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Abstract In this paper, we study cyclic codes over the ring Zj[u]/ (u*). We find a set of
generators for these codes. We also study the rank and the Hamming distance of these codes.
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1 Introduction

Let R be aring. A linear code of length n over R is a R submodule of R". A linear code C
of length n over R is cyclic if (¢,—1, co, ..., cn—2) € C whenever (cg, c1,...,cp—1) € C.
We can consider a cyclic code C of length n over R as an ideal in R[x]/(x" — 1) via the
following correspondence

R" — R[x]/{(x" —1), (co, C1y...,Cn1) > co+cix+---+ Cpo1x™ L
Inrecent time, cyclic codes over rings have been studied extensively because of their important
role in algebraic coding theory. The structure of cyclic codes of odd length over rings has
been discussed in a series of papers [6,8,11,14]. In [7,9,13], a complete structure of cyclic
codes of odd length over Z4 has been presented. In [5], Blackford studied cyclic codes of
length n = 2k, when k is odd. The cyclic codes of length a power of 2 over Z4 are studied in
[1,3]. The structures of cyclic codes of length n over a finite chain ring R has been discussed
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2 A. K. Singh, P. K. Kewat

in [10] when n is not divisible by the characteristic of the residue field R. Bonnecaze and
Udaya [6] studied cyclic codes of odd length over Ry » = Za+uZ,, u? = 0.1In[2], Abualrub
and Siap studied cyclic codes of an arbitrary length over Ry » = Z +uZ,, u? = 0 and over
R3o = Zp +uZy + u?7Zs, u® = 0. Al-Ashker and Hamoudeh [4] extended some of the
results in [2] to the ring Ry 2 = Zo +uZo + - - - + k=17, u* = 0.

Let Ry p =Zp+uZp+---+ uk—lz,, where p is a prime number and u* = 0. Note that
the ring Ry, , can also be viewed as the quotient ring Z,[u]/ (u*). In this paper, we discuss
the structure of cyclic codes of arbitrary length over the ring Ry ,. We find a set of generators
and a minimal spanning set for these codes. We also discuss about the rank and the Hamming
distance of these codes. Recall that the Hamming weight of a codeword c is defined as the
number of non-zero entries of ¢ and the Hamming distance of a code C is the smallest possible
weight among all its non-zero codewords. The minimum distance of a code is the minimum
Hamming distance between two distinct codewords. When the code is linear, the minimum
distance of the code is equal to the Hamming distance. The minimum distance determines
the maximum number of errors that can be corrected under any decoding algorithm.

Let C be a cyclic code over the ring Ry, = Zp + uZy + -+ - + uk’lzp, uk = 0. The
line of arguments we have used to find a set of generators and a minimal spanning set of a
code C are somewhat similar to those discussed in [2]. The idea to find a set of generators
is as follows. We view the cyclic code C as an ideal in Ry, , = Ry p/(x" — 1). Then we
define the projection map from R; , , —> R;i_1 p, foreachi > 1. Fori = 2, we have the
projection map from R; ;, , —> Rj, p.,. Note that Ry , , is nothing but Z,[x]/(x" — 1) and
an ideal in Ry, , gives a cyclic code over Z,. The structure of cyclic codes over Zj, is well
known. By pullback, we find a set of generators for a cyclic code over R j, and inductively
we get a set of generators for a cyclic code over Ry, for all k. Again, the line of arguments
we have used to find minimum distance are similar to [2] but slightly different.

This paper is organized as follows. In Sect. 2, we give a set of generators for the cyclic
codes C over the ring Ry , = Zp + uZp + --- + uk’IZP, uF = 0. In Sect. 3, we find
a minimal spanning set for these codes and discuss about the rank. In Sect. 4, we find the
minimum distance of these codes. In Sect. 5, we discuss some of the examples of these codes.

2 Preliminaries

Let R be a finite commutative ring. We have the following equivalent conditions.

Proposition 2.1 [10, Proposition 2.1] The following conditions are equivalent for a finite
commutative ring R.

(1) R isalocal ring and the maximal ideal M of R is principal;
(2) R is alocal principal ideal ring;
(3) R is a chain ring.

Let R be a finite commutative local ring with maximal ideal M. Let R = R/M. Let
n: R[x] — R[x] denote the natural ring homomorphism that maps » + r + M and the
variable x to x. We define the degree of the polynomial f(x) € R[x] as the degree of the
polynomial w(f(x)) in R[x], ie., deg(f(x)) = deg(u(f(x)) (see, for example, [12]). A
polynomial f(x) € R[x]1is called regular if it is not a zero divisor. The following proposition
is well known.

Proposition 2.2 (cf. [12, Exercise XII1.2(c)]) Let R be a finite commutative chain ring. Let
f(x) =ap+aix + -+ a,x" be in R[x], then the following are equivalent.
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On cyclic codes over the ring Zp [u]/(uk) 3

(1) f(x) is regular,
(2) (a0, a1, ...,an) =R,
(3) a; is a unit for some i, 0 <i <n,

@ w(fx) #0.

The following version of the division algorithm holds true for polynomials over finite
commutative local rings.

Proposition 2.3 (cf. [12, Exercise XII1.6]) Let R be a finite commutative local ring. Let f (x)
and g(x) be non-zero polynomials in R[x]. If g(x) is regular, then there exist polynomials
q(x) and r(x) in R[x] such that f(x) = g(x)q(x) + r(x) and deg(r(x)) < deg(g(x)).

Let Ry, p = Zp +uZp +--- + uk’IZp, u* = 0. It is easy to see that the ring Ry, p is
a finite chain ring with unique maximal ideal (u). Let g(x) be a non-zero polynomial in
Zp[x]. By Proposition 2.2, it is also easy to see that the polynomial g(x) +up; (x) + u? pr(x)
+o g (x) € Ry, p[x]is regular. Throughout the paper, we repeatedly make use of
Proposition 2.3 for the polynomial g (x) 4+ up; (x)+upa(x)+- - -+u* " pr_1(x) € Ry, plx].
Note that deg(g(x) + up1(x) + u? p2(x) + - - - + uF 1 pp_1 (x)) = deg(g(x)).

3 A generator for cyclic codes over the ring Ry ,

Let p be a prime number. Let Ry, , = Z, +uZ, +--- + uk_lZp, u* = 0 and Ripn =
Ry, p[x]/{x"—1).Let Cy beacyclic code of length n over Ry ,. We also consider Cy as anideal
in Ry p,n. Wedefinethemap i1 : R p —> Ri—1,p by Y—1(bo+ubi+- - FuFlp_ ) =
bo + uby + -+ - + uF"2by_,, where b; € Zp,. The map v, is a ring homomorphism. We
extend it to a homomorphism ¢ 1 : Cx —> Ry—1,p,, defined by

b1 (co+e1x + -+ cam1 X)) = Yoy (o) + Yr—1 (€)X + -+ Yroy (Cpp) X",

where ¢; € Rg p. Let Jy—1 = {r(x) € Zp[x] : Wk =lr(x) € kergpr—1}. It is easy to see that
Ji—1is anideal in Ry p ,. Since Ry ) , is a principal ideal ring, we have Jy_| = (ax—1(x))
for some ay—1(x) € Zp[x], and kergy 1 = (u*Lag_1(x)) with ag—; (x)|(x" — 1) mod p.

Let Cx—1 be acyclic code of length n over Ry, ,. We define the map Yy 2 : Ry—1,p —>
Ri—2,p by Yk—a(bo+uby +- - +u*"2by_5) = bo+uby +- - +u*—3b;_3, where b; € Z,,.
The map 7 is a ring homomorphism. We extend it to a homomorphism ¢y : Cr—1 —>
Ry —2,p,n defined by

P2 (co+c1x + -+ a1 X)) = Y (o) + Y2 () X + -+ + Y2 (cp1) X",

where ¢; € Rg_1,p. Let Jx_o = {r(x) € Z,[x]: u*72r(x) € kergx_»}. We see that Jy_»
is an ideal in Ry j ,. As above, we have J;_> = (ax_2(x)) for some a;_»(x) € Z,[x], and
kergy—o = Wk 2ag_»(x)) with ax_»(x)|(x" — 1) mod p.

We continue in the same way as above and define {;_3, Yk—4a,..., ¥ and ¢_3,
Or—4, ..., ¢2. We define ¥y : Ry, —> Ry, = Z, by ¥1(bo + uby) = by, where
by, by € Z,. The map ¥ is a ring homomorphism. We extend v to a homomorphism
¢1: Co — Ry, defined by

¢1 (co+e1x + -4 cam1x™ ) =Yy (co) + Vi () x + -+ Y1 (cpm) X

where ¢; € Ry ,. As above, we have ker¢y = (ua(x)) for some a;(x) € Zp[x], with
ay(x)|(x" — 1) mod p. The image of ¢; is an ideal in R; , , and hence a cyclic code in Z,,.
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4 A. K. Singh, P. K. Kewat

Since Ry, p,, is a principal ideal ring, the image of ¢; is generated by some g(x) € Zp[x]
with g(x)|(x" —1). Hence, we have C; = (g(x)+upi(x), ua;(x)) for some py(x) € Z,[x].

We have
x" -1 x"—1
?1 ( (g(x) + Mpl(x))) = ¢i (Mpl(x) ) =0
g(x) g(x)

Therefore, upi (x) 1) ¢ ker¢py = (uaj(x)). Hence, aj(x)|p1(x) (x"_l) . Also we have

( g(x) ) g(x)

ug(x) € kerg;. This implies that aj (x)|g(x).

Lemma 3.1 Let C; be a cyclic code over Ry, = Z,, + uZ,, u? = 0. If C, = (gx) +
upi(x), uai(x)), and g(x) = ay(x) with degg(x) = r, then

Cy = (g(x) +up1(x)) and (g(x) +up1(x))| (x" —1) in Ry, .

Proof We have u(g(x) + upi(x)) = ug(x) and g(x) = aj(x). Itis clear that C, C (g(x) +
upi(x)). Hence, C2 = (g(x) 4+ upi(x)). By the division algorithm, we have

x"—1=(g(x)+up;(x))g(x)+r(x), wherer(x) =0 ordegr(x) <r.

This implies that r(x) = (x" — 1) — (g(x) + up1(x))q(x). This gives, r(x) € C;. Thus, we
have r(x) = 0 and hence (g(x) + up1(x))|(x" — 1) in Ry . m]

Note that the image of ¢ isanidealin R> , ,, hence acyclic code over R; . Therefore, we

have Im(g) = (g(0)+up1 (x), uar (¥)) with a1 ()] g(0)| (" = 1) and a1 (0 p1 () (55

Also, we have kerg = (u?as(x)) withas (x)|(x —1) mod p and u?a; (x) € kerg. As above,
the cyclic code C3 over R3 j is given by

C3= <g + upi(x) + u? pa(x), uay(x) + u*q(x), uzaz(x)>,

x"—1
8(x)
n

mod p, a2(0la1() (57 ) - 2@Ip1 o) (55)) and a20lp200 (551) (57 ) - We

may assume that degp,(x) < degar(x), deggi(x) < degas(x) and degpi(x) < degaj(x)
because g.c.d. (a, b) = g.c.d.(a, b+ da) for any d. We have the following lemma.

for some py(x), q1(x) € Zplx], with az(x)|a;(x)[g(x)|(x" — 1), a1(X)IP1(X)(

Lemma 3.2 Let C3 be a cyclic code over R3 , = Z, + uZ, + MZZ,,, w = 0. If
C3 = (g +up1(x) + u?pa(x), ua) (x) +u?q1(x), u?ax(x)), and az(x) = g(x), then C3 =
(g+up1 (x)+u? p2(x)), (g(x)+up1 (x)|(x"—1)in Ry, and (g+up) (x)+u> p2(x))|(x"—1)
inR3 p.

Proof Since ax(x) = g(x), we get aj(x) = ax(x) = g(x). We have ¢2(C3) = (g +
up1(x), uai(x)). From Lemma 3.1, we get (g(x) +up1(x))|(x" —1)in Ry ,, and ¢>(C3) =
(g + up1(x)). This gives, C3 = (g + up1(x) + u? p2(x), u’a>(x)). The rest of the proof is
similar to Lemma 3.1. O

If we continue in the same way as above, we can see that the image of ¢r_; is
an ideal in Ry ., hence a cyclic code over Ry_1,,. By induction hypothesis, we
can assume that Im(¢x—1) = (g + up1(x) + uzpz(x) + o+ uk‘zpk_z(x), uaj(x) +
wrqi(x) + -+ g 3(x), wrar(x) +udli () -+ uF T g (), uF P a0 +
w251 (1), uF2ag_o(0) with a2 (0)] -+ laz (0)]a1 () |g ()| (x" = 1) mod p, ag—3(x)|p
(x) (xnfl) .y ap_a|s1(x) (ﬁ) s Qk—2|pr—2 ()fgn(—;)l) e (ﬁ) . Also, wehave

gx) ) ag—3(x) ag—3(x)
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On cyclic codes over the ring Zp [u]/(uk) 5

kergp—1 = (¥ ag_1(x)) with ag_1 (x)|(x" — 1) mod p and u¥~'ax_»(x) € ker¢p_,. Fol-
lowing the same process as above and by induction on k, we get the following theorem.

Theorem 3.3 Let Cy be acyclic code over Ry , = Zp—{—uZp—i—uzZp—i—- . ~+uk_]Zp, uk = 0.
If n is not relatively prime to p, then

() Cr = () + up1(x) + u?pr(x) + -+ + u* " py_1(x)) where g(x) and pi(x) are
polynomials in Zp[x] with g(x)|(x" — 1) mod p, (g(x) + upi(x) + uzpz(x) + -+
uk_lpi_l(x))|(x" —1)in R; ; and degp; < degp;_1 foralll <i < k.Or

) Cr = (g +upi(x) + ulpar(x) + -+ + "y (%), uar(x) + g (x) + -+ +
Uk gr o (x), ular(x) + udli () + -+ uF T 30, L uF P () + uF T (x0),

uk=Yag_ 1 (x)) with ag—1(x)|ag—2(x)] - - - |laz (x)|a1 (x)|g ()| (x" — 1) mod p, ar—»(x)]

p1 (x) (5()5)) ceey Qp—1lh (x) (“k 2(]16)) ceey Qf— 1|Pk l(é(x)l) (a:_;()lc))

Moreover, degpy—1(x) < degay—1(x), --- ,degt;(x) < ax—1(x),---, and degp1(x) <
degaj—2(x).

Note that if we have ax—1(x) = g(x) in part 2 of the above theorem then we
get part 1. If we have axr—1 # g(x) but ar_» = g(x) then Cr = (g(x) + up(x)
+u? pr(x)+- 4 uF T e (x), W ag_1 (x)) where ag—1(x)|g(x)|(x" — 1) mod p, g(x)
+upi(x)+-- tul lp, 11" = 1)in R; p for 1 <i <k — 1, g(x)|p1(x) ( g(x)

@Ip1E (55) s a1 @@ (557) (57) - a1 0l () - ()

k—1times
and degpy—1(x) < degax—1(x). Similarly we get the simpler form for Ci if we have

ag—1, k-2, ...,0a; # gx)buta;_; = g(x) fori > 1.
If n is relatively prime to p, then the following theorem follows from [10, Theorems
3.4-3.6].

) and ay_1

Theorem 3.4 Let Cy be acyclic code over Ry , = Zp—{—uZp—i—uzZp+~ . -—I—uk_]Zp, uk = 0.
If n is relatively prime to p, then we have Cy, = (g(x), uaj(x), wrar(x), ..., ufF ap_ (x))
= (g(x) +ua (x) + ular(x) + - - - + wkLap_1(x)) over Ry p.

4 Ranks and minimal spanning sets

Theorem 4.1 Let n is not relatively prime to p. Let Cp be a cyclic code of length n over

Ryp =7, +uZy, u>=0.

(D) If C2 = (g(x) + up(x)) with degg(x) = r and (g(x) + up(x))|(x" — 1), then
C, is a free module with rank n — r and a basis By = {g(x) + up(x), x(g(x) +
up(x)), ..., x" (g (x) +up(x))}, and |C2| = p* .

(2) IfCy = (g(x)4up(x), ua(x))withdegg(x) = r anddega(x) = t, then C, has rankn—t
and a minimal spanning set By = {g(x) +up(x), x(g(x)+up(x)),..., xh—r-l (g(x)+
up(x)), ua(x), xua(x), ..., x"""lua(x)}, and |Cy| = p*—"".

Proof (1) Suppose x" — 1 = (g(x) 4+ up(x))(h(x) 4+ uh1(x)) over Ry ,,. Let c(x) € C2 =
(g(x) +up(x)), then c(x) = (g(x) +up(x)) f(x) for some polynomial f(x). If degf (x)
n —r — 1, then c(x) can be written as linear combinations of elements of B;. Otherwise by
the division algorithm there exist polynomials g (x) and r (x) such that

IA

fx) = (ﬁ) q(x)+r(x) wherer(x) =0ordegr(x) <n—r—1.
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6 A. K. Singh, P. K. Kewat

This gives,

"1
(8(x) + up(x)) £ (x) = (g(x) + up(x)) ((7)“ ) q(x) + r(x))
g(x) +up(x)

= (g(x) +up(x)r(x).

Since degr(x) < n—r —1, this shows that By spans C>. Now we only need to show that B is
linearly independent. Let g(x) = go+g1x +- - -+ g-x" and p(x) = po+ p1x+---+ pix,
g0 € Z;, 8i» Di—1 € Lp, i > 1. Suppose

(g(x) + up(x))co + x(g(x) + up(x))er + -+ x" 7" (g(x) + up(x))cp—r—1 = 0.
By comparing the coefficients in the above equation, we get
(g0 + upo) co = 0 (constant coefficient).
Since (go + upo) is unit, we get co = 0. Thus,
x(g(x) +up(x))er + -+ +x"7" (@) + up(0))ep—r1 =0.
Again comparing the coefficients, we get
(go + upo) c1 = 0 (coefficient of x).

As above, this gives ¢; = 0. Continuing in this way we get that ¢c; = 0 foralli =0, 1,...,
n —r — 1. Therefore, the set Bj is linearly independent and hence a basis for C».

2) If C; = (gx) + up(x), ua(x)) with degg(x) = r and dega(x) = t. The
polynomial a(x) is the lowest degree polynomial such that ua(x) € C,. It is suf-
fices to show that By spans B = {g(x) + up(x), x(g(x) + up(x)), .. .,x””’l(g(x) +
up(x)), ua(x), xua(x), ..., x"“lua(x)}. We first show that ux""a(x) € span(By). Let
the leading coefficients of x” ~"a(x) be ag and of g(x) +up(x) be go. There exists a constant
co € Zp such that ap = cogo. Then we have

wx’"a(x) = uco(g(x) + up(x)) + um(x),

where m(x) is a polynomial of degree less than r such that um(x) € Cj. Since C, =
(g(x) + up(x), ua(x)), any polynomial p(x) such that up(x) is in C2 must have degree
greater or equal to dega(x) = ¢. Hence, t < degm(x) < r and

um(x) = agua(x) + ajxua(x) +--- + a,_,_lxrftflua(x).

Thus, ux""'a(x) € span(B,). Inductively, we can show that ux" " lax), . ux " la(x)

€ span(B»). Hence, B, is a generating set. As in (1), by comparing the coefficients we can see
that B is linearly independent. Therefore, B, is a minimal spanning set and |C2| = p2”””.
O

Following the same process as in the above theorem, we can find the rank and the minimal
spanning set of any cyclic code over the ring Ry ,, k > 1.

Theorem 4.2 Let n is not relatively prime to p. Let Cy be a cyclic code of length n over
Ri,p =Zp +uZp+--- + uk_IZp, uk = 0. We assume the constraints on the generator
polynomials of Cy as in Theorem 3.3.

() If Cx = (g(x) + up1(x) + u?pa(x) + -+ + u* ' pr_1(x)) with degg(x) = r, then
Cy is a free module with rank n — r and a basis By = {g(x) + up1(x) + --- +
uF = 1 (), x(g(0) +upr(¥) + -+ uk T (), L X T (g (x) + upr () +
cuf T e (o))
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On cyclic codes over the ring Zp [u]/(uk) 7

(2) If Cx =< g(x) + up1(x) + u?pr(x) + -+ + " pp_1(x), uar (x) + u’q1(x) +
R uk_lqkfz(x),uzaz(x) + u311(x) + - + uk_llk,3(x),...,uk_zakfz(x) +
uk_ltl(x),uk_lak_l(x) > with deg g(x) = ry, deg aj(x) = ry, deg ar(x) =
73, ..., deg ax—1(x) = ry, then Cy has rank n — ry and a minimal span-
ning set By = {g(x) + up1(x) + -+ + " pp_1(x), x(g(x) + up1(x) + -+ +
W1 (), X ) Fupr(x) 4 b pro 1 (0)), wan (x) + g (x) +
co it g o (x0), x(uar(x) +utqr () 4+ it g (), L xR  wa () +
w2q (x) + 4+ " g (0), wlar () + w3 (x) + -+ W T (0, xWPax () +
W) + -+ uk T 30), L x2TT wlay () + utl (0) + - A uF T s (),
o uk_lak,l(x), xuk_lak,l(x), e, xrkfl_”‘_luk_lak,l(x)}.

Proof (1) The proof is same as in Theorem 4.1. Suppose
=1 = (00 +upr () + -+ w T ey @) (A w0+ T e ()

over Ry . Suppose x" — 1 = (g(x) +up1(x))(h(x) +uhi(x)) over Ry . Letc(x) € C =
(g(x) +up1(x) +u?pa(x) +- - +ur""pp_1(x)), then c(x) = (g(x) +upi (x) +u?pa(x) +
s uk_lpk,l(x))f(x) for some polynomial f(x).If degf(x) <n—r —1, then c(x) can
be written as linear combinations of elements of Bj. Otherwise by the division algorithm
there exist polynomials g (x) and r(x) such that

x"—1
10 = (g(x) +upi(x)+---+ uk’lpk—1(x)) 40) +rx),

where r(x) = 0 or degr(x) < n —r — 1. This gives,

(g0r+up1 (0 + -+ 4+ 0 pr () )= (g0 Fup1 () + -+ ™ py () (o).

Since degr(x) < n —r — 1, this shows that B; spans Cy. Now we only need to show that
By is linearly independent. Let g(x) = go + g1x + - -+ + g-x" and p1(x) = p1o0+ p1,1x +
s pLpxlty pa(x) = poot+ paax + o+ papx, o pro1 (%) = peeo + pr—1ax +
ot Pty XY, g0 €2, 8iy pji-1 € Ly, i, j = 1. Suppose (g(x) +upi(x) + -+
uF = pr_1 () co+x(g(x) +upi () ++ - +uk T pr_y (x))er - A2 (g (x) Fupr (x) +
co gkl Pk—1(x))cn—r—1 = 0. By comparing the coefficients in the above equation, we get

(go +upro+---+ uk_lpk_l,o) co = 0 (constant coefficient).

Since (go +upi,0+-- ~+uk_1pk,1,o) is unit, we get co = 0. Thus, x(g(x) +upi(x)+-- -+
W e @)er + -+ 2N @) +upt (6) + -+ uF T pro i (0)ep——1 = 0. Again
comparing the coefficients, we get

(80 +upro+---+ uk_lpk_l’o) ¢y = 0 (coefficient of x).

As above, this gives ¢; = 0. Continuing in this way we get that ¢c; =0 foralli =0, 1,...,
n —r — 1. Therefore, the set B is linearly independent and hence a basis for Cy.
Q) If Cx = (g(x) + up1(x) + - + uF T pe1(x), war(x) + u?qi(x) + --- +

W o (), wlar(x) + wh(x) + -+ W0, L uF P (60) + uh T (),
ulag_y (x)) with deg(g(x) + up1(x) + -+ + ¥ p1(x)) = r1, deglai(x)) = ra,
deg(ax(x)) = r3, ..., and deg(ax—1(x)) = r¢. The polynomial a(x) is the lowest degree

polynomial such that wF=ag_1(x) € Cy. It is suffices to show that By spans B = {g(x) +
up1(x) + -+ uf 1 (x0), x(@() +upi () +- -+t pp (), T (g (60 +
up1 () +- -4t 1 (x0), uar () +utqr () +- - AuF g o (x), x(uar (x)+utqr(x)+
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s uf g ), xR wa () + g (x) + e+ i g o (), uPar(x) +
WhHx) + -+ uF U 50, x@Par(x) + wdlhi(x) + - + u* 3 (x)), ..., x23]
Wlar(x) + w3l (x) + - + uF U 3(0)), . dF e (), xuF T o (x), L., xt e
uk_lak_l(x)}. As in the proof of part 2 of Theorem 4.1, it is suffices to show that
wF=xme=1"Tkgq 1 (x) € span(By). Let the leading coefficients of x"*~1~"*a;_(x) be ap and
of g(x)+upi(x)+--- —|—uk_1pk,1(x) be go. There exists a constant ¢y € Z, such that ap =
cogo.Thenwehaveuk_lx’k*‘_’kak_l(x)=uk_1co (g(x) +upi(x)+---+ uk_lpk_l(x))—i—
wk=Lm(x), where m(x) is a polynomial of degree less than r;_; such that W Im(x) € Cy.
Any polynomial p(x) such that «*~!p(x) is in C; must have degree greater or equal to
deg(ax—1(x)) = rr. Hence, rp < degm(x) < ry—; and W Im(x) = aguflag_ (x) +
axu* a0+ -+ a,k;l_,k_lx’k—l’rk’luk’lak_l (x). Thus, u*—1x"=1"Tkq,_1(x) €
span(By). Hence, B; is a generating set. As in (1), by comparing the coefficients we can see
that Bj is linearly independent. Therefore, B, is a minimal spanning set. O

5 Minimum distance

Let n is not relatively prime to p. Let C» = (g(x) +up(x), ua(x)) be a cyclic code of length
nover Ry, = Zy +uZyp, u? = 0. We define Coy = {k(x) € Ry p i uk(x) € Ca}. Itis
easy to see that C, ,, is a cyclic code over Z,. Let Cy be a cyclic code of length n over Ry , =
Zp+uly+---+uk=12Z,, ut = 0. We define Cy_ i1 = {k(x) € Ry pn : u*"k(x) € Cr}.
Again it is easy to see that C; -1 is a cyclic code over Z .

Theorem 5.1 Let n is not relatively prime to p. If C, = (g(x) + up1(x) + u2p2(x) +
o d T e (), war () + ulqr () + - A T g (0), Wlar(x) + Pl (x) -+
W30, u R a o (x) F i (), Wb e () is a cyclic code of length n over
Rip=2Zp+uly+ - +ur"12, uk = 0. Then C; p-1 = (ar—1(x)) and wy (Cy) =
u}H(Ck’uk—l).

Proof We have u* lay_i(x) € Cy, thus (ax_1(x)) C Cpyi—1- If b(x) € Cp i1,
then uk_lb(x) € Cy and hence there exist polynomials by(x),...,b(x) € Zp[X]
such that u*~'b(x) = b1(x)uFgx) + bry(x)u*lay(x) + by ar(x) + --- +
br(x)u*Lag_1 (x). Since ax_i(x)lak—2(x)|- - laz(x)|ai (x)|g(x), we have u*~'b(x) =
m(x)uflag_ (x) for some polynomial m(x) € Zp[x]. So, Cy k-1 € {ak—1(x)), and hence
Crue—1 = {ax—1(x)). Let m(x) = mo(x) + um(x) +--- + u/‘_lmk_l(x) € Cy, where
mo(x), my(x),...,mg—1(x) € Zp[x]. We have WK Tm(x) = u* "mo(x), wy @ mx))
< wy(m(x)) and u*~'Cy is subcode of Cx with wy W ~'Cy) < wp(Ck). Therefore,
it is sufficient to focus on the subcode u*~'Cy in order to prove the theorem. Since
uk=1Cp = (W ag_1 (x0)), we get wy (Cr) = wy (Cyi1). |

Definition 5.2 Letm = b_1p' '+ bj_op' 2+ -+ bip+bo, bi €Z,, 0<i <l—1,
be the p-adic expansion of m.

(D) If bj—; #0foralll <i <¢q,q <!l,andb;_; =O0foralli, g+ 1 <i </, thenm is
said to have a p-adic length ¢ zero expansion.

(2) Ifbj—; #Oforalll <i <q,q <1, bj_4—1 =0andb;_; # Oforsomei, g+2 <i <1,
then m is said to have p-adic length g non-zero expansion.

3) If bj—; #0for1 <i </, then m is said to have a p-adic length / expansion or p-adic
full expansion.
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Lemma 5.3 Let C be a cyclic code over Ry, of length p! where [ is a positive integer. Let
C = (a(x)) where a(x) = (x”F1 —DPh(x), 1<b < p- If h(x) generates a cyclic code of
length p'=' and minimum distance d then the minimum distance d(C) of C is (b + 1)d.

1 Ry plx]

Proof Forc € C, we have c = (pr — DP2h(x)m(x) for some m(x) € TS Since h(x)
generates a cyclic code of length pl’l, we have w(c) = w((x”H — DPhx)m(x)) =
wi? P hom @) + w¢Crx? T O Dh@m) + -+ wChorx? T hm ) +
w(h(x)m(x)). Thus, d(C) = (b + 1)d. O

Theorem 5.4 Let Cy be a cyclic code over Ry, of length pl where [ is a posi-
tive integer. Then, Cy = (g(x) + up1(x) + uzpz(x) + -4+ uk’lpk_l(x), uay(x) +
W2qi () + -+ g (), uPar(x) +udlh () + -+ T s (0, L uF o () +
uF =t (), uF a1 () where g(x) = (x — D', ap(x) = (x = D2, a1 (x) =
(x — D). for somet; > 1 > --- > 1 > 0.

() Ift < p'=', then d(C) = 2.
Q) Ifty > pl= letty = bi_1 p' =V 4+ bj_o p' =2 + - - -+ by p + bg be the p-adic expansion of
foand ap_y(x) = (x — D = (e = DI P T — b2 e — 1P e — 1),

(a) Iftx has a p-adic length q zero expansion or full expansion (I = q). Then, d(Cy) =
b=+ D2+ 1) - - (bj—g + 1).

(b) If ty has a p-adic length q non-zero expansion. Then, d(Cy) = 2(bj—1 + 1)(b;—2
+1)-(b—g +1).

Proof The first claim easily follows from Theorem 3.3. From Theorem 5.1, we see that
d(Cy) = dWF1Cy) = d((x — 1)*). hence, we only need to determine the minimum weight
of uk=1C = (x — D).

(1) g < p=' then (x — Dik(x — P 7' = (x — P = ' — 1) € Cy. Thus,
d(Cy) = 2.
(2) Lett > pl’l.

(a) Ift hasa p-adic length g zero expansion, we have ty = bl_lpl_l +b1_2pl_2 4+
bi_gp'™9, and q_ 1 (x) = (x — D% = P = DI - e ert
DPi-a. Let h(x) = (xplfq — 1)%-4. Then h(x) generates a cyclic code of length

p!~9*! and minimum distance (bj—4 +1). By Lemma 5.3, the subcode generated by

(xf”HHI — 1)?-a+1 p(x) has minimum distance (bj—g+1+1)(bj—g +1). By induction
on g, we can see that the code generated by a_1(x) has minimum distance (b;_1 +
(-2 + 1)+ (bj—g + 1). Thus, d(Cy) = (bj—1 + D)(by—2 + 1) - - (bj—g + 1).
(b) If t has a p-adic length g non-zero expansion, we have #; = b;_1 pl 14, pl 24
~o-+bip+bo, bj—y—1.Letr = bl_q_zpl_q_z+b[_q_3pl_q_3+' --++by1p+bpand
hx) = (x — 1) = P = b2 (P77 b P — P P — 1)
bo Since r < p'=7~!, we have p'~9~! = r + j for some non-zero j. Thus, (x —
DP in(x) = P — 1) € C. Hence, the subcode generated by h(x) has
minimum distance 2. By Lemma 5.3, the subcode generated by (x”liq — Dbr-ah(x)
has minimum distance 2(b;—, + 1). By induction on g, we can see that the code
generated by a1 (x) has minimum distance 2(b;—1 + 1)(bj—2 + 1) - - - (bj—4 + 1).
Thus, d(Cy) =2(bj—1 + D)(by2+ 1) --- (bj—g + 1). o
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Table 1 Cyclic codes of length 5
over Ry 3 = Z3 +uZs + u223 +

w3, ut =0 (1), (21), (e2)

(u), (ug1), {uga)
), (ug1). (u?g)
W), wigr), W3g)
(81. 1), (g2, u). (g1. u?). (g2, u?). (g1. u?). (g2, u?)
(ug1. u?), (ugr, u?)
W?g1. ud), (u’gr. u

Non-zero generator polynomials

(u

3

Table 2 Non-zero free module
cyclic codes of length 5 over
Zs +uZs, u? =0

Non-zero generator polynomials dC) Ranks

) 1 5
(g + ucop), co € Zs 2 4
(g2 +u(co + c1x)), o, ¢ € Zs 3 3
(g% +ulco +c1x — (co +e)x2), o, ¢ € Zs 4 2
(g% + uco@x3 +3x2 +2x + 1)), ¢ € Zs 5 1

33;);: gf II;Ir:);ilfr;Z‘r,rel(r)dule cyclic Non-zero generator polynomials d(C) Ranks

Zs +uls, u* =0 W), (g u), 1<i<4 1 5
(ug) 2 4
(ug?) 3 3
(ug?) 4 2
(ug*) 5 1
(g2 + ucq, ug), co € ZLs 2 4
(g3 + uco, ug), co € Zs 2 4
(g3 +ulco + c1x), ug?), co, ¢ € Zs 3 3
(g4 + ucg, ug), co € Ls 2 4
(g% +ucog, ug?), co € Zs 3 3
(g4 + uc0g2, ug3), co € Zs 4 2

6 Examples

In this section, we give some examples of cyclic codes of different lengths over the ring Ry p.

Example 6.1 Cyclic codes of length 5 over R4 3 = Z3 + uZs + u?Zs + ulZs, u* =0 :
We have

X —1= -1 x*+x>+x2+x+1) over Ry3.

Letgi=x—1land g, = x*+x3 + x2 4+ x + 1. The non-zero cyclic codes of length 5 over
R4 3 with generator polynomial are given in Table 1.

Example 6.2 Cyclic codes of length 5 over Ry 5 = Zs + uZs, u? =0 : We have

X —1= (x — 1)5 = g5 over Ry 5.
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3;‘312 :0 dl\GI;)r(l)-leeer I(l)ggleg ?Vz(iule Non-zero generator polynomials d(C) Ranks
Z3 +uZs, u* =0 ) 1 9
(g +uco), co € Z3 2 8
(g% +ulco + c1x)), co, ¢1 € Z3 2 7
(g3+u(co+clx+czx2)), co, €1, 2 €73 2 6
(g% +ulco+ci1x+cax?+c3x3), cg, c1, cr €23 4 5
(g5+u(co+clx+ch2+63x37(CO+C] +c+ 6 4
c3)xh), co, e1, €2, ¢3 €23
(8% +u(co + c1x + cox? — cox® —c1xt —cpxd)), 3 3
cp, €1, €3 €73
(&7 +u(co+crx+e x2+(co+ep)xd —cxt—ei X+ 6 2
(co —cx®). co. 1 €Z3
(3 +uco(l —x +x3 —x*+x0 = x7)), ¢y € Z3 9 1
chcll);: (ff ]Zqogr;frgz\r]r;?dule cyclic Non-zero generator polynomials d(C) Ranks
2+ ully, it =0 W), (g u). 1=i <8 o
(ug), 1 <i <3 2 8
g, 1<i<3 2 7
(ug), 1<i<3 2 6
(ug®) 4 5
(ug”) 6 4
(ug®) 3 3
(ug”) 6 2
(ug®) 9 1
(g2 + ucq, ug), co € Z3 2 8
(g3 + uco, ug), co € 73 2 8
(7 +ulco +c1x), ug?), co, c1 € Z3 2 7
(g4 +ucq, ug), co € Z3 2 8
(g% + ulco + c1x), ug?), co, c1 € Z3 2 7
(g% +ulco +crx +2x2), ug), co, c1. 2 €23 2 6
(g5 + ucy, ug), co € Z3 2 8
(87 +ulco + c1x), ug?), co. c| € Z3 2 7
(82 +ulco +crx +e2x2), ug), co, c1. 2 €23 2 6
(85 +ulco + c1x + cpx? + 4 5
c3x?),ugt), co, c1, €2, 3 € Z3
(g% + ucy, ug), co € 23 2 8
(8% +u(co +c1x), ug?), co, ¢y € Z3 2 7
(8% + ulco + c1x + c2x2), ug), cq, c1, e € Z3 2 6
(8% +ulco + c1x + cpx?)g, ugh), co. c1, cx€Z3 4 5
(g0 +ulco+cix+cax2)g?, ug®), g, c1, c2 €Z3 6 4
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Table 5 continued Non-zero generator polynomials d(C)  Ranks

(g7 +ucy, ug), co € 73

(87 +ulco + c1x), ug?), co. ¢ € Z3
(7 +ulco + c1x)g. ug?). co. c1 € Z3
(g7 + uco + c1x)g%, ug*), co. c1 € Z3
(7 +ulco + c1x)g>, ug), co. c1 € Z3

w A~ L N 9 o©

(87 +ulco +c1)g*, ugb). co. c1 €73
(g8 +ucp, ug), co € Z3

8% +ucog. ug?). co € Z3

g8 +ucog?, ugd). co €73
,Cc0 €723

,co €Z3

(

(

(88 +ucog?, ug
(¢8 +ucog?, ug
( 5 6
6

g8 +ucog’, ug®), co € Z3

(8 4+ ucog®. ug

AW RN NN W RN NN

N W R N3

, c0 €73

The non-zero cyclic codes of length 5 over R 5 with generator polynomial and minimum
distance are given in Tables 2 and 3.

Example 6.3 Cyclic codes of length 9 over Z3 + uZ3, u®> = 0 : We have
1= (x — 1)9 = g9 over R 3.

The non-zero cyclic codes of length 9 over R; 3 with generator polynomial and minimum
distance are given in Tables 4 and 5.

References

1. Abualrub T., Ochmke R.H.: On the generators of Z4 cyclic codes of length 2¢. IEEE Trans. Inf. Theory
49(9), 21262133 (2003).

2. Abualrub T., Siap I.: Cyclic codes over the rings Zp +uZ and Zy +uZs + uzzz. Des. Codes Cryptogr.
42(3), 273-287 (2007).

3. Abualrub T., Ghrayeb A., Ochmke R.H.: A mass formula and rank of Z4 cyclic codes of length 2¢. IEEE
Trans. Inf. Theory 50(12), 3306-3312 (2004).

4. Al-Ashker M., Hamoudeh M.: Cyclic codes over Z, + uZ, + ung 4+t uk_lZQ. Turk. J. Math.
35(4), 737-749 (2011).

5. Blackford T.: Cyclic codes over Z4 of oddly even length. Discret. Appl. Math. 128(1), 27-46 (2003).
International Workshop on Coding and Cryptography (WCC 2001) (Paris).

6. Bonnecaze A., Udaya P.: Cyclic codes and self-dual codes over F, +u F>. IEEE Trans. Inf. Theory 45(4),
1250-1255 (1999).

7. Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6(1), 21-35
(1995).

8. Calderbank R.A., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4).
IEEE Trans. Inf. Theory 44(4), 1369—1387 (1998).

9. Conway J.H., Sloane N.J.A.: Self-dual codes over the integers modulo 4. J. Comb. Theory A 62(1), 30-45
(1993).

10. Dinh H.Q., Lopez-Permouth S.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf.
Theory 50(8), 1728-1744 (2004).
11. Dougherty S.T., Shiromoto K.: Maximum distance codes over rings of order 4. IEEE Trans. Inf. Theory

47(1), 400404 (2001).

@ Springer



On cyclic codes over the ring Zp [u]/(uk) 13

12. McDonald B.R.: Finite rings with identity. In: Pure and Applied Mathematics, vol. 28. Marcel Dekker,
New York (1974).

13. Pless V.S., Qian Z.: Cyclic codes and quadratic residue codes over Z4. IEEE Trans. Inf. Theory 42(5),
1594-1600 (1996).
14. van Lint J.H.: Repeated-root cyclic codes. IEEE Trans. Inf. Theory 37(2), 343-345 (1991).

@ Springer



	On cyclic codes over the ring mathbb Zp[u]/langle uk rangle
	Abstract
	1 Introduction
	2 Preliminaries
	3 A generator for cyclic codes over the ring Rk,p
	4 Ranks and minimal spanning sets
	5 Minimum distance
	6 Examples
	References


