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Abstract In a multi-secret sharing scheme (MSSS), � different secrets are distributed among
the players in some set P = {P1, . . . , Pn}, each one according to an access structure. The
trivial solution to this problem is to run � independent instances of a standard secret sharing
scheme, one for each secret. In this solution, the length of the secret share to be stored by
each player grows linearly with � (when keeping all other parameters fixed). Multi-secret
sharing schemes have been studied by the cryptographic community mostly from a theoretical
perspective: different models and definitions have been proposed, for both unconditional
(information-theoretic) and computational security. In the case of unconditional security,
there are two different definitions. It has been proved that, for some particular cases of access
structures that include the threshold case, a MSSS with the strongest level of unconditional
security must have shares with length linear in �. Therefore, the optimal solution in this case
is equivalent to the trivial one. In this work we prove that, even for a more relaxed notion of
unconditional security, and for some kinds of access structures (in particular, threshold ones),
we have the same efficiency problem: the length of each secret share must grow linearly
with �. Since we want more efficient solutions, we move to the scenario of MSSSs with
computational security. We propose a new MSSS, where each secret share has constant length
(just one element), and we formally prove its computational security in the random oracle
model. To the best of our knowledge, this is the first formal analysis on the computational
security of a MSSS. We show the utility of the new MSSS by using it as a key ingredient in the
design of two schemes for two new functionalities: multi-policy signatures and multi-policy
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decryption. We prove the security of these two new multi-policy cryptosystems in a formal
security model. The two new primitives provide similar functionalities as attribute-based
cryptosystems, with some advantages and some drawbacks that we discuss at the end of this
work.

Keywords Multi-secret sharing schemes ·Multi-policy cryptosystems · Entropy ·
Provable security

Mathematics Subject Classification 94A62 · 94A60 · 94A17

1 Introduction

In public key cryptography, some operations (like encrypting a message or verifying a sig-
nature) can be done by any user in the system, with access to the public information of the
other users. However, the associated secret operations (decrypting a ciphertext or signing
a message) can be done only by the user who knows the corresponding secret information.
Security of public key cryptosystems (against polynomial-time adversaries) is proved in a
computational sense, by reduction to the hardness of some mathematical problem.

In some situations, such secret tasks are too important and sensitive to rely on a single user
or machine; a good solution then is to use distributed (in particular, threshold) public key
cryptography: the secret information is distributed among a set of users, and the cooperation
of some authorized subset (in a fixed access structure) of them is required in order to correctly
perform the corresponding secret task. Depending on the considered secret task, this approach
leads to either distributed decryption schemes or distributed signature schemes.

In the design of such distributed schemes, a key ingredient are secret sharing schemes.
These schemes have received a lot of attention since their introduction in 1979 [3,8,13,27,28].
Most of the secret sharing schemes proposed and analyzed so far enjoy unconditional (or
information-theoretic) security, which means that the value of the shared secret is perfectly
hidden to an (even computationally unbounded) adversary who controls any non-authorized
subset of users. When secret sharing schemes are used in the design of distributed public key
cryptosystems (that can enjoy computational security, at most), one could argue that requir-
ing unconditional security for the underlying secret sharing schemes may be innecessarily
restrictive. However, secret sharing schemes may have future applications in other scenarios
with unconditional security, or in scenarios requiring security during concurrent executions
of a protocol, and they are very interesting and mathematically rich by themselves. It is thus
a good idea to obtain results about secret sharing schemes with unconditional security, for
instance about lower and upper bounds on the ratio between the length of the secret and the
length of the share to be stored by each user.

In this work we consider an extension of the standard scenario of distributed (public key)
cryptography. In some cases, setting a single access structure of authorized subsets of users
for all the executions of the secret task may be unrealistic. For instance, some messages
encrypted for a receiver entity P may be more sensitive or confidential than others, and so
require the cooperation of more or less members of P in order to be decrypted. With this
motivation in mind, we will consider multi-policy distributed cryptosystems: in the setup
of the system, a list of � possible (and different) acces structures is chosen; later, for each
execution of the cryptographic operation, a specific access structure in this list is chosen “on
the fly”, depending on the desired security level. Only those subsets of players authorized
with respect to this specific access structure will be able to perform the secret task, by using
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their secret shares of information. A trivial way of implementing multi-policy distributed
cryptosystems is by running � independent instances of a standard distributed cryptosystem,
one for each of the access structures in the list. This solution has the drawback that the length
of the secret information to be stored by each user is linear in �, when keeping all other
parameters fixed; we look for more efficient solutions.

As it happens with standard distributed cryptosystems, where standard secret sharing
schemes are a key ingredient in their design, it is natural that multi-secret sharing schemes
(MSSSs, for short) are a key tool when designing multi-policy distributed cryptosystems. In
a MSSS, � different secrets are distributed among the players in some set P = {P1, . . . , Pn},
each one according to a (possibly different) access structure. Again, a trivial solution to
design a MSSS is to run � independent standard secret sharing schemes, one for each secret
and access structure; the length of each secret share is linear in �.

MSSSs have been studied, per se, in different works (see [4,23,25], for instance). As far
as we know, no specific application of a MSSS into a more general scenario or cryptographic
protocol has been explicitly proposed. Most of the works on MSSSs have focused on uncon-
ditionally secure MSSSs. Blundo et al. [4] introduced a strong definition for the unconditional
security of a MSSS, and gave some lower bounds on the length of the secret shares to be
stored in a MSSS enjoying that level of security. Masucci proposed in [25] a weaker (althoug
still information-theoretic) notion of security for MSSSs, and also gave some lower bounds
on the length of secret shares for schemes enjoying the two notions. For some particular
cases, which include the threshold case where each access structure is defined by a threshold
value, the results in [4,25] imply that the length of each secret share in a MSSS with the
strong level of unconditional security must be, at least, linear in �.

The first result in this paper, in Sect. 2, is a proof that this is also the case for MSSSs
enjoying security in the weaker (but still information-theoretic) sense proposed by Masucci.
That is, we show that for some lists of access structures (in particular, when all of them are
threshold ones), the length of each secret share in a MSSS for these access structures will
be linear in �, even if the MSSS enjoys weaker unconditional security. Since our final goal
is the design of multi-policy distributed schemes (in particular, for threshold policies) with
shorter secret shares of information than those provided by the trivial solution (with length
linear in �), our first result is quite negative, and forces us to move to the weaker setting of
MSSSs with computational security.

We stress here that computationally secure MSSSs will be enough for our purposes,
because the security of multi-policy distributed cryptosystems can be at most computational,
anyway. After describing formally the computational security of a MSSS, we present in
Sect. 3 the second contribution of this paper: a new MSSS, inspired by that in [23], with a
formal proof of computational security, in the random oracle model. Although we describe
and analyze the scheme for the case of threshold access structures, it can be easily extended
to more general access structures (see Appendix B).

Finally, we use this new MSSS as a key tool to design a new multi-policy distributed signa-
ture scheme (in Sect. 4) and a new multi-policy distributed decryption scheme (in Sect. 5). We
prove the security of these two schemes, in the random oracle model, by taking into account
formal security models that we introduce in the corresponding sections. Only the details for
the signature scheme are included. Again, and for simplicity, we describe the schemes for
the threshold case, but extensions to the case of more general policies are easy to do, as we
discuss in Appendix B. The efficiency of the new multi-policy distributed cryptosystems is
essentially the same as the efficiency of the standard distributed cryptosystems (Boldyreva [5]
for signatures and Shoup-Gennaro [31] for decryption) by which they are inspired. Namely,
the length of secret shares, ciphertexts and signatures, and the cost of encryption, decryption,
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signature and verification are the same; the only change is in the size of the public parameters
and public key of the set P , which is increased by a factor of n · �.

In Sect. 6 we discuss the relations between the new primitives of multi-policy distributed
cryptosystems and attribute-based cryptosystems. Even if any attribute-based cryptosystem
leads to a multi-policy distributed cryptosystem, the obtained scheme has some drawbacks
that are not present in the solutions that we propose in Sects. 4 and 5. For instance, our
new MSSS and our multi-policy distributed schemes can be modified (see Appendix A) so
that no external and trusted entity is needed in the life of the system; this is not possible in
attribute-based solutions, where a trusted master entity generates and distributes the secret
information to the members of the set P .

2 Multi-secret sharing schemes

In this section we recall the notions of information entropy, standard secret sharing schemes
and MSSSs. Then we discuss the security properties required for multi-secret sharing
schemes, in both an information-theoretic and a computational scenario. As our first (neg-
ative) result, we will prove that MSSSs enjoying information-theoretic security, for some
families of access structures that include the threshold case, must have shares which are as
long as the secret.

2.1 Entropy of random variables

Let X be a random variable that takes values in a finite set X. For any x ∈ X, let
p(x) = Pr[X = x] be the probability that X takes the value x . The entropy H(X) of X
is defined as

H(X) = −
∑

x∈X

p(x) · log(p(x)),

where 0 · log 0 should be treated as being equal to zero. The entropy H(X) measures the
uncertainty on the value taken by the random variable X . It always satisfies 0 ≤ H(X) ≤
log |X|. The minimum value H(X) = 0 is achieved if and only if there exists x0 ∈ X such that
p(x0) = 1, and the maximum value H(X) = log |X| is achieved if and only if the probability
is distributed uniformly (that is, p(x) = 1/|X| for all x ∈ X).

Given two random variables X, Y , their joint entropy is defined as

H(X, Y ) = −
∑

(x,y)∈X×Y

p(x, y) · log(p(x, y)),

where p(x, y) = Pr[X = xandY = y].
If we denote p(x |y) = Pr[X = x | Y = y], then the conditional entropy H(X |Y ) is

defined as

H(X |Y ) = −
∑

x∈X

∑

y∈Y

p(y)p(x |y) · log(p(x |y)),

and it satisfies H(X |Y ) = H(X, Y )− H(Y ).
Similarly, we can define H(X | Y, Z) or H(X, Y |Z), for random variables X, Y, Z . In

the proof of our Theorem 1 in Sect. 2.3, we will use the following well-known results about
the entropy of random variables. They are more or less easy to deduce from the previous
definitions, so we only include one of the proofs, as an illustrative example. The interested
reader can consult [11] for more results on the entropy of random variables.
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Lemma 1 For all random variables X, Y , it holds H(X)+ H(Y ) ≥ H(X, Y ) ≥ H(X).

Lemma 2 For all random variables X, Y, Z, if H(X |Y ) = 0, then H(Z |X) ≥ H(Z |Y ).
Proof First of all, it is easy to see that H(Z |X) ≥ H(Z | X, Y ) and H(Z , X |Y ) ≥ H(Z |Y ),
for any random variables X, Y, Z . Now we have

H(Z |X) ≥ H(Z | X, Y ) = H(Z , X, Y )−H(X, Y )=H(Z , X, Y )−(
H(Y )+H(X |Y )) (∗)=

= H(Z , X, Y )− H(Y ) = H(Z , X |Y ) ≥ H(Z |Y ),
where we have used in (∗) the fact that H(X |Y ) = 0. ��
Lemma 3 For all random variables X, Y , if H(X |Y ) = H(X), then H(X, Y ) = H(X) +
H(Y ).

Lemma 4 For all random variables X, Y , if H(X |Y ) = 0, then H(X, Y ) = H(Y ).

2.2 Standard secret sharing schemes

The idea of secret sharing schemes was independently introduced by Shamir [28] and Blakley
[3]. Let P = {P1, . . . , Pn} be a set of n players. In this set of players, a family of authorized
or qualified subsets � ⊂ 2P is defined. This family is called the access structure of the
scheme, and it must be monotone increasing; that is, if A1 ∈ � and A1 ⊂ A2 ⊂ P , then
A2 ∈ �.

Given a monotone increasing access structure � and a secret to be shared, the idea behind
a secret sharing scheme is that each player Pi ∈ P receives during the distribution phase
a share shi of a secret s ∈ K, where K is the space of possible secrets. Later, during the
reconstruction phase, the secret can be univocally recovered from the shares of any authorized
subset, A ∈ �. On the other hand, from the shares of a non-authorized subset, out of �, no
information about the secret should be obtained. These two requirements (correctness and
unconditional security) can be formalized by using information-theoretic tools such as the
entropy of a random variable. Namely, if we use notation S for the random variable associated
to the secret, SHi for the random variable associated to the share of player Pi , and more
generally SHA for the (vector) random variable associated to the shares of players in A ⊂ P ,
the two required properties for a perfect secret sharing scheme become: (1) H(S|SHA) = 0
for any subset A ∈ �, and (2) H(S|SHB) = H(S) for any subset B /∈ �.

Shamir proposed in [28] a threshold scheme, where subsets that can recover the secret
are those with at least t members (t is the threshold); in other words, the access structure
is � = {A ⊂ P : |A| ≥ t}. The set K of possible secrets is a finite field. To share a secret
s ∈ K, a random polynomial f (x) ∈ K[x] with degree at most t − 1 is chosen, such that
f (0) = s. The share received by every player Pi ∈ P is shi = f (αi ), where αi are non-zero,
pairwise different and publicly known elements of K. Any subset of t or more shares allow
recovery of the secret by polynomial interpolation, whereas any set of less than t shares give
no information at all about the secret s. We will denote as T (t, n) such a threshold access
structure.

2.3 Syntax and security of multi-secret sharing schemes

Blundo et al. introduced in [4] the notion of MSSSs: � secrets s1, . . . , s� ∈ K are distributed
at the same time between a set P of n players, according to � access structures �1, . . . , �� ⊂
2P . Again, shi denotes the share of secret information received by each player Pi in the
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distribution phase. The reconstruction phase takes as input a subset of shares and an index
j ∈ {1, 2, . . . , �}, and the expected output is the secret s j . In [4], two requirements are defined
for MSSSs, one related to correctness and one related to information-theoretic privacy.

1. Correctness If the reconstruction phase takes a subset of shares {(i, shi )}Pi∈A and an
index j as inputs, and A ∈ � j , then the recovered secret is actually s j . In other words,
H(S j |SHA) = 0 for any subset A ∈ � j .

2. Strong information-theoretic security From the knowledge of a non-authorized subset of
shares {(i, shi )}Pi∈B , with B /∈ � j , and of some secrets, different from s j , the information
obtained on the secret s j is the same as if the shares {(i, shi )}Pi∈B were not known. In
the entropy language: for any subset B /∈ � j and any subset T ⊂ {S1, . . . , S�}\{S j }, it
holds H(S j |SHB , T ) = H(S j |T ).

This strong security requirement has an impact on the efficiency of MSSSs. Blundo et al.
give in [4] lower bounds for the size of the shares shi in such a strongly secure MSSS. In
particular, for the case where all the access structures are threshold, that is � j = {A ⊂ P :
|A| ≥ t j } and 1 ≤ t1 < t2 < · · · < t� ≤ n, Blundo et al. proved that the entropy H(SHi )

of each individual share shi must be greater than or equal to the entropy H(S) of the global
secret S = (S1, . . . , S�), in any MSSS satisfying this strong security condition. This means
that running � independent instances of Shamir’s threshold secret sharing scheme gives an
optimal MSSS for the threshold case, if strong information-theoretic security is required.

Other works [20,25] consider a weaker (but maybe more realistic in actual applications
of secret sharing) security notion for MSSSs, which does not consider the possibility that the
adversary obtains some other subset T of secrets.

– Weak information-theoretic security No information at all on the secret s j can be obtained
from a non-authorized subset of shares {(i, shi )}Pi∈B , with B /∈ � j . In the entropy
language: for any subset B /∈ � j , it holds H(S j |SHB) = H(S j ).

Masucci gives in [25] lower bounds for the size of the shares shi in such weakly
information-theoretically secure MSSSs. However, these bounds do not lead to any result
for the case of multi-secret sharing with threshold access structures. Therefore, according to
the results that we have up to now, it may still be possible to design a multi-secret sharing
scheme for the threshold case which enjoys weak information-theoretic security, and where
the share of some participant is shorter than the secret. However, we prove below that this
cannot be the case.

Theorem 1 Let �1, . . . , �� ⊂ 2P be � access structures, and let Pi ∈ P . Assume there exist
subsets of players B1 ⊂ B2 ⊂ · · · ⊂ B� ⊂ P − {Pi } satisfying, for all j = 1, . . . , �, the
following three conditions:

(i) B j ∈ � j−1, whenever j > 1.
(ii) B j /∈ � j ,

(iii) B j ∪ {Pi } ∈ � j ,

Then, for any MSSS for �1, . . . , �� with weak unconditional security, it holds H(SHi ) ≥∑�
j=1 H(S j ).

Proof First of all, by combining conditions (i i) and (i i i) in the Theorem, and Lemmas 3
and 4, we have that, for all j = 1, . . . , �, it holds

H(SHi , SHB j )− H(SHB j ) = H(SHi , SHB j , S j )+ H(S j )− H(SHB j , S j ) (1)
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Now, for all j = 1, . . . , �− 1, we have

H(SHi , SHB j , S j ) = H(SHB j , S j )+ H(SHi | SHB j , S j )

≥ H(SHB j , S j )+ H(SHi | SHB j+1 , S j )

= H(SHB j , S j )+ H(SHi , SHB j+1 , S j )− H(SHB j+1 , S j )

= H(SHB j , S j )+ H(SHi , SHB j+1 , S j )− H(SHB j+1)

≥ H(SHB j , S j )+ H(SHi , SHB j+1)− H(SHB j+1).

The first inequality is deduced by applying Lemma 2 to SHB j and SHB j+1 , because
B j ⊂ B j+1. The last inequality is deduced by applying Lemma 1. Furthermore, we have
applied Lemma 4 to deduce that H(SHB j+1 , S j ) = H(SHB j+1), because B j+1 ∈ � j .

Plugging the inequality into Eq. 1, we obtain

H(SHi ,SHB j )− H(SHB j ) ≥ H(S j )+ H(SHi ,SHB j+1)− H(SHB j+1) (2)

for all j = 1, . . . , �− 1.
For j = �, we have H(SHi ,SHB� ) = H(SHi ,SHB� , S�), because B� ∪ {Pi } ∈ ��. This

equality can be rewritten as H(SHB� )+H(SHi |SHB� ) = H(SHB� )+H(SHi , S� |SHB� ).
But now we can use that H(SHi , S� | SHB� ) ≥ H(S� | SHB� ) = H(S�), because B� /∈ ��.
Putting all together, we conclude that H(SHi ,SHB� ) ≥ H(SHB� ) + H(S�), which we
rewrite as

H(SHi ,SHB� )− H(SHB� ) ≥ H(S�). (3)

Now we can use H(SHi ) + H(SHB1) ≥ H(SHi ,SHB1), by Lemma 1, to start a chain
of inequalities, where we apply inequality 2 for j = 1, . . . , � − 1, and finally inequality 3,
to obain the desired result:

H(SHi ) ≥ H(SHi ,SHB1)− H(SHB1)
(2)

≥ H(S1)+ H(SHi ,SHB2)− H(SHB2)

(2)

≥ · · ·
(2)

≥
�−1∑

j=1

H(S j )+ H(SHi ,SHB� )− H(SHB� )
(3)

≥
�∑

j=1

H(S j ).

��
Corollary 1 For any MSSS, for access structures defined by thresholds 1 ≤ t1 < t2 < · · · <
t� ≤ n, that enjoys weak information-theoretic security, it holds H(SHi ) ≥ ∑�

j=1 H(S j ),
for any player Pi ∈ P .

Proof Just apply the previous theorem to a sequence of subsets B1 ⊂ B2 ⊂ · · · B� ⊂ P−{Pi }
such that |B j | = t j − 1, for all j = 1, 2, . . . , �. ��

This means that the optimal MSSS for the threshold case with weak unconditional security,
in terms of the ratio between the length of shares and the length of the global secret, is
equivalent to running � independent instances of Shamir’s secret sharing scheme.

We stress that the three conditions in the statement of Theorem 1 imply that all the access
structures must be different. If there was some repeated access structure, but the non-repeated
ones did still satisfy these three conditions, then some variations of the theorem could be
easily proved. For instance, if �1 = �2 but the rest of access structures satisfy the conditions,
then we can ensure that H(SHi ) ≥∑�

j=2 H(S j ) for all player Pi ∈ P .
As an explicit example where Theorem 1 cannot be applied, and where H(SHi ) <∑�
j=1 H(S j ), let us consider the case of � threshold access structures with the same threshold:
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� j = T (t, n) for all j ∈ {1, . . . , �}. We can share the global secret s = (s1, . . . , s�) ∈ (Zp)
�

by following the ideas proposed in [12], provided � ≤ t (n − t). For some big prime number
p, there are � values x j,0 ∈ Zp , for j ∈ {1, . . . , �}, assigned to the secrets, and there are
n − t values xi,k assigned to player Pi , for k ∈ {1, . . . , n − t}. All these values must be
pairwise different and public. To distribute the secret s, a random polynomial f (x) ∈ Zp[x]
of degree at most t (n− t)−1 is chosen, such that f (x j,0) = s j for all j ∈ {1, . . . , �}. Player
Pi receives the share shi = ( f (xi,1), . . . , f (xi,n−t )) ∈ (Zp)

n−t . If t players work together,
they can interpolate the polynomial f (x) at any point and recover any of the secrets, because
they hold t (n − t) evaluations of the polynomial, which has degree at most t (n − t)− 1. If
less than t players cooperate, they obtain no information on any secret s j , for j ∈ {1, . . . , �},
and so the scheme enjoys weak unconditional security. If n − t < �, the length of each shi

is strictly smaller than the length of the global secret s.
Anyway, for the applications of multi-secret sharing that we have in mind, we are looking

for efficient ways of sharing � secrets for � different access structures, in particular for the
threshold case. The result in Theorem 1, although very interesting from a theoretical point of
view, is quite negative for our interests, and we thus move to the scenario of computationally
secure multi-secret sharing. This is not a big problem, taking into account that our final
goal is to use MSSSs as an ingredient to implement cryptographic primitives (multi-policy
distributed decryption and signatures) whose security is going to be at most computational,
in any case.

2.4 Computational security for multi-secret sharing schemes

In the setting of computational security, a multi-secret sharing scheme� = (�·Stp,�·Dist,
� · Rec) consists of three protocols. The setup protocol takes as input a security parameter
λ ∈ N, the set of players P and the � access structures �1, . . . , ��, and outputs some public
and common parameters pms for the scheme (such as the access structures and set of players,
mathematical groups, hash functions, etc.). We implicitly assume that pms also contains the
descriptions of P and the access structures. We denote an execution of this protocol as
pms← � · Stp

(
1λ,P, {( j, � j )}1≤ j≤�

)
.

The distribution protocol takes as input pms and the global secret s = (s1, . . . , s�) to be
distributed, and produces the set of shares {(i, shi )}Pi∈P and possibly some public output
outpub. We write

(
outpub, {(i, shi )}Pi∈P

)← � · Dist (pms, s).
The reconstruction protocol takes as input pms, outpub, an index j ∈ {1, . . . , �}, and the

shares {(i, shi )}Pi∈A of the players in some subset A ⊂ P , and outputs a possible value s̃ j

for the j-th secret. We write s̃ j ← � · Rec
(
pms,outpub, j, {(i, shi )}Pi∈A

)
.

For correctness, we require that, for any index j ∈ {1, . . . , �} and any subset A ∈ � j , it
holds

� · Rec
(
pms,outpub, j, {(i, shi )}Pi∈A

) = s j ,

if {(i, shi )}Pi∈A ⊂ {(i, shi )}Pi∈P and
(
outpub, {(i, shi )}Pi∈P

) ← � · Dist (pms, s) is
a distribution of the secret s = (s1, . . . , s j , . . . , s�), and the setup protocol has produced
pms← � · Stp

(
1λ,P, {( j, � j )}1≤ j≤�

)
.

The computational security of a MSSS is defined by the following game G between a
challenger and an adversary AMSS. Although other (stronger) security games and notions
could be considered, we have chosen the following one, which is the direct analogue of the
standard notion of semantic security for encryption schemes.
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1. The adversary AMSS publishes the set of players P and the � access structures
�1, . . . , �� ⊂ 2P .

2. The challenger runs pms← � · Stp
(
1λ,P, {( j, � j )}1≤ j≤�

)
and sends pms to AMSS.

3. The adversary AMSS broadcasts a subset B̃ ⊂ P of corrupted players.
4. AMSS broadcasts two different global secrets s(0) �= s(1) with the restriction:

s(0)j = s(1)j , ∀ j ∈ {1, . . . , �} s.t. B̃ ∈ � j .

5. [Challenge] The challenger chooses at random a bit b ∈ {0, 1}, runs
(
outpub,

{(i, shi )}Pi∈P
)← � · Dist

(
pms, s(b)

)
and sends

(
outpub, {(i, shi )}Pi∈B̃

)
to AMSS.

6. Finally, AMSS outputs a bit b′.

The advantage of AMSS in breaking the multi-secret sharing scheme � is defined as

AdvAMSS(λ) =
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣

The scheme � is said to enjoy computational security if AdvAMSS(λ) is a negligible
function in λ, for any polynomial-time adversary AMSS. We recall that a function f (k) is
negligible in k if there exist a polynomial p(·) and a value k0 ∈ N such that f (k) ≤ 1/p(k)
for any k ≥ k0).

3 A computationally secure multi-secret sharing scheme

We introduce in this section a computationally secure multi-secret sharing scheme with
provable security in the random oracle model. The new scheme is very similar to some
previous schemes [17,23], which however did not have a formal security proof. Although
we describe and analyze the scheme in the setting of different threshold access structures, it
can be easily extended to work with more general access structures (see Appendix B).

After the description and analysis of this scheme, we will use it as a building block in the
design of new multi-policy signature and decryption schemes, in Sects. 4 and 5.

3.1 The new scheme

Setup: � · Stp(1λ,P, t1, . . . , t�).
Let P = {P1, . . . , Pn} be the set of n users and let 1 ≤ t1 < t2 < · · · < t� ≤ n

be the � different thresholds that define the access structures {� j }1≤ j≤�. A prime number
p > n is chosen, such that p is at least λ bits long. A hash function H : N × Z

�
p → Zp

is also chosen. Each player Pi is assigned the value i . The public parameters are pms =
(p, H,P, t1, . . . , t�).
Distribution of the shares: � · Dist(pms, s).

The secret to be distributed is s = (s1, . . . , s�) ∈ (Zp)
�. For simplicity, we assume the

distribution is done by an external dealer; see Appendix A for a discussion on how the own
members of P could run this protocol.

1. Choose random values shi ∈ Z
�
p , pairwise different for i = 1, 2, . . . , n, as the secret

shares.
2. Choose random polynomials f j (x) ∈ Zp[x] of degree at most t j − 1, for j = 1, . . . , �,

such that f j (0) = s j .
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3. For i = 1, 2, . . . , n and j = 1, 2, . . . , �, compute the values hi j = H( j, shi ) and
ri j = f j (i)− hi j modp.

4. The secret share shi is sent to player Pi via a secure channel, whereas the public output
of the protocol is outpub = {(i, j, ri j )}Pi∈P, j∈{1,...,�}.

Reconstruction of the secrets: � · Rec(pms,outpub, j, {(i, shi )}Pi∈A).
When the players of an authorized subset A ∈ � j (i.e. |A| ≥ t j ) want to recover the

secret s j , they must cooperate performing the following steps.

1. Each player Pi ∈ A computes his pseudo secret share as hi j = H( j, shi ).
2. Take the values {(i, j, ri j )}Pi∈A from outpub and compute f j (i) = ri j + hi j modp, for

every Pi ∈ A.
3. Use the values {(i, f j (i))}Pi∈A to interpolate the polynomial f j (x) and recover the j-

secret s j = f j (0).

Note that the correctness of the proposed scheme holds directly via interpolation.

3.2 Security analysis

In this section we prove the computational security of the proposed scheme, assuming that
the hash function H behaves as a random oracle [2].

Theorem 2 For any adversary AMSS against the described threshold MSS scheme that
makes at most qH queries to the random oracle for H, we have AdvAMSS(λ) ≤ qH (qH+n)

2λ+1 +
o

((
qH (qH+n)

2λ+1

)2
)

.

Proof Let AMSS be an adversary against the computational security of the MSSS. We act as
the challeger of the security game described in Sect. 2.4. AMSS starts the game by choosing the
set of users P = {Pi }1≤i≤n and the threshold access structures {� j }1≤ j≤� with� j = T (t j , n).
We then run pms ← � · Stp(1λ,P, t1, . . . , t�) and send pms = (p, H,P, t1, . . . , t�) to
AMSS, who chooses a subset B̃ ⊂ P of corrupted players with |B̃| = t�. Let J

� = { j ∈
{1, . . . , �} s.t. t j ≤ t�}.

We choose random pairwise different elements shi ∈ Zp , for Pi ∈ P . If AMSS makes a
hash query ( j, x) to the random oracle such that j ∈ {1, . . . , �}, j /∈ J

� and x ∈ {shi }Pi /∈B̃ ,
then we abort the game. Otherwise, the query is answered by choosing a random element
h ∈ Zp , storing the relation H( j, x) = h in a hash table, and sending back the output h to
AMSS. If a hash query ( j, x) by AMSS is already in the hash table, the stored value h is sent
back to AMSS.
Challenge At some point, AMSS outputs two different multi-secrets s(0) �= s(1), such that
s(0)j = s(1)j for all j ∈ J

�. We choose random polynomials f j (x) ∈ Zp[x] of degree at most

t j − 1 and such that f j (0) = s(0)j , for all j ∈ J
�. For those values of j ∈ J

�, we compute
(via the hash-table procedure) the values hi j = H( j, shi ) and ri j = f j (i) − hi j modp, for
all Pi ∈ P .

For the rest of values j ∈ {1, . . . , �}, j /∈ J
�, we choose random pairs of polynomials

f (0)j (x), f (1)j (x) ∈ Zp[x] of degree at most t j − 1, such that f (0)j (0) = s(0)j , f (1)j (0) = s(1)j ,

and f (0)j (i) = f (1)j (i) for all corrupted players Pi ∈ B̃. For indices i such that Pi ∈ B̃,

we compute (via the hash-table procedure) the values hi j = H( j, shi ) and ri j = f (0)j (i)−
hi j modp. For indices i such that Pi /∈ B̃, we choose at random ri j ∈ Zp .
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We give to AMSS the shares {(i, shi )}Pi∈B̃ of the corrupted players, as well as the public
output of the protocol outpub = {(i, j, ri j )}Pi∈P, j∈{1,...,�}.

For indices j ∈ {1, . . . , �}, j /∈ J
� and indices i such that Pi /∈ B̃, let us define

h(0)i j = ri j − f (0)j (i)modp and h(1)i j = ri j − f (1)j (i)modp. We can choose at random a

bit β ∈ {0, 1} and include in the hash-table the values H( j, shi ) = h(β)i j , for all i, j such

that j ∈ {1, . . . , �}, j /∈ J
� and Pi /∈ B̃. In this way, we are perfectly simulating an execu-

tion of the distribution of shares for the secret s(β) = (s(β)1 , . . . , s(β)� ). The key point here
is that, as long as AMSS does not make any hash query H( j, shi ) for indices i, j such that
j ∈ {1, . . . , �}, j /∈ J

� and Pi /∈ B̃, the information that AMSS gets is the same as if the
shared secret was s(1−β).
Final analysis Therefore, to compute the probability that AMSS guesses the correct shared
secret, we distinguish between two cases, depending on whether AMSS makes a hash query
H( j, shi ) for indices i, j such that j ∈ {1, . . . , �}, j /∈ J

� and Pi /∈ B̃. If this is the case,
which happens with probability δ, then we assume the best case for AMSS: he always guesses
the correct secret in that case. On the other hand, if AMSS does not make such a hash query,
which happens with probability 1 − δ, then the probability that AMSS guesses correctly is
exactly 1/2. Summing up, the probability that AMSS guesses the correct secret is at most
δ + 1/2(1− δ). Therefore, the advantage of AMSS is

AdvAMSS(λ) =
∣∣∣∣Pr[AMSS guesses] − 1

2

∣∣∣∣ ≤
1

2
δ(λ).

The probability δ(λ) that some of qH randomly chosen elements falls in a perfectly hidden
subset {shi }Pi /∈B̃ of n − t� random elements of Zp can be bounded as

δ(λ) < 1−
(

p − (n + qH − t� − 1)

p

)qH

= qH (qH + n)

p
+ o

((
qH (qH + n)

p

)2
)
.

Using that p > 2λ, we obtain the desired result AdvAMSS(λ) ≤ qH (qH+n)
2λ+1 +

o

((
qH (qH+n)

2λ+1

)2
)

. ��

The dominant term in the expression stated in the previous theorem is q2
H , because the

number n of players will usually be small compared to qH . In cryptography, the number of
hash queries is usually estimated as qH ≤ 260. Therefore, the multi-secret sharing scheme
described in this section satisfies a 80-bit security level (that is, AdvAMSS(λ) < 2−80) when
λ ≥ 200 or, equivalently, when p ≥ 2200.

3.3 Efficiency and comparison with other MSSS

In this section we analyze the efficiency of our new multi-secret sharing scheme, and we
compare it with other schemes (with computational security, as well) in the literature that
lead to secret shares with constant length. We stress that our scheme is the only one with
a formal and complete security analysis. For simplicity, we focus on the case of threshold
access structures for this efficiency analysis.

In our scheme, the cost of sharing a global secret in (Zp)
� among n players, according

to threshold access structures with thresholds t1 ≤ t2 ≤ . . . ≤ t�, is (roughly) equivalent to∑�
j=1 t j n operations in Zp . The public output contains � · n elements in Zp , and the secret

share shi of each player contains a single element in Zp . The cost of recovering a particular
secret s j depends linearly on the needed threshold t j .
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Table 1 Comparison between
some threshold MSSS with
computational security.

Cost of
� ·Dist

Cost of � ·
Rec(s j )

Length of
outpub

Length
of shi

Cachin’s
MSSS
[9]

�∑
j=1

(n
t j

) O(t j )

(
�∑

j=1

(n
t j

)
)
|p| |p|

Schemes
in
[17,23]

�∑
j=1

t j n O(t j ) n · � · |p| |p|

Our new
scheme

�∑
j=1

t j n O(t j ) n · � · |p| |p|

The efficiency properties of the two schemes [17,23] are essentially the same. Indeed,
these two schemes are very similar to our new scheme; roughly speaking, the scheme in
[17] uses two-variable one-way functions and the scheme in [23] uses iterated one-way hash
functions, instead of our hash function H . Again, we insist that the security analysis of the
schemes in [17,23] is not complete or formal.

We include another MSSS in the comparison that we summarize in Table 1, the one
proposed by Cachin in [9], which produces constant-length secret shares but, again, lacks a
formal security analysis. The length of outpub in Cachin’s scheme, as well as the cost of the
distribution phase, depend linearly on the number of minimal authorized subsets1 in each
access structure; when the access structure is a threshold one, with threshold t , this number
is

(n
t

)
, very big. Cachin’s MSS could be a good alternative for situations where all the access

structures have few minimal authorized subsets.
Table 1 below summarizes the efficiency aspects of these MSSS, when applied to share �

secrets s1, . . . , s�, each one in Zp , among n players, according to � threshold access structures,
for thresholds t1 ≤ · · · ≤ t�.

4 Application to multi-policy distributed signatures

In this section, we deal with distributed signatures. Threshold (or distributed) signatures
have received also a lot of attention from the cryptographic community [5,14,30]; they
have applications in scenerios where the cooperation of more than one single entity is nec-
essary to authenticate a message. In our multi-policy setting, we will have a set of users
P = {P1, . . . , Pn} as the possible signers of messages. Depending on the content and the
importancy of the message, more or less members of P can be required to participate in
the signing process. In other words, the subset of real signers A ⊂ P will choose ad-hoc a
signing policy � j among a set of pre-defined different signing policies �1, . . . , ��, such that
A ∈ � j , and will cooperate to sign the message on behalf of that policy� j . Each user Pi ∈ P
will have a share shi of secret information, and will use it to perform his part of the signing
process. The final verification step will take as inputs the index j , the message, the signature,
and the global public key of the set P , in order to check the validity of the signature. Note
that the knowledge of identities of the real signers (in subset A) is not necessary to verify a
signature, which provides some kind of anonymity (if desired) to the process.

1 Given an access structure � ⊂ 2P , a subset A ∈ � is minimal authorized if A − {Pi } /∈ �, for all Pi ∈ A.
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After defining the syntactic definition and the security model for this primitive of multi-
policy distributed signatures, we present a scheme for the case of threshold signing policies
(that uses as a building block the MSSS in Sect. 3) and we prove its security. The scheme
can be extended to work with more general access structures, as we discuss in Appendix B.

4.1 Syntactic definition

A multi-policy distributed signature scheme
 = (
 ·St,
 ·KG,
 ·Sign,
 ·Ver) consists
of four probabilistic polynomial-time algorithms:

– The randomized setup algorithm 
 · St takes a security parameter λ ∈ N and outputs
some public parameters params that will be common to all the users in the system: the
mathematical groups, generators, hash functions, etc. We write params ← 
 · St(1λ)
to denote an execution of this algorithm.

– The key generation algorithm
 ·KG for a collective P = {P1, . . . , Pn} of n users and �
different signature policies � j ⊂ 2B for j = 1, . . . , � has as public output a public key
P K that will be used in both the signing and verification steps. We implicitly assume
that P K contains the description of P, �1, . . . , ��. Each user Pi ∈ P receives a secret
share shi . This key generation process for the collective P can be run either by a trusted
third party, or by the users in P themselves. We will write ({(i, shi )}1≤i≤n, P K ) ←

 · KG(params,P, �1, . . . , ��) to refer to this key generation protocol.

– The joint signature algorithm 
 · Sign is a distributed protocol run by some subset of
users A ⊂ P . The common inputs are params, P K , a message m, the secret shares
shi of the users Pi ∈ A, and the index j of the desired signature policy � j , where
j ∈ {1, . . . , �}. The outputs are a signature σ and the index j of the chosen signature
policy. We write (σ, j) ← 
 · Sign(params, P K ,m, A, {(i, shi )}Pi∈A, j) to refer to
an execution of this protocol.

– The verification algorithm 
 · Ver takes as input params, a message m, a signature
(σ, j), and the public key P K of the intended receiver group P . The output will be one
if (σ, j) is a valid signature of m and zero otherwise. We denote an execution of this
algorithm as {1, 0} ← 
 · Ver(params,m, σ, j, P K ).

For correctness,
·Ver(params,m,
·Sign(params,P K ,m, A, {(i, shi )}Pi∈A, j), P K )
= 1 is required, whenever A ∈ � j and the values params, {(i, shi )}1≤i≤n, P K have been

obtained by properly executing the protocols 
 · St and 
 · KG.

4.2 Security model

A multi-policy distributed signature scheme must be robust. The robustness property holds
when the protocols
 ·KG and
 ·Sign always complete successfully, even under the action
of a polynomial-time adversary that is allowed to corrupt an unauthorized set of users.

As any other primitive related to signatures, a multi-policy distributed signature scheme

must also be unforgeable. That is, any polynomial-time adversary that is allowed to corrupt
a subset of users B̃ ⊂ P such that B̃ /∈ � j must have negligible probability of success in
producing a new valid signature for some message with respect to signing policy � j , even if
this adversary has access to a signing oracle for messages and signing policies of his choice.
This property is known as unforgeability against chosen message attacks (UNF security, for
short) and is defined, for a security parameter λ ∈ N, by considering the following game that
an attacker AUNF plays against a challenger:

1. The challenger runs params← 
 · St(1λ) and gives params to AUNF.
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2. AUNF chooses a target set P = {P1, . . . , Pn} of users, � different signature policies
� j ⊂ 2P , for j = 1, . . . , �, and a subset B̃ ⊂ P of users, to be corrupted. The challenger
runs ({(i, shi )}1≤i≤n, P K )← 
 · KG(params,P, �1, . . . , ��) and gives to AUNF the
values P K and {(i, shi )}Pi∈B̃ . We consider only static adversaries who choose the subset

B̃ of corrupted users at the beginning of the attack.
3. [Queries] AUNF can make adaptive queries to a distributed signing oracle for the target

set P: AUNF sends a tuple (m, j) for the signature policy � j . The challenger runs the
distributed signature algorithm (σ, j)← 
 ·Sign(params,m, A, {(i, shi )}Pi∈A, j) for
an authorized subset A ∈ � j . The attacker AUNF must be given all the information that
corrupted players (in B̃) would obtain during the execution of this protocol 
 · Sign,
including the final signature and all the broadcast information.

4. At some point, AUNF outputs a forgery ( j�,m�, σ �). We say that AUNF is successful if:
(1) B̃ /∈ � j , (2) 
 · Ver(params,m�, σ �, j�, P K ) = 1, and (3) ( j�,m�, σ �) has not
been obtained by AUNF in a signature query (step 3).

The advantage of such a (static) adversary AUNF in breaking the UNF security of the multi-
policy distributed signature scheme is defined as the probability that AUNF is successful in
the game above.

A multi-policy distributed signature scheme
 is UNF secure if the advantage of any such
polynomial-time (static) adversary AUNF is a negligible function of the security parameter
λ.

4.3 A new multi-policy signature scheme

We propose here a new multi-policy distributed signature scheme, that we describe (for
simplicity) for the case where all the signing policies are threshold ones: � j = T (t j , n) for
j = 1, . . . , �, where 1 ≤ t1 < t2 < · · · < t� ≤ n. See Appendix B for an extension of this
scheme to the case of more general access structures. The scheme is inspired by the (single)
threshold signature scheme proposed by Boldyreva in [5] (which is itself inspired by the
individual signature scheme of Boneh–Lynn–Shacham [7]). A key ingredient in the design
of the new scheme will be the MSSS proposed and analyzed in Sect. 3. We also need to
introduce the notion of Gap Diffie–Hellman groups, which is related to the Diffie–Hellman
problems.

Given a security parameter λ ∈ N, let G = 〈g〉 be a cyclic group of prime order p,
such that p is λ bits long. The Computational Diffie–Hellman (CDH, for short) problem
can be defined as the problem of computing the value gab on input the values (g, ga, gb),
for random elements a, b ∈ Z

∗
p . The Computational Diffie–Hellman Assumption states that

the CDH problem is hard to solve. A bit more formally, for any polynomial-time algorithm
ACDH that receives as input G, g, ga, gb, for random elements a, b ∈ Z

∗
p , we can define as

AdvACDH(λ) the probability that ACDH outputs the value gab. The Computational Diffie–
Hellman Assumption states that AdvACDH(λ) is negligible in λ.

The (easier) Decisional Diffie–Hellman (DDH) problem tries to decide whether the four
group elements (g, ga, gb, h) are all random or they are a valid Diffie–Hellman tuple, that is
h = gab. Groups where the CDH problem is hard to solve but the DDH problem is easy are
called Gap Diffie–Hellman (GDH) groups. See [6,21,26] for more details on GDH groups;
up to now, the only known GDH groups are related to bilinear pairings on elliptic curves.

The protocols of the new multi-policy signature scheme 
 work as follows.
Setup 
 · St(1λ).
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Given a security parameter λ ∈ N, a GDH group G = 〈g〉 of prime order p, such that p
is λ bits long, is chosen. Two hash functions H0 : {0, 1}∗ → Zp and H1 : {0, 1}∗ → G are
chosen. The output of this protocol is params = (p,G, g, H0, H1).
Key generation: 
 · KG(params,P, t1, . . . , t�, n).

Let P = {P1, . . . , Pn} be a set of n users and let � j = T (t j , n) for j = 1, . . . , � be the
threshold signing policies defined on P , where 1 ≤ t1 < t2 < · · · < t� ≤ n.

For j = 1, . . . , �, the value P K j = gs j is computed, for a random value s j ∈ Z
∗
p that

will remain unknown to the members of P . These � secret values will correspond to a secret
vector s = (s1, . . . , s�) of the multi-secret sharing scheme described in Sect. 3, that will be
shared by running the distribution protocol� ·Dist(P, t1, . . . , t�, s), with hash function H0:

1. Choose random values shi ∈ Z
�
p , pairwise different for i = 1, 2, . . . , n, as the secret

shares.
2. Choose random polynomials f j (x) ∈ Zp[x] of degree at most t j − 1, for j = 1, . . . , �,

such that f j (0) = s j .
3. For i = 1, 2, . . . , n and j = 1, 2, . . . , �, compute the values hi j = H0( j, shi ) and

ri j = f j (i)− hi j modp. Compute the public verification values Di j = ghi j+ri j .
4. The secret share shi is sent to player Pi via a secure channel, whereas the public output

of the protocol is outpub = {(i, j, ri j )}Pi∈P, j∈{1,...,�}.

The global public key is P K = (P K1, . . . , P K�,outpub, {(i, j, Di j )}Pi∈P,1≤ j≤�),
whereas the secret share for each player Pi is shi .
Joint signature: 
 · Sign(params, P K ,m, A, {(i, shi )}Pi∈A, j).

Let A ⊂ P be a subset of users in P that want to cooperate to sign a message m with
respect to a signing policy � j = T (t j , n) for which they form an authorized subset, A ∈ � j .
Members of A proceed as follows:

1. Each Pi ∈ A computes hi j = H0( j, shi ), recovers ri j from outpub and broadcasts his
signature share σi j = H1(m, j)hi j+ri j ∈ G.

2. The rest of members of A verify if (g, Di j , H1(m, j), σi j ) is a valid Diffie–Hellman
tuple.

3. If there are not t j valid signature shares (i, σi j ), then stop and output ⊥. Otherwise,
from t j valid signature shares {(i, σi j )}Pi∈A, one can consider the Lagrange interpolation
coefficients λA

i j ∈ Zp such that s j = f j (0) =∑
Pi∈A λ

A
i j · f j (i).

4. Return the resulting signature and index (σ, j), where σ = ∏
Pi∈A

σ
λA

i j
i j .

Verification: 
 · Ver(params,m, σ, j, P K )
In the verification step it is enough to check if (g, P K j , H1(m, j), σ ) is a valid Diffie–

Hellman tuple. Return 1 if this is the case, or 0 otherwise.

4.4 Security analysis

The multi-policy threshold signature scheme described in the previous section, with a trusted
dealer in charge of the key generation phase, is trivially robust: during the joint signature
generation phase, cheating players are detected in step 2 and rejected from the protocol.
Assuming the remaining players are enough (i.e. they are at least t j ), the signing protocol
finishes correctly. One way to ensure this is by requiring that an adversary can corrupt at
most n − t� players.
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Regarding unforgeability, we now prove that the proposed scheme is UNF secure provided
the Computational Diffie–Hellman (CDH) problem is hard in the GDH group G. The proof
is in the random oracle model for hash functions H0, H1.

Theorem 3 In the random oracle model, the scheme 
 is UNF secure, assuming the Com-
putational Diffie–Hellman problem is hard to solve in the GDH group G.

Proof The proof is by reduction, assuming that hash functions H0, H1 are modeled as random
oracles. An adversary AUNF that has non-negligible success in forging a new valid signature
is used to construct an algorithm ACDH that solves the CDH problem in G.

ACDH receives as input (g, ga, gb), where G = 〈g〉 is a GDH group of prime order p.
The goal of ACDH is to compute gab. The algorithm ACDH initializes the attacker AUNF by
giving params = (p,G, g, H0, H1) to him. Since the hash functions H0, H1 are supposed to
behave as random oracles, ACDH will create and maintain tables TAB0 and TAB1 to answer
the hash queries from AUNF. These answers are produced by ACDH by first checking if there
already exists an entry in the corresponding table for the input of the hash query; if so, ACDH
responds with the existing output; otherwise, ACDH chooses a new random output, adds the
new relation input–output to the corresponding table, and responds to AUNF with this output
value. Hash queries (m, j) to H1 are answered in the following way. Let q1 be the maximum
number of such H1 queries. ACDH chooses at random an index k� ∈ {1, . . . , q1} for a special
query (m̃, j̃). For this special query, ACDH chooses a random value β̃ ∈ Zp and defines the

relation H1(m̃, j̃) = (ga)β̃ . For the rest of H1 queries (m, j), ACDH chooses a random value
β ∈ Zp and defines the relation H1(m, j) = gβ . These relations are stored in TAB1.
Key distribution AUNF chooses the target collective P� = {P1, . . . , Pn}, the decryption
policies � j = T (t j , n) ⊂ 2B for j = 1, . . . , � where t1 < t2 < · · · < t�, and also the
subset of corrupted members B̃ ⊂ P�. For simplicity, we assume B̃ = {P1, . . . , Pt�}, where
1 ≤ t� ≤ n. Let us define the set of indices J

� = { j ∈ {1, . . . , �} s.t. t j ≤ t�}, so that the
corrupted players can trivially sign messages for signing policies � j , if j ∈ J

�.
For the corrupted members of P�, the algorithm ACDH chooses randomly and indepen-

dently the shares shi ∈ Zp producing the set {(i, shi )}Pi∈B̃ .
For every index j ∈ J

�, the algorithm ACDH chooses at random a secret s j ∈ Z
∗
p and

a polynomial f j (x) ∈ Zp[x] of degree at most t j − 1 such that f j (0) = s j . It computes
(via the hash-table procedure) the values hi j = H0( j, shi ), ri j = f j (i) − hi j modp, for all
Pi ∈ B̃. For the non-corrupted players, Pi /∈ B̃, the algorithm ACDH chooses random and
independent values ri j ∈ Zp , then computes the values f j (i) by using the chosen polynomial.
Finally, ACDH computes the values P K j = gs j and Di j = g f j (i), for all Pi ∈ P�.

For the rest of indices j ∈ {1, . . . , �}, j /∈ J
�, the algorithm ACDH chooses at random

α j ∈ Zp and defines P K j = (gb)α j (which implicitly defines s j = b · α j ). For each j /∈ J
�,

ACDH chooses at random the values ri j , for all Pi ∈ P . In particular, this means that, for
the corrupted members Pi ∈ B̃, we have that the values ri j + H0( j, shi )modp are already
determined. Let f j (x) ∈ Zp[x] be an implicit polynomial of degree at most t j − 1 such that
f j (0) = b ·α j modp and f j (i) = ri j + H0( j, shi )modp, for every corrupted player Pi ∈ B̃.
Since |B̃| = t� < t j , the algorithm ACDH can compute the values Di j = gri j+H0( j,shi ),
for Pi ∈ B̃, and then combine these values with P K j = (gb)α j in order to obtain, by
interpolation in the exponent, the rest of values Di j = g f j (i), for non-corrupted players
Pi /∈ B̃.

Finally ACDH sends to the adversary AUNF the secret keys {(i, shi )}Pi∈B̃ of the
corrupted players, along with the public information P K = (P K1, . . . , P K�,outpub,

{Di j }Pi∈P�,1≤ j≤�), where outpub = {(i, j, ri j )}Pi∈P�, j∈{1,...,�}.
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Simulating H0. As it happened in the proof of Theorem 2, the simulation of the hash function
H0 is consistent as long as the H0 hash queries from AUNF do not cause a collision with the
implicitly determined values {shi }Pi /∈B̃ . If the number of hash queries for H0 is q0, such a

collision happens with probability at most
q2

0
2p + o

((
q2

0
2p

)2
)

, which is a negligible function

of the security parameter λ ≤ log p.
Signing queries Let (m, j) be a signing query asked by AUNF. If (m, j) = (m̃, j̃), then ACDH
aborts and outputs ⊥. Otherwise, ACDH knows a value β such that H1(m, j) = gβ . Then,

ACDH can easily compute correct signature shares σi j = H1(m, j)hi j+ri j = (
ghi j+ri j

)β =
Dβ

i j , for every player Pi ∈ P�.
Forgery At some point, and with non-negligible probability, AUNF outputs a valid signature
(σ �, j�) for some index j /∈ J

� and some message m�, different from the valid signatures
obtained through signing queries. Since the signature is valid and H1 behaves as a random
function, AUNF must have queried the pair (m�, j�) to the hash oracle for H1. With probability
at least 1/q1, we have (m�, j�) = (m̃, j̃), and in this case we have H1(m�, j�) = (ga)β̃ ,
for some value β known by ACDH, whereas the associated part of the public key is P K j =
(gb)α j , for some value α j also known by ACDH. Since σ� is a valid signature, we have that(

g, (gb)α j , (ga)β̃ , σ �
)

is a valid Diffie–Hellman tuple, which means that σ� = gabα j β̃ . In

this case, ACDH can easily obtain the desired solution gab of the given instance of the CDH
problem. ��

For simplicity, we have described a security reduction with a loss factor of q1. It is
possible to improve this reduction by using the techniques of Coron [10], and then the loss
factor becomes linear in qS , the number of signing queries, which is usually considered to
be smaller than the number q1 of hash queries.

5 Application to multi-policy distributed decryption

In this section, we consider the secret task of decryption, instead of signature. We will have
a set of users P = {P1, . . . , Pn} as the receivers of confidential messages. There will be �
different access structures � j ⊂ 2P defined on P , for j = 1, . . . , �. When encrypting, the
sender will choose the desired decryption access structure � j . A ciphertext encrypted for
the access structure (or decryption policy) � j will be correctly decrypted only if the users in
some subset A ∈ � j cooperate to run the protocol Decrypt. Each user Pi ∈ P will have a
share shi of secret information, and will use it to perform his part of the decryption process.

A multi-policy distributed decryption scheme� = (� ·St, � ·KG, � ·Enc, � ·Decrypt)
consists of four probabilistic polynomial-time algorithms: setup, key generation, encryption
(public), and decryption (secret and distributed). The encryption algorithm takes as input the
index j for the intended decryption policy, and this index j must be included in the output
ciphertext. The joint decryption protocol takes as input a ciphertext and secret shares of an
authorized subset (according to � j ); the result is a plaintext or a special reject symbol ⊥.

A correct encryption scheme must satisfy the proper confidentiality property. In the dis-
tributed setting that we are considering, confidentiality must hold even if an attacker corrupts
many members of the collective of receivers, provided the corrupted members are not autho-
rized to decrypt the challenge ciphertext. That is, a ciphertext on the message m addressed
to P for access structure � j leaks no information on m to an attacker who has corrupted a
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subset of users B̃ ⊂ P such that B̃ /∈ � j . This attacker can also make decryption queries
for pairs ciphertexts of his choice. If � is secure in front of this kind of (polynomial time)
adversaries, then we say it enjoys the property of indistinguishability under chosen ciphertext
attacks (IND-CCA security, for short). This property can be formalized with a security game,
but we omit here the details, because it is basically a combination of the security game for
the security of (single policy) distributed decryption (see for instance [31]) and the game for
multi-policy signatures that we have described in Sect. 4.2.

5.1 A new multi-policy decryption scheme

We propose here a new multi-policy distributed decryption scheme. For simplicity we
describe the scheme when all the decryption policies are threshold ones; that is,� j = T (t j , n)
for j = 1, . . . , �, where 1 ≤ t1 < t2 < · · · < t� ≤ n; the scheme can be extended to work
with more general access structures (see Appendix B). The scheme is inspired by the (single)
threshold decryption scheme proposed by Shoup and Gennaro in [31]. A key ingredient in
the design of the new scheme is, again, the MSSS proposed and analyzed in Sect. 3. The
protocols of the multi-policy decryption scheme � work as follows.
Setup: � · St(1λ).

Given a security parameter λ ∈ N, a group G = 〈g〉 of prime order p, such that p is λ bits
long, is chosen. A positive integer l ∈ N, which must be polynomial in λ, is chosen for the
maximum number of bits of the messages to be encrypted. Five hash functions are chosen:
H0 : {0, 1}∗×Z

∗
p → Zp , H1 : {0, 1}∗ → {0, 1}l , H2 : {0, 1}∗ → G, H3 : {0, 1}∗ → Zp , H4 :

{0, 1}∗ → Zp . The output of this protocol is params = (p,G, g, l, H0, H1, H2, H3, H4).
Key generation: � · KG(params,P, t1, . . . , t�, n).

Let P = {P1, . . . , Pn} be a set of n users and� j = T (t j , n) for j = 1, . . . , � the threshold
decryption policies defined on P , where 1 ≤ t1 < t2 < · · · < t� ≤ n. For j = 1, . . . , �,
the value P K j = gs j is computed, for a random value s j ∈ Z

∗
p that will remain unknown to

the members of P . These � secret values will correspond to a secret vector s = (s1, . . . , s�)
of the multi-secret sharing scheme described in Sect. 3, that will be shared by running the
distribution protocol � · Dist(P, t1, . . . , t�, s), with hash function H0:

1. Choose random values shi ∈ Z
�
p , pairwise different for i = 1, 2, . . . , n, as the secret

shares.
2. Choose random polynomials f j (x) ∈ Zp[x] of degree at most t j − 1, for j = 1, . . . , �,

such that f j (0) = s j .
3. For i = 1, 2, . . . , n and j = 1, 2, . . . , �, compute the values hi j = H0( j, shi ) and

ri j = f j (i)− hi j modp.
4. The secret share shi is sent to player Pi via a secure channel, whereas the public output

of the protocol is outpub = {(i, j, ri j )}Pi∈P, j∈{1,...,�}.

The secret share for each player Pi is shi , whereas the global public key is P K =
(P K1, . . . , P K�,outpub). In case one wants to provide robustness to the threshold decryption
process, the values Di j = ghi j+ri j must be included in P K , for i = 1, . . . , n and j =
1, . . . , �.
Encryption: � · Enc(params,m, P K , j).

1. Choose at random the values ru, rw ∈ Z
∗
p .

2. Compute c = H1(P K ru
j , j)⊕ m.

3. Use the element g to compute u = gru and w = grw .
4. Use the value ḡ = H2(c, u, w, j) to compute ū = ḡru and w̄ = ḡrw .
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5. Compute e = H3(ḡ, ū, w̄, j) and σ = rw + ru · emodp.
6. Return (C, j) with the ciphertext C = (c, u, ū, e, σ ).

Joint decryption: � · Decrypt(params,C, j, P K , A, {(i, shi )}Pi∈A)

Let A ⊂ P be a subset of users in P that want to cooperate to decrypt a ciphertext
C = (c, u, ū, e, σ ) according to the threshold decryption policy T (t j , n). We assume, thus,
|A| ≥ t j . Players in A proceed as follows.

1. Each Pi ∈ A checks if e = H3(ḡ, ū, w̄, j), wherew = gσ /ue, ḡ = H2(c, u, w, j), w̄ =
ḡσ /ūe.
If this equality does not hold, Pi broadcasts (i,⊥).

2. Otherwise, Pi ∈ A chooses vi j ∈ Zp at random, recovers ri j from outpub, computes
hi j = H0( j, shi ) and broadcasts the tuple (i, ui j , ei j , σi j ), where

ui j = uhi j+ri j , ûi j = uvi j , ĥi j = gvi j , ei j = H4(ui j , ûi j , ĥi j )

and σi j = vi j + (hi j + ri j ) · ei j modp

[If robustness is required, the correctness of this tuple can be publicly verified by checking
if ei j = H4(ui j , ûi j , ĥi j ), where ûi j = uσi j /u

ei j
i j , ĥi j = gσi j /D

ei j
i j . Note that this check

ensures that (u, Di j , ui j ) is a valid Diffie–Hellman triple.]
3. If there are no t j valid shares, stop and output ⊥. Otherwise, from t j valid tuples
{(i, ui j , ei j , σi j )}Pi∈A, different from (i,⊥), one can consider the Lagrange interpola-
tion coefficients λA

i j ∈ Zp such that s j = f j (0) =∑
Pi∈A λ

A
i j · f j (i).

4. Return the message m = c ⊕ H1(
∏

Pi∈A
u
λA

i j
i j , j).

5.2 Security analysis

A first attempt to prove the security of the new multi-policy decryption scheme would be
to reduce its security to the security of the inherent MSSS, which is proved in Sect. 3.2.
However, such a reduction does not work, because in the new decryption scheme, the values
P K j = gs j are public, for j = 1, . . . , �. In this scenario it is trivial to distinguish between

two potentially shared secrets s(0)j �= s(1)j , chosen by the adversary. Therefore, in order to
prove the security of the multi-policy decryption scheme, we have to construct a whole
proof, simulating all the values that an adversary AIND-CCA would see in the execution of
the different protocols of �. We would use the hypothetical existence of such a successful
adversary AIND-CCA to solve a computationally hard problem, the CDH problem.

This proof is basically a combination of the techniques in the security proof of the threshold
decryption scheme in [31] and the techniques that we have already used in the proofs of
Theorems 2 and 3, and so it is omitted. The proof is in the random oracle model for the five
hash functions H0, H1, H2, H3, H4. The result that ensures the security of the new multi-
policy distributed decryption scheme is the following theorem.

Theorem 4 In the random oracle model, the scheme � is IND-CCA secure, assuming the
Computational Diffie–Hellman problem is hard to solve in G.

6 Relations with attribute-based cryptography

In an attribute-based cryptosystem, each user has a subset of attributes A ⊂ P from a universe
P = {at1, . . . ,atn} of attributes, and receives from a trusted master entity a secret key
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according to those attributes. Later, the specific access policy � ⊂ 2P defining the sub-
sets of attributes that must be held by someone so that he is able to perform the secret
task (either decrypting or signing) is chosen “on the fly”, among all the possible (monotone
increasing) access policies in P . Attribute-based cryptosystems have received a lot of atten-
tion from the cryptographic community in the last years, and different schemes have been
proposed both for encryption (see for instance [16,22]) and for signatures (for instance, in
[19,24]).

It is easy to see that attribute-based cryptosystems are (in some way) a more general prim-
itive than the primitives of multi-policy distributed cryptosystems that we have introduced
in this work. Let us consider, for instance, the case of encryption/decryption (the case of
signatures work in an analogous way). Let us take an attribute-based encryption scheme, and
let us associate each attribute ati ∈ P with one player Pi ∈ P . Each player receives from the
master entity the secret key (or secret share) shi corresponding to the fact of holding only
attribute ati (all these secret keys sh1, . . . , shn are computed by the master entity in a single
execution of the key generation protocol, with a common randomness). Later, the sender of
a message m addressed to P chooses the desired decryption policy � ⊂ 2P and encrypts
m by using the attribute-based encryption protocol. Only if an authorized subset of players
A ⊂ P , A ∈ � put together their secret shares, they will be able to run the attribute-based
decryption protocol and recover the message m.

Therefore, it seems that the primitives of multi-policy distributed decryption and signature
can be already implemented by using existing attribute-based cryptosystems, and actually
the resulting schemes are more general, because the allowed decryption / signing policies
must not be, in principle, inside a pre-defined list {�1, . . . , ��}, as it happens in our multi-
policy distributed cryptosystems; they can be whatever access policy defined on the set P .
However, we will explain below a list of drawbacks suffered by this attribute-based approach,
as opposed to the direct approach that we have followed in this work to design multi-policy
distributed cryptosystems.
Restricted access policies Even if, in theory, an attribute-based cryptosystem could allow
encryptions or signatures for any access policy � ⊂ 2P , in specific proposals this is not
always the case. For instance, the most efficient attribute-based cryptosystems proposed
up to date (in terms of the length of ciphertexts or signatures, the computational cost of
the protocols, etc.) admit only threshold policies [1,19]. The resulting functionality can be
achieved by our multi-threshold decryption and signature schemes, by taking � = n and
t j = j , for all j = 1, . . . , n.
Necessity of a trusted master entity In any attribute-based cryptosystem, a master entity must
generate and distribute the secret keys between users. This means that this entity has to be
trusted, because otherwise it could impersonate any user in the system. Although we have
described our multi-threshold schemes with a trusted dealer who generates and distributes
the secret shares, this is not an intrinsic property of this kind of schemes, and actually
we show in Appendix A how the own players in P can generate the public parameters
and the secret shares by themselves, without the participation of any external (and trusted)
dealer.
Length of ciphertexts, public parameters, signatures and secret shares In most of the attribute-
based cryptosystems proposed so far, the length of the ciphertexts or signatures is at least linear
in the number of attributes involved in the access policy (which, for simplicity, we assume to
be n). In our multi-threhold cryptosystems, the length of ciphertexts and signatures is constant.
The only attribute-based cryptosystems with constant-length ciphertexts or signatures [1,19],
on the other hand, have secret keys whose length is at least linear in n. In our multi-threshold
schemes, each secret key (or share) contains a single element in Zp . The length of the public

123



Multi-secret sharing schemes 861

parameters in our schemes, which is linear in n · �, is comparable to the length of the public
parameters in all existing attribute-based cryptosystems, which is at least linear in n, and
sometimes linear in n2.
Computational assumptions Up to now, all the existing (and moderately efficient) attribute-
based cryptosystems with a formal proof of security make use of bilinear pairings, and base
their security on (sometimes, quite artificial) computational assumptions related to bilinear
groups. For multi-policy distributed cryptosystems, we have seen that they can be constructed
by combining, essentially, a MSSS with a standard distributed cryptosystem. The particular
instantiation of a multi-policy distributed decryption scheme that we have described and
analyzed in Sect. 5, for instance, is provably secure under the well-established assumption
that the Computational Diffie–Hellman problem is hard.

Appendix A: Joint generation of the secret shares

For simplicity, in both our MSSS and our multi-policy distributed decryption/signature
schemes, we have assumed the existence of a trusted entity, a dealer, who generates some
secret keys, distributes the shares between all the participants using a secure channel and
outputs the public information.

Let us show how the own members of P = {P1, . . . , Pn} could do this task by themselves,
for the proposed MSSS, without any interaction with a trusted entity. The setup protocol
� · Stp(1λ,P, �1, . . . , ��) works exactly in the same way: we will have 1 ≤ t1 < t2 <
· · · < t� ≤ n for the � different thresholds that define the access structures {� j }1≤ j≤�, and
will choose a large prime p > n and a hash function H : N× Z

�
p → Zp . For simplicity, we

assume that the adversary is honest-but-curious, and so data is not corrupted.
Generation of the secret and distribution of the shares: � · Dist(pms).

Now the global secret s ∈ (Zp)
� that will be distributed is not an input of the protocol,

because it will be generated by players in P “on the fly”, according to the following steps.

1. Every Pi ∈ P chooses a random value shi ∈ Z
�
p as his secret share.

2. Every Pi ∈ P chooses random values si j , a(1)i j , a(2)i j , . . . , a
(t j−1)
i j in Zp , for j = 1, . . . , �,

to use in the polynomial fi j (x) = si j + a(1)i j x + a(2)i j x2 + · · · + a
(t j−1)
i j x t j−1 ∈ Zp[x]

of degree at most t j − 1. The secret s j is implicitly defined as s j = ∑
Pi∈P si j =∑

Pi∈P fi j (0), and the global secret is s = (s1, . . . , s�) ∈ (Zp)
�.

3. Every Pi ∈ P sends the � values { fi j (k)}1≤ j≤� to the other participants Pk ∈ P . At this
point, the participant Pk ∈ P is able to compute his own secret value bkj =∑

Pi∈P fi j (k),
which is a polynomial (Shamir) share of the secret s j .

4. Every Pi ∈ P computes hi j = H( j, shi ) and broadcasts the values ri j = bi j−hi j modp,
for j = 1, 2, . . . , �.

5. Finally, the public output of the protocol is outpub = {(i, j, ri j )}Pi∈P, j∈{1,...,�}.

Reconstruction of the secrets: � · Rec(pms,outpub, j, {(i, shi )}Pi∈A).
When the players of an authorized subset A ∈ � j (i.e. |A| ≥ t j ) want to recover the

secret s j , they must cooperate performing the following steps.

1. Each player Pi ∈ A computes hi j = H( j, shi ).
2. Take the values {(i, j, ri j )}Pi∈A from outpub and compute bi j = ri j+hi j modp, for every

Pi ∈ A.
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3. Use the values {bi j }Pi∈A to interpolate the polynomial Fj (x) =∑
Pi∈P fi j (x) in x = 0,

recovering in this way the j-th secret s j = Fj (0).

The idea to make the scheme secure against active adversaries (who can send incorrect
values during the protocol) is to consider verifiable secret sharing techniques ([13,27]) as
described for instance in [15]. Slight modifications of the scheme above are necessary to
achieve this goal. For instance, every participant Pi ∈ P must publish, in Step 2 of the

protocol � ·Dist, the commitments A(u)i j = ga(u)i j to the coefficients of his polynomials, with
j ∈ {1, . . . , �} and u ∈ {1, . . . , t j −1}. Later, these commitments are used to detect incorrect
values that are sent in Step 3 of the protocol � · Dist or broadcast in Step 2 of the protocol
� · Rec.

Appendix B: More general access structures

We have described our new MSSS (Sect. 3) and our new multi-policy distributed decryption
and signature schemes (Sects. 5.1 and 4.3) for the particular case where the access structures
�1, . . . , �� are all threshold ones. However, all these protocols can be easily extended to the
case of more general access structures, as long as they admit a linear and ideal secret sharing
scheme (also known as vector space secret sharing scheme [8]).

An access structure � is realizable by vector space secret sharing scheme, over a finite
field K, if there exist a positive integer h and a map ψ : P ∪ {D} −→ (K)h , such that
A ∈ � if and only if ψ(D) ∈ 〈ψ(Pi )〉Pi∈A. If a dealer wants to distribute a secret value
s ∈ K according to such an access structure, he takes a random vector ω ∈ (K)h , such that
ω ·ψ(D) = s. The share of a player Pi ∈ P is shi = ω ·ψ(Ri ) ∈ K. Let A be an authorized
subset, A ∈ �; then, by definition, ψ(D) = ∑

Pi∈A λ
A
i ψ(Pi ), for some values λA

i ∈ K. In
order to recover the secret from their shares, players in A compute

∑

Pi∈A

λA
i shi =

∑

Pi∈A

λA
i (ω · ψ(Pi )) = ω ·

∑

Pi∈A

λA
i ψ(Pi ) = ω · ψ(D) = s.

Shamir’s threshold secret sharing scheme, with threshold t , can be seen as a particular
case of vector space secret sharing, by defining ψ(D) = (1, 0, . . . , 0) ∈ (Zq)

t and ψ(Pi ) =
(1, i, i2, . . . , i t−1) ∈ (K)t for every player Pi ∈ P .

If we come back to our new MSSS, in Sect. 3, it can be easily modified to work in situations
where each access structure � j admits a vector space secret sharing scheme. We just have to
replace polynomials with vectors, and polynomial evaluations with scalar products.

The same happens with our multi-policy distributed cryptosystems. If the access struc-
tures admit a vector space secret sharing scheme, then the Key Generation process can
be modified as explained above; later, the encryption/decryption or signature/verification
operations can be (slightly) modified to work with these more general access structures
and linear secret sharing schemes, because they involve only linear operations (additions
and multiplications with a constant value). Even the version of our protocols that works
without any trusted dealer (see Appendix A) can be extended using the ideas and techniques
from [18].
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