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Abstract This paper is devoted to the study of self-dual codes arising from constacyclic
codes. Necessary and sufficient conditions are given for the existence of Hermitian self-
dual constacyclic codes over F,> of length n. As an application of these necessary and
sufficient conditions, some conditions under which MDS Hermitian self-orthogonal and
self-dual constacyclic codes exist are obtained.
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1 Introduction

Let g be a prime power and [, be the finite field with ¢ elements. An [n, k] linear
code C of length n over Fy is a k-dimensional subspace of the vector space F. We
call ¢ = (co,c1,...,cn—1) € C a codeword. The Hamming weight w(c) of ¢ € IE‘Z
is the number of nonzero coordinates of c¢. The minimum distance of C is defined to be
d = min{w(c) | 0 # ¢ € C}. An [n, k, d] code, which is defined to be an [n, k] code with
the minimum distance d, is said to be maximum distance separable IMDS) ifd = n —k 4+ 1.
The Euclidean dual code of C is defined to be C+ = {x € IFZ | Zl’-’:—l xiyi =0,Vy € C}.
A code C is Euclidean self-orthogonal provided C € C* and Euclidean self-dual pro-
vided C = C*. Let (x, Yy = Z?:_ol )cl-y;Z be the Hermitian inner product of X,y € F7,
and C be a code of length n over F 2. The Hermitian dual code C LH of C is defined

by C* = (x € ]FZ2 | Z?:_ol xl-yl.q = 0,Vy € C}. Hermitian self-orthogonality and
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Hermitian self-duality are defined as follows: C is Hermitian self-orthogonal if C < C+H

and Hermitian self-dual if C = C+H

Let o € F}. A linear code C is called «-constacyclic [2] provided that for each codeword
(co,c1,...,¢cp—1) in C, (acp—1, co, - .., cp—2) is also a codeword in C. An a-constacyclic
code of length n over [F,; corresponds to the principal ideal (g(x)) of the quotient ring
Fy[x]/(x" — ), where g(x) is a divisor of x”* — . Since the cases when the code length 7 is
divisible by the characteristic of F; are cases involving repeated root codes, for the remainder
of this paper we assume n and g are relatively prime. Because the code length n must be even
if there exist Euclidean or Hermitian self-dual codes, we assume ¢ is an odd prime power.

Self-dual codes are an important class of codes which have been extensively studied in
coding theory. This paper is mainly concerned with self-dual codes that are constacyclic
codes. In recent years, many papers, for example [3,5,6,9], have been written on this subject.
Aydin et al. [1] dealt with constacyclic codes and a constacyclic BCH bound was given. In
2008, Gulliver et al. [6] showed that there exists a Euclidean self-dual MDS code of length
q over F, when g = 2™ by using a Reed-Solomon (RS) code and its extension. They also
constructed many new Euclidean and Hermitian self-dual MDS codes over finite fields. In
the same year, Blackford [3] studied negacyclic codes over finite fields by using multipliers.
He gave conditions on the existence of Euclidean self-dual codes. Recently, Guenda [5]
generalized Blackford’s work [3]. She constructed MDS Euclidean and Hermitian self-dual
codes from extended cyclic duadic or negacyclic codes and gave necessary and sufficient
conditions on the existence of Hermitian self-dual negacyclic codes arising from negacyclic
codes. In this paper, we extend Guenda’s work to constacyclic codes and study the existence
of Hermitian self-dual codes. We give conditions on the existence of MDS Hermitian self-
orthogonal and self-dual codes.

2 Preliminaries

Throughout this paper, let g be an odd prime power and n be a positive integer relatively
prime to g. Let C be an [n, k] a-constacyclic code over [, ; then the code C is a vector space
over I, and corresponds to an ideal of Fy[x]/(x" — «). By abuse of notation, we let C
represent both a set of polynomials and a set of vectors.

As mentioned above, a nonzero [n, k] a-constacyclic code C has a unique monic generator
polynomial g(x) of degree n — k, where g(x) | (x" — «). The roots of the code C are the
roots of g(x). Soif ny, ..., n,— are the zeros of g(x) in the splitting field of x" — «, then
¢ = (co,C1y...,¢cp—1) € Cifand only if c(n;) = --- = c(np—x) = 0, where c(x) =
cotcix+-Fcop_ix" L Leth(x) = (x" —a)/g(x) = Zf:() hix', then h(x) is called the
check polynomial of C [7,10].

Let C@ denote the code defined by C@ = {¢? | Ve = (co, ¢1, ..., cn1) € C}, where
¢ = (co,c1,...,cn1)? = (cg, c’l’, Cel, szl)'

Lemma 2.1 ([4, Proposition 2.4]) (i) Let C be an a-constacyclic code over Fy, then
the Euclidean c_iual code Ct is an a™'-constacyclic code generated by gt(x) =
St 2

(ii) Let C be an a-constacyclic code over Fg, then the Hermitian dual code CH is an
a~9 -constacyclic code generated by gD (x) = Zf:o h?haqu_i.
Proof (i) The proof can be found in [4, Proposition 2.4].

(i) g (x) is the generator polynomial of C L. Let C* denote the code generated by
gt @ (x) = Zf:o h?haqu_‘ and &, . .., & be the zeros of g1 (x), then Elq, R Sg are the
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zeros of g (x). Thusife = (co, c1, . .., cu—1) is acodeword in C, then we have co+c1 & +
e =0G =1,..., k). Itis obvious that ¢ + c7E9 .-+ 1 (£7)" =0
(i =1,...,k). This implies that (cg, c'f, o cZ_l) is a codeword in C*. So C+H < C*.

Because dim C* = dim C* = n — k, we get C* = C+H.
Since C* is an @~ !-constacyclic code generated by g (x), we have

g=a'= E)' =) (=1,...k.

1

So &/, ..., & are roots of x" — &=, which implies g1 @ (x) is a divisor of x" — a79.
Therefore, the Hermitian dual code C+# is an o ~9-constacyclic code. O
Let r = ord,(a) (i.e., the smallest integer r such that «” = 1) and the multiplicative

order of ¢ modulo rn be m [i.e., the smallest integer m such that ¢ = 1 (mod rn)]. There
exists § € IE‘Z,,,, called a primitive rnth root of unity, such that " = «. Let { = ', then ¢

is a primitive nth root of unity. Therefore, the roots of x* — « are {8, 8!, ..., 8!T(=Dry
and the roots of x" — a1 are {871,871+, ..., 6717~} Define 0, ,(1) and O, ,(—1)
as follows:

Orn() ={ir+110=<i<n—1} (modrn) < Z;
Orn(=1) ={ir=110<i<n—1} (mod rn) C Z.,.

The defining set of the a-constacyclic code C is defined as T = {ir +1 € O,.,(1) | 8!
is aroot of C}. Itis clear that T C O,,,(1) and the dimension of C is n — |T'|. Let Cl,(s) be
the g-cyclotomic coset modulo rn which contains s, i.e. Cl,(s) = {sq/ (mod rn) | j € Z}.
Assume the generator polynomial of C is g(x) = Zf:() gix', where g; € F,. If g(v) =0
for some v € Fym, then

k k k 4
g0 =2 si(v) =28 (V)" = (Z giv") = (g =0.
i=0 i=0 i=0

Therefore, the defining set 7' is a union of some g-cyclotomic cosets modulo rn and a union
of some g-cyclotomic cosets modulo 7 is also the defining set of some «-constacyclic code.

Proposition 2.2 There exists a Euclidean self-dual o-constacyclic code over F if and only
ifr =2.
1

Proof By Lemma 2.1, the Euclidean dual code of an «-constacyclic code is an o™ -
constacyclic code. To prove that if there is a Euclidean self-dual «a-constacyclic code, we
need to verify «? = 1. This indicates that either r = 1 orr = 2. If r = 1, then « = 1. It has
been proved by Jian et al. [8, Theorem 1] that there exists at least one self-dual cyclic code
if and only if ¢ is a power of 2. Since g is odd, this leads to the unique solution r = 2.

If r = 2, then « = —1. Guenda [5] has proved that there exist Euclidean self-dual
negacyclic codes over F; (i.e. for r = 2 there exists a Euclidean self-dual a-constacyclic
code over Fy). O

Proposition 2.3 Let ¢ € FZZ’ r = ordp (@), and C be an a-constacyclic code over F 2. If
C is a Hermitian self-dual code, thenr | g + 1.

Proof If the a-constacyclic code C is a Hermitian self-dual code, then C = C+# . By Lemma
2.1, the Hermitian dual code C# is an o ~7-constacyclic code. Hence, we have

C=C' maq=0"9= o7t = 1.

Since r = ord,(a), we obtain r | g + 1. O
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3 Hermitian self-dual constacyclic codes over F,e

This section is devoted to the Hermitian self-dual «-constacyclic codes over qu, where
o € IF;Z. Letr = ordqz (), then r | q2 — 1. By Proposition 2.3, we can further assume
r|q-+1andrs =g + 1 for some integer s. Note that if T C O, ,(1) is a union of some
q%-cyclotomic cosets, Cr is an a-constacyclic code over F 42 With the defining set 7.

Lemma 3.1 —¢O, ,(1) = O, ,(1) (mod rn).

Proof Since g + 1 =rs, forir +1 € O, ,(1), we have

—q(ir + 1)=—qir — (q+1)+1=—qir —rs+1=(—qi —s)r+1 (mod rn) € O, ,(1).
By this, we have —q O, ,(1) = O, ,(1) (mod rn). O

Let T+ = — [0, (D\T] C Oy, (—1) be the defining set of code Cy.. Then

o= [ G- =[]a-8) []@x-6"=gh.

ieor,n(l) ieT ieT+

where g(x) is the generator polynomial of C7. By Lemma 2.1, g~ (x) = T & - 8h.
ieTt
Therefore, T is the defining set of the a~'-constacyclic code C % (i.e. the Euclidean dual
code of Cr). Thus we have Cr1 = C7. i
Let T = —q [Or,n(l)\T] = qu. According to Lemma 3.1, T C O, ,(1). It is clear

that T is a union of some qz-cyclotomic cosets and |T'| + ‘7_"| = n. Similarly, gt @) =

IT x - 814). Therefore, T is the defining set of the & ~?-constacyclic code C %H . Thus we
ieTt
have the following theorem.

Theorem 3.2 Cj is the Hermitian dual code of Cr.
Based on Theorem 3.2, two necessary and sufficient conditions are given as follows:

Corollary 3.3 Let T C O, (1) be the defining set of code Ct and let T=—gq [Or,n (1)\T].
Then

(1) Cr is a Hermitian self-orthogonal constacyclic code if and only if TCT;
(ii) Cr is a Hermitian self-dual constacyclic code if and only if T = T.

Example 3.4 Letq = 5,n =4, and r = 2, then ¢> = 25. Consider the a-constacyclic code
of length 4 over Fas5 with ¢ = —1.

We notice that r | ¢ + 1 and O24(1) = {1,3,5,7}. Let T = {3,5}, then T =
-5 [02,4(1)\T] = {3,5} (mod 8). By Corollary 3.3, the code Cr with defining set
T = {3, 5} is a Hermitian self-dual negacyclic code.

Example 3.5 Let g% = 312, n = 16, and r = 4. Now we consider the a-constacyclic code
of length 16 over [F3;2 with « a primitive 4th root of unity.

Clearly, O4,16(1) = {1, 5,9, 13,17, 21, 25,29, 33, 37,41, 45, 49, 53,57, 61} and r | g+
1.Let T = {33,37,41, 45,49, 53,57, 61}, then

T = —31[04,16(D\T] = (33,37, 41,45,49,53,57,61}  (mod 64).

Hence, T = T. By Corollary 3.3, Cr is a Hermitian self-dual a-constacyclic code.
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Lemma 3.6 Let n be an odd integer with n | g + 1, then there exists an integer m such that
2m+1
q +1

andn | 2m 4+ 1.
Proof
2m+l 2m 2m
+1
a7 T Digl = +1 )¢
| z( ) q lzojzz )(g + D' (=1)

2m
= Z(q + 1 (=1) Z (D)= g+ D0
i=0 Jj=i i=0

2m
= (Z(q + D=1 (2;”:1‘))@ +1)+@n+1).
i=1

2m+1
We can choose an integer m such that n | 2m + 1, which further implies that n | uﬁl

m}

Lemma 3.7 Let n be an odd integer with prime decomposition n = pll' p’z2 .. p¥ where p;

are such that p; | q + 1, p; # pj,ti > 0(1 <i < s). Then there exists an integer m such
2m+|+1
qg+1

thatn | 4

Proof First, let ny = p’ '. We use induction to prove that there exists m; such that ny |

2my+1
q q’:“ and py | 2m; + 1.
When #; = 1, by Lemma 3.6, there exists m such that p; | qi and p; | 2m; + 1.
| q2mt 1+1+1

When #; > 2, assume there exists m;_ such that p1
Then by the proof of Lemma 3.6, we know

eS| and py | 2m;—1 + 1.

gD L gmerkl g (g2t )2ment]
q+ 1 - q -+ 1 q2m[71+1 +1
q2mx—1+1 +1 2m; -

_ 2m,_+1 i—1 i 2my_1+1
S 2 @ DT DT
i=1

@ D)+ Qmo + 1)

According to the assumption, we have

2m;—y

il D @ T =D ) ) @+ D+ @me D)

n—1 | ¢*m-1+141
and p, | T

follows that p! | M and p; | 2m, + 1.

@my 1 +D@m+1) 4

thus p't | 4 pae) .Let2m; +1 = @m_; + DA It

+1
Next, we prove there exists some m such that n | ’17#1

Letn; = p. for 1 <i <s.Thecase s = 1 has been proven above. Similarly, there exists

s+ +1

m such that n | g pu | .Letn’ =niny---ns,_1. We assume that there exists m’ such that
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’ q2m/+1+1 ’ ’
n' | T Let2m + 1 = 2m’ 4+ 1)(2mg + 1). Then

g¥m+ 41 B q(zm’+1)(2mf\,+1)+1

g+1 qg+1
! 2m
2m +1 s ,
_ 4 +1 2m+1 i-1 i 2m+1
T g +1 Z(q DD i1 )
i=1
2, ! 1 ’
@ D+ @mg+ 1)
o 41 2m+1 _—
I m / m . . - .
Because n | 4 qul+1, we have n | £ q+1+1_ Similarly, we have n, | 4 q+l+1' Since
. 2m+1 . 2m+1
(n',ng) = 1, we obtain n'ng | L i, n | ot :

q+1 q+1

Proposition 3.8 Hermitian self-dual a-constacyclic codes over F > of length n exist if and
only if Clya (j) # Clyp(—q) for any j € Opu(D).

Proof Assume the qz—cyclotomic cosets of O, (1) are

Clp(j1). Cla (). ... Clp (o)

denoted simply by Cly, Cls,...,Cl; for convenience. By Lemma 3.1, —¢qCl;,i €
{1,2,...,t},isalsoa qz-cyclotomic cosetof O, ,(1). Let Cl; = —¢gCl; and o be a permuta-
tion of {1, 2, ..., t} which satisfies o (i) = i for anyi € {1,2,...,1t}. Because qZCl,- =Cl;
foranyi € {1,2,...,t}, we obtain Cla(;) = Clgz(i) = CI;. This implies 02(1‘) =i, ie, o2
is the identity permutation of {1, 2, ..., t}.

Now we prove necessity. Assume there exists a Hermitian self-dual code C7 with defining
setT C Oy ,(1). Then by Corollary 3.3, T = —q[ Oy, ()\T] = T. Therefore, if there exists
Jj such that Cl2(j) = Cl,2(—qj), we will have the following two cases.

Case 1: If j € T, then —qj € T. By the fact that T = —qlO,,(D\T] = T, there exists
some i ¢ T such that —gi = j. Thus g% = —qj ¢ T. This is a contradiction.

Case 2:If j ¢ T, by the fact that 7 = —qlO;,(D\T] =T, we have —qj € T. Because
Cl,2(j) = Clpa(—qj) C T, wehave j € T which contradicts the assumption.

Next, we prove the sufficiency. We assume Cl,2(j) # Cl,2(—qj) for any j € O, (1).
This implies o (i) # i forany i € {1,2,...,1t}. Since az(i) = i, 0 must be a product of
mutually disjoint transpositions like (aj by) (a2 b2) - - - (ax br). We might assume ¢ = 2k and
leto(i) =k+iando(k+i)=iforl <i <k.IfweletT = Cl{UClLU---UCIy, then the
code Cr withdefining set T is a Hermitian self-dual code. Therefore, if Cl 2 (j) # Cl,2(—q))
forVj € O, ,(1), there exist Hermitian self-dual codes. ]

Based on this proposition, we have the following theorem. This theorem is an extension
of Theorem 3 in [3] (the case of b = 1 and 7’ = 1).

Theorem 3.9 Let n = 21’ (a > 0) and r = 2°r' be integers such that 2 t n’ and 2 r'. Let
q be an odd prime power such that (n,q) = landr | g + 1, and let « € ]FZ2 has order r.

Then Hermitian self-dual « -constacyclic codes over F 2 of length n exist if and only if b > 0
and g +1 #£ 0 (mod 29%0).
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. t i tiy t .. .
Proof n’ can be written as n’ = r|' ~-~rj’ rj’:l ---rs', where rq, ..., ry are distinct primes,
_ n 1 _ L 1, r_
rl""’f’f' | r, and rj+1,...,rs‘fr. Assume ny = r|' ---r/,ny = ri -erd,and n' =
niny. Since rjyy,...,rg { r, it follows (np,r) = 1. Because ry,...,r; | r, we know
. 2m+1 1
r,...,rj | ¢ +1. By Lemma 3.7, there exists m such that ny | 4 +1+ .

The proof consists of two parts. First we prove the necessity. If 7 is odd, which is equivalent
to b = 0, clearly, we have (r, 2°n,) = 1. There exists i € Z such that 2%n; | ir 4 1. Thus by

+1 , we have

@+ D2 | @+ Dir+1) = (g+ Dn | @+ DGr+1)
= rn | (" + D(ir +1).

Therefore, ir+1 = qzm(—q(ir +1)) (mod rn). This implies Clqz (ir+1) = Clqz (—q(ir+
1)).Sinceir+1 € O, ,(1), by Proposition 3.8, there is no Hermitian self-dual « -constacyclic
code over ]qu, which contradicts the assumption. Therefore, » must be even, i.e., b > 0.
Letg + 1 =2 withc > 0and (r,2) = 1. If g + 1 = 0 (mod 2%1?), then ¢ > a.
q2m+l
q+1

Because (n2, r) = 1, there exists i’ € Z such that ny | i’r 4+ 1. Since n; | 1, we have

(g+ Dnina | @™+ DG'r +1) = 2%rtning | (@™ + DG'r + 1)
= rn | @+ DGE'r+ 1),

Similarly, we have Cl,2(i'r +1) = Cl,2(—q(i'r + 1)). By Proposition 3.8, we get a contra-
diction. So it is necessary to have g + 1 # 0 (mod 2¢1%).

Now we prove the sufficiency. Assume b > 0 and g + 1 # 0 (mod 24t?). If there is
no Hermitian self-dual code, by Proposition 3.8, there exists ir + 1 € O, ,(1) such that
Clp(ir + 1) = Cl2(—q(ir + 1)). Therefore, for some m € zt,

612m+1

| (g DG+ 1) = 29 | .

(g + D(@r+1).
Sinceb > 0, ir+1 mustbe odd. Together with the fact that % isodd, we get 2a+tb | g+1,
which contradicts the assumption that ¢ + 1 % 0 (mod 20+by, O

4 MDS hermitian self-dual constacyclic codes over F,2

We study MDS Hermitian self-dual constacyclic codes over IF > in this section. The following
theorem will give the BCH bound for constacyclic codes (cf. [1, Theorem 2.2]).

Theorem 4.1 Let C be an o-constacyclic code of length n over Fg2. Letr = ord(a). Let §
be a primitive rnth root of unity in an extension field of ¥ ;> such that " = o, and let { = §".

Assume the generator polynomial of C has roots that include the set {(Sg“i li1 <i <ij+d-—1}.
Then the minimum distance of C > d.

Example 4.2 Let ¢> = 17>, n = 8 and r = 18. We consider the a-constacyclic code of
length 8 over IFy,2 with « a primitive 18th root of unity.

Obviously, we have O3 g(1) = {1, 19,37,55,73,91, 109, 127} andr | g + 1. Let T =
{73,91,109,127}, then T = —17[0188(D\T] = {73,91, 109,127} (mod 144). Thus
T = T. By Corollary 3.3, C7 is a Hermitian self-dual a-constacyclic code.
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Table 1 [n, k, d] Hermitian self-dual codes over F 22 (where g < 19)

q r n k d T q r n k d T

5 2 4 2 3 {35} 17 6 8 4 5 ({19,25,31,37}

5 6 4 23 {1,7} 17 18 8 4 5 ({1,19,37,55}

7 4 4 2 3 {l,5} 17 2 10 5 24 {1,9,13,15,17}

7 8 4 2 22 {1,17} 17 6 10 5 24 {1,19,25,31,49}

7 8 6 3 4 {1,917} 17 18 10 5 24 {1,37,55,73,109}

9 2 4 2 3 ({1,3} 17 2 12 6 25 {1,3,11,13,15,17}

9 10 4 2 3 (1,11} 17 6 12 6 25 {1,7,13,19,31,43}

9 2 8 4 5 ({57,911} 17 18 12 6 >3 {1,19,73,91, 145, 163}

9 10 8 4 5 {1,11,21,31} 17 2 14 7 25 {57,11,13,15,17,23}

11 2 4 2 3 ({1,3} 17 6 14 7 25 {1,7,19,25,31,37,55}

11 4 2 22 {1,9} 17 18 14 7 25 {1,19,37,55,91, 109, 199}

11 6 4 2 3 {1,7} 17 2 16 8 9 {9,11,13,15,17, 19,21, 23}
1112 4 2 22 {1,25} 17 16 8 9 {43,49,55,61,67,73,79, 85}
11 4 6 3 4 {1,509} 17 18 16 8 9 ({1,19,37,55,73,91, 109, 127}
11 12 4 2 22 {1,25,49} 19 4 2 3 {1,3}

11 2 8 4 23 {1,3,9,11} 19 4 4 2 22 {1,9}

11 4 8 4 22 {1,9,17,25} 19 10 4 2 3 (1,11}

11 6 8 4 23 {1,7,2531} 19 20 4 2 22 (1,41}

11 12 8 4 22 {1,24,49,73} 19 4 6 3 4 ({50913}

11 4 10 5 6 {17,21,25,29,33} 19 20 6 3 4 {1,21,41}

11 12 10 5 6 {1,13,25,37,49} 19 2 8 4 23 {1,3,9,11}

13 2 4 2 3 {35} 19 4 8 4 22 {1,9,17,25}

13 14 4 2 3 (1,15} 19 10 8 4 23 {1,11,41,51}

132 6 3 4 (1,35} 19 20 8 4 22 {1,41,81,121}

1314 6 3 4 ({1,15,29} 19 4 10 5 6 {1,59,13,17}

13 2 8 4 23 {1,7,9,15} 19 20 10 5 22 {L1,41,81,121,161}

13 14 8 4 23 {1,15,57,71} 19 2 12 6 25 {1,7,15,17,19,21}

13 2 10 5 24 {1,9,13,15,17} 19 4 12 6 24 {1,17,21,25,41,45}

13 14 10 5 >4 {1,15,29,57,113} 19 10 12 6 2>5 {1,11,51,61,71,81}

13 2 12 6 7 {7,9,11,13,15,17} 19 20 12 6 24 ({1,21,41,121, 141,161}

13 14 12 6 7 {1,15,29,43,57,71} 19 4 14 7 25 {{1,5,9,13,21,25,45}}

17 2 4 2 3 ({1,3} 19 20 14 7 25 {1,21,61,81,101, 121, 181}

17 6 4 2 3 (7,13} 19 2 16 8 23 {1,3,9,11,17,19,25,27}

17 18 4 2 3 {1,19} 19 4 16 8 22 {1,9,17,25,33,41,49,57}

17 2 6 3 4 ({1,3,5) 19 10 16 8 23 {l,11,41,51,81,91,121, 131}}
17 6 6 3 4 {1,7,13} 19 20 16 8 22 {1,41,81,121,161,201, 241,281}
17 18 6 3 22 {1,37,73} 19 4 18 9 10 {29,33,37,41,45,49,53,57,61}
17 2 8 4 5 ({1,3,57} 19 20 18 9 10 {1,21,41,61,81,101, 121, 141, 161}

Furthermore, we notice that the generator polynomial of C7 has roots:

61“1’4)‘7 8l+5r, 81+6r’ 81+7r.

By Theorem 4.1, the minimum distance d is at least 5. Sincen —k+1=8—-44+1=5,Cr
is an [3,4,7] MDS Hermitian self-dual a-constacyclic code.
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Example 4.2 shows that there exist MDS Hermitian self-dual constacyclic codes. The
following theorem is a generalization of Example 4.2.

Theorem 4.3 Let a € ]F;z have order r with rs = q + 1 for some positive integer s. Let n
be evenandn | g — 1. Let
s—1 n—1-—s

T = Orn(D\ [ir tli-l—-l=i= [T]} (mod rn).

Then the following holds.

(1) If s is odd, then Cr is a Hermitian self-dual o -constacyclic MDS code with parameters
[n, 5,5 +11;

(i) If s is even, then Ct is a Hermitian self-orthogonal a-constacyclic MDS code with
parameters [n, 5 — 1, 5 +2].

Proof Let Ty = {ir +1| —[*5'] <i < ["5=*1} (mod rn). If 5 is odd, then 7| has %
elements, and therefore, the dimension of C7 is 5 if s is even, then 7} has 5 — 1 elements,
and therefore, the dimension of C7is 4 — 1. Let I; = {i | —[*51] <i < [*=}*]} (mod n).
The set {0, 1, ..., n—1}\1; has % consecutive elements (modulo n) when s is odd and ’% +1
consecutive elements when s is even. Using the Singleton Bound and Theorem 4.1, the
minimum distance of C7 is % + 1 when s is odd and % + 2 when s is even, making C7 MDS.

The proof is complete if we show that Cr is Hermitian self-orthogonal. By Corollary 3.3,
this can be verified if we show 71 N (—¢T1) = & where we reduce the entries in 7} and —g T
modulo rn before taking the intersection. Since n | ¢ — 1, we know —g = —1 (mod n),
which implies that —gr = —r (mod rn).So —q(ir+1) = —ir—g=—ir—(@+1)+1=
(—i—s)yr+1=m—i—s)r+1 (mod rn). Therefore, showing that 71 N (—g7T1) = & is
equivalent to showing that Iy N I, = &, where I = {n —i — s | i € I;} (mod n) and the
intersection /1 N I is taken after reducing modulo n. Consider the case that s is odd. The
elements of /| are the % consecutive integers —( %), R % Using this, the elements
of I are the 5 consecutive integers %H, e — (%). These two lists together make up
n consecutive integers, and hence, when reducing modulo n, I1 N I, = @. Consider the case
that s is even. The elements of /; are the 5 — 1 consecutive integers —5 +1,..., 5= — 1.
Using this, the elements of I are the % — 1 consecutive integers % +1,...,n— % — 1.
These two lists together make up n — 1 consecutive integers, excluding the single integer
%. Therefore, when reducing modulo n, I1 N I, = @. O

Table 1 gives some Hermitian self-dual codes over Iqu for ¢ < 19 with lower bounds on
the minimum distance d.

5 Conclusion

We have studied Hermitian self-dual codes arising from constacyclic codes in this paper. In
Sect. 3, necessary and sufficient conditions have been given for the existence of Hermitian
self-dual constacyclic codes over F 2 of length . In Sect. 4, we have given conditions for
the existence of MDS Hermitian self-orthogonal and self-dual constacyclic codes over F 2.
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