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Abstract Using polarization technique in optical code division multiple access, we can
schedule the transmission of optical pulses in spatial domain, in addition to the frequency
domain and time domain. An optical orthogonal code (OOC) which spreads in these dimen-
sions is called a three-dimensional (3-D) OOC. In this paper, we study 3-D OOC with at
most one optical pulse per wavelength/time plane, which have the favorable property that
the Hamming auto-correlation is identically equal to 0. An upper bound on the number of
codewords for general Hamming cross-correlation requirement is given. A 3-D OCC with at
most one pulse per wavelength/time plane and Hamming cross-correlation no more than 1
is shown to be equivalent to a generalized Bhaskar Rao group divisible design (GBRGDD),
signed over a cyclic group. Through this equivalence, necessary and sufficient conditions for
the existence of GBRGDD of weighted 3, signed over a cyclic group, are derived.

Keywords Optical orthogonal codes · Constant-weight codes · Generalized Bhaskar Rao
designs · Group divisible designs

Mathematics Subject Classification 05B40 · 94B25

1 Introduction

Optical orthogonal codes (OOCs) [11] are used in optical code divisible multiple access
(OCDMA) system. Each user is assigned a unique zero-one periodic sequence. The time
pattern of transmitting the optical pulses is specified by the locations of the ones in the assigned
sequence. A user reads out the zeros and ones in the assigned codeword, and transmits an
optical pulse in a time slot, also known as a time chip, when the sequence value is equal
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110 K. W. Shum

to ∼1. One drawback of OOC is that the number of available codewords grows linearly as
the period of the OOC increases. This incurs the requirement of large chip rate. One method
of increasing the number of supported users is to increase the number of codewords by
spreading in both frequency and time domain. The resulting codes are called 2-dimensional
(2-D) OOCs. There are many existing constructions on 2-D OOC. We refer the readers to
the survey [34] for more details. More recently, polarization techniques are investigated in
OCDMA, and another dimension for spreading, called the spatial dimension, is introduced
[29]. With the spatial dimension, optical signals can spread in space, wavelength and time.
Optical codes with spreading in these three dimensions are called 3-D OOCs. Experiments
in [21,28,32] confirm that large performance gain can be obtained by 3-D OOC.

We define 3-D OOC formally as follows. The pattern of optical pulses of a user is rep-
resented by a 3-D S × W × T matrix X = [xs,w,t ], where S, W, and T are the number of
spatial channels, wavelengths, and time slots, respectively. If an optical pulse is transmitted
at spatial channel s, wavelength w, and time chip t, then the (s, w, t)-entry of X is equal
to one. Otherwise, the (s, w, t)-entry is zero. A 3-D matrix is also called a codeword. The
total number of ones in a codeword is called the Hamming weight of the codeword. We
define the Hamming correlation function of two 3-D matrices X = [xs,w,t ] and Y = [ys,w,t ]
by

HX,Y (τ ) :=
S−1∑

s=0

W−1∑

w=0

T −1∑

t=0

xs,w,t ys,w,t⊕τ , (1)

where “⊕” in the subscript denotes modulo-T addition, and τ is an integer between 0 and
T − 1. We note that HX,X (0) is simply the Hamming weight of X.

An (S×W ×T, ω, λa, λc) 3-D OOC, denoted by C, is a collection of S×W ×T zero-one
matrices of Hamming weight ω, satisfying the following conditions [29]:

(1) Auto-correlation. HX,X (τ ) ≤ λa, for all X ∈ C and 1 ≤ τ ≤ T − 1,

(2) Cross-correlation. HX,Y (τ ) ≤ λc, for all X, Y ∈ C, X �= Y, and 0 ≤ τ ≤ T − 1.

A wavelength/time plane is also called a spatial plane. There are several classes of 3-D
OOC of interests. A 3-D at-most-one-pulse-per-plane code (AMOPPC) is a 3-D OOC in
which each codeword contains at most one optical pulse per spatial plane, i.e.,

W−1∑

w=0

T −1∑

t=0

xs,w,t ≤ 1,

for all codewords X and s = 0, 1, . . . , S − 1. If we have exactly one “1” in every spatial
plane in all codewords, then we have a single-pulse-per-plane code (SPPC). A 3-D at-most-
one-pulse-per-time code (AMOPTC) is a 3-D OOC satisfying

S−1∑

s=0

W−1∑

w=0

xs,w,t ≤ 1,

for all codewords X and t = 0, 1, . . . , T − 1. If equality holds in the above inequality for all
codewords and all t, then we have a single-pulse-per-time code (SPTC).

In this paper, we focus on 3-D SPPC and AMOPPC. We observe that the Hamming weight
of an SPPC is equal to the number of spatial channels S, and the out-of-phase Hamming
auto-correlation of any codeword is zero in both SPPC and AMOPPC. We use the notation
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Optimal three-dimensional optical orthogonal codes of weight three 111

Table 1 Existing constructions for 3-D OOC

References S, W , T ω λ Code sizes Types

[29] Prime factors of W and T

are all larger than or equal to S S 1 W 2T SPPC

[35] S = p, W = p2 − 1, T = p, p prime p2 − 1 1 p(p2 − 1) SPTC

[35] S = W = p, T = p2 − 1 p2 − 1 1 p2 SPTC

[30] S = W = T = p,

p prime, 1 ≤ r ≤ p − 2 S r Wr+1T r SPPC

[30] S = 4, W = q, T ≥ 2,

q is a prime power ≥4 S 2 W 3T 2 SPPC

[30] S = q + 1, W = q, T = p,

q is a prime power ≥4, S 1 W 2T SPPC

p is a prime > q

Theorem 12 S = 3, W is even when T is even 3 1 W 2T SPPC

Theorem 13 (S − 1)W T ≡ 0 mod 2 3 1
(S

2)

(ω2)
W 2T AMOPPC

S(S − 1)W T ≡ 0 mod 3,

S ≡ 0, 1 mod 4 when T ≡ 2 mod 4

and W ≡ 1 mod 2

In the table, S is the number of spatial channels, W is the number of wavelengths, T is the number of time
chips, ω is the Hamming weight, and λ is the value the maximum Hamming cross-correlation. All 3-D OOC
in this table has zero Hamming auto-correlation

(S × W × T, λ)-SPPC for an (S × W × T, S, 0, λ) 3-D SPPC, and (S × W × T, ω, λ)-
AMOPPC for an (S × W × T, ω, 0, λ) 3-D AMOPPC. The parameter λ is also called the
maximum collision parameter in the literature of OCDMA.

We want to construct 3-D SPPC and AMOPPC with large number of codewords. For
2 ≤ ω ≤ S, let

Φ(S, W, T, ω, λ),

be the maximal number of codewords over the class of all (S × W × T, ω, λ)-AMOPPC.
Let

Φ(S, W, T, λ),

be the maximal number of codewords over the class of all (S × W × T, λ)-SPPC. An
(S×W×T, ω, λ)-AMOPPC is called an optimal AMOPPC if it containsΦ(S, W, T, ω, λ)

codewords. Likewise, an (S × W × T, λ)-SPPC with Φ(S, W, T, λ) codewords is said
to be optimal. Some explicit constructions for 3-D OOC in [29,30,35] are summarized in
Table 1.

Combinatorial designs, such as group divisible designs (GDDs) and cyclic packings for
instance, are used in constructing constant-weight codes, constant-composition codes (see
e.g. [4,9,16,20,23,44]), 1-D OOC (see e.g. [1,5–8,10,15,18,31,33,43]), and 2-D OOC (see
e.g. [13,17,37–41]). It is shown in [38–40] that a special class of optimal 2-D OOC is
equivalent to semi-cyclic GDD (which is sometime called cyclic GDD [19,27]). Furthermore,
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112 K. W. Shum

the relationship with Bhaskar Rao design (BRD) is pointed out in [40]. A necessary and
sufficient condition for the existence of a semi-cyclic GDD of block size three is given in [19].

In this paper, we study the construction of SPPC and AMOPPC from a design-theoretic
point of view, and extend the results in [19] to 3-D AMOPPC. An upper bound on code size
of 3-D AMOPPC for general Hamming weight is derived, and optimal codes of weight 3 and
λ = 1 are constructed. The parameters of the new existence results are shown in the last two
rows of Table 1.

2 Representations of 3-D OOC and an upper bound on code size

We use the notation Zn = {0, 1, . . . , n − 1} for the ring of integers modulo n. For a finite set
S, the cardinality of S is denoted by |S|. A set with cardinality ω is called a ω-set.

In this paper, the indices for spatial channels, wavelengths and time chips are indexed
by {0, 1, . . . , S − 1}, {0, 1, . . . , W − 1} and {0, 1, . . . , T − 1}, respectively. Furthermore,
the indices for time chips are regarded as the ring of integers modulo T. Let V denote the
cartesian product

V := ZS × ZW × ZT .

Given an S × W × T matrix X = [xs,w,t ], define the characteristic set of X by

χ(X) := {
(s, w, t) ∈ V : xs,w,t = 1

}
.

As the Hamming weight of each codeword is equal to ω, each characteristic set contains
exactly ω triples. Each triple specifies the spatial channel, wavelength, and time chip of an
optical pulse. In design theory terminology, V is called the point set, and subsets of V are
called blocks. We will use “characteristic set” and “block” interchangeably.

Example 1 This example is the smallest non-trivial example. The parameters are S = W =
T = ω = 2 and λ = 1. The following eight 3-D matrices form a (2 × 2 × 2, 1)-SPPC with
eight codewords:

s = 0 :
[

1 0
0 0

] [
1 0
0 0

] [
1 0
0 0

] [
1 0
0 0

] [
0 0
1 0

] [
0 0
1 0

] [
0 0
1 0

] [
0 0
1 0

]
,

s = 1 :
[

1 0
0 0

] [
0 0
1 0

] [
0 1
0 0

] [
0 0
0 1

] [
1 0
0 0

] [
0 0
1 0

] [
0 1
0 0

] [
0 0
0 1

]
.

The first (resp. second) row is the first (resp. second) spatial dimension of the 3-D matrices.
In each 2-D matrix, the two rows correspond to the two wavelengths, and the two columns
correspond to the two time chips. The corresponding characteristic sets are

{(0, 0, 0), (1, 0, 0)}, {(0, 0, 0), (1, 1, 0)}, {(0, 0, 0), (1, 0, 1)}, {(0, 0, 0), (1, 1, 1)},
{(0, 1, 0), (1, 0, 0)}, {(0, 1, 0), (1, 1, 0)}, {(0, 1, 0), (1, 0, 1)}, {(0, 1, 0), (1, 1, 1)}.

We can present a 3-D AMOPPC in a tabular form by creating an s × b array A, with the
rows indexed by the spatial channels and the columns indexed by the codewords. If (s, w, t)
is a triple contained in the characteristic set of the jth codeword, we put the symbol tw in the
(s, j)-entry of A. The symbol t represents the time index and the subscript w represents the
wavelength of the optical pulse. We note that there are exactly ω nonempty entries in each
column. If the 3-D AMOPPC is not an SPPC, then some entries in A are empty. We will refer
to this as the array presentation or the tabular form of a 3-D AMOPPC.
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Optimal three-dimensional optical orthogonal codes of weight three 113

The following is the tabular form of the 3-D SPPC in Example 1.

00 00 00 00 01 01 01 01

00 01 10 11 00 01 10 11

The first row corresponds to the first spatial channel s = 0, and the second row the
second spatial channel s = 1. Each column specifies the two optical pulses in a code-
word. For instance, the last column in the above array indicates that the first optical
pulse is transmitted at time 0 with wavelength 1 in the first spatial dimension, and the
second optical pulse is transmitted at time 1 with wavelength 1 in the second spatial
dimension.

It is helpful to express the Hamming correlation function in terms of characteristic sets.
For a given integer τ, let σ (τ) be a bijective function from V to itself defined by

σ (τ)(s, w, t) := (s, w, t ⊕ τ).

It models the cyclic shift operation in the time domain by τ time chips. When τ = 1, we
simply write σ(s, w, t). For a subset A of triples in ZS × ZW × ZT , we let σ (τ)(A) be the
image of A under σ (τ), i.e.,

σ (τ)(A) := {(s, w, t ⊕ τ) : (s, w, t) ∈ A}.
Lemma 1 Let X and Y be two distinct codewords in a 3-D OOC, and τ be an integer between
0 and T − 1. The followings are equivalent.

(1) HX,Y (τ ) > λ.

(2) The intersection σ (τ)(χ(X)) ∩ χ(Y ) contains at least λ + 1 distinct triples in V.

Proof We observe that the Hamming cross-correlation HX,Y (τ ) is larger than or equal to
λ + 1 if and only if there are at least λ + 1 non-zero summands in (1). This is equivalent to
the existence of λ + 1 triples (si , wi , ti ) in V, for i = 1, 2, . . . , λ + 1, satisfying xsi ,wi ,ti =
1 = ysi ,wi ,ti ⊕τ for all i. This happens if and only if (si , wi , ti ⊕ τ) is in σ (τ)(χ(X)) ∩ χ(Y )

for all i = 1, 2, . . . , λ + 1. 
�
The next theorem provides a link between combinatorial design and 3-D OOC. The the-

orem holds for general 3-D OOCs which are not necessarily constant-weight.

Theorem 1 Let C be a 3-D OOC with S spatial channels, W wavelengths, and T time chips.
The followings are equivalent.

(1) HX,Y (τ ) ≤ λ for all X, Y ∈ C and τ ∈ ZT .

(2) For each subset S of size λ+ 1 in V, there exists at most one pair (ν, X) ∈ ZT × C such
that S ⊆ σ (ν)(χ(X)).

Proof Suppose that the first condition in the theorem is false. Then, HX,Y (τ ) > λ for some
X, Y ∈ C and τ ∈ ZT . By the previous lemma, there exists a set S of size λ + 1 contained
in σ (τ)(χ(X)) and χ(Y ). This implies that the second condition is false.

123
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In the other direction, suppose that the second condition in the theorem is false. Let S be
a subset of V of size λ + 1 which is contained in σ (μ)(χ(X)) and σ (ν)(χ(Y )), for (μ, X)

and (ν, Y ) in ZT × C and (μ, X) �= (ν, Y ). Then the set

S − ν := {t − ν mod T : t ∈ S},
is contained in σ (μ−ν)(χ(X)) and χ(Y ). Since S − ν has cardinality λ + 1, by the previous
lemma, we have HX,Y (μ − ν) ≥ λ + 1. This implies that the first condition in the theorem
is false. 
�

Using similar proof technique as in the Johnson bound from coding theory, an upper bound
on the code size for a general 3-D OOC is given in [35]. The following theorem gives an
upper bound of code size within the class of 3-D AMOPPC. We note that when W = 1, it
reduces to the analogous result for 2-D OOC [34, Proposition 3].

In the followings, we will refer to a subset of size ω in V as a block.

Theorem 2 Suppose that λ < ω. The maximal code size among all (S × W × T, ω, λ)-
AMOPPCs is upper bounded by

Φ(S, W, T, ω, λ) ≤
⌊

SW

ω

⌊
(S − 1)W T

ω − 1
· · ·

⌊
(S − λ)W T

ω − λ

⌋⌋
· · ·

⌋
.

In particular, we have

Φ(S, W, T, λ) ≤ W λ+1T λ,

for (S × W × T, λ)-SPPC.

Proof Let B be the collection of the characteristic sets of the codewords in a maximal
(S×W×T, ω, λ)-AMOPPC. We have |B| = Φ(S, W, T, ω, λ)by definition. We consider
the development of the characteristic sets under the action of σ,

{
σ (τ)(B) : B ∈ B, τ ∈ ZT

}
.

As there is at most one pulse in each spatial plane, there are exactly T · Φ(S, W, T, ω, λ)

blocks in the above collection of blocks.
Let Θ(S, W, T, ω, λ) be the maximal number of blocks in V with the first coordinates of

the triples in each block distinct, such that no λ + 1 points in V are contained in two distinct
blocks. Let A be a collection of Θ(S, W, T, ω, λ) blocks satisfying the above criterion.
By Theorem 1, we have

T · Φ(S, W, T, ω, λ) ≤ |A | = Θ(S, W, T, ω, λ).

We count the number of pairs (x, A) satisfying x ∈ A ∈ A in two different ways. First
of all, there are ω · Θ(S, W, T, ω, λ) pairs, as each block in A contains ω points. On the
other hand, for a fixed point x in V, let

Ax := {A \ {x} : x ∈ A ∈ A }.
The sets in Ax can be considered as subsets of size ω−1 in V ′ = ZS−1 ×ZW ×ZT , satisfying
the condition that no λ points in V ′ are contained in two distinct blocks in Ax . Since there
are SWT choices for x, we have

Θ(S, W, T, ω, λ) ≤ SW T

ω
· Θ(S − 1, W, T, ω − 1, λ − 1).
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Optimal three-dimensional optical orthogonal codes of weight three 115

Applying the above argument recursively, and using the fact that

Θ(S − λ, W, T, ω − λ, 0) ≤
⌊

(S − λ)W T

ω − λ

⌋
,

we get

Θ(S, W, T, ω, λ) ≤ SW T

ω

⌊
(S − 1)W T

ω − 1
· · ·

⌊
(S − λ)W T

ω − λ

⌋
· · ·

⌋
.

This proof is completed by noting that Φ(S, W, T, ω, λ) ≤ Θ(S, W, T, ω, λ)/T . 
�
In the upper bound in Theorem 2, if we remove all the floor operators, we obtain

|C| ≤ S(S − 1) · · · (S − λ)

ω(ω − 1) · · · (ω − λ)
W λ+1T λ, (2)

for all (S×W ×T, ω, λ)-AMOPPC. In view of the above inequality, an (S×W ×T, ω, λ)-
AMOPPC is said to be perfect if the number of codewords matches the upper bound in (2).
Likewise, an (S × W × T, λ)-SPPC is said to be perfect if it contains W λ+1T λ codewords.
Obviously, all perfect AMOPPC and SPPC are optimal. The (2×2×2, 1)-SPPC in Example
1 is an example of perfect SPPC.

The next theorem gives a characterization of perfect (S × W × T, ω, λ)-AMOPPC.

Theorem 3 Let C be an AMOPPC of weight ω on S spatial channels, W wavelengths, and
T time chips, and let B denote the collection of characteristic sets of the codewords in C.

Let λ be a positive integer strictly smaller than ω. Then the followings are equivalent.

(1) C is a perfect (S × W × T, ω, λ)-AMOPPC.
(2) For any λ + 1 distinct indices s1, s2, . . . , sλ+1 of spatial channels and any λ + 1 indices

ω1, ω2, . . . , ωλ+1 of wavelengths and any λ + 1 indices t1, t2, . . . , tλ+1 of time chips,
there exists exactly one pair (τ, B) ∈ ZT ×B such that σ (τ)(B) contains (si , wi , ti ) for
all i = 1, 2, . . . , λ + 1.

Proof For each B ∈ B, let Bσ denote the “closure” of B under the action of σ, i.e.,

Bσ :=
{
σ (τ)(B) : τ ∈ ZT

}
,

and let A be the union of all such closures of the blocks in B,

A :=
⋃

B∈B

Bσ .

Let Z be the collection of (λ+1)-subsets of V = ZS ×ZW ×ZT with distinct spatial channel
indices, i.e.,

Z := { {(si , wi , ti ) : i = 1, . . . , λ + 1} ⊂ V : s1, s2, . . . , sλ+1 are distinct
}
.

We note that |Z | = ( S
λ+1

)
W λ+1T λ+1.

(1 ⇒ 2) Suppose that C is a perfect (S × W × T, ω, λ)-AMOPPC. Since λ < ω, the sets
Bσ for B running over B are mutually disjoint and represent cyclically distinct codewords.
Hence, we have |A | = T |B| = T |C|. By Theorem 1, for each set S in Z , there exists at
most one block A ∈ A which contains S. Hence, the union

⋃

A∈A

{U : U ⊆ A, |U | = λ + 1}, (3)
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is a disjoint union, and is a sub-collection of Z with cardinality
(

ω
λ+1

)|A |. On the other hand,
the perfectness of C implies that

|A | =
( S
λ+1

)
(

ω
λ+1

) W λ+1T λ+1 = |Z |(
ω

λ+1

) .

The collection of sets in (3) is thus equal to Z , and this implies that each set in Z is contained
in a unique block in A .

(2 ⇒ 1) For any two distinct blocks B and B′ in B, we have |σ (τ)(B) ∩ B′| ≤ λ < ω

for all τ. The blocks in B represent cyclically distinct codewords, and the Hamming cross-
correlation of any two distinct codewords is less than or equal to λ by Theorem 1.

It remains to show that the 3-D AMOPPC C is perfect. Since the collection of sets A as
defined in (3) is a disjoint union and is equal to Z , we obtain

|C| = |A |
T

= |Z |
T

(
ω

λ+1

) =
( S
λ+1

)
W λ+1T λ

(
ω

λ+1

) .

Thus, C is a perfect (S × W × T, ω, λ)-AMOPPC. 
�
We will give another characterization of perfect AMOPPC with λ = 1 after reviewing

some definitions in GDDs and generalized Bhaskar Rao designs (GBRDs) in the next section.

3 Review of GDDs and GBRDs

Let v and λ positive integers, t an integer larger than or equal to 2, and K be a set of positive
integers. A group divisible t-design (GDD) of order v and block sizes from K is a triple
(V, G , A ), where V is a set consisting of v points, G is a partition of V into disjoint sets,
called groups, and A is a collection of subsets in V, called blocks, each of cardinality from
K, such that

(1) each block intersects any given group in at most one point, and
(2) any t distinct points from t distinct groups belong to exactly λ blocks in A .

We use the notation GDDt (K, λ, v) for a group divisible t-design. The type of the multiset
{|G| : G ∈ G } is usually written in an “exponential” notation 1i1 2i2 3i3 · · · , which means
that there are i j groups in G with size j, for j = 1, 2, 3, . . . When all blocks in a GDD
have the same size k, we write GDDt (k, λ, v) instead. If every block intersects every group,
a GDDt (k, λ, v) is called a transversal t-design, denoted by TDt (k, λ, v). When every
group is a singleton and t = 2, a GDDt (K, λ, v) is called a pairwise balanced design
(PBD). We use the notation PBD(K, λ, v) for PBD with block sizes in K. If all blocks in a
PBD(K, λ, v) have the same size k, we have a balanced incomplete block design, denoted
by BIBD(k, λ, v).

Example 2 Let V = {1, 2, 3, 4, 5} be the point set, G = {{1}, {2, 3}, {4, 5}} be the group
set, and let A be the collection

A = {{1, 2, 4}, {1, 3, 5}, {2, 5}, {3, 4}}.
Then (V, G , A ) is a GDD2({2, 3}, 1, 5) of type 1122.
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Optimal three-dimensional optical orthogonal codes of weight three 117

Example 3 The following is an example of PBD({3, 4}, 10) from [3, Example I.6.7]. The
point set V = {0, 1, . . . , 9} has cardinality 10. There are nine blocks of size 3 and three
blocks of size 4:

{1, 4, 9}, {1, 5, 8}, {1, 6, 7}, {2, 4, 7}, {2, 5, 9}, {2, 6, 8}, {3, 4, 8}, {3, 5, 7},
{3, 6, 9}, {0, 1, 2, 3}, {0, 4, 5, 6}, {0, 7, 8, 9}.

When all groups have the same size, the GDD is called uniform. A uniform GDD has type
ms if there are s groups of size m. The existence of uniform GDD of block size 3 was settled
completely by Hanani.

Theorem 4 [26] For S ≥ 3, a GDD2(3, 1, W S) of type W S exists if and only if

(1) (S − 1)W ≡ 0 mod 2, and
(2) S(S − 1)W ≡ 0 mod 3.

A proof of Theorem 4 can be found in [12, Theorem 3.4].
The next theorem on the existence of PBDs is due to Wilson.

Theorem 5 [42] PBD({3, 4, 5, 8}, v) exists for all v ≥ 3 except v = 6.

A proof of Theorem 5 can be found in [3, Proposition IX.4.2].
Next, we review the notion of GBRD. It is shown in [40] that GBRD is closely related to

2-D OOCs. In this paper, we will construct 3-D OOC from GBRD.
Let G be a finite abelian group, and let “∞” be a special symbol not in G. A GBRD [14],

denoted by (n, k, μ; G)-GBRD, is an n × b array with entries in G ∪ {∞}, such that

(1) each column contains exactly k entries in G, and
(2) for each pair of distinct rows (x1, x2, . . . , xb) and (y1, y2, . . . , yb), the list

xi − yi : i = 1, 2, . . . , b, xi �= ∞ �= yi ,

contains exactly μ/|G| copies of each element in G.

In general, GBRD is defined over a group which is not necessarily abelian. However, in this
paper we are only interested in the case when G is abelian. If we replace the special symbol
∞ by 0 and elements in G by 1, then we obtain the incidence matrix of a BIBD(k, μ, n),

with the rows indexed by the point set and the columns indexed by the blocks. A GBRD can
thus be regarded as signing the incidence matrix of a BIBD by elements in group G. A BRD
is a special case of GBRD when |G| = 2. When n = k and μ = |G|, the GBRD is also
known as an n × |G| difference matrix over G. It follows from the basic properties of BIBD
that the number of columns in a GBRD is equal to μ

n(n−1)
k(k−1)

, and each row contains exactly

μ n−1
k−1 non-special symbols.

Example 4 The following is a (4, 3, 6; Z6)-GBRD from [27, Lemma 1.2]

0 0 0 ∞ ∞ ∞ 1 3 5 3 4 5
0 1 2 0 0 0 ∞ ∞ ∞ 0 2 4
0 2 4 3 4 5 0 0 0 ∞ ∞ ∞
∞ ∞ ∞ 1 3 5 1 2 3 0 0 0

This is a 4 × 12 array, with the non-special entries drawn from Z6.

123



118 K. W. Shum

Example 5 For n = 3 and odd integer T ≥ 3, we have a difference matrix over ZT [19,
Lemma 2.2].

⎡

⎣
0 0 0 0 0 · · · 0 0
0 1 2 3 4 · · · T − 2 T − 1
0 2 4 6 8 · · · 2(T − 2) 2(T − 1)

⎤

⎦ .

This is a (3, 3, T ; ZT )-GBRD.

We will need the following existence results of (S, 3, |G|; G)-GBRD given in [25].

Theorem 6 [25] Let G be a finite abelian group. The necessary and sufficient conditions for
the existence of an (S, 3, |G|; G)-GBRD for S > 3 are

|G|(S − 1) ≡ 0 mod 2 (4)

|G|S(S − 1) ≡
{

0 mod 6 if |G| ≡ 1 mod 2,

0 mod 24 if |G| ≡ 0 mod 2.
(5)

When S = 3, (3, 3, |G|; G)-GBRD exists if the Sylow two-subgroup of G is either trivial
or non-cyclic.

(By the Sylow theorem, a finite abelian group G of order 2em, where m is not divisible
by 2, has a unique subgroup of order 2e [36, Corollary 4.38]. This subgroup of order 2e is
called the Sylow two-subgroup of G.)

Given positive integers k, μ, W and S, a GBRGDD [24] signed over a finite abelian group
G is an SW × b array, whose entries are either a group element in G or a special symbol ∞.

The rows of the array is partitioned into S batches, with each batch containing W consecutive
rows. A GBRGDD, denoted by (SW, k, μ; G)-GBRGDD of type W S, is defined as an
SW × b array satisfying the following conditions:

(1) each column contains exactly k entries in G,
(2) in each column, there is at most one non-special symbol in each batch,
(3) for each pair of distinct rows (x1, x2, . . . , xb) and (y1, y2, . . . , yb) in two different

batches, the list

xi − yi : i = 1, 2, . . . , b, xi �= ∞ �= yi ,

contains exactly μ/|G| copies of each element in G.

If we replace the special symbol ∞ in a GBRGDD by 0, and the elements in G by 1, then
what we obtain is the incidence matrix of a group divisible two-design. Hence, using the
properties of GDD, we see that there are b = μW 2 S(S−1)

k(k−1)
columns in a GBRGDD, and each

row contains exactly μW S−1
k−1 entries in G.

Example 6 The following is a (4, 2, 2; Z2)-GBRGDD of type 22.

0 0 0 0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 0 0 0 0
0 ∞ 1 ∞ 0 ∞ 1 ∞
∞ 0 ∞ 1 ∞ 0 ∞ 1

Rows 1 and 2 form the first batch, while rows 3 and 4 form the second batch. If we look at
rows 1 and 3, there are two columns, namely columns 1 and 3, which are both not equal to
the special symbol ∞, and the differences between the two pairs are precisely 0 and 1.
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4 Constructions of perfect 3-D AMOPPC with λ = 1

In this section, we focus on the construction of perfect 3-D AMOPPC with λ = 1. We first
give a characterization of perfect (S × W × T, ω, 1)-AMOPPC in terms of GBRGDD.

Theorem 7 The followings are equivalent:

(1) there exists a perfect (S × W × T, ω, 1)-AMOPPC,
(2) there exists an (SW, ω, T ; ZT )-GBRGDD of type W S .

Proof Suppose C is a perfect (S × W × T, ω, 1)-AMOPPC. By definition, there are
S(S−1)
ω(ω−1)

W 2T codewords in a perfect (S × W × T, ω, 1)-AMOPPC. We represent each
codeword by a column vector of length SW, and divide the column vector into S parts, each
of length W. For a codeword X with characteristic set

χ(X) = {(
s j , w j , t j

) : j = 1, 2, . . . , ω
}
,

the ith component of the corresponding vector, for i = 0, 1, . . . , SW − 1, is defined as
{

t if i = sW + w and (s, w, t) ∈ χ(X),

∞ otherwise.

Let M be the SW × S(S−1)
ω(ω−1)

W 2T matrix obtained by putting together all of the resulting
column vectors. It is clear that each column contains ω entries which are elements in ZT , and
in each column, there are at most one non-special symbol in rows ( j − 1)W to jW − 1, for
j = 1, 2, . . . , S. This shows that the first two defining properties of GBRGDD hold. The third
property can be proved by invoking Theorem 3. We have thus obtained an (SW, ω, T ; ZT )-
GBRGDD of type W S .

Conversely, from an (SW, ω, T ; ZT )-GBRGDD of type W S, we can construct a perfect
(S × W × T, ω, 1)-AMOPPC. The argument is similar to the previous paragraph, and is
omitted. 
�

The next definition facilitates the verification that a collection of codewords form an
AMOPPC with λ = 1. Let C be a set of S × W × T matrices of Hamming weight ω. For
s1, s2 ∈ ZS with s1 �= s2, w1, w2 ∈ ZW , and τ ∈ ZT , let

DC (s1, s2, w1, w2, τ ) := {X ∈ C : ∃t, (s1, w1, t) , (s2, w2, t ⊕ τ) ∈ χ(X)} .

When λ = 1, Theorems 1 and 3 can be re-formulated as follows.

Theorem 8 Suppose that S ≥ ω ≥ 2, W ≥ 1, T ≥ 1, and λ = 1. A set of codewords C is
an (S × W × T, ω, 1)-AMOPPC if and only if DC(s1, s2, w1, w2, τ ) is either empty or
a singleton for all s1, s2 ∈ ZS with s1 < s2, w1, w2 ∈ ZW , and τ ∈ ZT . Furthermore, if
DC(s1, s2, w1, w2, τ ) is a singleton for all s1, s2 ∈ ZS with s1 < s2, w1, w2 ∈ ZW , and
τ ∈ ZT , then C is a perfect (S × W × T, ω, 1)-AMOPPC.

By Theorem 8, we obtain the maximal number of codewords in an AMOPPC with Ham-
ming weight ω = 2.

Theorem 9 For S, W ≥ 2, we have Φ(S, W, T, 2, 1) = 1
2 S(S − 1)W 2T .
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Proof For each pair of (s1, s2) ∈ Z
2
S with s1 < s2, and each pair of (w1, w2) ∈ Z

2
W , and

each τ ∈ ZT , let

Bs1,s2,w1,w2,τ = {(s1, w1, 0) , (s2, w2, τ )} .

We treat Bs1, s2, w1, w2, τ as the characteristic set of a 3-D matrix of Hamming weight 2,
and let C be the collection of codewords whose characteristic sets are Bs1,s2,w1,w2,τ , for
(s1, s2) ∈ Z

2
S with s1 < s2, (w1, w2) ∈ Z

2
W , and τ ∈ ZT . The fact that this is a perfect

(S × W × T, 2, 1)-AMOPPC follows from Theorem 8. 
�
The next theorem gives a conversion from an (S, ω, W T ; ZW ⊕ZT )-GBRD to a perfect

(S × W × T, ω, 1)-AMOPPC.

Theorem 10 Let ZW ⊕ ZT denote the direct sum of ZW and ZT . If there exists an
(S, ω, W T ; ZW ⊕ ZT )-GBRD, then we can construct a perfect (S × W × T, ω, 1)-
AMOPPC.

A proof of Theorem 10 can be found in [2, Theorem 7]. For the sake of completeness, we
sketch the construction as follows. We denote each element in ZW ⊕ZT as a pair (w, t), and
let β : ZW ⊕ZT → ZW and γ : ZW ⊕ZT → ZT be the projection functions on the first and
second coordinates, respectively, i.e., for g = (w, t), we have β(g) = w and γ (g) = t. Let
M be an (S, ω, W T ; ZW ⊕ ZT )-GBRD. The array M has b = W T S(S − 1)/(ω(ω − 1))

columns. For the column of M indexed by j, where j ∈ {1, 2, . . . , b}, let the entries which
are not the special symbol “∞” be located at rows s j

i , for i = 1, 2, . . . , ω, and let the

contents of these ω entries be z j
i . For y ∈ ZW and j = 1, 2, . . . , b, let By, j be the set

By, j :=
{(

s j
i , β(z j

i ) + y, γ (z j
i )

)
: i = 1, 2, . . . , ω

}
, (6)

with the addition β(z j
i )+ y performed in ZW . The resulting blocks are the characteristic sets

of a perfect (S × W × T, ω, 1)-AMOPPC.

Example 7 We illustrate Theorem 10 by converting the example of (4, 3, 6; Z6)-GBRD in
Example 4 to a (4 × 2 × 3, 3, 1)-AMOPPC. We first write the GBRD over Z6 as a GBRD
over Z3 ⊕ Z2 by mapping g ∈ Z6 to (g mod 3, g mod 2). The first component is the index
for time chip and the second the index for wavelength. We write the second components as
subscripts. The resulting GBRD over Z2 ⊕ Z3 is

00 00 00 ∞ ∞ ∞ 11 01 21 01 10 21
00 11 20 00 00 00 ∞ ∞ ∞ 00 20 10
00 20 10 01 10 21 00 00 00 ∞ ∞ ∞
∞ ∞ ∞ 11 01 21 11 20 01 00 00 00

By the construction in Theorem 10, we have a perfect (4 × 2 × 3, 3, 1)-AMOPPC. The
codewords are shown in tabular form below.

00 01 00 01 00 01 11 10 01 00 21 22 01 00 10 11 21 20
00 01 11 10 20 21 00 01 00 01 00 01 00 01 20 21 10 11
00 01 20 21 10 11 01 00 10 11 21 22 00 01 00 01 00 01

11 10 01 00 21 20 11 10 20 21 01 00 00 01 00 01 00 01
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The next construction of 3-D AMOPPC is an adaptation of Wilson’s fundamental com-
position method for the construction of PBD [42]. Similar methods are used in [39, Constuc-
tion 15] for the construction of 2-D OOC and in [24, Theorem 5.2] for the construction of
GBRGDD.

Theorem 11 Let K be a set of positive integers. If there exists a GDD2(K, SW1) of type
W S

1 , and a (k × W2 × T, ω, 1)-AMOPPC for each k ∈ K, then there exists an (S ×
(W1W2) × T, ω, 1)-AMOPPC. Furthermore, if the (k × W2 × T, ω, 1)-AMOPPC used
in the construction is perfect for all k ∈ K, then the constructed (S × (W1W2) × T, ω, 1)-
AMOPPC is also perfect.

Proof Let the point set of the GDD2(K, SW1) be V1 = ZS × ZW1 , and the collection of
blocks be denoted by B. Each block in B is a k-set {(xi , yi ) : i = 0, 1, . . . , k − 1} in V1

for some k ∈ K, and the first coordinates si are distinct.
For each k ∈ K let Bk be the set of characteristic sets of a (k ×W2 ×T, ω, 1)-AMOPPC.

Let α be a bijective function from ZW1 × ZW2 to ZW1W2 . The function α can be chosen
arbitrarily, as long as it is bijective. For each block B = {(xi , yi ) : i = 0, 1, . . . , k − 1} of
size k in B, and for each characteristic set B′ = {(s j , w j , t j ) : j = 1, 2, . . . , ω} in Bk,

define

ϑ(B, B′) := {(
xs j , α

(
ys j , w j

)
, t j

) : j = 1, 2, . . . , ω
}
.

We can check by Theorem 8 that the collection of blocks ϑ(B, B′), for k ∈ K, B ∈ B of
size k and B′ ∈ Bk, induces an (S × (W1W2) × T, ω, 1)-AMOPPC, which is perfect if all
the constituent (k × W2 × T, ω, 1)-AMOPPCs are perfect. 
�

If the group size W1 in GDD2(SW1) of type W S
1 is equal to 1, then it reduces to a PBD

PBD(K, S). By taking the mapping α to be the natural bijective map from Z1 ×ZW2 to ZW2 ,

we have the following corollary.

Corollary 1 If there exists a PBD(K, S) and a perfect (k × W × T, ω, 1)-AMOPPC for
any k ∈ K, then there exists a perfect (S × W × T, ω, 1)-AMOPPC.

On the other hand, if W2 = 1 and k = ω, then a (k×1×T, ω, 1)-AMOPPC is equivalent
to an ω × T difference matrix over ZT . By taking α to be the natural bijective map from
ZW1 × Z1 to ZW1 , we have

Corollary 2 If there exists a GDD2(ω, W S) of type W S and an ω × T difference matrix
over ZT , then there exists a perfect (S × W × T, ω, 1)-AMOPPC.

Moreover, if we take a transversal design TD2(S, SW ) as the input GDD in Corollary 2,
then we recover the construction of 3-D SPPC in [30] when specialized to λ = 1.

Corollary 3 [30] If there exists a TD2(S, SW ) and an S × T difference matrix over ZT ,

then there exists a perfect (S × W × T, ω, 1)-SPPC.

Example 8 From a transversal design TD2(3, 6) (which can be obtained from a 2 × 2 Latin
square) and a 3 × 3 difference matrix, we can construct a perfect (3 × 2 × 3, 3, 1)-SPPC
by Corollary 3.

Example 9 Using the PBD({3, 4}, 10) in Example 2 and the two 3-D OOCs in Examples 7
and 8, we can construct a perfect (10 × 2 × 3, 3, 1)-AMOPPC by Corollary 1. Recall that
there are 24 codewords in the (4 × 2 × 3, 3, 1)-AMOPPC in Example 7 and 12 codewords
in the (3 × 2 × 3, 3, 1)-SPPC in Example 8. The (10 × 2 × 3, 3, 1)-AMOPPC by the
construction in Corollary 1 has 4 · 24 + 9 · 12 = 180 codewords. This matches the upper
bound 10·9

3·2 · 22 · 3 = 180 in (2).
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5 Perfect 3-D SPPC and AMOPPC of weight 3 and λ = 1

In this section we determine the necessary and sufficient conditions for the existence of
perfect 3-D SPPC and AMOPPC of weight 3 and λ = 1.

5.1 Existence of perfect (3 × W × T, 1)-SPPC

Theorem 12 For S = 3, a perfect (3 × W × T, 1)-SPPC exists if and only if either

(1) T is odd, or
(2) T is even and W is even.

We first show that the conditions in Theorem 12 are necessary.

Lemma 2 A perfect (3 × W × T, 1)-SPPC with even T exists only if W is even.

Proof The proof is based on an argument similar to that in [27, Lemma 3.2] or [22, Lemma
3.1]. Let B be the collection of characteristic sets of the codewords in a perfect (3 × W ×
T, 1)-SPPC. There are W 2T characteristic sets in B, and each of them is in the form
{(1, w1, t1), (2, w2, t2), (3, w3, t3)}. For i = 1, 2, 3, and B ∈ V, let fi (B) denote the
time index of the time slot associated with the optical pulse in spatial channel i, i.e., fi (B) = ti ,
for i = 1, 2, 3. For any two distinct s and s′ in Z3, consider the summation

�s,s′ :=
∑

B∈B

( fs(B) − fs′(B)) . (7)

By Theorem 3, the value of fs(B) − fs′(B) runs through the elements in ZT for a total of
W 2 times as B runs through B. The summation in (7) is thus equal to

W 2(0 + 1 + 2 + · · · + (T − 1)) mod T,

for all pairs of (s, s′) ∈ Z
2
S with s �= s′. With the use of the hypothesis that T is even, we can

make some re-arrangement of terms,

�s,s′ ≡ W 2(0 + 1 + 2 + · · · + (T − 2) + (T − 1))

≡ W 2(0 + [1 + (T − 1)] + [2 + (T − 2)] + · · · [(T/2 − 1) + (T/2 + 1)] + T/2)

≡ W 2(T/2) mod T .

On the other hand, we have �3,1 = �3,2 + �2,1 ≡ 0 mod T . Thus, W 2(T/2) ≡ 0 mod T .

This is possible only when W is even. 
�

Proof [of Theorem 12] For odd T, we can construct a perfect (3 × W × T, 1)-SPPC by
Corollary 3, using the 3 × T difference matrix over ZT in Example 5 and a TD2(3, 3W )

(obtained from a W × W Latin square for example). This proves the first part of the theorem.
For the second part, suppose that both T and W are even. Since the Sylow two-subgroup

of ZW ⊕ ZT is non-cyclic, we can construct a (3, 3, W T ; ZW ⊕ ZT )-GBRD by Theorem
6. This yields a perfect (3 × W × T, 1)-SPPC by Theorem 10. 
�

We note that the 3-D SPPC in Example 8 has odd T, while the 3-D SPPC in Example 7
has even T and even W.
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5.2 Existence of perfect (S × W × T, 3, 1)-AMOPPC

The necessary and sufficient conditions for the existence of an (S × W × T )-AMOPPC are
listed in the next theorem.

Theorem 13 Let S > 3. A perfect (S × W × T, 3, 1)-AMOPPC exists if and only if the
following three conditions hold simultaneously:

(S − 1)W T ≡ 0 mod 2, (8)

S(S − 1)W T ≡ 0 mod 3, and (9)

S ≡ 0, 1 mod 4 when T ≡ 2 mod 4 and W ≡ 1 mod 2. (10)

By Theorem 7, the conditions in Theorem 13 are necessary and sufficient conditions for
the existence of an (SW, 3, T ; ZT )-GBRGDD of type W S .

Lemma 3 If a perfect (S × W × T, 3, 1)-AMOPPC exists for S > 3, then the three
conditions in Theorem 13 are necessary.

Proof Recall that the number of codewords in a general (S × W × T, ω, 1)-AMOPPC is
upper bounded by

⌊
SW

ω

⌊
(S − 1)W T

ω − 1

⌋⌋
.

Suppose that C is a perfect (S × W × T, 3, 1)-AMOPPC with S > 3. Because C has
S(S − 1)W 2T/6 codewords by the definition of perfectness, we have

S(S − 1)

6
W 2T ≤

⌊
SW

3

⌊
(S − 1)W T

2

⌋⌋
.

This is possible only if

(S − 1)W T is divisible by 2,

and

S(S − 1)

2
W 2T is divisible by 3.

The first condition is exactly the same as (8), and since three is prime, the second condition
is equivalent to (9). This proves that (8) and (9) are necessary.

The proof of the necessity of (10) is similar to [27, Lemma 3.1]. Let B be the collection of
characteristic sets of C. For each characteristic set we sort the indices of the spatial channels
in ascending order, i.e., B = {(s1, w1, t1), (s2, w2, t2), (s3, w3, t3)} with s1 < s2 < s3,

and let g1(B) = t1, g2(B) = t2 and g3(B) = t3. Let

�i, j :=
∑

B∈B

(
gi (B) − g j (B)

)
,

where i and j are distinct integers between 1 and 3. For any two distinct indices of spatial
channels s1, s2 ∈ ZS, two (not necessarily distinct) indices of wavelength w1, w2 ∈ ZW ,

and τ ∈ ZT , by Theorem 8, there is a unique block B in B which contains (s1, w1, t) and
(s2, w2, t ⊕ τ) for some t ∈ ZT . Using the argument as in Lemma 2, we get

�2,1+�3,2+�3,1 ≡ S(S − 1)

2
W 2(0+1+2+· · · + T − 1) ≡ S(S − 1)

2
W 2(T/2) mod T .
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We note that T is even and

�2,1 + �3,2 + �3,1 =
∑

B∈B

(2 f3(B) − 2 f1(B)) = 2�3,1,

is also even. This implies that S(S−1)
2 W 2 T

2 is an even integer. By the hypothesis that W and
T/2 are odd integers, the value of S(S−1)/2 must be divisible by 2. Therefore, S is congruent
to either 0 or 1 mod 4. 
�
Proof [of Theorem 13] From the three conditions (8)–(10), we deduce that one of the fol-
lowing holds:

(1) T ≡ 0 mod 12,

(2) T ≡ 6 mod 12

(a) W ≡ 0 mod 2,

(b) W ≡ 1 mod 2 and S ≡ 0, 1 mod 4,

(3) T ≡ ±4 mod 12

(a) W ≡ 0 mod 3,

(b) W ≡ ±1 mod 3 and S ≡ 0, 1 mod 3,

(4) T ≡ ±2 mod 12

(a) W ≡ 0 mod 6,

(b) W ≡ 3 mod 6 and S ≡ 0, 1 mod 4,

(c) W ≡ ±2 mod 6 and S ≡ 0, 1 mod 3,

(d) W ≡ ±1 mod 6 and S ≡ 0, 1, 4, 9 mod 12,

(5) T ≡ ±3 mod 12

(a) W ≡ 0 mod 2,

(b) W ≡ 1 mod 2 and S ≡ 1 mod 2,

(6) T ≡ ±1,±5 mod 12

(a) W ≡ 0 mod 6,

(b) W ≡ 3 mod 6 and S ≡ 1 mod 2,

(c) W ≡ ±2 mod 6 and S ≡ 0, 1 mod 3,

(d) W ≡ ±1 mod 6 and S ≡ 1, 3 mod 6.

To prove Theorem 13, it suffices to show that we can construct a perfect (S×W ×T, 3, 1)-
AMOPPC for each of the above cases. We first consider case 1. In this case, T is divisible
by 12, and hence it is divisible by 2. Since S(S − 1) is even, T S(S − 1) is divisible by 24.
Hence for all W, the conditions in (4) and (5) are satisfied with |G| = W T . By Theorem 6,
we have an (S, 3, W T ; ZW ⊕ ZT )-GBRD. The required 3-D AMOPPC can be constructed
by Theorem 10.

For all the above cases except 5a, 6a and c, the existence is established likewise by first
verifying the conditions in (4) and (5), and then invoking Theorems 6 and 10. We omit the
details of the calculations. In the remaining of this proof, we only consider the existence
proof in cases 5a, 6a and c.

Case 5a. Let T ≡ ±3 mod 12 and W be even. There exists an (S, 3, W T ; ZW ⊕ ZT )-
GBRD for S ∈ {4, 5, 8} by Theorem 6, because WT is even and W T S(S −1) is divisible by
24. This GBRD induces a perfect (S × W × T, 3, 1)-AMOPPC by Theorem 10. Since T is
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odd in this case, by Theorem 12, we can construct a perfect (3 × W × T, 1)-SPPC. Hence
we can construct a perfect (S × W × T, 3, 1)-AMOPPC for S ∈ {3, 4, 5, 8}. On the other
hand, by Theorem 5, there exists a PBD({3, 4, 5, 8}, S) for all S ≥ 3 except S = 6. By the
construction in Corollary 1, we have a perfect (S × W × T, 3, 1)-AMOPPC for all S ≥ 3
except S = 6.

We next apply Corollary 2 to prove the existence of perfect 3-D AMOPPC in the excep-
tional case S = 6. When W is even and S = 6, the two conditions in Theorem 4 are satisfied.
We thus obtain a GDD2(3, 6W ) of type W 6 by Theorem 4, and a 3 × T difference matrix
over ZT . By Corollary 2, we have a perfect (6 × W × T, 3, 1)-AMOPPC.

Cases 6a and c Suppose T ≡ ±1, ±5 mod 12. If W ≡ 0 mod 6, we can apply Theorem 4
and obain a GDD2(3, W S) of type W S . If W ≡ ±2 mod 6 and S ≡ 0, 1 mod 3, we also have
a GDD2(3, W S) of type W S by Theorem 4. After combining with a 3×T difference matrix as
in Example 5, which exists because T is odd, we have a perfect (S×W ×T, 3, 1)-AMOPPC
by Corollary 2.

This completes the proof of Theorem 13. 
�
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