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Abstract This paper is devoted to the study of self-dual codes arising from constacyclic
codes. Necessary and sufficient conditions are given for the existence of Hermitian self-
dual constacyclic codes over Fq2 of length n. As an application of these necessary and
sufficient conditions, some conditions under which MDS Hermitian self-orthogonal and
self-dual constacyclic codes exist are obtained.
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1 Introduction

Let q be a prime power and Fq be the finite field with q elements. An [n, k] linear
code C of length n over Fq is a k-dimensional subspace of the vector space F

n
q . We

call c = (c0, c1, . . . , cn−1) ∈ C a codeword. The Hamming weight w(c) of c ∈ F
n
q

is the number of nonzero coordinates of c. The minimum distance of C is defined to be
d = min {w(c) | 0 �= c ∈ C}. An [n, k, d] code, which is defined to be an [n, k] code with
the minimum distance d , is said to be maximum distance separable (MDS) if d = n − k + 1.
The Euclidean dual code of C is defined to be C⊥ = {x ∈ F

n
q | ∑n−1

i=0 xi yi = 0,∀y ∈ C}.
A code C is Euclidean self-orthogonal provided C ⊆ C⊥ and Euclidean self-dual pro-
vided C = C⊥. Let (x, y)H = ∑n−1

i=0 xi yq
i be the Hermitian inner product of x, y ∈ F

n
q ,

and C be a code of length n over Fq2 . The Hermitian dual code C⊥H of C is defined

by C⊥H = {x ∈ F
n
q2 | ∑n−1

i=0 xi yq
i = 0,∀y ∈ C}. Hermitian self-orthogonality and
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356 Y. Yang, W. Cai

Hermitian self-duality are defined as follows: C is Hermitian self-orthogonal if C ⊆ C⊥H

and Hermitian self-dual if C = C⊥H .
Let α ∈ F

∗
q . A linear code C is called α-constacyclic [2] provided that for each codeword

(c0, c1, . . . , cn−1) in C, (αcn−1, c0, . . . , cn−2) is also a codeword in C . An α-constacyclic
code of length n over Fq corresponds to the principal ideal 〈g(x)〉 of the quotient ring
Fq [x]/(xn −α), where g(x) is a divisor of xn −α. Since the cases when the code length n is
divisible by the characteristic of Fq are cases involving repeated root codes, for the remainder
of this paper we assume n and q are relatively prime. Because the code length n must be even
if there exist Euclidean or Hermitian self-dual codes, we assume q is an odd prime power.

Self-dual codes are an important class of codes which have been extensively studied in
coding theory. This paper is mainly concerned with self-dual codes that are constacyclic
codes. In recent years, many papers, for example [3,5,6,9], have been written on this subject.
Aydin et al. [1] dealt with constacyclic codes and a constacyclic BCH bound was given. In
2008, Gulliver et al. [6] showed that there exists a Euclidean self-dual MDS code of length
q over Fq when q = 2m by using a Reed-Solomon (RS) code and its extension. They also
constructed many new Euclidean and Hermitian self-dual MDS codes over finite fields. In
the same year, Blackford [3] studied negacyclic codes over finite fields by using multipliers.
He gave conditions on the existence of Euclidean self-dual codes. Recently, Guenda [5]
generalized Blackford’s work [3]. She constructed MDS Euclidean and Hermitian self-dual
codes from extended cyclic duadic or negacyclic codes and gave necessary and sufficient
conditions on the existence of Hermitian self-dual negacyclic codes arising from negacyclic
codes. In this paper, we extend Guenda’s work to constacyclic codes and study the existence
of Hermitian self-dual codes. We give conditions on the existence of MDS Hermitian self-
orthogonal and self-dual codes.

2 Preliminaries

Throughout this paper, let q be an odd prime power and n be a positive integer relatively
prime to q . Let C be an [n, k]α-constacyclic code over Fq ; then the code C is a vector space
over Fq and corresponds to an ideal of Fq [x]/(xn − α). By abuse of notation, we let C
represent both a set of polynomials and a set of vectors.

As mentioned above, a nonzero [n, k]α-constacyclic code C has a unique monic generator
polynomial g(x) of degree n − k, where g(x) | (xn − α). The roots of the code C are the
roots of g(x). So if η1, . . . , ηn−k are the zeros of g(x) in the splitting field of xn − α, then
c = (c0, c1, . . . , cn−1) ∈ C if and only if c(η1) = · · · = c(ηn−k) = 0, where c(x) =
c0 + c1x +· · ·+ cn−1xn−1. Let h(x) = (xn −α)/g(x) = ∑k

i=0 hi xi , then h(x) is called the
check polynomial of C [7,10].

Let C (q) denote the code defined by C (q) = {cq | ∀c = (c0, c1, . . . , cn−1) ∈ C}, where
cq = (c0, c1, . . . , cn−1)

q = (cq
0 , cq

1 , . . . , cq
n−1).

Lemma 2.1 ([4, Proposition 2.4]) (i) Let C be an α-constacyclic code over Fq , then
the Euclidean dual code C⊥ is an α−1-constacyclic code generated by g⊥(x) =∑k

i=0 hi h
−1
0 xk−i .

(ii) Let C be an α-constacyclic code over Fq2 , then the Hermitian dual code C⊥H is an

α−q -constacyclic code generated by g⊥(q)(x) = ∑k
i=0 hq

i h−q
0 xk−i .

Proof (i) The proof can be found in [4, Proposition 2.4].
(ii) g⊥(x) is the generator polynomial of C⊥. Let C∗ denote the code generated by

g⊥(q)(x) = ∑k
i=0 hq

i h−q
0 xk−i and ξ1, . . . , ξk be the zeros of g⊥(x), then ξ

q
1 , . . . , ξ

q
k are the
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On self-dual constacyclic codes over finite fields 357

zeros of g⊥(q)(x). Thus if c = (c0, c1, . . . , cn−1) is a codeword in C , then we have c0+c1ξi +
· · · + cn−1ξ

n−1
i = 0 (i = 1, . . . , k). It is obvious that cq

0 + cq
1ξ

q
i + · · · + cq

n−1

(
ξ

q
i

)n−1 = 0
(i = 1, . . . , k). This implies that

(
cq

0 , cq
1 , . . . , cq

n−1

)
is a codeword in C∗. So C⊥H ⊂ C∗.

Because dim C⊥H = dim C∗ = n − k, we get C∗ = C⊥H .
Since C⊥ is an α−1-constacyclic code generated by g⊥(x), we have

ξn
i = α−1 �⇒ (

ξ
q
i

)n = (
αq)−1

(i = 1, . . . , k).

So ξ
q
1 , . . . , ξ

q
k are roots of xn − α−q , which implies g⊥(q)(x) is a divisor of xn − α−q .

Therefore, the Hermitian dual code C⊥H is an α−q -constacyclic code. �
Let r = ordq(α) (i.e., the smallest integer r such that αr = 1) and the multiplicative

order of q modulo rn be m [i.e., the smallest integer m such that qm ≡ 1 (mod rn)]. There
exists δ ∈ F

∗
qm , called a primitive rnth root of unity, such that δn = α. Let ζ = δr , then ζ

is a primitive nth root of unity. Therefore, the roots of xn − α are {δ, δ1+r , . . . , δ1+(n−1)r }
and the roots of xn − α−1 are {δ−1, δ−1+r , . . . , δ−1+(n−1)r }. Define Or,n(1) and Or,n(−1)

as follows:

Or,n(1) = {ir + 1 | 0 ≤ i ≤ n − 1} (mod rn) ⊆ Zrn ;

Or,n(−1) = {ir − 1 | 0 ≤ i ≤ n − 1} (mod rn) ⊆ Zrn .

The defining set of the α-constacyclic code C is defined as T = {ir + 1 ∈ Or,n(1) | δir+1

is a root of C}. It is clear that T ⊂ Or,n(1) and the dimension of C is n − |T |. Let Clq(s) be
the q-cyclotomic coset modulo rn which contains s, i.e. Clq(s) = {sq j (mod rn) | j ∈ Z}.
Assume the generator polynomial of C is g(x) = ∑k

i=0 gi xi , where gi ∈ Fq . If g(ν) = 0
for some ν ∈ Fqm , then

g(νq) =
k∑

i=0

gi
(
νq)i =

k∑

i=0

gq
i

(
νi )q =

(
k∑

i=0

giν
i

)q

= (g(ν))q = 0.

Therefore, the defining set T is a union of some q-cyclotomic cosets modulo rn and a union
of some q-cyclotomic cosets modulo rn is also the defining set of some α-constacyclic code.

Proposition 2.2 There exists a Euclidean self-dual α-constacyclic code over Fq if and only
if r = 2.

Proof By Lemma 2.1, the Euclidean dual code of an α-constacyclic code is an α−1-
constacyclic code. To prove that if there is a Euclidean self-dual α-constacyclic code, we
need to verify α2 = 1. This indicates that either r = 1 or r = 2. If r = 1, then α = 1. It has
been proved by Jian et al. [8, Theorem 1] that there exists at least one self-dual cyclic code
if and only if q is a power of 2. Since q is odd, this leads to the unique solution r = 2.

If r = 2, then α = −1. Guenda [5] has proved that there exist Euclidean self-dual
negacyclic codes over Fq (i.e. for r = 2 there exists a Euclidean self-dual α-constacyclic
code over Fq ). �
Proposition 2.3 Let α ∈ F

∗
q2 , r = ordq2(α), and C be an α-constacyclic code over Fq2 . If

C is a Hermitian self-dual code, then r | q + 1.

Proof If the α-constacyclic code C is a Hermitian self-dual code, then C = C⊥H . By Lemma
2.1, the Hermitian dual code C⊥H is an α−q -constacyclic code. Hence, we have

C = C⊥H �⇒ α = α−q �⇒ αq+1 = 1.

Since r = ordq(α), we obtain r | q + 1. �
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3 Hermitian self-dual constacyclic codes over Fq2

This section is devoted to the Hermitian self-dual α-constacyclic codes over Fq2 , where
α ∈ F

∗
q2 . Let r = ordq2(α), then r | q2 − 1. By Proposition 2.3, we can further assume

r | q + 1 and rs = q + 1 for some integer s. Note that if T ⊂ Or,n(1) is a union of some
q2-cyclotomic cosets, CT is an α-constacyclic code over Fq2 with the defining set T .

Lemma 3.1 −q Or,n(1) = Or,n(1) (mod rn).

Proof Since q + 1 = rs, for ir + 1 ∈ Or,n(1), we have

−q(ir + 1)=−qir − (q+1)+1=−qir − rs+1=(−qi − s)r +1 (mod rn) ∈ Or,n(1).

By this, we have −q Or,n(1) = Or,n(1) (mod rn). �
Let T ⊥ = − [

Or,n(1)\T
] ⊂ Or,n(−1) be the defining set of code CT ⊥ . Then

xn − α =
∏

i∈Or,n(1)

(x − δi ) =
∏

i∈T

(x − δi ) ·
∏

i∈T ⊥
(x − δ−i ) = g(x)h(x),

where g(x) is the generator polynomial of CT . By Lemma 2.1, g⊥(x) = ∏

i∈T ⊥
(x − δi ).

Therefore, T ⊥ is the defining set of the α−1-constacyclic code C⊥
T (i.e. the Euclidean dual

code of CT ). Thus we have CT ⊥ = C⊥
T .

Let T̄ = −q
[
Or,n(1)\T

] = qT ⊥. According to Lemma 3.1, T̄ ⊂ Or,n(1). It is clear
that T̄ is a union of some q2-cyclotomic cosets and |T | + ∣

∣T̄
∣
∣ = n. Similarly, g⊥(q)(x) =

∏

i∈T ⊥
(x − δiq). Therefore, T̄ is the defining set of the α−q -constacyclic code C⊥H

T . Thus we

have the following theorem.

Theorem 3.2 CT̄ is the Hermitian dual code of CT .

Based on Theorem 3.2, two necessary and sufficient conditions are given as follows:

Corollary 3.3 Let T ⊂ Or,n(1) be the defining set of code CT and let T̄ = −q
[
Or,n(1)\T

]
.

Then

(i) CT is a Hermitian self-orthogonal constacyclic code if and only if T̄ ⊂ T ;
(ii) CT is a Hermitian self-dual constacyclic code if and only if T̄ = T .

Example 3.4 Let q = 5, n = 4, and r = 2, then q2 = 25. Consider the α-constacyclic code
of length 4 over F25 with α = −1.

We notice that r | q + 1 and O2,4(1) = {1, 3, 5, 7}. Let T = {3, 5}, then T̄ =
−5

[
O2,4(1)\T

] = {3, 5} (mod 8). By Corollary 3.3, the code CT with defining set
T = {3, 5} is a Hermitian self-dual negacyclic code.

Example 3.5 Let q2 = 312, n = 16, and r = 4. Now we consider the α-constacyclic code
of length 16 over F312 with α a primitive 4th root of unity.

Clearly, O4,16(1) = {1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61} and r | q+
1. Let T = {33, 37, 41, 45, 49, 53, 57, 61}, then

T̄ = −31
[
O4,16(1)\T

] = {33, 37, 41, 45, 49, 53, 57, 61} (mod 64).

Hence, T̄ = T . By Corollary 3.3, CT is a Hermitian self-dual α-constacyclic code.

123



On self-dual constacyclic codes over finite fields 359

Lemma 3.6 Let n be an odd integer with n | q + 1, then there exists an integer m such that

n | q2m+1+1
q+1 and n | 2m + 1.

Proof

q2m+1 + 1

q + 1
=

2m∑

j=0

(−1) j q j =
2m∑

i=0

2m∑

j=i

( j
i

)
(q + 1)i (−1)i

=
2m∑

i=0

(q + 1)i (−1)i
2m∑

j=i

( j
i

) =
2m∑

i=0

(q + 1)i (−1)i (2m+1
i+1

)

=
(

2m∑

i=1

(q + 1)i−1(−1)i (2m+1
i+1

)
)

(q + 1) + (2m + 1).

We can choose an integer m such that n | 2m + 1, which further implies that n | q2m+1+1
q+1 .

�
Lemma 3.7 Let n be an odd integer with prime decomposition n = pt1

1 pt2
2 · · · pts

s , where pi

are such that pi | q + 1, pi �= p j , ti > 0 (1 ≤ i ≤ s). Then there exists an integer m such

that n | q2m+1+1
q+1 .

Proof First, let n1 = pt1
1

. We use induction to prove that there exists mt such that n1 |
q2mt +1+1

q+1 and p1 | 2mt + 1.

When t1 = 1, by Lemma 3.6, there exists m1 such that p1 | q2m1+1+1
q+1 and p1 | 2m1 + 1.

When t1 ≥ 2, assume there exists mt−1 such that pt1−1
1 | q2mt−1+1+1

q+1 and p1 | 2mt−1 + 1.
Then by the proof of Lemma 3.6, we know

q(2mt−1+1)(2mt−1+1) + 1

q + 1
= q2mt−1+1 + 1

q + 1

(
q2mt−1+1

)2mt−1+1 + 1

q2mt−1+1 + 1

= q2mt−1+1 + 1

q + 1

⎡

⎣

⎛

⎝
2mt−1∑

i=1

(q2mt−1+1 + 1)i−1(−1)i (2mt−1+1
i+1

)
⎞

⎠

(q2mt−1+1 + 1) + (2mt−1 + 1)

⎤

⎦ .

According to the assumption, we have

p1 |
⎡

⎣

⎛

⎝
2mt−1∑

i=1

(q2mt−1+1 + 1)i−1(−1)i (2mt−1+1
i+1

)
⎞

⎠ (q2mt−1+1 + 1) + (2mt−1 + 1)

⎤

⎦

and pt1−1
1 | q2mt−1+1+1

q+1 , thus pt1
1

| q(2mt−1+1)(2mt−1+1)+1
q+1 . Let 2mt + 1 = (2mt−1 + 1)2. It

follows that pt1
1

| q2mt +1+1
q+1 and p1 | 2mt + 1.

Next, we prove there exists some m such that n | q2m+1+1
q+1 .

Let ni = pti
i for 1 ≤ i ≤ s. The case s = 1 has been proven above. Similarly, there exists

m
′
s such that ns | q2m

′
s +1+1

q+1 . Let n′ = n1n2 · · · ns−1. We assume that there exists m′ such that
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n′ | q2m′+1+1
q+1 . Let 2m + 1 = (2m′ + 1)(2m

′
s + 1). Then

q2m+1 + 1

q + 1
= q(2m′+1)(2m

′
s+1) + 1

q + 1

= q2m
′+1 + 1

q + 1

⎡

⎢
⎣

⎛

⎜
⎝

2m
′
s∑

i=1

(q2m
′
s+1 + 1)i−1(−1)i (2m

′
s+1

i+1

)

⎞

⎟
⎠

(q2m
′
s+1 + 1) + (2m

′
s + 1)

⎤

⎥
⎦.

Because n
′ | q2m

′ +1+1
q+1 , we have n

′ | q2m+1+1
q+1 . Similarly, we have ns | q2m+1+1

q+1 . Since

(n′, ns) = 1, we obtain n′ns | q2m+1+1
q+1 , i.e., n | q2m+1+1

q+1 . �
Proposition 3.8 Hermitian self-dual α-constacyclic codes over Fq2 of length n exist if and
only if Clq2( j) �= Clq2(−q j) for any j ∈ Or,n(1).

Proof Assume the q2-cyclotomic cosets of Or,n(1) are

Clq2( j1), Clq2( j2), . . . , Clq2( jt )

denoted simply by Cl1, Cl2, . . . , Clt for convenience. By Lemma 3.1, −qCli , i ∈
{1, 2, . . . , t}, is also a q2-cyclotomic coset of Or,n(1). Let Clī = −qCli and σ be a permuta-
tion of {1, 2, . . . , t} which satisfies σ(i) = ī for any i ∈ {1, 2, . . . , t}. Because q2Cli = Cli
for any i ∈ {1, 2, . . . , t}, we obtain Clσ(ī) = Clσ 2(i) = Cli . This implies σ 2(i) = i , i.e., σ 2

is the identity permutation of {1, 2, . . . , t}.
Now we prove necessity. Assume there exists a Hermitian self-dual code CT with defining

set T ⊂ Or,n(1). Then by Corollary 3.3, T̄ = −q[Or,n(1)\T ] = T . Therefore, if there exists
j such that Clq2( j) = Clq2(−q j), we will have the following two cases.

Case 1: If j ∈ T , then −q j ∈ T . By the fact that T̄ = −q[Or,n(1)\T ] = T , there exists
some i /∈ T such that −qi = j . Thus q2i = −q j /∈ T . This is a contradiction.

Case 2: If j /∈ T , by the fact that T̄ = −q[Or,n(1)\T ] = T , we have −q j ∈ T . Because
Clq2( j) = Clq2(−q j) ⊂ T , we have j ∈ T which contradicts the assumption.

Next, we prove the sufficiency. We assume Clq2( j) �= Clq2(−q j) for any j ∈ Or,n(1).
This implies σ(i) �= i for any i ∈ {1, 2, . . . , t}. Since σ 2(i) = i, σ must be a product of
mutually disjoint transpositions like (a1 b1)(a2 b2) · · · (ak bk). We might assume t = 2k and
let σ(i) = k + i and σ(k + i) = i for 1 ≤ i ≤ k. If we let T = Cl1 ∪Cl2 ∪· · ·∪Clk , then the
code CT with defining set T is a Hermitian self-dual code. Therefore, if Clq2( j) �= Clq2(−q j)
for ∀ j ∈ Or,n(1), there exist Hermitian self-dual codes. �

Based on this proposition, we have the following theorem. This theorem is an extension
of Theorem 3 in [3] (the case of b = 1 and r ′ = 1).

Theorem 3.9 Let n = 2an′ (a > 0) and r = 2br ′ be integers such that 2 � n′ and 2 � r ′. Let
q be an odd prime power such that (n, q) = 1 and r | q + 1, and let α ∈ F

∗
q2 has order r .

Then Hermitian self-dual α -constacyclic codes over Fq2 of length n exist if and only if b > 0
and q + 1 �≡ 0 (mod 2a+b).
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Proof n′ can be written as n′ = r t1
1 · · · r

t j
j r

t j+1
j+1 · · · r ts

s , where r1, . . . , rs are distinct primes,

r1, . . . , r j | r , and r j+1, . . . , rs � r . Assume n1 = r t1
1 · · · r

t j
j , n2 = r

t j+1
j+1 · · · r ts

s , and n′ =
n1n2. Since r j+1, . . . , rs � r , it follows (n2, r) = 1. Because r1, . . . , r j | r , we know

r1, . . . , r j | q + 1. By Lemma 3.7, there exists m such that n1 | q2m+1+1
q+1 .

The proof consists of two parts. First we prove the necessity. If r is odd, which is equivalent
to b = 0, clearly, we have (r, 2an2) = 1. There exists i ∈ Z such that 2an2 | ir + 1. Thus by

n1 | q2m+1+1
q+1 , we have

(q + 1)2an1n2 | (q2m+1 + 1)(ir + 1) �⇒ (q + 1)n | (q2m+1 + 1)(ir + 1)

�⇒ rn | (q2m+1 + 1)(ir + 1).

Therefore, ir +1 = q2m(−q(ir +1)) (mod rn). This implies Clq2(ir +1) = Clq2(−q(ir +
1)). Since ir+1 ∈ Or,n(1), by Proposition 3.8, there is no Hermitian self-dual α -constacyclic
code over Fq2 , which contradicts the assumption. Therefore, r must be even, i.e., b > 0.

Let q + 1 = 2cr t with c ≥ 0 and (t, 2) = 1. If q + 1 ≡ 0 (mod 2a+b), then c ≥ a.

Because (n2, r) = 1, there exists i ′ ∈ Z such that n2 | i ′r + 1. Since n1 | q2m+1+1
q+1 , we have

(q + 1)n1n2 | (q2m+1 + 1)(i ′r + 1) �⇒ 2cr tn1n2 | (q2m+1 + 1)(i ′r + 1)

�⇒ rn | (q2m+1 + 1)(i ′r + 1).

Similarly, we have Clq2(i ′r + 1) = Clq2(−q(i ′r + 1)). By Proposition 3.8, we get a contra-
diction. So it is necessary to have q + 1 �≡ 0 (mod 2a+b).

Now we prove the sufficiency. Assume b > 0 and q + 1 �≡ 0 (mod 2a+b). If there is
no Hermitian self-dual code, by Proposition 3.8, there exists ir + 1 ∈ Or,n(1) such that
Clq2(ir + 1) = Clq2(−q(ir + 1)). Therefore, for some m ∈ Z

+,

rn | (q2m+1 + 1)(ir + 1) �⇒ 2a+br ′n′ | q2m+1 + 1

q + 1
(q + 1)(ir + 1).

Since b > 0, ir+1 must be odd. Together with the fact that q2m+1+1
q+1 is odd, we get 2a+b | q+1,

which contradicts the assumption that q + 1 �≡ 0 (mod 2a+b). �

4 MDS hermitian self-dual constacyclic codes over Fq2

We study MDS Hermitian self-dual constacyclic codes over Fq2 in this section. The following
theorem will give the BCH bound for constacyclic codes (cf. [1, Theorem 2.2]).

Theorem 4.1 Let C be an α-constacyclic code of length n over Fq2 . Let r = ordq2(α). Let δ

be a primitive rnth root of unity in an extension field of Fq2 such that δn = α, and let ζ = δr .

Assume the generator polynomial of C has roots that include the set {δζ i | i1 ≤ i ≤ i1+d−1}.
Then the minimum distance of C ≥ d.

Example 4.2 Let q2 = 172, n = 8 and r = 18. We consider the α-constacyclic code of
length 8 over F172 with α a primitive 18th root of unity.

Obviously, we have O18,8(1) = {1, 19, 37, 55, 73, 91, 109, 127} and r | q + 1. Let T =
{73, 91, 109, 127}, then T̄ = −17

[
O18,8(1)\T

] = {73, 91, 109, 127} (mod 144). Thus
T̄ = T . By Corollary 3.3, CT is a Hermitian self-dual α-constacyclic code.
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Table 1 [n, k, d] Hermitian self-dual codes over Fq2 (where q ≤ 19)

q r n k d T q r n k d T

5 2 4 2 3 {3, 5} 17 6 8 4 5 {19, 25, 31, 37}
5 6 4 2 3 {1, 7} 17 18 8 4 5 {1, 19, 37, 55}
7 4 4 2 3 {1, 5} 17 2 10 5 �4 {1, 9, 13, 15, 17}
7 8 4 2 �2 {1, 17} 17 6 10 5 �4 {1, 19, 25, 31, 49}
7 8 6 3 4 {1, 9, 17} 17 18 10 5 �4 {1, 37, 55, 73, 109}
9 2 4 2 3 {1, 3} 17 2 12 6 �5 {1, 3, 11, 13, 15, 17}
9 10 4 2 3 {1, 11} 17 6 12 6 �5 {1, 7, 13, 19, 31, 43}
9 2 8 4 5 {5, 7, 9, 11} 17 18 12 6 �3 {1, 19, 73, 91, 145, 163}
9 10 8 4 5 {1, 11, 21, 31} 17 2 14 7 �5 {5, 7, 11, 13, 15, 17, 23}
11 2 4 2 3 {1, 3} 17 6 14 7 �5 {1, 7, 19, 25, 31, 37, 55}
11 4 4 2 �2 {1, 9} 17 18 14 7 �5 {1, 19, 37, 55, 91, 109, 199}
11 6 4 2 3 {1, 7} 17 2 16 8 9 {9, 11, 13, 15, 17, 19, 21, 23}
11 12 4 2 �2 {1, 25} 17 6 16 8 9 {43, 49, 55, 61, 67, 73, 79, 85}
11 4 6 3 4 {1, 5, 9} 17 18 16 8 9 {1, 19, 37, 55, 73, 91, 109, 127}
11 12 4 2 �2 {1, 25, 49} 19 2 4 2 3 {1, 3}
11 2 8 4 �3 {1, 3, 9, 11} 19 4 4 2 �2 {1, 9}
11 4 8 4 �2 {1, 9, 17, 25} 19 10 4 2 3 {1, 11}
11 6 8 4 �3 {1, 7, 25, 31} 19 20 4 2 �2 {1, 41}
11 12 8 4 �2 {1, 24, 49, 73} 19 4 6 3 4 {5, 9, 13}
11 4 10 5 6 {17, 21, 25, 29, 33} 19 20 6 3 4 {1, 21, 41}
11 12 10 5 6 {1, 13, 25, 37, 49} 19 2 8 4 �3 {1, 3, 9, 11}
13 2 4 2 3 {3, 5} 19 4 8 4 �2 {1, 9, 17, 25}
13 14 4 2 3 {1, 15} 19 10 8 4 �3 {1, 11, 41, 51}
13 2 6 3 4 {1, 3, 5} 19 20 8 4 �2 {1, 41, 81, 121}
13 14 6 3 4 {1, 15, 29} 19 4 10 5 6 {1, 5, 9, 13, 17}
13 2 8 4 �3 {1, 7, 9, 15} 19 20 10 5 �2 {1, 41, 81, 121, 161}
13 14 8 4 �3 {1, 15, 57, 71} 19 2 12 6 �5 {1, 7, 15, 17, 19, 21}
13 2 10 5 �4 {1, 9, 13, 15, 17} 19 4 12 6 �4 {1, 17, 21, 25, 41, 45}
13 14 10 5 �4 {1, 15, 29, 57, 113} 19 10 12 6 �5 {1, 11, 51, 61, 71, 81}
13 2 12 6 7 {7, 9, 11, 13, 15, 17} 19 20 12 6 �4 {1, 21, 41, 121, 141, 161}}
13 14 12 6 7 {1, 15, 29, 43, 57, 71} 19 4 14 7 �5 {{1, 5, 9, 13, 21, 25, 45}}
17 2 4 2 3 {1, 3} 19 20 14 7 �5 {1, 21, 61, 81, 101, 121, 181}
17 6 4 2 3 {7, 13} 19 2 16 8 �3 {1, 3, 9, 11, 17, 19, 25, 27}
17 18 4 2 3 {1, 19} 19 4 16 8 �2 {1, 9, 17, 25, 33, 41, 49, 57}
17 2 6 3 4 {1, 3, 5} 19 10 16 8 �3 {1, 11, 41, 51, 81, 91, 121, 131}}
17 6 6 3 4 {1, 7, 13} 19 20 16 8 �2 {1, 41, 81, 121, 161, 201, 241, 281}
17 18 6 3 �2 {1, 37, 73} 19 4 18 9 10 {29, 33, 37, 41, 45, 49, 53, 57, 61}
17 2 8 4 5 {1, 3, 5, 7} 19 20 18 9 10 {1, 21, 41, 61, 81, 101, 121, 141, 161}

Furthermore, we notice that the generator polynomial of CT has roots:

δ1+4r , δ1+5r , δ1+6r , δ1+7r .

By Theorem 4.1, the minimum distance d is at least 5. Since n − k + 1 = 8 − 4 + 1 = 5, CT

is an [3,4,7] MDS Hermitian self-dual α-constacyclic code.
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Example 4.2 shows that there exist MDS Hermitian self-dual constacyclic codes. The
following theorem is a generalization of Example 4.2.

Theorem 4.3 Let α ∈ F
∗
q2 have order r with rs = q + 1 for some positive integer s. Let n

be even and n | q − 1. Let

T = Or,n(1)\
{

ir + 1 | −[ s − 1

2
] ≤ i ≤ [n − 1 − s

2
]
}

(mod rn).

Then the following holds.

(i) If s is odd, then CT is a Hermitian self-dual α -constacyclic MDS code with parameters
[n, n

2 , n
2 + 1];

(ii) If s is even, then CT is a Hermitian self-orthogonal α-constacyclic MDS code with
parameters [n, n

2 − 1, n
2 + 2].

Proof Let T1 = {
ir + 1 | −[ s−1

2 ] ≤ i ≤ [ n−1−s
2 ]} (mod rn). If s is odd, then T1 has n

2
elements, and therefore, the dimension of CT is n

2 ; if s is even, then T1 has n
2 − 1 elements,

and therefore, the dimension of CT is n
2 −1. Let I1 = {

i | −[ s−1
2 ] ≤ i ≤ [ n−1−s

2 ]} (mod n).
The set {0, 1, . . . , n −1}\I1 has n

2 consecutive elements (modulo n) when s is odd and n
2 +1

consecutive elements when s is even. Using the Singleton Bound and Theorem 4.1, the
minimum distance of CT is n

2 +1 when s is odd and n
2 +2 when s is even, making CT MDS.

The proof is complete if we show that CT is Hermitian self-orthogonal. By Corollary 3.3,
this can be verified if we show T1 ∩ (−qT1) = ∅ where we reduce the entries in T1 and −qT1

modulo rn before taking the intersection. Since n | q − 1, we know −q ≡ −1 (mod n),
which implies that −qr ≡ −r (mod rn). So −q(ir +1) ≡ −ir −q ≡ −ir − (q +1)+1 ≡
(−i − s)r + 1 ≡ (n − i − s)r + 1 (mod rn). Therefore, showing that T1 ∩ (−qT1) = ∅ is
equivalent to showing that I1 ∩ I2 = ∅, where I2 = {n − i − s | i ∈ I1} (mod n) and the
intersection I1 ∩ I2 is taken after reducing modulo n. Consider the case that s is odd. The
elements of I1 are the n

2 consecutive integers −( s−1
2 ), . . . , n−1−s

2 . Using this, the elements
of I2 are the n

2 consecutive integers n+1−s
2 , . . . , n − ( s+1

2 ). These two lists together make up
n consecutive integers, and hence, when reducing modulo n, I1 ∩ I2 = ∅. Consider the case
that s is even. The elements of I1 are the n

2 − 1 consecutive integers − s
2 + 1, . . . , n−s

2 − 1.
Using this, the elements of I2 are the n

2 − 1 consecutive integers n−s
2 + 1, . . . , n − s

2 − 1.
These two lists together make up n − 1 consecutive integers, excluding the single integer
n−s

2 . Therefore, when reducing modulo n, I1 ∩ I2 = ∅. �
Table 1 gives some Hermitian self-dual codes over Fq2 for q ≤ 19 with lower bounds on

the minimum distance d .

5 Conclusion

We have studied Hermitian self-dual codes arising from constacyclic codes in this paper. In
Sect. 3, necessary and sufficient conditions have been given for the existence of Hermitian
self-dual constacyclic codes over Fq2 of length n. In Sect. 4, we have given conditions for
the existence of MDS Hermitian self-orthogonal and self-dual constacyclic codes over Fq2 .
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