qn−a .

If a is odd, a = 2a2 + 1, a ≥ 1, a2 ≥ 0. Moreover

W (2)
a f f (q, n, d) = qn−2a2−3(q − 1)(q − b + 1) < qn−2a2−1,

and

Wa f f ( f ) > 2qn−a2−1.

Then

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−2a2−1 (2qa2 − 1

)
,

and as 2qa2 − 1 ≥ 1 we obtain

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−2a2−1 = qn−a .

��
From the computations done in the proof of the previous theorem and examples of hyper-

plane arrangements introduced in [26, Sect. 2] we can deduce the following:

Theorem 26 Suppose that d is such that d = a(q − 1) + b with 1 ≤ a < n − 1 and
2 ≤ b < q − 1 (hence q ≥ 4). If f ∈ R P(q, n, d) is an irreducible polynomial but not
absolutely irreducible, in n variables over Fq , of degree d then the weight Wa f f ( f ) of the

corresponding codeword in GRMq(d, n) is such that Wa f f ( f ) > W (4)
a f f (q, n, d).

Proof Recall that to each hyperplane is associated up to a multiplicative nonzero constant
a affine polynomial. To a hyperplane configuration is associated the product of these affine
polynomials. Let us consider T1, the type 1 hyperplane configuration, T2, the type 2 hyper-
plane configuration and T3, the type 3 hyperplane configuration given in [26, Sect. 2.2]. The
following inequalities hold (cf. [26, Propositions 2.6, 2.8]):

#Za f f (T3) > #Za f f (T1) > #Za f f (T2) .

Note that T3 defines codewords which have the second weight. We have computed in the
proof of the previous theorem that

Wa f f ( f ) − W (2)
a f f (q, n, d) ≥ qn−a .
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But by [26, Proposition 2.9]

Wa f f (T2) − Wa f f (T3) = Wa f f (T2) − W (2)
a f f (q, n, d) = qn−a−2(q − 1).

Then

Wa f f ( f ) > Wa f f (T2) > Wa f f (T1) > Wa f f (T3) = W (2)
a f f (q, n, d),

hence

Wa f f ( f ) > W (4)
a f f (q, n, d).

��
4.4 Low weight codeword for the important case d < q

In the following, for GRM codes, we study when d < q the case of an irreducible but not
absolutely irreducible factor.

Theorem 27 If f ∈ R P(q, n, d) is a product of two polynomials f = g · h such that

(1) 2 ≤ d ′ = deg(g) ≤ d = deg( f ) < q − 1;
(2) g is irreducible but not absolutely irreducible;

then Wa f f ( f ) > W (2)
a f f (q, n, d). Moreover if b ≥ 3 and q ≥ 2d − 4 then Wa f f ( f ) >

W (3)
a f f (q, n, d) else if b ≥ 3 and q ≥ 2d − 3 then Wa f f ( f ) > W (4)

a f f (q, n, d).

Proof We know by Lemma 15 that

#Za f f ( f ) < (d − 1)qn−1.

On the other hand,

W (2)
a f f (q, n, d) = qn − dqn−1 + (d − 1)qn−2.

Then

Wa f f ( f ) − W (2)
a f f (q, n, d) > qn−1 − (d − 1)qn−2 > 0.

Consider now the two following hyperplane configurations S and T. The configuration
S is given by two blocks of parallel hyperplanes directed by two linearly independent linear
forms. The first block contains b − 2 parallel hyperplanes and the second block contains
two parallel hyperplanes. The number of points of this configuration is (using for example
[26, Theorem 2.1]):

#Za f f (S)=qn − qn−2(q−d+2)(q − 2)=dqn−1−(2d − 4)qn−2 < qn − W (2)
a f f (q, n, d).

The configuration T is given by three blocks of parallel hyperplanes directed by three linearly
independent linear forms. The first block contains b−2 parallel hyperplanes, the second block
and the third blocks contain a unique hyperplane. The number of points of this configuration
is

#Za f f (T ) = dqn−1 − (2d − 3)qn−2qn−3 < #Za f f (S).

If q ≥ 2d − 4, we have

#Za f f (S) = dqn−1 − (2d − 4)qn−2 ≥ (d − 1)qn−1 > #Za f f ( f ).
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Then Wa f f ( f ) > Wa f f (S). Moreover

#Za f f (S) < qn − W (2)
a f f (q, n, d),

then

Wa f f (S) = qn − #Za f f (S) > W (2)
a f f (q, n, d).

Consequently

W (2)
a f f (q, n, d) < Wa f f (S) < Wa f f ( f ),

and then Wa f f ( f ) > W (3)
a f f (q, n, d). Now if q ≥ 2d − 3, Wa f f ( f ) > #Za f f (T ) and

consequently

W (2)
a f f (q, n, d) < Wa f f (S) < Wa f f (T ) < Wa f f ( f ).

Then Wa f f ( f ) > W (4)
a f f (q, n, d). ��

Remark 28 In the case of PGRM codes, there are results on the third weight codewords given
by Rodier and Sboui [24]. They proved that for q ≥ 3d − 6 the first three weights are given
by hyperplane arrangements and by nothing else. Moreover they proved that this is no longer
the case for

q

2
+ 5

2
≤ d < q,

in which case the third weight can be obtained also by some hypersurfaces containing an
irreducible quadric.

5 The second weight in the projective case

In this section we tackle the unsolved problem of finding the second weight W (2)
proj (q, n, d)

for PGRM codes. The following remark addresses the particular case where n = 1.

Remark 29 The code PGRMq(d, 1) is MDS (cf. Remark 7). Then the weight distribution
can be studied using the formulas given in [19, Theorem 6, p. 320]. In particular when n = 1
the minimal distance and the next-to-minimal distance are respectively:

W (1)
h (q, 1, d) = q − d + 1, (13)

W (2)
h (q, 1, d) = q − d + 2. (14)

Lemma 30 Let f be a homogeneous polynomial in n + 1 variables of total degree d, with
coefficients in Fq , which does not vanish on the whole projective space P

n(q).

(1) If there exists a projective hyperplane H such that the affine hypersurface (Pn(q) \ H)∩
Z proj ( f ) contains an affine hyperplane of the affine space A

n(q) = P
n(q) \ H then the

projective hypersurface Z proj ( f ) contains a projective hyperplane.
(2) If there exists a projective hyperplane H such that the affine hypersurface (Pn(q) \

H) ∩ Z proj ( f ) is an affine arrangement of hyperplanes then Z proj ( f ) is a projective
arrangement of hyperplanes.
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(3) If there exists a projective hyperplane H such that f restricted to the affine space (Pn(q)\
H) defines a minimal word or a next-to-minimal word then Z proj ( f ) is a projective
arrangement of hyperplanes.

Proof (1) Suppose that

f (1, X1, . . . , Xn) = (l (X1, . . . , Xn) − α) f1 (X1, . . . , Xn) ,

where l(X1, . . . , Xn) is linear, then

f (X0, X1, . . . , Xn) = (l (X1, . . . , Xn) − αX0) f̃1 (X0, X1, . . . , Xn) ,

where f̃1(X0, X1, . . . , Xn) is the homogeneous polynomial obtained by homogeniza-
tion of f1(X1, . . . , Xn). We conclude that f defines a hypersurface containing a hyper-
plane.

(3) Using the same argument factor by factor we obtain the second statement.
(4) As minimal words and next-to-minimal words are always given by products of degree

one factors [7,17], the third statement is a consequence of the second statement.
��

Lemma 31 For n ≥ 2 and d ≥ 2 the following holds

W (1)
proj (q, n − 1, d) + W (2)

a f f (q, n, d) ≤ W (2)
a f f (q, n, d − 1).

Proof Let us introduce the following notations:

d − 1 = ad−1(q − 1) + bd−1 with 0 ≤ bd−1 ≤ q − 2,

d = ad(q − 1) + bd with 0 ≤ bd ≤ q − 2.

Define γd−1 and γd as in (4). Then we have

W (1)
proj (q, n − 1, d) = (q − bd−1) qn−ad−1−2,

W (2)
a f f (q, n, d) = (q − bd) qn−ad−1 + γdqn−ad−2,

W (2)
a f f (q, n, d − 1) = (q − bd−1) qn−ad−1−1 + γd−1qn−ad−1−2.

Denote by � the difference

� = W (2)
a f f (q, n, d − 1) −

(
W (1)

proj (q, n − 1, d) + W (2)
a f f (q, n, d)

)
.

(1) If 0 ≤ bd−1 ≤ q − 3 then q > 2, bd = bd−1 + 1 and ad = ad−1. In this case let us
denote by a the common value of ad and ad−1. Hence

� = qn−a−2 (bd−1 + γd−1 − γd) .

– If a = n − 1 and bd−1 = 0 then γd−1 = q(q − 2), γd = q and � = qn−a−1(q − 3).

– If a = n − 1 and bd−1 > 0 then γd−1 = γd = q and � = qn−a−2bd−1.

– If a < n − 1, bd−1 = 0 and q = 3 then γd−1 = 3, γd = 2 and � = qn−a−1.

– If a < n − 1, bd−1 = 0 and q ≥ 4 then γd−1 = q(q − 2), γd = q and
� = qn−a−1(q − 3).

– If a < n − 1, bd−1 = 1, and q = 3 then γd−1 = 2, γd = 1 and � = 2qn−a−2.

– If a < n − 1, bd−1 = 1, and q ≥ 4 then γd−1 = q, γd = 1 and � = qn−a−1.

– If a < n − 1 and bd−1 ≥ 2 then γd−1 − γd = −1 and � = qn−a−2(bd−1 − 1).

(2) If bd−1 = q − 2 then ad = ad−1 + 1 and bd = 0. In this case
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– If ad−1 = n−1 then W (2)
a f f (q, n, d−1)=3, W (2)

a f f (q, n, d)=2, W (1)
proj (q, n−1, d) = 1.

Then � = 0.

– If ad−1 < n − 1 then

� = 2qn−ad−1−1 + γd−1qn−ad−1−2 − 2qn−ad−1−2 − qn−ad−1−1 − γdqn−ad−1−3,

� = qn−ad−1−2
(

q − 2 + γd−1 − γd

q

)
.

– If ad−1 = n − 2 and q = 2 then γd−1 = 2, γd = 4 and � = 0.

– If ad−1 < n − 2 and q = 2 then γd−1 = γd = 2 and � = qn−ad−1−2.

– If q = 3 then γd−1 = 2, γd = 3 and � = 2 × 3n−ad−1−2.

– If q ≥ 4 then γd−1 = q − 3, γd = q(q − 2) and � = qn−ad−1−2(q − 3).

��
Remark 32 In the previous lemma, � ≥ 0 is zero in the following cases:

– q = 3, ad−1 = n − 1 and bd−1 = 0, namely d = 2(n − 1) + 1.

– q = 2, ad−1 = n − 2, namely d = n − 1.

– ad−1 = n − 1, bd−1 = q − 2, namely d = n(q − 1).

Theorem 33 Let W (2)
proj (q, n, d) be the second weight for a homogeneous polynomial f in

n + 1 variables (n ≥ 2) of total degree d (2 ≤ d ≤ n(q − 1)), with coefficients in Fq , which
is not maximal. Then the following holds:

W (1)
proj (q, n − 1, d) + W (2)

a f f (q, n, d) ≤ W (2)
proj (q, n, d) ≤ W (2)

a f f (q, n, d − 1).

Moreover

W (2)
proj (q, n, d) ≥ min

(
W (1)

proj (q, n − 1, d) + W (3)
a f f (q, n, d), W (2)

a f f (q, n, d − 1)
)

.

Proof Remark first that by Lemma 31

W (1)
proj (q, n − 1, d) + W (2)

a f f (q, n, d) ≤ W (2)
a f f (q, n, d − 1).

Let f be such that Z proj ( f ) is not maximal. Suppose first that there is a hyperplane H in
Z proj ( f ). Then we can suppose that

f (X0, X1, . . . , Xn) = X0g (X0, X1, . . . , Xn) ,

where g is a homogeneous polynomial of degree d − 1. The function

f1 (X1, . . . , Xn) = g (1, X1, . . . , Xn) ,

defined on the affine space A
n(q) = P

n(q) \ H is a polynomial function in n variables of
total degree d −1. If it was maximum, by Theorem 8, the function f would also be maximum.

Then #Za f f ( f1) ≤ qn − W (2)
a f f (q, n, d − 1). Hence the following holds:

#Z proj ( f ) ≤ qn − 1

q − 1
+ qn − W (2)

a f f (q, n, d − 1),

#Z proj ( f ) ≤ qn+1 − 1

q − 1
− W (2)

a f f (q, n, d − 1),

and the equality holds if and only if f1 reaches the second weight on the affine space A
n(q).

This case actually occurs. Hence for such a word, in general we have

Wproj ( f ) ≥ W (2)
a f f (q, n, d − 1),
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and as the equality occurs, the following holds for the second distance: W (2)
proj (q, n, d) ≤

W (2)
a f f (q, n, d − 1).

Suppose now that there is not any hyperplane in the hypersurface Z proj ( f ). Let H be a
hyperplane and A

n(q) = P
n(q) \ H. Then as H ∩ Z proj ( f ) 	= H

#
(
H ∩ Z proj ( f )

) ≤ qn − 1

q − 1
− W (1)

proj (q, n − 1, d).

We know that the first and second weight of a GRM code are arrangements of hyperplanes,
then by Lemma 30

#
(
Z proj ( f ) ∩ A

n(q)
) ≤ qn − W (3)

a f f (q, n, d).

Now we can write

#Z proj ( f ) ≤ qn − 1

q − 1
− W (1)

proj (q, n − 1, d) + qn − W (3)
a f f (q, n, d),

≤ qn+1 − 1

q − 1
−
(

W (1)
proj (q, n − 1, d) + W (3)

a f f (q, n, d)
)

,

and consequently

Wproj ( f ) ≥ W (1)
proj (q, n − 1, d) + W (3)

a f f (q, n, d) > W (1)
proj (q, n − 1, d) + W (2)

a f f (q, n, d).

Then, for the second distance the conclusion of the theorem holds. ��
Remark 34 When q ≥ 2(d − 1) we know by [28] that

W (2)
proj (q, n, d) = W (2)

a f f (q, n, d − 1) = qn − (d − 1)qn−1 + (d − 2)qn−2.

Unfortunately for the general case we don’t know the value of W (3)
a f f (q, n, d) and we

don’t know if the value of the sum W (1)
proj (q, n − 1, d) + W (3)

a f f (q, n, d) is greater than

W (2)
a f f (q, n, d −1) or not. What is the exact value of W (2)

proj (q, n, d)? This question remains
open.
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