On self-dual constacyclic codes over finite fields

Yiansheng Yang · Wenchao Cai

Received: 7 March 2012 / Revised: 9 July 2013 / Accepted: 9 July 2013 / Published online: 19 July 2013 © Springer Science+Business Media New York 2013

Abstract This paper is devoted to the study of self-dual codes arising from constacyclic codes. Necessary and sufficient conditions are given for the existence of Hermitian selfdual constacyclic codes over \mathbb{F}_{q^2} of length *n*. As an application of these necessary and sufficient conditions, some conditions under which MDS Hermitian self-orthogonal and self-dual constacyclic codes exist are obtained.

Keywords Constacyclic codes · Self-dual codes · MDS codes

Mathematics Subject Classification 94B05 · 94B15

1 Introduction

Let *q* be a prime power and \mathbb{F}_q be the finite field with *q* elements. An [*n*, *k*] linear code *C* of length *n* over \mathbb{F}_q is a *k*-dimensional subspace of the vector space \mathbb{F}_q^n . We call **c** = $(c_0, c_1, \ldots, c_{n-1}) \in C$ a codeword. The Hamming weight $w(c)$ of $c \in \mathbb{F}_q^n$ is the number of nonzero coordinates of **c**. The minimum distance of *C* is defined to be $d = \min \{w(\mathbf{c}) \mid 0 \neq \mathbf{c} \in C\}$. An [*n*, *k*, *d*] code, which is defined to be an [*n*, *k*] code with the minimum distance *d*, is said to be *maximum distance separable* (MDS) if $d = n - k + 1$. The Euclidean dual code of *C* is defined to be $C^{\perp} = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \sum_{i=0}^{n-1} x_i y_i = 0, \forall \mathbf{y} \in C \}.$ A code *C* is *Euclidean self-orthogonal* provided $C \subseteq C^{\perp}$ and *Euclidean self-dual* provided $C = C^{\perp}$. Let $(\mathbf{x}, \mathbf{y})_H = \sum_{i=0}^{n-1} x_i y_i^q$ be the Hermitian inner product of $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$, and *C* be a code of length *n* over \mathbb{F}_{q^2} . The Hermitian dual code $C^{\perp H}$ of *C* is defined by $C^{\perp H} = \{ \mathbf{x} \in \mathbb{F}_{q^2}^n \mid \sum_{i=0}^{n-1} x_i y_i^q = 0, \forall \mathbf{y} \in C \}.$ Hermitian self-orthogonality and

Y. Yang \cdot W. Cai (\boxtimes)

Department of Mathematics, College of Science, Shanghai University, Shanghai 200444, China e-mail: wenchao_cai@126.com

Communicated by D. Jungnickel.

Hermitian self-duality are defined as follows: *C* is *Hermitian self-orthogonal* if $C \subset C^{\perp H}$ and *Hermitian self-dual* if $C = C^{\perp H}$.

Let $\alpha \in \mathbb{F}_q^*$. A linear code *C* is called α -*constacyclic* [\[2](#page-9-0)] provided that for each codeword $(c_0, c_1, \ldots, c_{n-1})$ in *C*, $(\alpha c_{n-1}, c_0, \ldots, c_{n-2})$ is also a codeword in *C*. An α -constacyclic code of length *n* over \mathbb{F}_q corresponds to the principal ideal $\langle g(x) \rangle$ of the quotient ring $\mathbb{F}_q[x]/(x^n - \alpha)$, where $g(x)$ is a divisor of $x^n - \alpha$. Since the cases when the code length *n* is divisible by the characteristic of \mathbb{F}_q are cases involving repeated root codes, for the remainder of this paper we assume *n* and *q* are relatively prime. Because the code length *n* must be even if there exist Euclidean or Hermitian self-dual codes, we assume *q* is an odd prime power.

Self-dual codes are an important class of codes which have been extensively studied in coding theory. This paper is mainly concerned with self-dual codes that are constacyclic codes. In recent years, many papers, for example [\[3](#page-9-1)[,5](#page-9-2)[,6](#page-9-3)[,9\]](#page-9-4), have been written on this subject. Aydin et al. [\[1\]](#page-9-5) dealt with constacyclic codes and a constacyclic BCH bound was given. In 2008, Gulliver et al. [\[6\]](#page-9-3) showed that there exists a Euclidean self-dual MDS code of length *q* over \mathbb{F}_q when $q = 2^m$ by using a Reed-Solomon (RS) code and its extension. They also constructed many new Euclidean and Hermitian self-dual MDS codes over finite fields. In the same year, Blackford [\[3](#page-9-1)] studied negacyclic codes over finite fields by using multipliers. He gave conditions on the existence of Euclidean self-dual codes. Recently, Guenda [\[5\]](#page-9-2) generalized Blackford's work [\[3](#page-9-1)]. She constructed MDS Euclidean and Hermitian self-dual codes from extended cyclic duadic or negacyclic codes and gave necessary and sufficient conditions on the existence of Hermitian self-dual negacyclic codes arising from negacyclic codes. In this paper, we extend Guenda's work to constacyclic codes and study the existence of Hermitian self-dual codes. We give conditions on the existence of MDS Hermitian selforthogonal and self-dual codes.

2 Preliminaries

Throughout this paper, let *q* be an odd prime power and *n* be a positive integer relatively prime to q. Let C be an [n , k] α -constacyclic code over \mathbb{F}_q ; then the code C is a vector space over \mathbb{F}_q and corresponds to an ideal of $\mathbb{F}_q[x]/(x^n - \alpha)$. By abuse of notation, we let *C* represent both a set of polynomials and a set of vectors.

As mentioned above, a nonzero [*n*, *k*] α-constacyclic code*C* has a unique monic *generator polynomial* $g(x)$ of degree $n - k$, where $g(x) | (x^n - \alpha)$. The *roots* of the code *C* are the roots of $g(x)$. So if $\eta_1, \ldots, \eta_{n-k}$ are the zeros of $g(x)$ in the splitting field of $x^n - \alpha$, then **c** = (*c*₀, *c*₁,..., *c*_{*n*}−1) ∈ *C* if and only if $c(\eta_1) = \cdots = c(\eta_{n-k}) = 0$, where $c(x) =$ $c_0 + c_1x + \cdots + c_{n-1}x^{n-1}$. Let $h(x) = (x^n - \alpha)/g(x) = \sum_{i=0}^k h_i x^i$, then $h(x)$ is called the *check polynomial* of *C* [\[7,](#page-9-6)[10](#page-9-7)].

Let $C^{(q)}$ denote the code defined by $C^{(q)} = \{c^q | \forall c = (c_0, c_1, \ldots, c_{n-1}) \in C\}$, where $\mathbf{c}^q = (c_0, c_1, \ldots, c_{n-1})^q = (c_0^q, c_1^q, \ldots, c_{n-1}^q).$

Lemma 2.1 ([\[4](#page-9-8), Proposition 2.4]) (i) Let C be an α -constacyclic code over \mathbb{F}_q , then *the Euclidean dual code* C^{\perp} *is an* α^{-1} -constacyclic code generated by $g^{\perp}(x) = \sum_{k=1}^{k} h_{k}h^{-1}x^{k-i}$ $\sum_{i=0}^{k} h_i h_0^{-1} x^{k-i}$.

(ii) Let C be an α -constacyclic code over \mathbb{F}_{q^2} , then the Hermitian dual code $C^{\perp H}$ is an α^{-q} *-constacyclic code generated by* $g^{\perp(q)}(x) = \sum_{i=0}^{k} h_i^q h_0^{-q} x^{k-i}$ *.*

Proof (i) The proof can be found in [\[4](#page-9-8), Proposition 2.4].

(ii) $g^{\perp}(x)$ is the generator polynomial of C^{\perp} . Let C^* denote the code generated by $g^{\perp(q)}(x) = \sum_{i=0}^{k} h_i^q \overline{h}_0^{-q} x^{k-i}$ and ξ_1, \ldots, ξ_k be the zeros of $g^{\perp}(x)$, then ξ_1^q, \ldots, ξ_k^q are the

zeros of $g^{\perp(q)}(x)$. Thus if $\mathbf{c} = (c_0, c_1, \ldots, c_{n-1})$ is a codeword in *C*, then we have $c_0 + c_1 \xi_i + c_2 \xi_j$ $\cdots + c_{n-1} \xi_i^{n-1} = 0$ (*i* = 1, ..., *k*). It is obvious that $c_0^q + c_1^q \xi_i^q + \cdots + c_{n-1}^q (\xi_i^q)^{n-1} = 0$ $(i = 1, \ldots, k)$. This implies that $(c_0^q, c_1^q, \ldots, c_{n-1}^q)$ is a codeword in C^* . So $C^{\perp H} \subset C^*$. Because dim $C^{\perp H}$ = dim $C^* = n - k$, we get $C^* = C^{\perp H}$.

Since C^{\perp} is an α^{-1} -constacyclic code generated by $g^{\perp}(x)$, we have

$$
\xi_i^n = \alpha^{-1} \Longrightarrow (\xi_i^q)^n = (\alpha^q)^{-1} \ (i = 1, \ldots, k).
$$

So ξ_1^q, \ldots, ξ_k^q are roots of $x^n - \alpha^{-q}$, which implies $g^{\perp(q)}(x)$ is a divisor of $x^n - \alpha^{-q}$. Therefore, the Hermitian dual code $C^{\perp H}$ is an α^{-q} -constacyclic code.

Let $r = ord_a(\alpha)$ (i.e., the smallest integer r such that $\alpha^r = 1$) and the multiplicative order of *q* modulo *rn* be *m* [i.e., the smallest integer *m* such that $q^m \equiv 1 \pmod{rn}$]. There exists $\delta \in \mathbb{F}_{q^m}^*$, called a primitive *rn*th root of unity, such that $\delta^n = \alpha$. Let $\zeta = \delta^r$, then ζ is a primitive *n*th root of unity. Therefore, the roots of $x^n - \alpha$ are $\{\delta, \delta^{1+r}, \ldots, \delta^{1+(n-1)r}\}\$ and the roots of $x^n - \alpha^{-1}$ are $\{\delta^{-1}, \delta^{-1+r}, \ldots, \delta^{-1+(n-1)r}\}\)$. Define $O_{r,n}(1)$ and $O_{r,n}(-1)$ as follows:

$$
O_{r,n}(1) = \{ir + 1 \mid 0 \le i \le n - 1\} \pmod{rn} \subseteq \mathbb{Z}_{rn};
$$

$$
O_{r,n}(-1) = \{ir - 1 \mid 0 \le i \le n - 1\} \pmod{rn} \subseteq \mathbb{Z}_{rn}.
$$

The *defining set* of the α -constacyclic code *C* is defined as $T = \{ir + 1 \in O_{r,n}(1) \mid \delta^{ir+1}\}$ is a root of *C*}. It is clear that $T \text{ }\subset O_{r,n}(1)$ and the dimension of *C* is $n - |T|$. Let $Cl_a(s)$ be the *q*-cyclotomic coset modulo *rn* which contains *s*, i.e. $Cl_q(s) = \{sq^j \pmod{rn} \mid j \in \mathbb{Z}\}.$ Assume the generator polynomial of *C* is $g(x) = \sum_{i=0}^{k} g_i x^i$, where $g_i \in \mathbb{F}_q$. If $g(v) = 0$ for some $v \in \mathbb{F}_{q^m}$, then

$$
g(\nu^q) = \sum_{i=0}^k g_i(\nu^q)^i = \sum_{i=0}^k g_i^q (\nu^i)^q = \left(\sum_{i=0}^k g_i \nu^i\right)^q = (g(\nu))^q = 0.
$$

Therefore, the defining set *T* is a union of some *q*-cyclotomic cosets modulo *rn* and a union of some *q*-cyclotomic cosets modulo *rn* is also the defining set of some α-constacyclic code.

Proposition 2.2 *There exists a Euclidean self-dual* α -constacyclic code over \mathbb{F}_q *if and only if* $r = 2$ *.*

Proof By Lemma [2.1,](#page-1-0) the Euclidean dual code of an α -constacyclic code is an α^{-1} constacyclic code. To prove that if there is a Euclidean self-dual α -constacyclic code, we need to verify $\alpha^2 = 1$. This indicates that either $r = 1$ or $r = 2$. If $r = 1$, then $\alpha = 1$. It has been proved by Jian et al. [\[8,](#page-9-9) Theorem 1] that there exists at least one self-dual cyclic code if and only if *q* is a power of 2. Since *q* is odd, this leads to the unique solution $r = 2$.

If $r = 2$, then $\alpha = -1$. Guenda [\[5](#page-9-2)] has proved that there exist Euclidean self-dual negacyclic codes over \mathbb{F}_q (i.e. for $r = 2$ there exists a Euclidean self-dual α -constacyclic code over \mathbb{F}_q).

Proposition 2.3 *Let* $\alpha \in \mathbb{F}_{q^2}^*$, $r = ord_{q^2}(\alpha)$, and C be an α -constacyclic code over \mathbb{F}_{q^2} *. If C* is a Hermitian self-dual code, then $r \mid q+1$.

Proof If the α -constacyclic code *C* is a Hermitian self-dual code, then $C = C^{\perp H}$. By Lemma [2.1,](#page-1-0) the Hermitian dual code $C^{\perp H}$ is an α^{-q} -constacyclic code. Hence, we have

$$
C = C^{\perp H} \Longrightarrow \alpha = \alpha^{-q} \Longrightarrow \alpha^{q+1} = 1.
$$

Since $r = ord_q(\alpha)$, we obtain $r | q + 1$.

 $\circled{2}$ Springer

3 Hermitian self-dual constacyclic codes over ^F*q***²**

This section is devoted to the Hermitian self-dual α -constacyclic codes over \mathbb{F}_{q^2} , where $\alpha \in \mathbb{F}_{q^2}^*$. Let $r = \text{ord}_{q^2}(\alpha)$, then $r \mid q^2 - 1$. By Proposition [2.3,](#page-2-0) we can further assume $r | q + 1$ and $rs = q + 1$ for some integer *s*. Note that if $T \subset O_{r,n}(1)$ is a union of some q^2 -cyclotomic cosets, C_T is an α -constacyclic code over \mathbb{F}_{q^2} with the defining set *T*.

Lemma 3.1
$$
-q O_{r,n}(1) = O_{r,n}(1) \pmod{rn}
$$
.

Proof Since $q + 1 = rs$, for $ir + 1 \in O_{r,n}(1)$, we have

$$
-q(ir + 1) = -qir - (q+1) + 1 = -qir - rs + 1 = (-qi - s)r + 1 \pmod{rn} \in O_{r,n}(1).
$$

By this, we have $-q O_{r,n}(1) = O_{r,n}(1) \pmod{rn}$.

Let
$$
T^{\perp} = -[O_{r,n}(1)\setminus T] \subset O_{r,n}(-1)
$$
 be the defining set of code $C_{T^{\perp}}$. Then

$$
x^n - \alpha = \prod_{i \in O_{r,n}(1)} (x - \delta^i) = \prod_{i \in T} (x - \delta^i) \cdot \prod_{i \in T} (x - \delta^{-i}) = g(x)h(x),
$$

where $g(x)$ is the generator polynomial of C_T . By Lemma [2.1,](#page-1-0) $g^{\perp}(x) = \prod$ $i ∈ T[⊥]$ $(x - \delta^i)$.

Therefore, T^{\perp} is the defining set of the α^{-1} -constacyclic code C^{\perp}_T (i.e. the Euclidean dual code of C_T). Thus we have $C_T \perp = C_T^{\perp}$.

Let $\overline{T} = -q \left[O_{r,n}(1) \setminus T \right] = qT^{\perp}$. According to Lemma [3.1,](#page-3-0) $\overline{T} \subset O_{r,n}(1)$. It is clear that \overline{T} is a union of some q^2 -cyclotomic cosets and $|T| + |\overline{T}| = n$. Similarly, $g^{\perp(q)}(x) = \overline{T}$ $\prod_{i=1}^{n} (x - \delta^{iq})$. Therefore, \overline{T} is the defining set of the α^{-q} -constacyclic code $C_T^{\perp H}$. Thus we i ∈ T [⊥]

have the following theorem.

Theorem 3.2 $C_{\bar{T}}$ *is the Hermitian dual code of* C_T *.*

Based on Theorem [3.2,](#page-3-1) two necessary and sufficient conditions are given as follows:

Corollary 3.3 *Let* $T \subset O_{r,n}(1)$ *be the defining set of code* C_T *and let* $\overline{T} = -q \left[O_{r,n}(1) \setminus T \right]$. *Then*

- (i) C_T *is a Hermitian self-orthogonal constacyclic code if and only if* $\overline{T} \subset T$;
- (ii) C_T *is a Hermitian self-dual constacyclic code if and only if* $\overline{T} = T$.

Example 3.4 Let $q = 5$, $n = 4$, and $r = 2$, then $q^2 = 25$. Consider the α -constacyclic code of length 4 over \mathbb{F}_{25} with $\alpha = -1$.

We notice that $r | q + 1$ and $O_{2,4}(1) = \{1, 3, 5, 7\}$. Let $T = \{3, 5\}$, then $\overline{T} =$ $-5\left[O_{2,4}(1)\setminus T\right] = \{3, 5\}$ (mod 8). By Corollary [3.3,](#page-3-2) the code C_T with defining set $T = \{3, 5\}$ is a Hermitian self-dual negacyclic code.

Example 3.5 Let $q^2 = 31^2$, $n = 16$, and $r = 4$. Now we consider the α -constacyclic code of length 16 over \mathbb{F}_{31^2} with α a primitive 4th root of unity.

Clearly, $O_{4,16}(1) = \{1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61\}$ and $r \mid q +$ 1. Let $T = \{33, 37, 41, 45, 49, 53, 57, 61\}$, then

$$
\bar{T} = -31 [O_{4,16}(1)\backslash T] = \{33, 37, 41, 45, 49, 53, 57, 61\} \pmod{64}.
$$

Hence, $\overline{T} = T$. By Corollary [3.3,](#page-3-2) C_T is a Hermitian self-dual α -constacyclic code.

Lemma 3.6 *Let n be an odd integer with n* $|q + 1$ *, then there exists an integer m such that* $n \mid \frac{q^{2m+1}+1}{q+1}$ *and* $n \mid 2m+1$ *.*

Proof

$$
\frac{q^{2m+1}+1}{q+1} = \sum_{j=0}^{2m} (-1)^j q^j = \sum_{i=0}^{2m} \sum_{j=i}^{2m} {j \choose i} (q+1)^i (-1)^i
$$

=
$$
\sum_{i=0}^{2m} (q+1)^i (-1)^i \sum_{j=i}^{2m} {j \choose i} = \sum_{i=0}^{2m} (q+1)^i (-1)^i {2m+1 \choose i+1}
$$

=
$$
\left(\sum_{i=1}^{2m} (q+1)^{i-1} (-1)^i {2m+1 \choose i+1}\right) (q+1) + (2m+1).
$$

We can choose an integer *m* such that $n \mid 2m + 1$, which further implies that $n \mid \frac{q^{2m+1}+1}{q+1}$. \Box

Lemma 3.7 *Let n be an odd integer with prime decomposition* $n = p_1^{t_1} p_2^{t_2} \cdots p_s^{t_s}$ *, where* p_i *are such that p_i* $|q + 1, p_i \neq p_j, t_i > 0$ ($1 \leq i \leq s$). Then there exists an integer m such *that* $n \mid \frac{q^{2m+1}+1}{q+1}$.

Proof First, let $n_1 = p_1^{t_1}$. We use induction to prove that there exists m_t such that n_1 $\frac{q^{2m_t+1}+1}{q+1}$ and $p_1 \mid 2m_t+1$.

When $t_1 = 1$, by Lemma [3.6,](#page-3-3) there exists m_1 such that $p_1 \mid \frac{q^{2m_1+1}+1}{q+1}$ and $p_1 \mid 2m_1+1$. When *t*₁ ≥ 2, assume there exists m_{t-1} such that $p_1^{t_1-1}$ | $\frac{q^{2m_{t-1}+1}+1}{q+1}$ and p_1 | 2 m_{t-1} + 1. Then by the proof of Lemma [3.6,](#page-3-3) we know

$$
\frac{q^{(2m_{t-1}+1)(2m_{t-1}+1)}+1}{q+1} = \frac{q^{2m_{t-1}+1}+1}{q+1} \frac{\left(q^{2m_{t-1}+1}\right)^{2m_{t-1}+1}+1}{q^{2m_{t-1}+1}+1}
$$
\n
$$
= \frac{q^{2m_{t-1}+1}+1}{q+1} \left[\left(\sum_{i=1}^{2m_{t-1}} (q^{2m_{t-1}+1}+1)^{i-1}(-1)^i \binom{2m_{t-1}+1}{i+1} \right) \right]
$$
\n
$$
(q^{2m_{t-1}+1}+1) + (2m_{t-1}+1) \left[.
$$

According to the assumption, we have

$$
p_1 \mid \left[\left(\sum_{i=1}^{2m_{t-1}} (q^{2m_{t-1}+1} + 1)^{i-1} (-1)^i {2m_{t-1}+1 \choose i+1} \right) (q^{2m_{t-1}+1} + 1) + (2m_{t-1}+1) \right]
$$

and $p_1^{t_1-1}$ | $\frac{q^{2m_{t-1}+1}+1}{q+1}$, thus $p_1^{t_1}$ | $\frac{q^{(2m_{t-1}+1)(2m_{t-1}+1)}+1}{q+1}$. Let $2m_t+1 = (2m_{t-1}+1)^2$. It follows that $p_1^{t_1} \mid \frac{q^{2m_1+1}+1}{q+1}$ and $p_1 \mid 2m_t+1$.

Next, we prove there exists some *m* such that $n \mid \frac{q^{2m+1}+1}{q+1}$.

Let $n_i = p_i^{t_i}$ for $1 \le i \le s$. The case $s = 1$ has been proven above. Similarly, there exists m'_s such that $n_s \mid \frac{q^{2m'_s+1}+1}{q+1}$. Let $n' = n_1 n_2 \cdots n_{s-1}$. We assume that there exists m' such that

 $\hat{\mathfrak{D}}$ Springer

$$
n' \mid \frac{q^{2m'+1}+1}{q+1}. \text{ Let } 2m+1 = (2m'+1)(2m'_s+1). \text{ Then}
$$
\n
$$
\frac{q^{2m+1}+1}{q+1} = \frac{q^{(2m'+1)(2m'_s+1)}+1}{q+1}
$$
\n
$$
= \frac{q^{2m'+1}+1}{q+1} \left[\left(\sum_{i=1}^{2m'_s} (q^{2m'_s+1}+1)^{i-1}(-1)^i \binom{2m'_s+1}{i+1} \right) \right]
$$
\n
$$
(q^{2m'_s+1}+1) + (2m'_s+1) \left[\left(\sum_{i=1}^{2m'_s+1} (q^{2m'_s+1}+1)^{i-1} \binom{2m'_s+1}{i+1} \right) \right].
$$

Because $n' \mid \frac{q^{2m'+1}+1}{q+1}$, we have $n' \mid \frac{q^{2m+1}+1}{q+1}$. Similarly, we have $n_s \mid \frac{q^{2m+1}+1}{q+1}$. Since $(n', n_s) = 1$, we obtain $n'n_s \mid \frac{q^{2m+1}+1}{q+1}$, i.e., $n \mid \frac{q^{2m+1}+1}{q+1}$.

Proposition 3.8 *Hermitian self-dual* α*-constacyclic codes over* ^F*q*² *of length n exist if and only if* $Cl_{a^2}(j)$ ≠ $Cl_{a^2}(-qj)$ *for any* $j \in O_{r,n}(1)$ *.*

Proof Assume the q^2 -cyclotomic cosets of $O_{r,n}(1)$ are

$$
Cl_{q^2}(j_1), Cl_{q^2}(j_2), \ldots, Cl_{q^2}(j_t)
$$

denoted simply by Cl_1, Cl_2, \ldots, Cl_t for convenience. By Lemma [3.1,](#page-3-0) $-qCl_i, i \in$ $\{1, 2, \ldots, t\}$, is also a q^2 -cyclotomic coset of $O_{r,n}(1)$. Let $Cl_{\overline{i}} = -qCl_i$ and σ be a permutation of $\{1, 2, \ldots, t\}$ which satisfies $\sigma(i) = \overline{i}$ for any $i \in \{1, 2, \ldots, t\}$. Because $q^2 C l_i = C l_i$ for any $i \in \{1, 2, \ldots, t\}$, we obtain $Cl_{\sigma(\overline{i})} = Cl_{\sigma^2(i)} = Cl_i$. This implies $\sigma^2(i) = i$, i.e., σ^2 is the identity permutation of $\{1, 2, \ldots, t\}$.

Now we prove necessity. Assume there exists a Hermitian self-dual code C_T with defining set $T \subset O_{r,n}(1)$. Then by Corollary [3.3,](#page-3-2) $\overline{T} = -q[O_{r,n}(1)\setminus T] = T$. Therefore, if there exists *j* such that $Cl_{a^2}(j) = Cl_{a^2}(-qj)$, we will have the following two cases.

Case 1: If $j \in T$, then $-qj \in T$. By the fact that $\overline{T} = -q[O_{r,n}(1)\setminus T] = T$, there exists some *i* ∉ *T* such that $-qi = j$. Thus $q^2i = -qj \notin T$. This is a contradiction.

Case 2: If *j* ∉ *T*, by the fact that $\overline{T} = -q[O_{r,n}(1)\setminus T] = T$, we have $-qj \in T$. Because $Cl_{a^2}(j) = Cl_{a^2}(-qj) \subset T$, we have $j \in T$ which contradicts the assumption.

Next, we prove the sufficiency. We assume $Cl_{q^2}(j) \neq Cl_{q^2}(-qj)$ for any $j \in O_{r,n}(1)$. This implies $\sigma(i) \neq i$ for any $i \in \{1, 2, ..., t\}$. Since $\sigma^2(i) = i$, σ must be a product of mutually disjoint transpositions like $(a_1 b_1)(a_2 b_2) \cdots (a_k b_k)$. We might assume $t = 2k$ and let $\sigma(i) = k + i$ and $\sigma(k+i) = i$ for $1 \le i \le k$. If we let $T = Cl_1 \cup Cl_2 \cup \cdots \cup Cl_k$, then the code C_T with defining set *T* is a Hermitian self-dual code. Therefore, if $Cl_{q^2}(j) \neq Cl_{q^2}(-qj)$ for $\forall j \in O_{r,n}(1)$, there exist Hermitian self-dual codes.

Based on this proposition, we have the following theorem. This theorem is an extension of Theorem 3 in [\[3\]](#page-9-1) (the case of $b = 1$ and $r' = 1$).

Theorem 3.9 *Let* $n = 2^a n'$ ($a > 0$) *and* $r = 2^b r'$ *be integers such that* $2 \nmid n'$ *and* $2 \nmid r'$ *. Let q* be an odd prime power such that $(n, q) = 1$ and $r \mid q + 1$, and let $\alpha \in \mathbb{F}_{q^2}^*$ has order r. *Then Hermitian self-dual* α *-constacyclic codes over* \mathbb{F}_{q^2} *of length n exist if and only if b* > 0 *and* $q + 1 \not\equiv 0 \pmod{2^{a+b}}$.

Proof n' can be written as $n' = r_1^{t_1} \cdots r_j^{t_j} r_{j+1}^{t_{j+1}} \cdots r_s^{t_s}$, where r_1, \ldots, r_s are distinct primes, $r_1, \ldots, r_j \mid r$, and $r_{j+1}, \ldots, r_s \nmid r$. Assume $n_1 = r_1^{t_1} \cdots r_j^{t_j}$, $n_2 = r_{j+1}^{t_{j+1}} \cdots r_s^{t_s}$, and $n' =$ $n_1 n_2$. Since $r_{j+1}, \ldots, r_s \nmid r$, it follows $(n_2, r) = 1$. Because $r_1, \ldots, r_j \mid r$, we know $r_1, \ldots, r_j | q + 1$. By Lemma [3.7,](#page-4-0) there exists *m* such that $n_1 | \frac{q^{2m+1}+1}{q+1}$.

The proof consists of two parts. First we prove the necessity. If r is odd, which is equivalent to *b* = 0, clearly, we have $(r, 2^a n_2) = 1$. There exists $i \in \mathbb{Z}$ such that $2^a n_2 | i r + 1$. Thus by $n_1 \mid \frac{q^{2m+1}+1}{q+1}$, we have

$$
(q+1)2^{a}n_{1}n_{2} \mid (q^{2m+1}+1)(ir+1) \Longrightarrow (q+1)n \mid (q^{2m+1}+1)(ir+1)
$$

$$
\Longrightarrow rn \mid (q^{2m+1}+1)(ir+1).
$$

Therefore, $ir + 1 = q^{2m}(-q(ir + 1))$ (mod *rn*). This implies $Cl_{q^2}(ir + 1) = Cl_{q^2}(-q(ir + 1))$ 1)). Since $ir+1 \in O_{r,n}(1)$, by Proposition [3.8,](#page-5-0) there is no Hermitian self-dual α -constacyclic code over \mathbb{F}_{q^2} , which contradicts the assumption. Therefore, *r* must be even, i.e., $b > 0$.

Let $q + 1 = 2^{c}rt$ with $c \ge 0$ and $(t, 2) = 1$. If $q + 1 \equiv 0 \pmod{2^{a+b}}$, then $c \ge a$. Because $(n_2, r) = 1$, there exists $i' \in \mathbb{Z}$ such that $n_2 | i'r + 1$. Since $n_1 | \frac{q^{2m+1}+1}{q+1}$, we have

$$
(q+1)n_1n_2 \mid (q^{2m+1}+1)(i'r+1) \Longrightarrow 2^c r t n_1 n_2 \mid (q^{2m+1}+1)(i'r+1)
$$

$$
\Longrightarrow r n \mid (q^{2m+1}+1)(i'r+1).
$$

Similarly, we have $Cl_{q^2}(i'r + 1) = Cl_{q^2}(-q(i'r + 1))$. By Proposition [3.8,](#page-5-0) we get a contradiction. So it is necessary to have $q + 1 \not\equiv 0 \pmod{2^{a+b}}$.

Now we prove the sufficiency. Assume $b > 0$ and $q + 1 \not\equiv 0 \pmod{2^{a+b}}$. If there is no Hermitian self-dual code, by Proposition [3.8,](#page-5-0) there exists $ir + 1 \in O_{r,n}(1)$ such that *Cl*_q2(*ir* + 1) = *Cl*_q2(−*q*(*ir* + 1)). Therefore, for some *m* ∈ \mathbb{Z}^+ ,

$$
rn \mid (q^{2m+1} + 1)(ir+1) \Longrightarrow 2^{a+b}r'n' \mid \frac{q^{2m+1} + 1}{q+1}(q+1)(ir+1).
$$

Since $b > 0$, $ir+1$ must be odd. Together with the fact that $\frac{q^{2m+1}+1}{q+1}$ is odd, we get $2^{a+b} \mid q+1$, which contradicts the assumption that $q + 1 \not\equiv 0 \pmod{2^{a+b}}$.

4 MDS hermitian self-dual constacyclic codes over \mathbb{F}_q **²**

We study MDS Hermitian self-dual constacyclic codes over \mathbb{F}_{q^2} in this section. The following theorem will give the BCH bound for constacyclic codes (cf. [\[1](#page-9-5), Theorem 2.2]).

Theorem 4.1 *Let* C *be an* α *-constacyclic code of length n over* \mathbb{F}_{q^2} *. Let* $r = \alpha r d_{q^2}(\alpha)$ *. Let* δ *be a primitive rnth root of unity in an extension field of* \mathbb{F}_{q^2} *such that* $\delta^n = \alpha$ *, and let* $\zeta = \delta^r$ *.* Assume the generator polynomial of C has roots that include the set $\{\delta\zeta^i\mid i_1\leq i\leq i_1+d-1\}$. *Then the minimum distance of* $C > d$ *.*

Example 4.2 Let $q^2 = 17^2$, $n = 8$ and $r = 18$. We consider the α -constacyclic code of length 8 over \mathbb{F}_{17^2} with α a primitive 18th root of unity.

Obviously, we have $O_{18,8}(1) = \{1, 19, 37, 55, 73, 91, 109, 127\}$ and $r \mid q + 1$. Let $T =$ $\{73, 91, 109, 127\}$, then $\overline{T} = -17 \overline{O_{18,8}(1) \setminus T} = \{73, 91, 109, 127\}$ (mod 144). Thus $\overline{T} = T$. By Corollary [3.3,](#page-3-2) C_T is a Hermitian self-dual α -constacyclic code.

q	r	n	k	d	T	\boldsymbol{q}	r	n	k	\boldsymbol{d}	T
5	2	4	2	3	$\{3, 5\}$	17	6	8	4	5	$\{19, 25, 31, 37\}$
5	6	4	2	3	$\{1, 7\}$	17	18	8	4	5	$\{1, 19, 37, 55\}$
7	4	4	2	3	$\{1, 5\}$	17	2	10	5	≥4	$\{1, 9, 13, 15, 17\}$
7	8	4	2	\geqslant	$\{1, 17\}$	17	6	10	5	≫4	$\{1, 19, 25, 31, 49\}$
7	8	6	3	4	$\{1, 9, 17\}$	17	18	10	5	\geqslant	$\{1, 37, 55, 73, 109\}$
9	2	4	2	3	$\{1, 3\}$	17	$\overline{2}$	12	6	\geqslant 5	$\{1, 3, 11, 13, 15, 17\}$
9	10	4	$\overline{\mathbf{c}}$	3	$\{1, 11\}$	17	6	12	6	\geqslant 5	$\{1, 7, 13, 19, 31, 43\}$
9	$\overline{\mathbf{c}}$	8	4	5	$\{5, 7, 9, 11\}$	17	18	12	6	\geqslant 3	$\{1, 19, 73, 91, 145, 163\}$
9	10	8	4	5	$\{1, 11, 21, 31\}$	17	\overline{c}	14	7	\geqslant 5	$\{5, 7, 11, 13, 15, 17, 23\}$
11	2	4	2	3	$\{1, 3\}$	17	6	14	7	\geqslant 5	$\{1, 7, 19, 25, 31, 37, 55\}$
11	4	4	2	\geqslant	$\{1, 9\}$	17	18	14	7	\geqslant 5	$\{1, 19, 37, 55, 91, 109, 199\}$
11	6	4	2	3	$\{1, 7\}$	17	$\overline{2}$	16	8	9	$\{9, 11, 13, 15, 17, 19, 21, 23\}$
11	12	4	2	\geqslant	$\{1, 25\}$	17	6	16	8	9	$\{43, 49, 55, 61, 67, 73, 79, 85\}$
11	4	6	3	4	$\{1, 5, 9\}$	17	18	16	8	9	$\{1, 19, 37, 55, 73, 91, 109, 127\}$
11	12	4	2	\geqslant	$\{1, 25, 49\}$	19	\overline{c}	4	\overline{c}	3	$\{1, 3\}$
11	$\mathfrak{2}$	8	4	\geqslant 3	$\{1, 3, 9, 11\}$	19	4	4	\overline{c}	\geqslant	$\{1, 9\}$
11	4	8	4	\geqslant	$\{1, 9, 17, 25\}$	19	10	4	\overline{c}	3	$\{1, 11\}$
11	6	8	4	\geqslant 3	$\{1, 7, 25, 31\}$	19	20	4	$\mathfrak{2}$	\geqslant	$\{1, 41\}$
11	12	8	4	\geqslant	$\{1, 24, 49, 73\}$	19	$\overline{4}$	6	3	4	$\{5, 9, 13\}$
11	4	10	5	6	$\{17, 21, 25, 29, 33\}$	19	20	6	3	4	$\{1, 21, 41\}$
11	12	10	5	6	$\{1, 13, 25, 37, 49\}$	19	\overline{c}	8	4	\geqslant 3	$\{1, 3, 9, 11\}$
13	2	4	2	3	$\{3, 5\}$	19	$\overline{4}$	8	4	\geqslant	$\{1, 9, 17, 25\}$
13	14	4	2	3	$\{1, 15\}$	19	10	8	4	\geqslant 3	$\{1, 11, 41, 51\}$
13	2	6	3	4	$\{1, 3, 5\}$	19	20	8	4	\geqslant	$\{1, 41, 81, 121\}$
13	14	6	3	4	$\{1, 15, 29\}$	19	$\overline{4}$	10	5	6	$\{1, 5, 9, 13, 17\}$
13	$\overline{2}$	8	4	\geqslant 3	$\{1, 7, 9, 15\}$	19	20	10	5	\geqslant	$\{1, 41, 81, 121, 161\}$
13	14	8	4	\geqslant 3	$\{1, 15, 57, 71\}$	19	$\overline{2}$	12	6	\geqslant 5	$\{1, 7, 15, 17, 19, 21\}$
13	2	10	5	\geqslant	$\{1, 9, 13, 15, 17\}$	19	4	12	6		≥ 4 {1, 17, 21, 25, 41, 45}
13	14	10	5	≫4	$\{1, 15, 29, 57, 113\}$	19	10	12	6	\geqslant 5	$\{1, 11, 51, 61, 71, 81\}$
13	$\overline{2}$	12	6	7	$\{7, 9, 11, 13, 15, 17\}$	19	20	12	6	≥4	$\{1, 21, 41, 121, 141, 161\}$
13	14	12	6	7	$\{1, 15, 29, 43, 57, 71\}$	19	$\overline{4}$	14	7	\geqslant 5	$\{\{1, 5, 9, 13, 21, 25, 45\}\}\$
17	$\mathbf{2}$	4	$\overline{\mathbf{c}}$	3	$\{1, 3\}$	19	20	14	7	\geqslant 5	$\{1, 21, 61, 81, 101, 121, 181\}$
17	6	4	2	3	$\{7, 13\}$	19	2	16	8	\geqslant 3	$\{1, 3, 9, 11, 17, 19, 25, 27\}$
17	18	4	2	3	$\{1, 19\}$	19	$\overline{4}$	16	8	\geqslant	$\{1, 9, 17, 25, 33, 41, 49, 57\}$
17	2	6	3	4	$\{1, 3, 5\}$	19	10	16	8	\geqslant 3	$\{1, 11, 41, 51, 81, 91, 121, 131\}$
17	6	6	3	4	$\{1, 7, 13\}$	19	20	16	8	\geqslant	$\{1, 41, 81, 121, 161, 201, 241, 281\}$
17	18	6	3	\geqslant	$\{1, 37, 73\}$	19	$\overline{4}$	18	9	10	$\{29, 33, 37, 41, 45, 49, 53, 57, 61\}$
17	$\overline{2}$	8	4	5	$\{1, 3, 5, 7\}$	19	20	18	9	10	$\{1, 21, 41, 61, 81, 101, 121, 141, 161\}$

Table 1 [*n*, *k*, *d*] Hermitian self-dual codes over \mathbb{F}_{q^2} (where $q \le 19$)

Furthermore, we notice that the generator polynomial of C_T has roots:

 $\delta^{1+4r}, \delta^{1+5r}, \delta^{1+6r}, \delta^{1+7r}.$

By Theorem [4.1,](#page-6-0) the minimum distance *d* is at least 5. Since $n - k + 1 = 8 - 4 + 1 = 5$, C_T is an $[3,4,7]$ $[3,4,7]$ $[3,4,7]$ MDS Hermitian self-dual α -constacyclic code.

Example [4.2](#page-7-0) shows that there exist MDS Hermitian self-dual constacyclic codes. The following theorem is a generalization of Example [4.2.](#page-7-0)

Theorem 4.3 *Let* $\alpha \in \mathbb{F}_{q^2}^*$ *have order r with rs* = $q + 1$ *for some positive integer s. Let n be even and n* | *q* − 1*. Let*

$$
T = O_{r,n}(1) \setminus \left\{ i r + 1 \mid -\left[\frac{s-1}{2}\right] \leq i \leq \left[\frac{n-1-s}{2}\right] \right\} \pmod{rn}.
$$

Then the following holds.

- (i) If s is odd, then C_T is a Hermitian self-dual α -constacyclic MDS code with parameters $[n, \frac{n}{2}, \frac{n}{2}+1];$
- (ii) If s is even, then C_T is a Hermitian self-orthogonal α -constacyclic MDS code with *parameters* $[n, \frac{n}{2} - 1, \frac{n}{2} + 2]$ *.*

Proof Let $T_1 = \{ir + 1 \mid -[\frac{s-1}{2}] \le i \le [\frac{n-1-s}{2}]\}$ (mod *rn*). If *s* is odd, then T_1 has $\frac{n}{2}$ elements, and therefore, the dimension of C_T is $\frac{n}{2}$; if *s* is even, then T_1 has $\frac{n}{2} - 1$ elements, and therefore, the dimension of C_T is $\frac{n}{2} - 1$. Let $I_1 = \left\{ i \mid -\left[\frac{s-1}{2}\right] \le i \le \left[\frac{n-1-s}{2}\right] \right\}$ (mod *n*). The set $\{0, 1, \ldots, n-1\} \setminus I_1$ has $\frac{n}{2}$ consecutive elements (modulo *n*) when *s* is odd and $\frac{n}{2} + 1$ consecutive elements when *s* is even. Using the Singleton Bound and Theorem [4.1,](#page-6-0) the minimum distance of C_T is $\frac{n}{2} + 1$ when *s* is odd and $\frac{n}{2} + 2$ when *s* is even, making C_T MDS.

The proof is complete if we show that C_T is Hermitian self-orthogonal. By Corollary [3.3,](#page-3-2) this can be verified if we show $T_1 \cap (-qT_1) = \emptyset$ where we reduce the entries in T_1 and $-qT_1$ modulo *rn* before taking the intersection. Since $n | q - 1$, we know $-q \equiv -1 \pmod{n}$, which implies that $-qr \equiv -r \pmod{rn}$. So $-q(ir+1) \equiv -ir - q \equiv -ir - (q+1)+1 \equiv$ $(-i - s)r + 1 \equiv (n - i - s)r + 1 \pmod{rn}$. Therefore, showing that $T_1 \cap (-qT_1) = \emptyset$ is equivalent to showing that $I_1 \cap I_2 = \emptyset$, where $I_2 = \{n - i - s \mid i \in I_1\}$ (mod *n*) and the intersection $I_1 \cap I_2$ is taken after reducing modulo *n*. Consider the case that *s* is odd. The elements of *I*₁ are the $\frac{n}{2}$ consecutive integers $-(\frac{s-1}{2}), \ldots, \frac{n-1-s}{2}$. Using this, the elements of *I*₂ are the $\frac{n}{2}$ consecutive integers $\frac{n+1-s}{2}, \ldots, n-(\frac{s+1}{2})$. These two lists together make up *n* consecutive integers, and hence, when reducing modulo *n*, $I_1 \cap I_2 = \emptyset$. Consider the case that *s* is even. The elements of I_1 are the $\frac{n}{2} - 1$ consecutive integers $-\frac{s}{2} + 1, \ldots, \frac{n-s}{2} - 1$. Using this, the elements of I_2 are the $\frac{n}{2} - 1$ consecutive integers $\frac{n-s}{2} + 1, \ldots, n - \frac{s}{2} - 1$. These two lists together make up *n* − 1 consecutive integers, excluding the single integer $\frac{n-s}{s}$. Therefore, when reducing modulo *n*, *I*₁ ∩ *I*₂ = \emptyset . $\frac{n-s}{2}$. Therefore, when reducing modulo *n*, $I_1 \cap I_2 = \emptyset$.

Table [1](#page-7-0) gives some Hermitian self-dual codes over \mathbb{F}_{q^2} for $q \leq 19$ with lower bounds on the minimum distance *d*.

5 Conclusion

We have studied Hermitian self-dual codes arising from constacyclic codes in this paper. In Sect. [3,](#page-3-4) necessary and sufficient conditions have been given for the existence of Hermitian self-dual constacyclic codes over \mathbb{F}_{q^2} of length *n*. In Sect. [4,](#page-6-1) we have given conditions for the existence of MDS Hermitian self-orthogonal and self-dual constacyclic codes over \mathbb{F}_{q^2} .

Acknowledgment The authors wish to thank the reviewers for their valuable comments and suggestions which greatly helped us to improve this paper.

References

- 1. Aydin N., Siap I., Ray-Chaudhuri D.J.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. **24**(3), 313–326 (2001).
- 2. Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968).
- 3. Blackford T.: Negacyclic duadic codes. Finite Fields Appl. **14**(4), 930–943 (2008).
- 4. Dinh H.Q.: Constacyclic codes of length p^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$. J. Algebra 324(5), 940–950 (2010).
- 5. Guenda K.: New MDS self-dual codes over large finite fields. Des. Codes Cryptogr. **62**(1), 31–42 (2011).
- 6. Gulliver T.A., Kim J.L., Lee Y.: New MDS or near MDS self-dual codes. IEEE Trans. Inf. Theory **54**(9), 4354–4360 (2008).
- 7. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, New York (2003).
- 8. Jian Y., Ling S., Xing C.: On self-dual cyclic codes over finite fields. IEEE Trans. Inf. Theory **57**(4), 2243–2251 (2011).
- 9. Kim J.L., Lee Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. Comb. Theory A **105**(1), 79–95 (2004).
- 10. Pedersen P., Dahl C.: Classification of pseudo-cyclic MDS codes. IEEE Trans. Inf. Theory **37**(2), 365–370 (1991).